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Drug development is known to be a costly and time-consuming process, which is prone to high 
failure rates. Drug repurposing allows drug discovery by reusing already approved compounds. The 
outcomes of past clinical trials can be used to predict novel drug-disease associations by leveraging 
drug- and disease-related similarities. To tackle this classification problem, collaborative filtering with 
implicit feedback (and potentially additional data on drugs and diseases) has become popular. It can 
handle large imbalances between negative and positive known associations and known and unknown 
associations. However, properly evaluating the improvement over the state of the art is challenging, 
as there is no consensus approach to compare models. We propose a reproducible methodology for 
comparing collaborative filtering-based drug repurposing. We illustrate this method by comparing 11 
models from the literature on eight diverse drug repurposing datasets. Based on this benchmark, we 
derive guidelines to ensure a fair and comprehensive evaluation of the performance of those models. 
In particular, an uncontrolled bias on unknown associations might lead to severe data leakage and 
a misestimation of the model’s true performance. Moreover, in drug repurposing, the ability of a 
model to extrapolate beyond its training distribution is crucial and should also be assessed. Finally, 
we identified a subcategory of collaborative filtering that seems efficient and robust to distribution 
shifts. Benchmarks constitute an essential step towards increased reproducibility and more accessible 
development of competitive drug repurposing methods.
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Developing novel drugs has turned out to be a long, strict and therefore costly process. The time window between 
identifying a drug candidate and its marketing is around 5 years, but it can take 10 years and cost an average of 
$2.3 billon1. Still, the failure rate in commercializing a candidate drug is up to 90%2. This has led researchers to 
consider already well-understood drugs instead of de novo drug designs.

Drug repurposing aims to screen large libraries of well-documented chemical compounds in an automated 
fashion to uncover new drug-disease associations. This is supported by the availability of clinical (trial) data3, 
omics data from drug perturbations4, drug sensitivities5, as well as databases providing details of molecular 
structures and chemical properties. The rise of machine learning approaches and increasing computational 
power have raised the interest in drug repurposing.

The underlying hypothesis behind drug repurposing is that drug molecules can target multiple biological 
processes in which dysregulations are causal factors accounting for a given pathology. Diseases might share 
those dysregulations6. Moreover, since drug discovery is restricted to approved molecules, drug repurposing 
speeds up the early preclinical phases and toxicity analyses in the pipeline. Focusing on well-known molecules, 
in turn, could reduce the risk of unexpected adverse side effects at late development stages, which still constitute 
one of the main reasons for marketing failure in late clinical phases7.

Several approaches to drug repurposing have been developed in the literature. We refer to8,9 for a 
comprehensive overview of those methods. In drug repurposing, a classifier can be trained to match and predict 
outcomes from past clinical trials, as made available by ClinicalTrials.gov3, or the RepoDB database10 
for instance. Such a classifier might be based on relevant biological features of drugs and diseases, or rely solely 
on the reported clinical trial outcomes. Those outcomes are known to be highly imbalanced between positive 
and negative outcomes because negative results are rarely reported11,12. Those adverse outcomes might result 
from late discovery toxicity effects or low accrual. Moreover, the number of untested drug-disease associations 
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dramatically outnumbers the number of past clinical trials. For example, in the TRANSCRIPT13 and PREDICT14 
datasets which were published last year, the ratio between negative and positive drug-disease matches is around 
3%. In contrast, the sparsity number—the percentage of unknown matches over the total number of possible 
matches—is larger than 98.5%. Attempting to overcome this lack of data by considering all unknown outcomes 
as negative, as tempting as it may be, might induce considerable bias in the underlying model. Indeed, a drug-
disease association might not have been tested for various reasons, including the incompleteness of knowledge 
on biological events. This might explain that binary classifiers fail on not fully annotated datasets15. Moreover, 
another reason untested drug-disease pairs cannot be considered fully-fledged negative results is that one is 
looking for novel drug indications among these pairs. Nonetheless, the fact that a drug-disease association has 
not been tested is already informative. This type of implicit information (often named implicit feedback) arises in 
many other non-medical topics of recommendation, for instance advertising16.

Collaborative filtering is a flexible semi-supervised approach that has raised a lot of interest in the domain of 
recommendation systems. This framework has also become popular in drug repurposing, considering drugs as 
items and diseases as users17,18, notably thanks to the Netflix Prize problem19, which aimed to connect movies 
and viewers. Predicted drug-disease associations stem from a function whose parameters are learned on a 
whole matrix of drug-disease matches instead of focusing on a single disease at a time. Then, such methods 
rely on filtering patterns learned across diseases and drugs, implementing some collaboration (see Fig. 1 for 
an illustration of this principle). A few examples of simple collaborative filtering methods are nearest neighbor 
approaches, where an outcome is assigned to a pair based on a consensus on similar datapoints20, and matrix 
factorization, in which literature often relies on tensor decomposition, i.e., any drug-disease matching in the 
matrix is the output of a classifier in which only lower-rank tensors intervene. This principle is present, for 
instance, in factorization machines21. For those algorithms, the classifier may only take as input the matrix of 
drug-disease associations (pure collaborative filtering). Hybrid collaborative filtering relies on supplementary 
features for drugs and diseases in addition to the association matrix. Those features might be similarity scores 
across diseases and drugs or experimental measurements.

Although the application of collaborative filtering to drug repurposing has become increasingly popular 
in the last 10 years16–18,22–26, the field lacks a standard benchmark approach to evaluate the performance of 
new algorithms. Across papers, several different metrics, datasets, and baseline algorithms have been selected, 
undermining the comparability and application of the proposed methods. Due to the hurdles in running the 
methods and accessing drug repurposing datasets, numerical results from baseline algorithms are sometimes 
copied directly from the original paper. Moreover, reproducibility issues specific to the implementation of the 
experiments further undermine the experimental results: for instance, not setting a fixed random seed, varying 
number of iterations, lack of package versioning, and differences in hyperparameter tuning. As a general rule, 
such a reproducibility issue is still pervasive in machine learning, as raised by several papers27–29. Conversely, 
the tremendous progress in computer vision and large language models (LLMs), for instance, has been credited 
to constructing standard datasets and benchmarks in those fields30,31.

Contributions    1. To bridge that gap in the literature, we performed a benchmark across 11 published 
and open-access drug repurposing approaches based on collaborative filtering (see Table 2) on eight different 
drug repurposing datasets and a synthetic one (see Table 1). The algorithms and the datasets are available via 
two recently published open-source Python packages32. 2. This large-scale benchmark allowed us to suggest 
guidelines for performing a fair and comprehensive assessment of those methods applied to drug repurposing. 
In particular, the dataset selection, the validation metric, and the split into training and testing sets are crucial 
to a benchmark. 3. We show that methods relying on constructing a heterogeneous graph connecting drugs and 
diseases usually perform best in this benchmark. This result will hopefully support the faster development of 
novel approaches to drug repurposing, especially regarding interpretability.

In the following sections, we formally define the drug repurposing problem in a collaborative filtering 
framework and suggest a classification of state-of-the-art algorithms that tackle this problem. In the problem 
statement, we describe the methodology behind our benchmark, along with the selected algorithms and datasets. 

