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In this study, we introduce a coupled fractional system consisting of two fluctuating-mass oscillators 
with time delay and investigate their collective resonant behaviors. First, we achieve complete 
synchronization between the average behaviors of these oscillators. We then derive the exact 
analytical expression for the output amplitude gain, and based on this, we observe generalized 
stochastic resonance (GSR) in the system. We further examine how GSR behavior depends on system 
parameters, demonstrating that coupling strength, fractional order, and time delay are crucial in 
facilitating and optimizing its intensity. Finally, numerical simulations are conducted to validate the 
analytical results.
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Stochastic resonance (SR) is a fascinating and counterintuitive phenomenon in nonlinear physics, where 
noise can enhance a system’s sensitivity to weak signals under certain conditions. Initially proposed by Benzi 
et al.1 to explain Earth’s glacial cycles, SR has since gained widespread attention in fields like neuroscience, 
biology, information theory, and economics2,3. Over time, research has challenged the traditional belief that 
nonlinearity, periodic signals, and noise are essential for SR4, leading to increased exploration of SR in linear 
systems influenced by multiplicative noise5–9. The concept of SR has also evolved. While classical SR describes 
a non-monotonic relationship between the signal-to-noise ratio and noise intensity, generalized stochastic 
resonance (GSR), introduced by Gitterman9, refers to a non-monotonic dependence of output signals (or 
functions like moments and autocorrelation) on noise characteristics. For instance, Ref.10 demonstrates that the 
transport speed of the two-headed molecular motor depends nonmonotonically on both the fractional order 
and the coupling factor, indicating the emergence of GSR. Importantly, the simulation results reveal inverse 
transport in the overdamped fractional coupling Brownian motor model, a phenomenon not observed in the 
conventional Brownian motor. Additionally, Refs.11–13 have developed the fault diagnosis methods leveraging 
the GSR mechanism in the context of a linear oscillator.

Advancements in experimental techniques have enabled the observation of anomalous diffusion processes 
across various fields14–17. For instance, Min et al.18 showed that the memory kernel follows a power-law 
decay within the generalized Langevin equation (GLE) framework. Beyond the GLE, numerous fractional 
oscillator (FO) models19–27 have been devised, where fractional calculus captures long memory and long-range 
dependencies. These models have revealed a range of intriguing phenomena, including memory-induced inverse 
transport19, memory-enhanced energetic stability20, memory-induced SR21,22 and superharmonic SR23, among 
various other phenomena.

In viscoelastic media, random collisions and adhesions of surrounding molecules induce fluctuations in a 
Brownian particle’s mass6, leading to the development of linear FO models with mass fluctuation28–34. Specifically, 
Refs.28–30 examine the SR phenomena triggered by dichotomous, trichotomous, and tempered Mittag-Leffler 
noise, respectively, while Refs.31,32 delve into SR induced by signal-modulated noise. Additionally, Ref.33 focuses 
primarily on the influence of time delay on resonance behavior. These models have shown that mass fluctuations, 
combined with system memory, diversify SR phenomena.

Since particles are rarely isolated in real-world systems, coupled models are essential to accurately describe 
systems with finite or infinite coupled elements35–37. Recently, Yang et al.36 conducted an investigation into SR 
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and synchronization of globally coupled systems, utilizing the exact steady-state solutions and related stability 
criteria. Following this, Zhong et al.37 defined the mean field, obtained the synchronization behavior, and studied 
the collective SR behavior of globally coupled fractional Langevin equations. Consequently, within the context 
of variable mass, researchers are increasingly intrigued by the exploration of SR behaviors in coupled fractional 
systems that exhibit mass fluctuations38,39. For example, Yu et al.38 achieved the complete synchronization, and 
investigated the SR of two coupled fractional harmonic oscillators featuring a dichotomous fluctuating mass. 
Similarly, Lin et al.39 introduced a model of two coupled oscillators with fluctuating masses and a tempered 
Mittag-Leffler memory kernel, exploring their collective resonant behaviors. Collectively, these studies have 
revealed that both coupling strength and fractional order significantly impact SR behavior, playing a pivotal role 
in modulating SR phenomena.

Considering the finite transmission speeds of matter, energy, and information, time delay is also crucial in 
dynamic systems within complex environments40–52. Recently, there has been an in-depth investigation into the 
effects of time delay on the GSR phenomena in FO models, specifically focusing on random mass33, random 
damping49,51, and random frequency52. Moreover, it is imperative to further explore SR in coupled systems 
with time delay and to comprehend its effects. He et al.53 studied collective resonant behavior in coupled time-
delayed fractional oscillators with fluctuating frequencies. However, the combined effects of time delay and mass 
fluctuation in coupled fractional systems have been largely overlooked.Actually, the Brownian particles coupled 
in viscoelastic medium possess a variable mass as mentioned earlier, at the same time, and are simultaneously 
subjected to an external potential force that incorporates a time delay. To address this, we introduce a novel 
model of coupled fractional oscillators with mass fluctuation and time delay, and investigate their collective 
resonant behaviors through theoretical analysis and numerical simulations.

