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Under the backdrop of frequent emergencies, the rational layout of emergency service facilities 
(ESF) and the effective allocation of emergency supplies have emerged as crucial in determining the 
timeliness of post-disaster response. By adequately accounting for potential uncertainties and carrying 
out comprehensive pre-planning, the robustness of location-allocation decisions can be significantly 
improved. This paper delves into the ESF network design problem under demand uncertainty and 
formulates this problem as a two-stage robust optimization model. The presented model defines 
a generalized budget uncertainty set to capture victims’ uncertain demand and minimizes the 
sum of the costs involved in the two stages. The objective function integrates the input cost in the 
preparedness phase, the deprivation cost from the victims’ perspective and the environmental impact 
cost responding to sustainable development in the response phase, which respectively correspond to 
the comprehensive optimization of the deployment of ESF, the distribution of emergency supplies and 
the implementation of sustainable measures. Subsequently, we employ the column and constraint 
generation (C&CG) algorithm to solve the proposed model and take the COVID-19 epidemic in Wuhan 
as a case to verify the effectiveness of the model and algorithm. Finally, we examine the influence 
of demand uncertainty and environmental impact cost on the optimal solution, yielding valuable 
managerial insights.

Keywords  Emergency service facilities, Location-allocation, Two-stage robust optimization, Demand 
uncertainty, Sustainable development

In recent years, large-scale emergencies such as earthquakes, floods, and epidemics have led to massive human 
casualties and economic losses worldwide. According to statistics, natural disasters in 2023 resulted in 86,473 
deaths, impacted 93.05 million people, and caused direct economic losses of $202.65 billion globally. In 
comparison to the average over the past decade, the number of deaths in 2023 was 482% higher, while direct 
economic losses increased by 23% higher1. In light of this alarming data, emergency service facilities (ESF), 
such as emergency distribution centers, are essential infrastructures that provide vital support for post-disaster 
response and recovery. Therefore, designing a scientifically sound and efficient ESF network to ensure the rapid 
delivery of emergency supplies to affected areas has become an urgent issue that needs greater attention.

The emergency management life cycle of emergencies generally includes four phases: mitigation, preparedness, 
response and recovery. During the preparedness phase, the primary task is to formulate targeted contingency 
plans (including ESF location and emergency supplies allocation strategies) based on the comprehensive 
evaluation of the type, intensity and influence scope of potential emergencies. Then, in the response phase, these 
plans are immediately activated to minimize losses. However, the uncontrollability of emergencies may cause the 
uncertainties, resulting in the failure of the location-allocation scheme of ESF.

Dönmez et al.2 have comprehensively summarized the sources of emergency supply chain uncertainties and 
related research progress, including facility disruption uncertainty3–5, demand uncertainty6,7, transportation 
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uncertainty8,9 and so on. They emphasized that these uncertainties significantly impacted the effectiveness of 
ESF location-allocation scheme. In particular, demand uncertainty has become a crucial research field in the ESF 
network design problem due to its universality, complexity and seriousness of its consequences. For instance, 
the Haiti earthquake in 2010, the Nepal earthquake in 2015, and the COVID-19 pandemic in 2020 all resulted 
in serious shortages of emergency supplies due to demand uncertainty, causing victims to face severe survival 
challenges. These examples highlight the necessity of fully considering potential demand uncertainty in order to 
enhance the robustness of ESF location-allocation scheme.

Moreover, the intensity, scope and other factors of emergencies are intertwined, which have jointly 
exacerbated the complexity of demand uncertainty. Meanwhile, the geographical proximity of affected areas and 
the mobility of victims further intensify the correlation of demand fluctuations. Therefore, the primary problem 
that needs attention is how to combine the unique attributes of ESF location-allocation problem and develop an 
effective approach to accurately quantify emergency demand uncertainty.

To address this challenge, diversified approaches have been employed to quantify uncertainty, each possessing 
specific application scenarios and advantages. Specifically, stochastic programming models often adopt the 
probability distribution method and scenario generation method to delineate uncertainty10. The former utilizes 
predefined probability distribution information to describe uncertainty, whereas the latter simulates uncertainty 
by creating a series of possible scenarios. In addition, the Conditional Value at Risk (CVaR)11,12, which was 
originally developed to quantify the maximum loss of financial portfolio optimization, has recently been 
extended to quantify the uncertainty risk in supply chain management problem. On the other hand, robust 
optimization models primarily use uncertainty set as a means of uncertainty quantification13, seeking solutions 
that perform well even under the worst-case scenarios within the uncertainty set.