Fig. 1.  Principle of collaborative filtering. If two drugs A and B are similar, and if there is a known association 
between a disease and drug A, then the same association is predicted between this disease and drug B.
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The experimental study displays our benchmark results, that is, the ranking of the considered state-of-the-art 
algorithms and the experiments specific to the choice of a dataset and a validation metric.

Results
Problem statement
Part of our contribution to this work is an overview of state-of-the-art approaches to collaborative filtering, 
especially in drug repurposing. We also provide insights into applying these algorithms for medical and 
biological research.

The drug repurposing problem  
A drug repurposing dataset comprises a drug-disease association matrix denoted A ∈ {−1, 0, +1}NS×NP , 
which summarizes all known matches between chemical compounds and pathologies. NS  is the number of 
drugs, and NP  is the number of diseases for which at least one matching with a disease/drug is known. That is, 
every row and every column in matrix A has at least one non-zero coefficient. 0 means that the drug-disease 
association is deemed unknown (for instance, no Phase III clinical trial testing of this association has been 
reported). +1 means that the drug is efficient in treating the disease, for instance, through a successful clinical 
trial. −1 means that matching the drug and the disease is not recommended. Notably, until recently, no drug 
repurposing datasets featured negative associations (see Table  1) due to the difficulty in defining a negative 
association, and only comprise positive or unknown associations. In the remainder of this paper, similarly to a 
prior work32, we define a negative drug-disease association as a drug-disease pair where either the drug is too 
toxic or too inefficient (e.g., linked to reported low accrual in clinical trials). We expect those explicit negative 
annotations to improve the performance of a drug repurposing classifier outputting labels in {−1, +1}. How to 
take into account negative examples is still the subject of recent theoretical works on collaborative filtering38, but 
it has not been tackled in the applications to drug repurposing. Ultimately, collaborative filtering aims to replace 
zeroes in matrix A by values in {−1, +1}. In the remainder of the paper, we denote R̂ ∈ RNS×NP  the predicted 
association score matrix.

In addition to the association matrix A, some information about the drugs and diseases is also available to 
define drug and disease similarities. That information might be used by hybrid collaborative filtering algorithms. 
Different data types are featured in currently available drug repurposing datasets, as shown in Table 1. Drug 
and disease feature information is very heterogeneous: for instance, the Cdataset, the Fdataset33, and the 
DNdataset35 rely on text-mining approaches. More specifically, the drug-disease associations are first mined 
from the DrugBank39 database. Then, for the Cdataset and Fdataset, the drug information S corresponds 
to Tanimoto drug similarity scores computed on 2D fingerprints of chemical structures. In contrast, disease 
features in P are a disease similarity matrix computed on their respective medical descriptions in OMIM40. 
In DNdataset, the drug similarity matrix S is computed using Lin’s node-based similarity function41 on the 
anatomical therapeutic chemical (ATC) codes for drugs. Lin’s node-based similarity is also applied to disease 
ontologies42 for the disease similarity matrix P. Note that those similarities are computed on a set of drugs and 
diseases larger than the number of entities involved in at least one non-zero association.

Recently, some works proposed biological data-based datasets for collaborative filtering-based drug 
repurposing. In the LRSSL dataset37, drug features include the binary fingerprints of chemical structures and 
target protein domains and disease features are disease semantic similarities based on the intersection between 
disease-specific directed acyclic graphs of descriptors43. Similarly, the Gottlieb dataset36 comprise drug-
pairwise chemical, domain, functional (as Jaccard scores computed on Gene Ontology44) and disease semantic 
similarity matrices on drugs and diseases present in the associations in Fdataset. Those similarity matrices 
are concatenated in Table 1. The PREDICT14 dataset incorporates several types of drug and disease similarity 

Type Dataset Paper NS FS NP FP #Positive #Negative s (%) IR (%)

Text-mining

Cdataset 33 663 663 409 409 2,532 0 99.1 0

Fdataset 33,34 593 593 313 313 1933 0 99.0 0

DNdataset 35 550 1490 360 4516 1008 0 99.5 0

Biological

Gottlieb 34,36 593 1779 313 313 1933 0 99.0 0

LRSSL 37 763 2049 681 681 3051 0 99.4 0

PREDICT 14 1351 6265 1066 2914 5624 152 99.6 2.70

PREDICT 14 1014 1642 941 1490 4627 132 99.5 2.85

TRANSCRIPT 13 204  12,096 116  12,096 401 11 98.3 2.74

Artificial Synthetic 32 300 25 300 25 200 100 99.7 50

Table 1.  Datasets in the benchmark. They correspond to the number of drugs and diseases involved in at 
least one nonzero drug-disease association. The sparsity s is the percentage of unknown (neither positive 
nor negative) matches times 100 over the total number of possible drug-disease matches (rounded up to 
the first decimal place). The imbalance ratio IR is the ratio between negative and positive outcomes in the 
dataset (rounded up to the second decimal place). The private version of PREDICT is the one generated from 
notebooks in the original GitHub repository, whereas the public one is the one deposited on Zenodo14. The 
association matrix in the Fdataset comes from34. Still, the drug and disease features are from33.
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measures based on disease phenotypes, drug chemical structures, target gene proximity in a protein-protein 
interaction network, etc., similar to what was described in the seminal paper of the PREDICT method34. Finally, 
the TRANSCRIPT13 dataset only includes transcriptomic-related data, as the drug and disease features are 
variations of gene-wise transcriptomic levels induced by the corresponding treatment/pathology, computed by 
performing a differential analysis on relevant samples from the LINCS L1000 database4 (for drugs) or retrieved 
from the CREEDS database45 (for diseases and drugs missing from LINCS L1000). Note that the code that 
generated both datasets is open-source46.

All of that drug (resp., disease)-related information is summarized in a drug and a disease feature matrices 
S ∈ RNS×FS  and P ∈ RNP ×FP . FS  is the number of drug features (e.g., genes when considering gene 
expression data, drugs when S is a similarity matrix), and analogously, FP  is the number of disease features. 
When not considering features, collaborative filtering relies on drug-drug and disease-disease similarities by 
comparing rows and columns of matrix A. For instance, if drug d is associated with row rd = [+1, 0, +1, −1] 
in matrix A, and drug d′ with row rd′ = [+1, +1, +1, −1], then we can possibly set the second coefficient of 
rd to +1. Note that we ignore in this work the impact of missing and non-finite values on classification, e.g., 
S ∈ (R ∪ {± inf, N/A})NS×FS , which is in practice extremely relevant when dealing with real-life data. See 
the methods for the processing of non-finite data. Information about the overlaps between the drug repurposing 
datasets is available in the methods.

Classification of collaborative filtering algorithms  
Based on our review of the literature in the domain in Table 2, we define three large classes of algorithms that 
depend on the underlying mechanism of repurposing.

Matrix factorization algorithms typically ignore side information from matrices S and P and aim to infer low-
rank tensors such that a function of their product is as close as possible to matrix A. As such, these algorithms 
take the incomplete association matrix A as primary input and output the “completed” matrix R̂ ∈ RNS×NP  
which should match A on its known coefficients. High scores in R̂ should match positive coefficients in A, and 
conversely, low scores should correspond to negative or null values in A. Predictions on unknown drug-disease 
matches are made by setting a threshold t on the scores, such that drug-disease pair (i, j) is a positive association 
if and only if R̂i,j > t.