The rest of this paper is organized as follows: In “System model” section, we introduce the fractional model 
of coupled oscillators with time delay. “Analytical results” section derives complete synchronization and 
presents the analytical expression for the steady-state output amplitude. “Collective resonant behaviors” section 
discusses the analytical results, and “Numerical simulations” section presents the numerical simulations. Finally, 
“Conclusion” section concludes with a summary.

System model
Fluctuating-mass fractional oscillator with time delay
Considering a Brownian particle in viscoelastic medium, the particle’s variable mass can be formulated as 
m(t) = m[1 + ξ(t)]. In such a scenario, the motion of particle can be described by the fractional Langevin 
equation (FLE)6:

	 m [1 + ξ(t)] ẍ(t) + γ C
0 Dα

t x(t) + ω2x (t) = A cos(Ωt) + ζ(t),� (1)

Furthermore, in the simplest linear case, the fractional oscillator with fluctuating mass and time delay, can be 
described by the following FLE33:

	 m [1 + ξ(t)] ẍ(t) + γ C
0 Dα

t x(t) + ω2x (t − τ) = A cos(Ωt) + ζ(t),� (2)

where x(t) denotes the particle’s displacement at time t. m is mass of the particle, γ is the damping coefficient, 
ω2 represents the system’s inherent frequency, τ  is the time delay, and A and Ω are the amplitude and frequency 
of the external driving force, respectively. Here, ξ(t) signifies the particle’s mass fluctuation, whereas ζ(t) 
represents the internal system noise. The viscous damping force associated with the memory effect is defined by 
the fractional derivatives expressed in the α-order Caputo form:

	
γ C

0 Dα
t x(t) = γ

∫ t

0

1
Γ(1 − α) (t − s)−αẋ(s)ds, 0 < α < 1.

The mass fluctuation ξ(t) is modeled as symmetric dichotomous noise, where ξ(t) takes two values {−σ, σ} 
with equal probabilities Ps(−σ) = Ps(σ) = 0.5. Its statistical properties are given by:

	 ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = σ2e−λ|t−t′|,� (3)

where λ is the correlation rate and σ2 represents the noise intensity. To ensure the mass m(t) remains positive, 
the noise intensity is constrained to 0 < σ2 < 1.

The internal noise ζ(t) is modeled as fractional Gaussian noise (fGn) and follows the generalized second 
fluctuation-dissipation theorem54:

	
⟨ζ(t)⟩ = 0, ⟨ζ(t)ζ(t′)⟩ = γκBT

Γ(1 − α) |t − t′|−α,� (4)

where κB is the Boltzmann constant and T is the absolute temperature. Given that ξ(t) and ζ(t) arise from 
different physical origins, they are assumed to be uncorrelated:

	 ⟨ξ(t)ζ(t′)⟩ = 0.� (5)
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Coupled fluctuating-mass fractional oscillators with time delay
This paper investigates a system of two coupled Brownian particles exhibiting adhesive behavior in an external 
time-delayed potential field, given by U(x) = ω2x2(t − τ)/2, i = 1, 2. Assuming that the oscillators are 
linearly connected, we further explore their dynamics under the fluctuating-mass regime. Specifically, we 
mathematically describe the behavior of these coupled fractional oscillators, incorporating time delay and a 
periodic driving force, as follows:

	

{
m [1 + ξ1(t)] ẍ1(t) + γC

0 Dα
t x1(t) + ω2x1 (t − τ) = ε[x2(t) − x1(t)] + A cos(Ωt) + ζ1(t), (6a)

m [1 + ξ2(t)] ẍ2(t) + γC
0 Dα

t x2(t) + ω2x2 (t − τ) = ε[x1(t) − x2(t)] + A cos(Ωt) + ζ2(t), (6b)

where xi(t) denotes the displacement of the ith particle at time t, ε represents the coupling strength of the 
linear coupling forces ±ε[x2(t) − x1(t)], and the remaining parameters are defined in accordance with Eq. (2). 
According to the above-mentioned physics background, the mass fluctuations ξ1(t) and ξ2(t) are reasonably 
supposed to be uncorrelated, i.e., ⟨ξi(t)ξj(t′)⟩ = δijσ2e−λ|t−t′|, i, j = 1, 2. Additionally, the internal Gaussian 
noises ζi(t) and the external multiplicative noises ξj(t) are supposed to be uncorrelated, i.e., ⟨ζi(t)ξj(t′)⟩ = 0
, i, j = 1, 2, for them to have different origins. It is noteworthy that, in the case when τ = 0 and 0 < α ≤ 1
, our model-described by Eq.  (6) simplifies to a system of two coupled fractional oscillators with fluctuating 
mass, driven by a periodic cosine source. This particular scenario has been previously studied by Yu et al.38. 
Furthermore, when ε = 0, our model transforms into a fractional time-delayed oscillator with mass fluctuation, 
a particular scenario that was investigated by Tian et al.33. Additionally, when ε = 0, τ = 0 and α = 1, our 
model further simplifies to the conventional linear oscillator with mass fluctuation, a scenario that was previously 
studied by Gitterman and Shapiro6.