Due to the scarcity of historical data in emergencies, it is difficult to accurately fit the probability distribution 
of uncertain parameter, so the probability distribution estimation method relying on large amounts of historical 
data is facing challenges. In this context, the robust optimization method emerges as a powerful tool, as it directly 
constructs uncertainty sets and gives high attention to worst-case scenarios. This method is particularly suitable 
for emergencies where data is scarce, providing a more conservative but robust decision-making framework. 
Therefore, we plan to apply the robust optimization method to quantify the uncertainty of emergency demand.

Beyond the quantification of uncertainty, research on the ESF location-allocation problem has extended into 
diversified fields. Notably, researchers are increasingly integrating social and environmental sustainability goals 
into their studies, aiming to enhance emergency response efficiency while promoting social and environmental 
benefits14,15. Given the pressing environmental challenges of today, environmental sustainability has become 
increasingly crucial in supply chain management, especially in the context of emergency response transportation, 
which often has a potential impact on the ecological environment. Consequently, merging uncertainty and 
sustainability in the design of ESF networks emerges as a critical and urgent research direction. This integrated 
approach can significantly enhance the efficient utilization of emergency supplies while mitigating adverse 
environmental effects, aligning with the growing emphasis on green and sustainable practices in emergency 
management.

Accordingly, this paper proposes a two-stage robust optimization model tailored to address the ESF location-
allocation problem, which anticipates demand uncertainty and environmental sustainability during the response 
phase. Firstly, we develop a generalized budget uncertainty set to quantify correlated demand uncertainty by 
exploring the internal relationship between uncertain factors and demand fluctuation. Subsequently, to mitigate 
the adverse effects of unmet demand, we introduce the concept of deprivation cost, which specifically quantifies 
the economic value of the pain suffered by victims due to unmet demand. Furthermore, in response to the 
global call for sustainable development, we not only focus on cost-effectiveness and demand satisfaction, but 
also specifically incorporate environmental sustainability into the proposed model. This approach ensures 
that our model addresses both the immediate needs of emergency response and the long-term environmental 
consequences. Then, we construct a two-stage robust optimization model for ESF location-allocation problem 
considering demand uncertainty and sustainable development. Finally, we verify the effectiveness of the 
proposed model through empirical analysis.

The main contributions of this paper are as follows: 

	(1)	� Developing a new budget uncertainty set quantifying the correlated demand uncertainty based on the in-
ternal connection between influencing factors and uncertain demand, so as to provide strong support for 
effective distribution of emergency supplies.

	(2)	� Integrating environmental impact cost into the objective function, which not only addresses immediate 
needs but also promotes sustainable development by taking into account long-term environmental conse-
quences.

	(3)	� Constructing a two-stage robust optimization model for the ESF location-allocation problem under de-
mand uncertainty and reformulating it through duality theory and linearization techniques to ensure pre-
cise solvability.The rest of this paper is structured as follows: section “Literature review” summarizes the 
relevant literature on the ESF location-allocation problem. Section “Problem description and mathematical 
model” includes the problem description and model construction. Section “Solution algorithms” introduc-
es column and constraint generation (C&CG) algorithm to solve the proposed model, and deduces the solv-
able form of the proposed model. In section “Numerical study and analysis”, the applicability of the model 
and the effectiveness of the algorithm are illustrated by an actual case. Finally, in section “Conclusions and 
policy suggestions”, a brief conclusion is presented, along with the prospects for future research.
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Literature review
This paper focuses on the ESF location-allocation problem under demand uncertainty and sustainability. 
Therefore, in this section, we primarily systematically review the existing research on ESF location-allocation 
problem considering demand uncertainty, and analyze the limitations of existing research. Subsequently, we focus 
on the advantages of the robust optimization in tackling demand uncertainty, and review its current research. 
Finally, we review the relevant research on the ESF location-allocation problem considering sustainability, 
highlighting its indispensability in the decision-making of the ESF location layout and emergency supplies 
allocation.

ESF location-allocation problem under demand uncertainty
Emergencies are frequently accompanied by various uncertainties, with demand uncertainty being particularly 
significant. Demand uncertainty has a direct impact on the basic survival guarantee of victims, and any minor 
delay may lead to serious consequences. Therefore, it is imperative to explore the ESF location-allocation scheme 
under demand uncertainty to ensure the efficient emergency response. Currently, researchers have carried out 
in-depth exploration on the ESF location-allocation problem under demand uncertainty, yielding significant 
results16–18.