Neural networks are versatile algorithms that can be applied to classification. Given a set of weights θ, a 
neural network f defines the outcome associated with a feature vector x of a drug-disease pair by fθ(x) ∈ R
. Again, such outcomes should match the values in A. One might obtain true labels either by a thresholding 
approach or by adding a last softmax layer to the network and outputting the class associated with the highest 
score. However, contrary to most matrix factorization approaches, neural networks are a flexible way to integrate 
supplementary information about drugs and diseases in matrices S and P or to learn embeddings of drugs and 
diseases based on shared matches.

Finally, we define a third, less obvious class of algorithms called “graph-based”. Albeit they might rely to some 
extent on neural networks and tensor factorization, they are characterized by their building of a heterogenous 
(not necessarily bipartite) graph connecting drugs and diseases. Often, the edges of this graph can be split 
into three main groups: edges connecting a pair of drugs, a pair of diseases, or a drug and a disease. Drug 
repurposing aims to reconstruct edges from the last set, but a critical side advantage of those algorithms is to 
retrieve similarities between drugs and diseases. In particular, such edges might be helpful to justify predicted 
drug-disease associations and contribute to the interpretability of classifiers. This algorithm can either output 
pair-related scores or a full association matrix (see Table 2).

Pairs or matrices?  
In addition to the three classes of algorithms defined in the last paragraph, state-of-the-art algorithms can 
also be discriminated by the type of their input/output (column “I/O type” in Table  2). In particular, those 
algorithms receive and output either a drug-disease association matrix or a drug-disease pair. We emphasize that 

Class of algorithms Name Paper I/O type Hybrid Implementation

Matrix factorization

ALS-WR 47 Matrix × Python

LibMF 48 Matrix × Python

LogisticMF 49 Matrix × Python

PMF 50 Matrix × Python

SCPMF 51 Matrix × MATLAB / Octave

Neural Network
Fast.ai collab_learner 52 Pair × Python

NIMCGCN 53 Pair ✓ Python

Graph-Based

BNNR 18 Matrix ✓ MATLAB / Octave

DRRS 54 Matrix ✓ MATLAB Compiler

HAN 55 Pair ✓ Python

LRSSL 37 Pair ✓ R

Table 2.  Overview of algorithms present in the benchmark and the classification (columns “Class” and “I/O 
type”) defined in the problem statement section.
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choosing one type of algorithm or the other considerably impacts the resulting repurposing, both at training and 
prediction times. We would not recommend using matrix-oriented methods in drug repurposing.

Indeed, at training/testing time, when run on a subset of a drug repurposing dataset, algorithms that take as 
input an entire matrix cannot distinguish between “accessible” zeroes of the association matrix (i.e., zeroes in 
the whole, initial, drug repurposing dataset) and “inaccessible” zeroes (that is, drug-disease matches which are 
masked in the subset but are non-zero coefficients in the full dataset). This simultaneously leads to data leakage 
and corrupted validation.

The data leakage stems from the fact that, in that case, an unknown drug-disease matching can never be 
hidden in the training set, as there is no mechanism to encode “inaccessible” true zeroes in the association 
matrix. As such, the algorithm is trained on information that is supposed to be accessible only at testing time. 
An approach to avoid this would be to ensure all zeroes in the initial association matrix A belong to the training 
set and none belong to the validation subset. Then, the chosen accuracy metric would be computed only on non-
zero elements of the validation subset. Since most drug repurposing datasets only feature 0–1 values (and none 
of the true negatives denoted by −1’s), most standard metrics cannot be computed, as they require at least two 
types of labels. That metric type notably includes the popular Area Under the Curve (AUC). Note that, given the 
(very) low number of negative drug-disease associations in Table 1, restricting the training to datasets involving 
at least one negative example would inevitably lead to overfitting, which is, of course, undesirable. This problem 
of data leakage cannot then be fixed and might, unfortunately, account for the apparent good results of matrix-
oriented approaches in our benchmark (see the experimental study).

The corrupted validation comes from an incorrect implementation of the validation procedure, which is 
present in papers mentioning matrix-oriented approaches for drug repurposing and publishing code for their 
experiments. Indeed, if the selected accuracy/validation metric is computed across all coefficients/labels of matrix 
R̂, regardless of the accessibility of the coefficients at training time, this metric might be inflated by the values 
obtained on unknown drug-disease pairs. This issue was solved during the implementation of our benchmark. 
Indeed, regardless of the input type of the benchmarked algorithm, the validation metrics are computed on a 
fold and never directly on the predicted and ground truth association matrices (R̂i,j , Ai,j)i≤NS ,j≤NP . A fold is 
defined as a set of values referring to drug-disease pairs: i.e., a set of indices I ⊆ {1, 2, . . . , NS} × {1, 2, . . . , NP } 
such that the validation metric is computed on vectors (R̂i,j , Ai,j)(i,j)∈I .

Moreover, at prediction time, matrix-oriented approaches can only provide predictions for drugs and 
diseases present in the matrix on which they have been trained. Suppose one needs to predict the outcome of 
a new drug-disease pair. In that case, one needs to concatenate information about this new drug or disease to 
the initial association matrix, run a training routine on this matrix again, and then make predictions. The same 
goes for supplementary information about drug-disease matches accrued after the initial training of the model. 
Consequently, this is potentially time-consuming and hinders drug repurposing of novel compounds.

Note that there are already a vast literature on biases in collaborative filtering, which are related to unknown 
associations: for instance, the exposure bias56 (users are exposed to few items, so unknown does not necessarily 
mean negative), the popularity bias (items most frequently interacted with in the training set are more frequently 
recommended), the not missing at random bias57 (an association label might be missing due to an unobserved 
latent factor), and many others58.

However, we are the first to alert on the issue arising from not distinguishing between zeroes in the training 
set (unknown associations in the dataset) and the mask that zeroes out any value in the testing set (needed in 
what we call “matrix-oriented” algorithms) in drug repurposing. Contrary to all other previously mentioned 
biases, this bias is not linked to implicit feedback in the data, but to the structure of the recommender system 
(matrix or pair-oriented). As such, debiasing techniques present in the literature (e.g., using propensity scores59, 
sampling or causal learning approaches58) are not appropriate to deal with this specific evaluation bias.

Validation metrics for drug repurposing
As illustrated by Table  1, drug repurposing datasets are highly imbalanced and information-scarce, both 
between the known (−1/ + 1) and unknown (0) labels (column “sparsity”), and between the positive (+1) and 
negative (−1) associations (column “IR”). As such, a standard accuracy metric that only accounts for correct 
label predictions on known drug-disease associations is bound to be biased61. Moreover, only focusing on binary 
labels removes essential information about the ability of the model to rank drug-disease associations. We suggest 
several conditions to get the best interpretation out of a validation metric (in particular, for real-life applications). 
The metric should be bounded, ideally in the range [0, 1], where 1 applies to a perfect drug repurposing model, 
0 to a model which perfectly ranks negative associations first, and finally 0.5 for a ranking at random. See Table 3 
for a few examples of standard metrics that satisfy these constraints.