To derive a time-delay-free equivalent system, we perform an O(τ2) Taylor expansion around τ = 0 for the 
term xi(t − τ), yielding the following approximations for the fractional Langevin equations:

	

{
m [1 + ξ1(t)] ẍ1(t) + γC

0 Dα
t x1(t) − τω2ẋ1(t) + ω2x1(t) = ε[x2(t) − x1(t)] + A cos(Ωt) + ζ1(t), (7a)

m [1 + ξ2(t)] ẍ2(t) + γC
0 Dα

t x2(t) − τω2ẋ2(t) + ω2x2(t) = ε[x1(t) − x2(t)] + A cos(Ωt) + ζ2(t). (7b)

Equation (7) provide an approximation to Eq. (6) in cases where the time delay is small.
In the following section, we will explore the complete synchronization between the average behavior of the 

coupled fractional oscillators with fluctuating mass and time delay. Additionally, we will derive the first-order 
moment of the system’s stationary-state response analytically.

Analytical results
Complete synchronization
To investigate the collective resonant behaviors of the two coupled fluctuating-mass fractional oscillators with 
small time delays described by Eq.  (6), it is crucial to determine whether the average behaviors of the two 
particles are synchronous. This requires computing ⟨x1(t) − x2(t)⟩. In our model, ξ1(t) and ξ2(t) represent 
symmetric dichotomous noises, while x1(t) and x2(t) are functions of these noises. As a preliminary step, we 
employ the well-known Shapiro-Loginov procedure55 and its generalized forms38:

	

⟨
ξi(t)

dn

dtn
xj(t)

⟩
=

( d
dt

+ λ
)n

⟨ξi(t)xj(t)⟩, i = 1, 2, j = 1, 2, � (8)

	

⟨
ξ1(t)ξ2(t) dn

dtn
xi(t)

⟩
=

( d
dt

+ 2λ
)n

⟨ξ1(t)ξ2(t)xi(t)⟩, i = 1, 2, � (9)

	 ⟨ξi(t) C
0 Dα

t xj(t)⟩ =e−λt C
0 Dα

t

(
⟨ξi(t)xj(t)⟩eλt

)
, i = 1, 2, j = 1, 2, � (10)

	 ⟨ξ1(t)ξ2(t) C
0 Dα

t xi(t)⟩ =e−2λt C
0 Dα

t

(
⟨ξ1(t)ξ2(t)xi(t)⟩e2λt

)
, i = 1, 2. � (11)

These formulas play a pivotal role in the subsequent calculation process.
Next, we obtain the following by subtracting Eq. (7b) from Eq. (7a):

	

(
m

d2

dt2 − τω2 d
dt

+ γ C
0 Dα

t + ω2 + 2ε

)
[x1(t) − x2(t)] + m

[
ξ1(t) d2

dt2 x1(t) − ξ2(t) d2

dt2 x2(t)
]

= 0.� (12)

Next, we perform three distinct operations on Eq. (12): (I) averaging with respect to the noise, (II) multiplying 
by (ξ1(t) + ξ2(t)) and subsequently averaging, and (III) multiplying by ξ1(t)ξ2(t) followed by averaging. 
Throughout these operations, we employ the Shapiro-Loginov formulas provided in Eqs. (8)–(11), which allow 
us to derive the following three equations:

	

(
m

d2

dt2 − τω2 d
dt

+ γ C
0 Dα

t + ω2 + 2ε

)
⟨x1(t) − x2(t)⟩ + m

( d
dt

+ λ
)2

⟨ξ1(t)x1(t) − ξ2(t)x2(t)⟩ = 0,� (13)
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[
m

( d
dt

+ λ
)2

− τω2
( d

dt
+ λ

)
+ ω2 + 2ε

]
[⟨ξ1(t)x1(t) − ξ2(t)x2(t)⟩ + ⟨ξ2(t)x1(t) − ξ1(t)x2(t)⟩]

+ γe−λt C
0 Dα

t

[
⟨ξ1(t)x1(t) − ξ2(t)x2(t)⟩eλt

]
+ γe−λt C

0 Dα
t

[
⟨ξ2(t)x1(t) − ξ1(t)x2(t)⟩eλt

]

+ mσ2 d2

dt2 ⟨x1(t) − x2(t)⟩ + m
( d

dt
+ 2λ

)2
⟨ξ1(t)ξ2(t) (x1(t) − x2(t))⟩ = 0,

� (14)

and

	

[
m

( d
dt

+ 2λ
)2

− τω2
( d

dt
+ 2λ

)
+ ω2 + 2ε

]
⟨ξ1(t)ξ2(t) (x1(t) − x2(t))⟩ + γe−2λt

× C
0 Dα

t

[
⟨ξ1(t)ξ2(t) (x1(t) − x2(t))⟩e2λt

]
+ mσ2

( d
dt

+ λ
)2

⟨ξ2(t)x1(t) − ξ1(t)x2(t)⟩ = 0.