In the process of constructing the emergency facility location-allocation model considering demand 
uncertainty, a classic approach is to assume the demand scenarios. Such as Jia et al.19 estimated the potential 
demand scenarios according to the population density distribution, and then put forward a maximum coverage 
location model for emergency medical service facilities. On this basis, Horner and Downs20 expanded the scope 
of demand uncertainty by incorporating different probability levels, and simulated demand scenarios of various 
scales, thereby making the model closer to the realistic problem. Cavdur et al.21 more accurately simulated 
the demand fluctuation for emergency supplies by estimating the specific demand uncertainty scenarios, and 
further constructed a two-stage emergency facility location model.

Apart from enumerating demand uncertainty scenarios, another approach is to assume that the demand 
follows a certain probability distribution, and then apply stochastic programming to construct the location-
allocation optimization model covering expected cost. For example, Dalal and Üster22 considered the demand 
uncertainty caused by the location and intensity of disasters, and then proposed a stochastic programming 
model by depicting the demand uncertainty with discrete scenarios. To simplify the solution process for the 
facility location problem under demand uncertainty, Zhang et al.23 utilized the inverse uncertainty distribution 
theory to transform the original stochastic model into an equivalent deterministic model. Furthermore, Peng et 
al.24 constructed a two-stage stochastic programming model based on the probabilistic constraints of emergency 
demand to deal with the uncertainty of emergency demand. After that, Wang et al.25 expanded the uncertainty, 
further studied the facility location problem under the double uncertainty of demand and transportation, and 
constructed a dynamic scenarios-based two-stage stochastic programming model. In addition, Ghoushchi 
et al.26 introduced fuzzy random parameters to define uncertain demand parameters, and proposed a multi-
objective mixed integer linear programming model.

On the other hand, Guo et al.27 employed the CVaR method to quantify the risk of uncertainties surrounding 
the occurrence time and demand of a perishable emergency supplies inventory system, and constructed a 
comprehensive risk-averse model with considering perishable emergency supplies replacement strategy. Hu 
et al.28considered the uncertainties in both demand and transportation time, and adopted the average CVaR 
method to quantify the risks associated with these uncertainties. On this basis, they constructed a risk-averse 
stochastic programming model. The above research has generally assumed that the probability distribution of 
demand is completely known. Wang et al.29 further relaxed this assumption by designing corresponding fuzzy 
sets based on imprecise probability distribution of demand, and proposed a two-stage distribution robust mean-
CVaR optimization model combined with risk-averse criterion.

In addition, there are still some research on the ESF location-allocation problem by using the strategy 
of simulating demand scenarios, see literature30 for details. However, Klibi et al.31 highlighted that selecting 
typical uncertain scenarios and their respective probabilities is a formidable task. They pointed out that when 
dealing with uncertainty, stochastic programming based on scenario generation struggles to comprehensively 
capture the entire range of uncertain scenarios. Insufficient selected scenarios may limit the evaluation scope of 
decisions, thereby affecting the accuracy and reliability of decisions.

ESF location-allocation problem under demand uncertainty based on robust optimization
In view of the limitations of stochastic programming in selecting uncertainty scenarios and their probability 
distribution, researchers turned to utilizing robust optimization to model ESF location-allocation problem 
under demand uncertainty. For example, by introducing demand uncertainty into the shelter location-allocation 
problem, Eriskin and Karatas32 reformulated the deterministic mixed integer linear programming version of the 
problem as a robust model, which significantly improved the disaster preparedness level in the affected areas. 
After that, Basciftci et al.33 and Wang et al.34 further described the demand uncertainty by constructing the fuzzy 
set of demand, and put forward the robust optimization model of facility location under demand uncertainty, 
which provided a new perspective for addressing the demand uncertainty problems.

Aiming at the uncertainty problems, the robust optimization does not depend on the specific probability 
distribution, but describes these uncertain parameters in the form of uncertainty sets, which is more in line with 
the nature of ESF location-allocation problem and data characteristics. In the robust optimization model, the 
common uncertainty sets include box uncertainty set, ellipsoid uncertainty set, polyhedral uncertainty set35,36. 
Sun et al.37 combined the box uncertainty set with the damage severity score, thus describing the demand 
uncertainty about casualties more accurately. Since the box uncertainty set is too conservative, Zhang and Jiang38 
further applied the ellipsoid uncertainty set to describe the demand uncertainty and established the location 
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model of emergency medical service facilities. However, the introduction of ellipsoid uncertainty set increases 
the number of nonlinear constraints and the difficulty of solving model. In order to avoid this problem, Chen 
and Fu39 introduced the polyhedral uncertainty set to describe the uncertainty of the number of victims after the 
disaster, which ensured the accuracy of the model and reduced the complexity of the solution. Similarly, Ryu and 
Park40 introduced budget uncertainty set to describe demand uncertainty, and achieved better expected results.