The global accuracy (ACC) is the number of correctly predicted associations over total known (positive and 
negative) associations. The global Area Under the Curve (AUC) is the area under the curve when plotting the 
true positive rate against the false positive rate for different thresholds for labeling classes from all scores. The 
local AUC is the area under the curve at a fixed disease. The local metric Negative Sampling-AUC (NS-AUC)60 is 
the frequency of correctly ranked drug pairs at a fixed disease. For instance, drug d1 is positively associated with 
disease D, and the indication of drug d2 for disease D is negative or unknown. Then a good classifier should rank 
the association (d1, D) before (d2, D). An illustration of the NS-AUC is provided in the methods. Finally, the 
Non-Discounted Cumulative Gain (NDCG) for a fixed disease at rank NS  is the similarity of the ranking given 
by the classifier up to rank NS  to a perfect ranking of all drugs (putting all positive drug-disease pairs first). We 
obtain the average value of local metrics by averaging across diseases.

Moreover, in the application of drug repurposing, given that some diseases are investigated more than others, 
there is a discrepancy in the amount of information available on diseases. This is why we distinguish in Table 3 
between “global” metrics, computed across all associations, and “local” ones, which average the metric obtained 
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on disease-specific associations. As we will show in our benchmark, models aiming at optimizing a global metric 
will not necessarily maximize a local metric.

As a consequence, we conjecture that a model that achieves a high global validation metric on a training 
set might provide a degraded prediction for a specific disease. This situation would not be satisfying for drug 
repurposing.

Quantifying robustness  
In addition to the evaluation of the approximation error of a model—that is, how well the model retrieves 
known drug–disease associations—one is also interested in quantifying the robustness of the model and 
checking whether the model still performs well on data which is significantly dissimilar from the training data. 
This problem is pervasive in machine learning, particularly in health-related applications62, where differences 
in technicians and measurement protocols can induce a shift in the distribution of values in the data. In prior 
works34, this robustness was measured by training and testing a model on two datasets such that the Tanimoto 
score between one drug in the training set and another drug in the testing set is at most equal to 0.8.

In our benchmark, we generalize this procedure to other data types than structural fingerprints by splitting 
in an automated dataset into weakly correlated subsets depending on the drug similarity, as described in the 
methods. This procedure allows us to have a proxy of the error induced by the distribution shift between the 
training and testing sets.

Experimental study
We ran N = 100 iterations of each algorithm in Table 2 on each dataset in Table 1, and collected all metrics 
present in Table 3 as computed on the testing subset (20% of the total dataset) with the best model selected 
through a 5-fold cross validation on the training subset. The best model is the one that achieves the highest value 
of AUC across all five folds. Unless otherwise specified, a dataset is randomly split into training and testing sets 
containing disjoint drug–disease pairs. Figure 2a shows a summary of the benchmarking pipeline. We summarize 
our insights from the benchmark in Table 4, highlighting the main research questions and our suggestions for 
tackling each of them. Figure 3 is the crucial result of the benchmark and shows the Top-3 contenders (in terms 
of average testing accuracy metric) for each dataset. We first consider questions regarding the evaluation of the 
drug repurposing performance.

Optimizing for AUC does not guarantee good disease-wise, nor ranking performance  
We chose to perform model selection based on optimizing the (global) AUC, as done in many prior works33,34. 
Figure 2b compares the distribution of the different metrics in Table 3. Unsurprisingly, as the models run on 
the testing subsets are selected based on their AUC value on the validation subset (part of the training subset), 
the AUC and accuracy values obtained on the testing subsets are overall relatively high. However, as illustrated 
by the diagonal plots and correlation values in Fig. 2b, AUC is only weakly positively correlated to local metrics 
(average AUC, average NS-AUC) and ranking metrics (NDCG@NS). This is also illustrated in Fig. 3 where 

Type Metric Notation Formula

Global
Accuracy Acc(R̂, A; t) (|Ω−| + |Ω+|)−1

∑
(i,j)∈Ω−∪Ω+ �((R̂i,j − t)Ai,j > 0)

Area Under the Curve AUC(R̂, A)
∫ 1

0
TPR(FPR−1(x; R̂, A); R̂, A)dx

Local

Average AUC AUCd(R̂, A) N−1
P

∑
j≤NP

AUC(R̂[·, j], A[·, j])

Average NS-AUC60 NS-AUC(R̂, A) |NP |−1
∑

j≤NP
|Ω̃j |−1

∑
(i,i′)∈Ω̃j

�(R̂i,j > R̂i′,j)

Average NDCG@NS NDCG(R̂, A) N−1
P

∑
j≤NP

(∑N
+,j
S

i=1

Aσ
R̂·,j

(i),j

log2(i+1)

)
/

(∑N
+,j
S

i=1
1

log2(i+1)

)

Table 3.  Description of the considered validation metrics present in the benchmark. 
Ω± ≜ {(i, j), Ai,j = ±1 | i ≤ NS , j ≤ NP } is the set of all positive (Ω+) or negative (Ω−

) drug-disease associations, whereas Ω+
j ≜ {i | Ai,j = +1} is the set of drugs involved in positive 

associations with disease j and Ω̃j ≜ {(i, i′) | Ai,j > Ai′,j} for any j ≤ NP  is the set of correctly 
ordered pairs of drugs for the score ranking in disease j. In the benchmark, t = 0 and �(C) is equal 
to 1 if C is satisfied, 0 otherwise. σV  is the permutation that sorts all coefficients of any vector V 
of length n in decreasing order, that is, VσV (1) ≥ VσV (2) ≥ · · · ≥ VσV (n). The true positive rate 
is formally defined as TPR(t; R̂, A) =

∑
(i,j),Ai,j =+1 �(R̂i,j > t)/

∑
(i,j) �(R̂i,j > t) and 

FPR(t; R̂, A) =
∑

(i,j),Ai,j =−1 �(R̂i,j > t)/
∑

(i,j) �(R̂i,j ≤ t) is the false positive rate. Finally, N+,j
S  is 

defined as min(NS , |Ω+
j |).
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the Top-3 algorithms in average testing AUC often differ from those computed based on average NS-AUC 
values (in 12 out of 16 comparisons). In the context of drug repurposing, the typical use case is to consider 
a disease for which treatments are missing (e.g., in rare diseases) or no longer as effective (e.g., in refractory 
epilepsies) and predict new therapeutic indications for this disease from a drug library. The first answer to RQ1 
in Table 4 (“Which metric should the model optimize for?”) would be NS-AUC. On the other hand, users of 
a drug repurposing method might also be interested in a good ranking performance, as typically, several drug 
candidates will be outputted and checked in decreasing order of the associated scores. In that case, the answer 
to RQ1 would be NDCG@NS .