� (15)

Furthermore, we multiply Eqs. (7a) and (7b) by ξ1(t) and ξ2(t), respectively, and then subtract the two resulting 
equations from each other. Next, we compute the average of this newly derived equation and once again utilize 
the Shapiro-Loginov formulas provided in Eqs. (8)–(11). Through these steps, we obtain

	

[
m

( d
dt

+ λ
)2

− τω2
( d

dt
+ λ

)
+ ω2 + ε

]
⟨ξ1(t)x1(t) − ξ2(t)x2(t)⟩ + mσ2 d2

dt2 ⟨x1(t) − x2(t)⟩

+ γe−λt C
0 Dα

t

[
⟨ξ1(t)x1(t) − ξ2(t)x2(t)⟩eλt

]
+ ε⟨ξ2(t)x1(t) − ξ1(t)x2(t)⟩ = 0.

� (16)

At this stage, we have derived a set of closed equations (Eqs.  13–16) involving four new variables: 
y1 ≜ ⟨x1(t) − x2(t)⟩, y2 ≜ ⟨ξ1(t)x1(t) − ξ2(t)x2(t)⟩, y3 ≜ ⟨ξ2(t)x1(t) − ξ1(t)x2(t)⟩, and 
y4 ≜ ⟨ξ1(t)ξ2(t)(x1(t) − x2(t))⟩. Using Laplace transform to the above closed equations, we obtain

	




a11 a12 0 0
a21 a22 a23 0
a31 a32 a33 a34
0 0 a43 a44







Y1
Y2
Y3
Y4


 =




a1
a2
a3
a4


 ,� (17)

where Yi(s) = L (yi(t)) =
∫ +∞

0 yi(t)e−stdt, i = 1, · · · , 4, and the related coefficients are detailed in 
“Appendix A” for reference.

The solutions of Eq. (17) can be presented as

	
Yi(s) =

4∑
j=1

Hij(s)yj(0) +
4∑

k=1

Hik(s)ẏk(0), i = 1, · · · , 4.� (18)

Applying the inverse Laplace transformation technique, we obtain

	
yi(t) =

4∑
j=1

hij(t)yj(0) +
4∑

k=1

hik(t)ẏk(0), i = 1, · · · , 4,� (19)

where Hij(s) and Hik(s) are the Laplace transforms of hij(t) and hik(t), respectively, for i, j, k = 1, · · · , 4
. In the long-time limit as t → +∞, the functions hij(t) and hik(t), for i, j, k = 1, · · · , 4 tend to zero only if

	
σ2 < (σ2)cr = [(mλ2 − τω2λ + γλα + ω2)2 − ε2](4mλ2 − 2τω2λ + 4αγλα + ω2 + 2ε)

4m2λ4(mλ2 − τω2λ + γλα + ω2) .� (20)

In this paper, we presume that condition (20) is satisfied. Consequently, the influence of the initial conditions 
yi(0), ẏi(0) progressively vanishes as t → +∞. Hence, the asymptotic form of yi(t), for i = 1, · · · , 4, can be 
expressed as follows:

	
lim

t→∞
y1(t) = lim

t→∞
y2(t) = lim

t→∞
y3(t) = lim

t→∞
y4(t) = 0,� (21)

which can be rewritten as

	

⟨x1(t)⟩as = ⟨x2(t)⟩as = lim
t→∞

⟨x1(t)⟩,

⟨ξ1(t)x1(t)⟩as = ⟨ξ2(t)x2(t)⟩as = lim
t→∞

⟨ξ1(t)x1(t)⟩,

⟨ξ2(t)x1(t)⟩as = ⟨ξ1(t)x2(t)⟩as = lim
t→∞

⟨ξ2(t)x1(t)⟩,

⟨ξ1(t)ξ2(t)x1(t)⟩as = ⟨ξ1(t)ξ2(t)x2(t)⟩as = lim
t→∞

⟨ξ1(t)ξ2(t)x1(t)⟩.

� (22)
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The equations denoted as Eq. (22) indicate that, in the long-time region, the average behaviors of the two particles 
become completely synchronous. Furthermore, Eq. (20) is interpreted as the synchronism condition, which is 
illustrated in the parameter set τ − α in Fig. 1, where the blue and white regions are delineated to differentiate 
between synchronism and asynchronism. This is one of the primary findings of this paper. Additionally, the 
results expressed in Eq. (22) demonstrate that, in the long-time limit, the average of the mean field is equivalent 
to the average displacement of any single particle. Specifically, ⟨(x1(t) + x2(t))/2⟩as = ⟨x1(t)⟩as = ⟨x2(t)⟩as
. This conclusion validates the appropriateness of studying the mean field through the averages ⟨xi(t)⟩, i = 1, 2
. Therefore, in the following subsection, we focus our analysis solely on the stationary state response of the first 
particle, ⟨x1(t)⟩as, which represents another key result of this paper.