From the aforementioned details, it is not difficult to find that although the technology of describing demand 
uncertainty by using uncertainty sets has matured, it is still stylized in the precise quantification of demand 
uncertainty. Furthermore, there is a lack of in-depth exploration of the underlying causes and mechanisms of 
demand uncertainty. In order to improve the accuracy of demand uncertainty quantification, Zhang et al.41 
integrated rolling horizon optimization method and uncertainty budget adjustment strategy to describe demand 
uncertainty, and constructed a multi-cycle, multi-level robust optimization model for facility deployment and 
resource allocation, which effectively improved the ability to cope with time-varying demand. However, it is 
worth noting that although the traditional robust optimization model is simple and intuitive, it tends to be 
overly conservative in decision-making. In order to break through this limitation, Ben-Tal et al.42 introduced 
the two-stage robust optimization model, which enabled decision makers to make targeted optimization for 
different uncertain factors in different stages, and helped to balance the cost and risk of location and allocation 
more finely under uncertain environments. On this basis, in the design of humanitarian logistics network, Qi et 
al.43 proposed a two-stage robust optimization framework to solve the service-oriented location and inventory 
reservation problem with uncertain demand and third-party supply, which provided a new perspective for 
emergency management with uncertain demand. More recent studies on the ESF location-allocation problem 
under demand uncertainty can be found in44–46.

ESF location-allocation problem considering sustainability
The above reviewed papers about the ESF location-allocation problem have predominantly focused on 
quantitative analysis of demand uncertainty. To the best of our knowledge, the recent research on this issue 
has exhibited a diversified trend, delving into and deepening the understanding of this problem from multiple 
dimensions. For example, regarding the design of blood supply chain during the COVID-19 pandemic, Tirkolaee 
et al.47 established a mixed-integer linear programming model under uncertainties of demand, capacity, and 
blood processing rate, which not only considered the goal of minimizing costs but also incorporated the goal of 
maximizing the fulfillment of social needs, thereby promoting the sustainable development of the supply chain. 
Taking into account the aggravation of global climate change, Ahamd et al.48 further integrated environmental 
sustainability goal into the optimization framework of pharmaceutical supply chain, achieving a delicate balance 
between socio-economic goals and environmental protection. Nayeri et al.49 put forward a multi-objective 
mathematical model considering the flexibility and responsiveness of global supply chain, aiming at minimizing 
the environmental impact and total cost, while maximizing the social impact, and adopted an improved 
fuzzy robust stochastic method to deal with the uncertainty, taking into account the sustainability, flexibility, 
responsiveness and global factors comprehensively.

In addition, Kunz et al.50 and Peretti et al.51 strongly called for the integration of sustainable practices in 
emergency relief operations, aiming at reducing the adverse impact on the environment and promoting the 
development of relief operations in a sustainable direction. Subsequently, Cao et al.52 integrated sustainability 
into the design of disaster supply chain, and constructed a multi-objective mixed integer nonlinear programming 
model, which revealed the close relationship between sustainable development and traditional relief. After 
emergencies, a large number of emergency supplies are transported to the affected areas, and carbon emissions 
from transportation inevitably impose a burden on the environment. Consequently, from the perspective of 
environmental sustainability, Zhang et al.53 developed a multi-objective optimization model for emergency 
evacuation path planning problem with the goals of minimizing total cost, total travel time and total carbon 
emissions. This model provided a more environmentally friendly and efficient scheme for emergency evacuation 
path planning problem. Furthermore, Oscar et al.54 considered the carbon emissions cost generated by 
humanitarian logistics, and drew a remarkable conclusion through comparative experiments: adopting carbon 
emission reduction measures in the humanitarian logistics will not have any negative impact on the service 
level provided to victims, but will have a positive effect on reducing the carbon emissions. For urgently needed 
virus detection equipment under the COVID-19 pandemic, Alizadeh et al.55 designed a reliable and sustainable 
stochastic multi-objective model of emergency medical device supply chain considering the greenhouse 
gas emissions. Thereafter, Boostani et al.56 and Cao et al.57 discussed the three dimensions of sustainable 
development in detail, and proposed a mixed integer multi-objective optimization model for the distribution of 
relief materials.