Negative-sampling AUC (NS-AUC) is a good measure of the performance of a model  
60 introduced what we call the “negative-sampling AUC” metric , which corresponds to the percentage of 
the natural order of associations (positive associations first, negative ones last, separated by unknown pairs) 
which is preserved by a classifier. The full expression of this metric is displayed in Table 3. Compared to the 
ranking measure NDCG@NS , the NS-AUC has the advantage of being more strongly positively correlated with 
a global performance on known and unknown pairs (accuracy and “global” AUC values), as exemplified by 
Fig. 2b. Ultimately, the answer we recommend to Question 1 is to optimize for NS-AUC when training a drug 
repurposing model, as it fits the drug repurposing use case and obtains good performance for other validation 
metrics. Based on this recommendation, we focus on NS-AUC values to draw our conclusions in the remainder 
of this paper.

There is a need for more diverse reference drug repurposing datasets  
The next question in Table 4 is “Which dataset should the model be evaluated on?”. In a benchmark of drug 
repurposing approaches, a reference dataset should feature data types that can be retrieved from public databases 
in a real-life application and be challenging enough to discriminate between drug repurposing algorithms. To 

Topic Questions Our recommendation

Evaluation of models
RQ1. Which metric should the model optimize for? NS-AUC

RQ2. Which dataset should the model be evaluated on? PREDICT (private) or DNdataset

Future models
RQ3. Should a method be pair- or matrix-oriented? Pair-oriented

RQ4. Which type of algorithms (MF, NN, GB) is the most promising? Graph-based

Table 4.  Our guidelines for fairer and comprehensive benchmarks of collaborative-filtering-based drug 
repurposing models. MF: matrix factorization. NN: neural network. GB: graph-based.

 

Fig. 2.  (a) Benchmarking training and testing pipeline iterated N = 100 times for drug repurposing for a 
specific algorithm, a splitting method for training/testing and validation subsets, and a validation metric. Note 
that the training/testing subsets are always split at random. (b) Correlogram of metrics collected during the 
benchmark on randomly split training and testing sets, referring to metrics in Table 3. The total number of 
considered values is then N = 18, 700 (see Table 9 in Appendix). The lower triangle of the plot shows linear 
regressions between each pair of metrics, with the corresponding R2 when greater than 0.25. The upper 
triangle displays the Spearman’s ρ correlations between each pair of metrics. The diagonal shows the empirical 
frequency distribution of values for each metric.
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quantify the difficulty associated with a dataset, we computed the median NS-AUC value across the Top-3 
algorithms in average and all N = 100 iterations for this specific dataset. We focused on the top-3 contenders 
to determine a proper baseline for the performance expected on this dataset. The datasets are ranked according 
to these resulting scores in Table 5. As a sanity check, the synthetic dataset that we have built is indeed very easy, 
as more than 50% of the time, the best algorithms on this dataset achieve perfect predictive power. The most 
frequent datasets present in the literature (LRSSL36,37, Cdataset, Fdataset54) also come at the top of this 
ranking, which seem unsurprising as most of the state-of-the-art algorithms which we have considered in the 
benchmark were trained (and probably finetuned) on these datasets. Moreover, these datasets are among the less 
sparse across all drug repurposing datasets according to Table 1. More interestingly, as described in the problem 
statement, those datasets share the same types of data, namely, drug–disease associations from DrugBank, drug-
pairwise chemical structure similarities, and disease-pairwise semantic similarities. This might explain why, 
even if they haven’t been tested on all of these “silver standard” datasets, state-of-the-art algorithms generally 
perform well on these. However, the DNdataset featuring drug annotation codes and disease ontologies, along 
with the newer PREDICT and TRANSCRIPT datasets with supplementary information from transcriptomics 
and regulatory networks, is a lot more challenging, as evidenced by the apparent drop in the ranking score. Note 
that even though there seems to be a correlation between low association sparsity and higher recommendation 
performance, the TRANSCRIPT dataset is the least sparse of all datasets (s < 99%) and yet also the hardest 
one. Then, we consider that the new challenge in drug repurposing is to beat the state-of-the-art on these three 
datasets. 

Biological data-based drug and disease features are predictive of drug–disease associations  
However, perhaps the three datasets DNdataset, PREDICT and TRANSCRIPT have low ranking scores in 
Table 5 because the corresponding drug and disease features are not predictive of the drug–disease associations, 
hence inducing into error most of the drug repurposing algorithms. To test this theory on these three datasets, 

Synthetic LRSSL Gottlieb Cdataset Fdataset PREDICT (public) PREDICT (private) DNdataset TRANSCRIPT

1.00 0.87 0.84 0.84 0.81 0.79 0.78 0.73 0.68

Table 5.  Median NS-AUC value across Top-3 algorithms (in average) and all N = 100 iterations for each 
dataset in Table 1. The values are rounded up to the closest second decimal place.

 

Fig. 3.  Boxplots of testing metric values for the Top-3 algorithms (in average) across N = 100 iterations for 
each dataset in Table 1, for a specific training/testing set splitting method. PREDICT(p) corresponds to the 
public version of PREDICT, whereas PREDICT refers to the private version of the dataset. (a) AUC values for 
randomly split sets. (b) AUC values for weakly correlated sets. (c) NS-AUC values for randomly split sets. (d) 
NS-AUC values for weakly correlated sets.
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we used a (non-parametric) Kruskal–Wallis H-test to check whether the NS-AUC median value obtained with 
feature-agnostic algorithms was significantly different (and greater) than the NS-AUC median value obtained 
with algorithms that take into account drug and disease features. At significance level α = 1% and adjusting 
p-values for multiple-tests with the Benjamini–Hochberg method63, the test was significant for all of these three 
datasets: the TRANSCRIPT (H = 26.5), PREDICT (private version, H = 50.0), PREDICT (public, H = 17.5
) and DNdataset (H = 45.3) datasets. Eventually, as mentioned in Table 4, we suggest the evaluation of drug 
repurposing methods on the private version of PREDICT (if the associated generating code can be run) or on 
the DNdataset which seem to be the most predictive of the drug-disease associations.

As a general rule, matrix-oriented methods perform better, probably due to an evaluation bias  
We now focus on developing future collaborative filtering approaches for drug repurposing. Across the top 
algorithms for average testing (global) AUC and NS-AUC values in Fig.  3, the frequency of a pair-oriented 
algorithm being in the Top-3 is only 27/(4 × 8 × 3) ≈ 28%, where the HAN algorithm55 is the most frequent 
top pair-oriented method. This frequency decreases to 25% when considering only the top contender, whereas 
36% of the algorithms in Table 2 are pair-oriented. Alas, the reason behind this is probably a certain amount of 
data leakage happening due to the structure of matrix-oriented methods, as described in the problem statement. 
As such, even though this group of algorithms has good performances, we advise focusing on pair-oriented 
algorithms for Question 3 in Table 4. One solution to overcome this bias when evaluating a matrix-oriented 
algorithm might be to ensure only known associations are present in the testing set and then to run evaluation 
metrics only on these known associations. However, it might still be an unsatisfying solution, as the number of 
known associations in drug repurposing is extremely small, as illustrated by Table 1.