First-order moment of system stationary state response
To analyze the stationary state response of the coupled time-delayed system described by Eq. (6), we perform 
a series of four distinct operations on Eq. (7a): (I) averaging with respect to the noise, (II) multiplying by ξ1(t) 
and averaging, (III) multiplying by ξ2(t) and averaging, and (IV) multiplying by ξ1(t)ξ2(t) and averaging. 
Subsequently, we employ the concept of “complete synchronization,” as presented in Eq.  (22), along with 
the Shapiro-Loginov formulas detailed in Eqs. (8)–(11). By doing so, we derive a set of closed equations that 
incorporate four new variables:

	




(
m

d2

dt2 − τω2 d
dt

+ γ C
0 Dα

t + ω2
)

z1 + m
( d

dt
+ λ

)2
z2 = A cos Ωt,

mσ2 d2

dt2 z1 +
[

m
( d

dt
+ λ

)2
− τω2

( d
dt

+ λ
)

+ ω2 + ε

]
z2 + γe−λt C

0 Dα
t

(
z2eλt

)
− εz3 = 0,

− εz2 +
[

m
( d

dt
+ λ

)2
− τω2

( d
dt

+ λ
)

+ ω2 + ε

]
z3 + γe−λt C

0 Dα
t

(
z3eλt

)
+ m

( d
dt

+ 2λ
)2

z4 = 0,

mσ2
( d

dt
+ λ

)2
z3 +

[
m

( d
dt

+ 2λ
)2

− τω2
( d

dt
+ 2λ

)
+ ω2

]
z4 + γe−2λt C

0 Dα
t

(
z4e2λt

)
= 0,

� (23)

where z1 ≜ ⟨x1(t)⟩, z2 ≜ ⟨ξ1(t)x1(t)⟩, z3 ≜ ⟨ξ2(t)x1(t)⟩, z4 ≜ ⟨ξ1(t)ξ2(t)x1(t)⟩. By using the Laplace 
transform to Eq. (23), we obtain

	




b11 b12 0 0
b21 b22 b23 0
0 b32 b33 b34
0 0 b43 b44







Z1
Z2
Z3
Z4


 =




As
s2+Ω2 + b1

b2
b3
b4


 ,� (24)

where Zi(s) = L (zi(t)) =
∫ +∞

0 zi(t)e−stdt, i = 1, · · · , 4, and the related coefficients are detailed in 
“Appendix B” for reference.

Although the solutions to Eq. (24) can be uniformly obtained, it is sufficient to focus on Z1(s) in the long-
time limit to derive the stationary state response of the system, which is given by

	
Z1(s) = H1(s) As

s2 + Ω2 +
4∑

m=1

H1m(s)zm(0) +
4∑

n=1

H1n(s)żn(0),� (25)

where

Fig. 1.  The influence on synchronism in parameter set τ − α: (a) ω = 2, γ = 1.5, λ = 0.1, σ = 0.1, ε = 1; 
(b) ω = 2, γ = 1.5, λ = 0.5, σ = 0.3, ε = 1.
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H1(s) = b2

22b44 − b22b34b43 − ε2b44

b11(b2
22b44 − b22b34b43 − ε2b44) − mσ2s2b12(b22b44 − b34b43) .

Applying inverse Laplace transform to Eq. (25), we obtain

	
z1(t) = A

∫ t

0
h1(t − t′) cos(Ωt′)dt′ +

4∑
m=1

h1m(t)zm(0) +
4∑

n=1

h1n(t)żn(0),� (26)

where h1(t), h1m(t) and h1n(t) respectively represents the inverse Laplace transform of H1(s), H1m(s) and 
H1n(s), m, n = 1, · · · , 4. Similarly, when condition is met as described below:

	
σ2 < (σ2)cr = [(mλ2 − τω2λ + γλα + ω2 + ε)2 − ε2](4mλ2 − 2τω2λ + 4αγλα + ω2)

4m2λ4(mλ2 − τω2λ + γλα + ω2 + ε) ,� (27)

the functions h1m(t) and h1n(t), for m, n = 1, · · · , 4 approach zero, as t → ∞. Furthermore,the influence 
of the initial conditions on ⟨x(t)⟩as will vanish. In this paper, we assume that the conditions (20) and (27) are 
satisfied. Consequently, ⟨x(t)⟩as can be asymptotically expressed in a simplified form:

	
⟨x(t)⟩as = ⟨x1(t)⟩as = lim

t→∞
⟨x1(t)⟩ = Aas cos(Ωt + φas),� (28)

where Aas and φas represent the amplitude and phase shift of ⟨x(t)⟩as, respectively. More specifically, Aas and 
φas can be written as

	
Aas = A|H1(jΩ)| = A

√
µ2

1 + µ2
2

µ2
3 + µ2

4
,� (29)

and

	
φas = arg (H1(jΩ)) = arctan

(
µ2µ3 − µ1µ4

µ1µ3 + µ2µ4

)
,� (30)

where j denotes the imaginary unit, and the corresponding coefficients are detailed in “Appendix C” for reference.
Finally, we define the output amplitude gain (OAG), denoted as G, which is expressed as

	
G = Aas

A
.� (31)

In the upcoming section, we will explore and discuss the collective resonant behaviors of the system.