General-purpose collaborative filtering algorithms remain competitive  
Some of the algorithms present in Table  2 were not explicitly developed for drug repurposing but aimed to 
provide a generic recommender system for various goals, for instance, movie recommendation. As those 
algorithms are often ignored in drug repurposing-focused publications, we selected some general-purpose 
algorithms for the benchmark: based on matrix factorization approaches (ALS-WR, LibMF, LogisticMF, PMF) 
or embedding learning with neural networks (Fast.ai implementation of a collaborative learner). Our benchmark 
shows that those methods remain competitive for the drug repurposing problem, particularly LogisticMF, 
even if they are often not the top contender. As such, we advocate for including a comparable general-purpose 
recommender system when evaluating the performance of a drug repurposing algorithm. Moreover, somehow 
counterintuitively, the hybrid collaborative filtering algorithms, that is, those that leverage drug and disease 
features, are not necessarily better than the pure collaborative filtering ones. For instance, LogisticMF, and 
sometimes the collaborative filtering algorithm from Fast.ai, are among the top contenders in AUC and NS-
AUC on all datasets for random or weakly correlated splits in Fig. 3. More often than not, it turns out that being 
“matrix-oriented” (and the corresponding bias that we discuss above) is more critical for performance than 
leveraging the features.

Neural networks are noticeably better at generalizing  
We observed the influence of weakly correlated training and testing subsets on the performance of models. From 
Fig. 3, we expect that the difference in performance is vast between random and weakly correlated training and 
testing sets, independently from the validation metric and the algorithm. To confirm or infirm this assumption, 
we tested with a Kruskal-Wallis H test whether the median testing NS-AUC value across all datasets is significantly 
different for a specific type of algorithm (matrix factorization, neural networks, graph-based) on random splits 
compared to weakly correlated splits. It turns out that the difference in median values is significative at level 
α = 1% (with p-values adjusted for multiple tests) for all types of algorithms and yields respective H-values 
21.4, 308.5 and 1, 100.2 for neural networks, graph-based approaches, and matrix factorization methods. The 
lower the H-value is, the lesser the difference in performance when facing a testing subset weakly correlated to 
the training data. Unsurprisingly, neural networks are shown to have the most significant ability to generalize 
and be robust under data distribution shifts, which seems on par with observations from other research fields64. 
However, graph-based approaches come second.

Graph-based approaches perform best  
Given our previous remarks, we restrict our comparison of algorithm types to pair-oriented methods. This 
automatically excludes matrix factorization approaches in our benchmark, according to Table  2. For each 
dataset, we want to determine whether a specific type of drug repurposing is noticeably better than the other. 

Dataset Cdataset LRSSL PREDICT DNdataset TRANSCRIPT Fdataset PREDICT (public) Gottlieb

H 26.4 43.0 70.8 84.1 97.3 128.5 143.2 144.1

µNN − µGB −0.07 −0.06 −0.09 −0.21 −0.08 −0.11 −0.11 −0.11

Table 6.  Results of Kruskal–Wallis H-tests for each dataset. For a fixed dataset d, the null hypothesis is “the 
median NS-AUC value µNN(d) obtained on dataset d by pair-oriented neural networks is equal to the median 
NS-AUC value µGB(d) on the same dataset by pair-oriented graph-based approaches”. In each test, the 
number of elements in each group is N = 200. The values are rounded up to the closest first or second decimal 
places. All tests on adjusted p-values are significant at level α = 1%..
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Similarly to our previous tests, we compare the median validation metric obtained by neural networks and graph-
based approaches. The result table is shown in Table 6. Overall, graph-based approaches have a performance 
significantly superior to neural networks. We suppose that since most of these graph-based approaches aim 
to reconstruct a graph connecting drugs and diseases (including edges between pairs of drugs or diseases), 
these methods might be able to uncover some form of reasoning behind a given drug–disease association. Since 
graph-based methods have some ability to generalize, we recommend developing further the idea of completing 
drug–disease heterogeneous graphs for drug repurposing.

Discussion
To better understand the current landscape in collaborative filtering-based drug repurposing, we developed 
a benchmark of the 11 pure and hybrid collaborative filtering algorithms present in Table  2 on several 
diverse datasets shown in Table 1. We focused on the validation metrics mentioned in Table 3. This extensive 
benchmark allowed us to answer important questions about the proper development and evaluation of such 
models, especially related to their end goal: drug repurposing. Overall, we showed that specific care should be 
brought to the design and testing of drug repurposing models, as mistakes might lead to biased evaluations. We 
suggest developing further graph-based methods, which are promising according to our benchmark. Due to the 
scarcity of the datasets, finer hyperparameter selection across datasets is difficult. However, it would allow us 
to strengthen our findings in this large-scale benchmark. Moreover, the LRSSL and PREDICT datasets have 
missing values. In that case, we applied a simple imputation method with the average feature value (described 
in the methods). Even if this approach is shown to have a good empirical performance on real-life datasets65,66, 
testing other imputation approaches might more significantly validate our findings. Finally, even though there 
seems to be a correlation between low sparsity number s and high classification performance on the dataset, the 
fact that the least sparse dataset TRANSCRIPT is also the hardest shows that there is more to it. Investigating 
this lead would constitute an interesting subsequent work. Nonetheless, we hope that those contributions and 
insights will further improve the development and the real-life application of drug repurposing approaches.

We have identified several future works of interest in this field of research. First, in addition to the prediction 
of novel drug–disease associations, an application in practice for medical purposes needs the implementation of 
accountability, meaning that further arguments beyond a simple score should be provided to justify a predicted 
positive association. The increase in the research related to interpretable or explainable machine learning is a 
step toward tackling this issue. Moreover, actual prediction scores can rank and prioritize specific drug–disease 
associations but do not represent a probability or an actual meaningful quantification of the strength of the 
association. Being able to quantify accurately and control for errors in false positive associations, for instance, 
is another important venue for research, related to the problem of calibration67. Finally, the problem of missing 
values is pervasive in many research fields, and biology is no exception. Whether imputation methods should be 
specific to biological data types is an interesting question, especially in the context of preserving interpretability 
and good calibration.

Methods
We describe in this section supplementary details about the benchmark and the statistical tests applied in the 
paper.

Selection of state-of-the-art algorithms  
We have considered drug repurposing algorithms from the recent literature (less than 8-year-old), which were: 
1. based on collaborative filtering, 2. using as input only three matrices, as described in the problem statement, 
3. implemented and their code available in open-source or in a readily executable binary file. As such, all 

Fig. 4.  Training times in seconds across N = 100 iterations for each dataset and the fastest three algorithms 
among the most frequent Top-3 reported in Figure 3.
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algorithms that we considered were run with their original implementation in R, MATLAB/Octave, or Python. 
In some cases, they encountered errors during their run. Please refer to the benchmark status in Table 9. A 
reimplementation in pure Python would probably fix these errors. However, this work is out of the scope of our 
paper. We also report in Fig. 4 for each dataset the boxplots of training times (i.e., the time to perform a 5-fold 
cross-validation) for the fastest three algorithms among those reported in at least two Top-3 in Fig. 3.

The prediction times (i.e., the time to generate scores on the 20% remaining drug–disease associations) are 
of the order of the second on all datasets and most algorithms. The exceptions are Fast.ai52 and NIMCGCN53, 
where the maximum prediction time across iterations and datasets is at most 50 seconds.