Collective resonant behaviors
. In this section, we focus on analyzing the collective resonant behaviors of the two coupled fractional fluctuating-
mass oscillators with time delay, specifically in terms of OAG G (see Eq. 31). Our primary emphasis is on the 
synergistic effects of the coupling strength ε, fractional order α, time delay τ , and noise parameters (σ2, λ) on 
the non-monotonic resonant behaviors, referred to as GSR behaviors.

Firstly, we investigate the GSR behaviors of G(Ω) across varying values of γ, α and τ . In Fig. 2, we present the 
parameter set γ − α where GSR phenomena of G(Ω) emerge, alongside the corresponding curves of G(Ω) at 
selected representative points within this parameter set. In Fig. 2a, the unshaded region signifies the area where 
the GSR phenomenon is not possible, while the shaded regions indicate where GSR phenomena of G(Ω) occur. 
Notably, one peak and two peaks appear in the curves of G(Ω) in the light and dark gray regions, respectively.

When comparing Fig. 2a (τ = 0) with Fig. 2b (τ = 0.1), it becomes evident that the inclusion of time delay 
introduces more diverse and intricate dynamics, including the emergence of triple-peak GSR phenomena 
within the black region. The time delay in the external potential field force, denoted as ω2xi(t − τ), for i = 1, 2, 
introduces nonlinearity into the system, thereby generating complex dynamical behaviors. Moreover, Fig. 2c 
displays the maximal extremum under the same parameters as in Fig. 2b. As observed, the maximal extrema 
exhibit a decreasing trend with increasing γ, highlighting the dampening effect of γ on the GSR intensity. 
Intuitively, an increase in γ results in a corresponding increase in the viscous damping force γ C

0 Dα
t xi(t), 

leading to a weakening of the GSR intensity.
In Fig. 2d, we illustrate an example using the point α = 0.5 and γ = 1, corresponding to the single-peak 

GSR region depicted in Fig. 2a and the double-peak GSR region shown in Fig. 2b, respectively. As τ  increases, 
we observe an increase in the peak value along with a slight rightward shift in the peak position. Indeed, a 
larger value of τ  indicates a more pronounced memory effect in the time-delayed system. Consequently, energy 
accumulates due to this memory effect, leading to an enhancement of the GSR intensity as τ  increases. To delve 
deeper into our analysis, we select γ = 0.2 (marked by a vertical red line) and α = 0.3 (marked by a horizontal 
red line) from Fig.  2b as representative cases. We then analyze the effects of α and γ on G(Ω) in Fig.  2e,f, 
respectively. As α (or γ) increases, the GSR patterns transition from triple-peaks GSR to single-peak GSR. As 
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expected, a larger damping term leads to a reduction in the maximum peak of G(Ω). These results align with 
the observations made in Fig. 2b,c.

In the coupled time-delayed fractional system described by Eq. (6), the two particles experience a pair of 
interaction forces F1,2 = ±ε(x2 − x1), known as “coupling forces”. These forces, F1 and F2, are equal in 
magnitude but opposite in direction, compelling the two particles to move toward each other. As ε approaches 
zero, the coupling forces gradually diminish, and the particles behave independently. Conversely, when ε attains 
a sufficiently large value ε∗, F1 and F2 become significant, causing the particles to move in unison (see Fig. 3a).

Intuitively, there may exist an optimum ε between these two scenarios that maximizes the OAG G. As 
expected, G exhibits a non-monotonic trend with increasing ε, as shown in Fig. 3, indicating the occurrence of 
the GSR phenomenon. Furthermore, all G(ε) curves tend toward a fixed value, illustrating that further increases 
in ε exert minimal influence on the particles’ motion. More specifically, Fig. 3b reveals that a decrease in α 
leads to an elevation in the peak value of G(ε), accompanied by a notable leftward shift in the peak position. In 
Fig. 3c, the resonance peak of G(ε) is observed to ascend with an increase in τ , while the peak position remains 
unchanged. Consequently, enhancing system memory, reducing α, or increasing τ  can augment the maxima of 
G(ε). In Fig. 3d, the resonance peak of G(ε) becomes sharper and shifts toward zero as the noise intensity σ2 
increases. In simpler terms, an improvement in the system memory facilitates the accumulation of noise energy, 
thereby bolstering the intensity of the GSR.

Next, we primarily explore the relationship between G and the system memory parameters, specifically the 
fractional order α and time delay τ . Notably, as illustrated in Figs.  4 and 5, all the curves exhibit a distinct 
peak, signifying the occurrence of GSR phenomena. Upon examining Figs.  4a and 5a, it becomes evident 
that as ε increases, the peak values of both G(α) and G(τ) diminish. Concurrently, the peak positions shift 
towards conditions indicative of weaker system memory, characterized by larger α values and smaller τ  values. 
Furthermore, both G(α) and G(τ) converge towards a constant limit, as demonstrated in Fig. 3.

Additionally, as shown in Fig. 4b, when τ  increases, the peak value of G(α) rises, with the peak position 
shifting towards larger α values. Conversely, in Fig. 5b, as α increases, the peak value of G(τ) initially decreases 
and then rises again, with the peak position moving towards larger τ  values. The analysis of Figs. 4b and 5b 
reveals that there exists a minimum system memory with an optimal combination of α and τ  that induces 
the best match between the system and noise when other system parameters are fixed. Consequently, the peak 
position αcr (τcr) shifts rightward as τ  (α) increases. In essence, the enhancement of memory resulting from an 
increase in τ  counteracts the attenuation of memory caused by an increase in α, and vice versa.

Fig. 2.  GSR phenomena of G(Ω): (a) parameter set α–γ without time delay τ = 0; (b) parameter set α–γ 
with time delay τ = 0.1; (c) maximal extremum in parameter set α − γ with time delay τ = 0.1 (yellow 
represents maximal extremum 3, whereas blue signifies 0); (d) G(Ω) for different τ  with γ = 1.0, α = 0.5
; (e) G(Ω) for different α with γ = 0.2, τ = 0.1; (f) G(Ω) for different γ with α = 0.3, τ = 0.1. The other 
parameters are set as m = 1.0, ω = 1.0, ε = 1.0, σ2 = 0.5, λ = 0.5.
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Finally, we present the graphs of G(σ2) and G(λ) in Figs. 6 and 7, respectively, to investigate the influence 
of the noise parameters on the OAG G. The curves for both G(σ2) and G(λ) exhibit non-monotonic behavior, 
indicating the presence of GSR phenomena. In Fig. 6a, the peak value of G(σ2) demonstrates a non-monotonic 
trend, initially increasing and then decreasing as ε increases, while the peak position shifts to the right. This 
observation suggests that an optimal coupling strength ε can amplify the GSR intensity of G(σ2). Similarly, 
in Fig. 6b, the peak value of G(σ2) initially decreases and subsequently increases as γ increases, and the peak 
position shifts to the left.

Fig. 4.  GSR phenomena of G(α) for different ε and τ : (a) τ = 0.1, m = 1.0, γ = 1.0, ω = 1.0, Ω = 1.0, 
σ2 = 0.1, λ = 0.1; (b) ε = 1.0, m = 1.0, γ = 2.0, ω = 1.0, Ω = 0.6π, σ2 = 0.0001, λ = 0.3.

 

Fig. 3.  (a) The coupling force on the two particles; (b) G(ε) for different α with τ = 0.1, m = 1.0, γ = 1.0
, ω = 1.0, Ω = 1.0, σ2 = 0.5, λ = 0.1; (c) G(ε) for different τ  with α = 0.5, m = 1.0, γ = 1.0, ω = 1.0
, Ω = 1.0, σ2 = 0.5, λ = 0.1; (d) G(ε) for different σ2 with α = 0.5, τ = 0.1, m = 1.0, γ = 1.0, ω = 1.5, 
Ω = 0.8π, σ2 = 0.04, λ = 0.1.
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Upon examining Fig. 6c,d, it becomes evident that the peak value of G(σ2) diminishes and the peak position 
shifts leftward when the system memory is weakened, either by increasing α or decreasing τ . Notably, the 
GSR phenomenon disappears when the system memory becomes sufficiently weak, such as when α > 0.4 or 
τ < 0.04. In other words, the GSR phenomenon is not observed in either the integer-order coupled oscillator 
and the coupled fractional oscillators without time delay38. Additionally, stronger memory facilitates the transfer 
of noise energy to periodic signals, thereby enhancing the GSR intensity.

Fig. 6.  GSR phenomena of G(σ2) for different ε, α, τ  and γ: (a) α = 0.1, τ = 0.1, m = 1.0, γ = 1.0, 
ω = 2.0, Ω = 2.0, λ = 0.5; (b) α = 0.3, τ = 0.1, ε = 1, m = 1.0, ω = 1.0, Ω = 0.6π, λ = 0.5; (c) ε = 1
, τ = 0.1, m = 1.0, γ = 1.0, ω = 2.0, Ω = 2.0, λ = 0.5; (d) ε = 1, α = 0.2, m = 1.0, γ = 1.0, ω = 2.0, 
Ω = 2.0, λ = 0.5.