Processing of missing data in the benchmark  
Missing data refers here to unknown values in drug and disease feature matrices S and P, and occurs in dataset 
PREDICT (in the private version, 22% of drug feature values are missing in S, and around 83% in P). To deal 
with this, for any dataset and any algorithm, each missing feature is imputed by the average value across the 
corresponding line (that is, other values for the same feature type across the dataset), and then standard-centered 
with classes SimpleImputer and StandardScaler in scikit-learn68 before training a model.

About the Negative-Sampling AUC (NS-AUC) metric  
As described in the original paper60, the Negative Sampling-AUC (NS-AUC) is a ranking measure related to the 
frequency of correctly ranked item (drug) pairs at a fixed user (disease). An example of the computation of the 
NS-AUC metric is shown in Fig. 5.

Weakly correlated splits  
We introduced a simple procedure that generalizes the principle of assessing the predictive power of a model 
on novel drugs, dissimilar to the ones present in the training subset34. In prior works, authors chose a simple 
thresholding criterion, where drugs present in training and testing subsets have a Tanimoto similarity score on 
chemical structures at most 0.80.

Given a parameter s ∈ (0, 1) corresponding to the desired percentage of associations in the training set, our 
procedure automatically splits the dataset of associations into two subsets such that the cosine similarity (by 
default) in a pair of drugs from different subsets is small. Our algorithm leverages a dendrogram built from a 
hierarchical clustering (with average linkage) applied to the drug feature vectors. Then, the procedure identifies 
with binary search the number of clusters n0, 2 ≤ n0 ≤ NS , such that there exists a cluster identifier c0 ≤ n0

Fig. 6.  Illustration of the “weakly correlated” splitting approach to obtain training and validation subsets from 
a dataset.

 

Fig. 5.  Illustration of the computation of the NS-AUC on an instance with NS = 3 drugs and NP = 2 
diseases.

 

Scientific Reports |         (2025) 15:2711 11| https://doi.org/10.1038/s41598-025-85927-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 |{(d, p) ∈ A | Clust(d) ≤ c}| ≈ (1 − s)NSNF ,

where Clust is the function that assigns to a drug its cluster identifier in {1, 2, . . . , n0}. In Fig.  6, the 
corresponding number of clusters for s = 80% is n0 = 5 and c0 = 4.

This procedure has a cubic time and memory computational complexity in the number of drugs in the worst 
case. In practice, for the small drug repurposing datasets in this paper, the computational cost of this procedure 
is negligible compared to the training phase.

Synthetic dataset  
The synthetic dataset in Table 1 is the only dataset not directly available from the literature. It allows us to define 
a task with a controllable level of difficulty. In particular, the synthetic dataset in our benchmark should be an 
easy task on which all drug repurposing methods should perform excellently and provide a control for some 
statistical tests.

The generating function takes as input npos, the number of positive associations (+1’s in matrix A), nneg, the 
number of negative associations (−1’s in matrix A), nF , the even number of drug and disease features, and µ, σ 
the parameters from the Gaussian distribution of feature values. In practice, µ = 0.5 and σ = 1. Then, we draw 
each feature value independently and identically (iid) from two Gaussian distributions of mean µ and −µ and 
variance σ2. That is, for any drug or disease j ≤ npos, nneg and feature i ≤ nF :

	 (Xpos)i,j ∼iid N (+µ, σ) and (Xneg)i,j ∼iid N (−µ, σ).

From those matrices, we build the final dataset as follows. A is the matrix in {−1, 0, +1}NS×NP  with zeros 
everywhere except in the square {(i, j) | 0 ≤ i, j ≤ npos − 1} where there is only +1, and in the square 
{(i, j) | npos ≤ i, j ≤ npos + nneg − 1}, which only contains −1, and where NS = NP = npos + nneg. Then

Model NS AUC AUC

HAN 1.00 ± 0.0 1.00 ± 0.0
Fast.ai 1.00 ± 0.0 1.00 ± 9.10−4

LogisticMF 0.99 ± 9.10−4 0.99 ± 1.10−4

BNNR 0.76 ± 3.10−3 0.98 ± 2.10−4

NIMCGCN 0.54 ± 3.10−4 0.97 ± 4.10−6

ALSWR 0.50 ± 0.0 –

LibMF 0.45 ± 1.10−16 0.98 ± 3.10−16

SCPMF 0.44 ± 7.10−2 0.40 ± 1.10−1

LRSSL – 0.15 ± 8.10−3

PMF – 0.08 ± 7.10−3

Table 8.  The average ± standard deviation validation metric on the weakly correlated testing subset across 
N = 100 iterations for the Top-10 algorithms on the “Synthetic” dataset in Table 1. Average (resp., standard 
deviation) values are rounded up to the closest second (resp., first) decimal place.

 

Model NS AUC AUC

HAN 1.00 ± 0.0 1.00 ± 0.0
BNNR 1.00 ± 0.0 1.00 ± 0.0
LogisticMF 1.00 ± 0.0 1.00 ± 0.0
ALSWR 1.00 ± 2.10−6 1.00 ± 1.10−3

Fast.ai 1.00 ± 1.10−2 1.00 ± 1.10−3

LibMF – 0.95 ± 9.10−4

PMF 0.99 ± 2.10−3 0.93 ± 4.10−3

SCPMF 0.88 ± 2.10−1 –

NIMCGCN 0.54 ± 4.10−3 0.94 ± 5.10−4

Table 7.  The average ± standard deviation validation metric on the randomly selected testing subset across 
N = 100 iterations for the Top-10 algorithms on the “Synthetic” dataset in Table 1. Average (resp., standard 
deviation) values are rounded to the closest second (resp., first) decimal place.
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S =

[(Xpos)0 to NF −1,·
(Xneg)0 to NF −1,·

]
and P =

[(Xpos)NF to nF ,·
(Xneg)NF to nF ,·

]
,

where NF = nF /Z and Mk to l,· is the matrix where only the rows k, k + 1, , l − 1 to l (included) remain. 
Then, the difficulty of the underlying drug repurposing problem can be tuned by the parameters of the Gaussian 
distributions µ and σ. The larger µ > 0 and the smaller σ, the easier the problem. See Table 7, resp. Table 8, 
for the resulting validation matrics on the Top-10 algorithms for random, resp. weakly correlated, training/
validation splits.

Supplementary information about the drug repurposing datasets  
We report overlaps between drug repurposing datasets on Fig. 7. DNdataset does not include drug and disease 
names, only the contents of the related matrices. Whenever possible, we converted all disease identifiers to 
MedGen Concept IDs69 (if there was no MedGen Concept ID for a disease, we looked for its OMIM identifiers70), 
and all drug identifiers to DrugBank IDs71, and, if absent, to PubChem CIDs72. Unsurprisingly, there are two 
rough clusters, one with Fdataset, Cdataset and LRSSL and another with Gottlieb, TRANSCRIPT 
and PREDICT (private and public versions). As described in the problem statement, Fdataset, Cdataset, 
and LRSSL use the same drug and disease features.