 

Fig. 5.  GSR phenomena of G(τ) for different ε and α: (a) α = 0.4, m = 1.0, γ = 1.0, ω = 2.0, Ω = 2.0, 
σ2 = 0.1, λ = 0.5; (b) ε = 1.0, m = 1.0, γ = 2.0, ω = 1.5, Ω = 0.6π, σ2 = 0.01, λ = 0.5.
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Moreover, in Fig. 7a, the peak value of G(λ) decreases and eventually stabilizes as ε increases, while the peak 
position shifts slightly to the right. In Fig. 7b, as σ2 increases, the minima of G(λ) decreases and the inhibited 
valley becomes progressively sharper. Similar to the trends observed in Fig.  6c,d, G(λ) exhibits comparable 
variations as α and τ  increase in Fig. 7c,d, respectively. Both fractional order α and time delay τ  reflect the 
memory characteristics of the system, albeit with opposing effects. Meanwhile, the noise correlation rate λ 
reflects the memory characteristics of the noise, where a larger λ indicates weaker noise memory. It is important 
to emphasize that under the same parameter conditions, the GSR phenomenon is absent in both the integer-
order coupled oscillator (when α = 1, as illustrated in Fig. 7c) and the coupled fractional oscillators without 
time delay (when τ = 0, as shown in Fig. 7d).

In summary, the system’s memory effect, influenced by a decrease in α or an increase in τ , necessitates a 
higher noise correlation rate to counteract. We conclude that ε, α, and τ  play crucial roles in modulating the 
GSR intensity of G(σ2) and G(λ).

Numerical simulations
In this section, we conduct numerical simulations using both the predictor-corrector approach56 and the Monte 
Carlo method to validate the accuracy of the analytical result presented in Eq. (31). In Fig. 8, we first provide the 
comparison between the analytical and numerical results of the first-order moment of system stationary state 
response ⟨x(t)⟩as with different driving frequencies Ω = 0.2π, 0.4π, and 0.6π. We carry out different number 
of independent realizations to compute the average value, and set the total simulation time to 100 seconds, with 
a time step of h = 0.01 seconds. Obviously, as the number of simulations increases, i.e., M = 200, the averaged 
numerical trajectories match well with the analytical result after a short transition time.

In Fig. 9, we further compares the analytical and numerical results of G with respect to different system 
parameters. Fig. 9a demonstrates a high level of agreement between the theoretical and numerical results for 
τ < 0.2. This consistency further confirms the validity of the analytical solution for the coupled fluctuating-mass 
fractional system with a small time delay. Moreover, in Fig. 9b–f, we consider the effects of system parameters α
, Ω, ε, σ, and λ. It is observed that for a small time delay (τ = 0.1), the numerical results align closely with the 
analytical results within an acceptable error range.

Fig. 7.  GSR phenomena of G(λ) for different ε, α and τ : (a) α = 0.4, τ = 0.1, m = 1.0, γ = 1.0, ω = 2.0, 
Ω = 2.0, σ2 = 0.1; (b) α = 0.2, τ = 0.1, ε = 1, m = 1.0, γ = 1.3, ω = 1.0, Ω = 0.6π; (c) ε = 1, τ = 0.05
, m = 1.0, γ = 1.0, ω = 2.0, Ω = 2.0, σ2 = 0.1; (d) ε = 1, α = 0.4, m = 1.0, γ = 1.0, ω = 2.0, Ω = 2.0, 
σ2 = 0.1.

 

Scientific Reports |         (2025) 15:2335 10| https://doi.org/10.1038/s41598-025-86080-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusion
In this study, we introduced a system consisting of two coupled fluctuating-mass fractional oscillators with 
time delay. Our primary objective was to investigate the collective resonant behaviors of this system, specifically 
focusing on the impacts of coupling strength ε, fractional order α, and time delay τ . By leveraging the stochastic 
average method, we achieved complete synchronization between the average behaviors of the two oscillators and 
derived the analytical expression for the OAG G.

Based on our analytical results, we observed a rich variety of GSR phenomena in the coupled fractional time-
delayed system. We further explored the intricate dependencies of these GSR phenomena on several system 
parameters. Notably, we found that the introduction of time delay τ  leads to the emergence of more diverse 
GSR phenomena, including the triple-peaks GSR phenomenon. Moreover, enhancing the system memory (by 
decreasing α or increasing τ ) amplifies the intensity of the GSR in G(ε). Interestingly, ε exerts a similar influence 
on the GSR phenomena observed in both G(α) and G(τ).

It is important to emphasize that ε, α, and τ  play pivotal roles in governing the GSR behaviors of G(σ2) 
and G(λ) by facilitating their emergence and optimizing their intensity. To validate the accuracy and reliability 
of our analytical results, we conducted numerical simulations. The close agreement between the analytical and 
numerical findings confirms the robustness of our analysis.

In conclusion, we anticipate that the results obtained from this study will provide significant theoretical 
support for future research endeavors, particularly in fields such as signal processing and fault diagnosis. By 
elucidating the intricate relationships between system parameters and GSR phenomena, our findings have the 
potential to unlock new avenues for exploration and drive advancements in these important areas.

Fig. 8.  The comparison between the analytical and numerical results of the first-order moment of system 
stationary state response ⟨x(t)⟩as with different driving frequencies: (a) Ω = 0.2π, (b) Ω = 0.4π, (c) 
Ω = 0.6π. The other parameters are set as m = 1, α = 0.5, τ = 0.1, γ = 1.5, ω = 2, ε = 1, σ = 0.3, λ = 0.5
, A = 1.
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