Dataset Split. ALSWR LibMF LogisticMF PMF SCPMF Fast.ai NIMCGCN BNNR DRRS HAN LRSSL

Cdataset
Random ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weakly c. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fdataset
Random ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weakly c. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DNdataset
Random × (M) ✓ ✓ ✓ ✓ ✓ × (M) × (M) × (M) ✓ ✓
Weakly c. × (M) ✓ ✓ ✓ ✓ ✓ ✓ × (M) × (M) ✓ ✓

Gottlieb
Random ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weakly c. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LRSSL
Random ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weakly c. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PREDICT (private)
Random ✓ ✓ ✓ ✓ × (E) ✓ ✓ ✓ × (E) ✓ ✓
Weakly c. ✓ ✓ ✓ ✓ × (E) ✓ ✓ ✓ × (E) ✓ ✓

PREDICT (public)
Random ✓ ✓ ✓ ✓ × (E) ✓ ✓ ✓ × (E) ✓ ✓
Weakly c. ✓ ✓ ✓ ✓ × (E) ✓ ✓ ✓ × (E) ✓ ✓

TRANSCRIPT
Random ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × (E) ✓ × (E)

Weakly c. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × (E) ✓ × (E)

Synthetic
Random ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × (E) ✓ ✓
Weakly c. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × (E) ✓ ✓

Table 9.  Report of the benchmark status across datasets and algorithms. ✓ means that the 100 iterations were 
successfully run, whereas × indicates an error (M: memory, E: runtime error).

 

Fig. 7.  Overlaps, as the size of the intersection over the size of the union multiplied by 100, between drug 
repurposing datasets listed in Table 1. The left-hand plot is on the list of drugs in a pair of datasets, the center 
plot represents overlaps for the list of diseases, and the right-hand plot counts the overlaps for the set of 
positive drug-disease associations.
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Computational resources  
The experiments were run on remote cluster servers of Inria Saclay (processor QEMU Virtual v2.5+, 48 cores 
@2.20GHz, RAM 500GB) and SBI Rostock (processor Intel Core i7-8750H, 20 cores @2.50GHz, RAM 7.7GB). 
The clusters of Inria Saclay were favored for pure Python drug repurposing algorithms, whereas the server of SBI 
Rostock ran the other types of experiments. No GPU was used during the benchmark.

Benchmark status
Table 9 displays the status of each runs of 100 iterations for each algorithm and dataset in the benchmark.

Statistical information  
We report here the missing result tables corresponding to the two-tailed Kruskal–Wallis H-tests run in the 
experimental study.

Predictive power of features in datasets TRANSCRIPT, PREDICT and DNdataset  
Table 10 shows the result table for the corresponding Kruskal–Wallis H-tests. For a fixed dataset d, the null 
hypothesis is “the median NS-AUC value µwf(d) obtained on dataset d by feature-aware methods is equal to the 
median NS-AUC value µwof(d) on the same dataset by feature-oblivious approaches. In each test, the number 
of elements in each group is N = 600. The values are rounded up to the closest first or second decimal places. 
The level of significance is α = 1%. 

Generalization power of algorithm types  
For a given algorithm type t, the null hypothesis is “the median NS-AUC value µt,Rand obtained by algorithms 
of type t on randomly split training/validation subsets is equal to the median NS-AUC value µt,WC on weakly 
correlated subsets. The values are rounded up to the closest first or second decimal places. The level of significance 
is α = 1%. In Table 11, NRand, resp. NWC, is the number of samples in the “random”, resp. “weakly correlated”, 
group of validation metrics.

Hyperparameter tuning  
We considered for each algorithm the parameters provided in experiments in their current implementation, 
as, first, most were tested on the text-mining datasets in Table  1 and we aimed to reproduce their results; 
second, we wanted an evaluation of their performance in “real-life conditions” of drug repurposing, where the 
hyperparameter tuning is unlikely to be thorough. We were also wary of introducing further data leakage into 
the benchmark, especially, as the considered drug repurposing datasets are quite small. For general-purpose 
algorithms, we tune hyperparameters to corresponding values in drug repurposing algorithms, when possible 
(for instance, the learning rate or the embedding dimension). We report in Tables  12, 13 and 14 below the 
hyperparameter configurations for each algorithm across all datasets and iterations. We use the same parameter 
names as in the implementation in the benchscofi package32.

Type GB MF NN

H 308.5 1100.2 21.4

adjusted p 0.0 0.0 4.10−6

µt,Rand − µt,WC 0.10 0.15 0.02

NRand 2500 4600 1700

NW C 2500 4600 1800

Table 11.  Kruskal–Wallis H-tests on the generalization power of algorithm types “matrix factorization” 
(MF), “neural networks” (NN) and “graph-based” (GB) across datasets. The significance level is set to 1%, 
and p-values are adjusted for multiple tests with the Benjamini-Hochberg method63. All tests are statistically 
significant.

 

Dataset A B C D

H 26.5 17.5 50.0 45.3

adjusted p 0.0 3.10−6 0.0 0.0

µwf − µwof 0.07 0.12 0.12 0.14

Table 10.  Kruskal–Wallis H-tests on the predictive power of features in datasets A=TRANSCRIPT, PREDICT 
(B=public and C=private versions) and D=DNdataset. The significance level is set to 1%, and p-values are 
adjusted for multiple tests with the Benjamini–Hochberg method63. All tests are statistically significant.
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Data availability
Datasets & algorithms
In addition to repositories mentioned in the publications in which they were introduced, all the datasets 
mentioned in Table 1 and drug repurposing algorithms in Table 2 are publicly available through the open-source 
Python packages stanscofi (version 2.0.1) and benchscofi (version 2.0.0)32 which can be downloaded from 
the Python Package Index (PyPI). The only exception is the private version of PREDICT, which cannot be 
shared freely due to copyright issues with some of the databases on which it was built14. Nonetheless, this dataset 
can be built from scratch from Jupyter notebooks in the following GitHub repository: RECeSS-EU-Project/
drug-repurposing-datasets

Benchmark traces
The results (metrics and runtimes) obtained on each successful iteration of the algorithms and datasets in this 
benchmark are stored in this GitHub repository: RECeSS-EU-Project/benchmark-results

Model Hyperparameter Value

Fast.ai

n_iterations 5

n_factors 20

weight_decay 0.1

learning_rate 0.005

NIMCGCN

epoch 10

alpha 10

fg 256

fd 256

k 32

learning_rate 0.001

Table 13.  Hyperparameters of neural networks.

 

Model Hyperparameter Value

ALSWR

reg 0.01

alpha 15

n_iters 15

n_factors 15

LibMF

fun 0

k 8

nr_bins 26

n_iters 20

lambda_p1 0.04

lambda_p2 0.0

lambda_q1 0.04

lambda_q2 0.0

eta 0.1

do_nmf False

LogisticMF

num_factors 2

reg_param 0.6

gamma 1.0

iterations 30

PMF

reg 0.01

learning_rate 0.1

n_iters 160

n_factors 15

batch_size 100

SCPMF r 15

Table 12.  Hyperparameters of matrix factorization algorithms.
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Availability of computer code
The implementation of the benchmark pipeline and analysis scripts is publicly available at the following GitHub 
repository: RECeSS-EU-Project/benchmark-code

After installation and running the benchmark (corresponding instructions are present in the description 
of the repository), the script generating the figures and the statistical tests in our paper can be run with the 
following command python3 -m analyses
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