In summary, although the ESF location-allocation problem under demand uncertainty have been extensively 
studied, the accurate quantification of demand uncertainty is still a worthwhile problem, and the research on this 
problem from the perspective of sustainability is still in the initial stage. Therefore, inspired by previous studies, 
we construct a generalized budget uncertainty set to quantify correlated demand uncertainty by clarifying 
the internal relationship between uncertain factors and demand uncertainty. In addition, by adding the 
environmental impact cost to the objective function, we model this problem as a two-stage robust optimization 
model for ESF location-allocation considering environmental sustainability under demand uncertainty. In 
order to highlight the distinctions between our study and the existing studies, Table 1 provides a more detailed 
literature comparison. Through comparative analysis, we find that our study makes progress in integrating 
demand uncertainty and sustainability, and successfully realize this integration process in a two-stage robust 
optimization framework. This measure not only contributes to the rational allocation of emergency supplies, but 
also promotes the sustainable development of emergency management.
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Problem description and mathematical model
Problem definition
In large-scale emergencies, the affected areas require large amounts of emergency supplies, such as medicine, 
food, water, and so forth. Given the huge amount of supplies and their diverse sources, the effective deployment 
of ESF has become the core element to ensure the rapid and accurate delivery of emergency supplies to affected 
areas. Note that the demand for emergency supplies in affected areas is not a fixed value. Furthermore, the 
carbon emissions generated during transportation and waste materials packaging will inevitably have an impact 
on the environment. Hence, focusing on the preparedness phase, this paper studies the ESF location-allocation 
problem by integrating demand uncertainty and sustainable development perspective. Figure 1 visually presents 
the core framework of this study. To enhance the resilience and adaptability of the ESF location-allocation 
strategy, it is essential to consider potential demand uncertainty in advance. By constructing a generalized 

Fig. 1.  The framework of the ESF location-allocation problem.

 

Studies

Demand Stage Objectives Decisions Model types

Uncertainty Preparedness Response Location Allocation Deprivation Environment Location Allocation Stochastic Robust

Dalal and Üster22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Peng et al.24 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Wang et al.25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hu et al.28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Basciftci et al.33 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zhang and Jiang38 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ryu and Park40 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zhang et al.41 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Qi et al.43 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cao et al.52 ✓ ✓ ✓ ✓
Zhang et al.53 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Oscar et al.54 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Boostani et al.56 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Our study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.  The comparison of studies on ESF location-allocation problem.
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demand uncertainty set based on classical budget uncertainty set and historical data, we can quantify the 
demand uncertainty more accurately and develop more effective response strategies accordingly.

Model assumptions
The proposed model is supported by the following main assumptions. 

	(1)	� An adequate number of the same type of vehicles are available for the purpose of transporting emergency 
supplies between ESF and demand points.

	(2)	� In evaluating the environmental impact cost, we mainly consider the emissions of emergency supplies 
transportation, and temporarily ignore the emissions generated by facilities construction and personnel 
activities.

	(3)	� Nominal demand and correlation of demand points can be estimated based on the population size and the 
relevant historical disaster data in the affected areas.

	(4)	� The impact of emergency supplies packaging on the ecological environment can be measured by converting 
it into the cost of harmless treatment of waste materials packaging.

Notation
The mathematical notations used in this paper are summarized in Table 2.

Model formulation
When making ESF location decisions in the preparedness phase, it is a significant challenge to comprehensively 
predict and accurately quantify demand uncertainty. Given the advantages of the budget uncertainty set, we 
utilize it to quantify demand uncertainty, so as to further develop the ESF location model. Taking into account 
the influence of uncertain factors such as emergency intensity and scope on demand, we further propose the 
generalized budget uncertainty set that quantifies the correlated demand uncertainty, which is defined as follows:

	
U =

{
d̃ ∈ R|I| : d̃i = d̄i + zid̂i, zi ∈ {0, 1}, d̂i =

(
s/

(
Li/

∑
i∈I

Li

))
· d̄i, ∀i ∈ I, ΓL ≤ B · z ≤ ΓU

}
,� (3.1)

where d̄i is the nominal demand of the demand point i, and d̃i is the actual demand of the demand point i. d̂i 
represents the maximal demand deviation which is determined by the intensity s and the distance Li between 
demand point i and the emergency site. Specifically, s represents increasing intensity of each emergency, which 
is positively correlated with d̂i. Li, serves as an indirect indicator of the impact of the emergency scope on the 
demand uncertainty, which is negatively correlated with d̂i. ΓL and ΓU  are the uncertainty budget vectors that 
limit the conservatism of decision makers in considering demand uncertainty. Inequality ΓL ≤ B · z ≤ ΓU  
provides the correlation expression of demand fluctuation, where B ∈ RR×|I| is a Boole matrix, representing 
the correlation coefficient matrix of demand fluctuation.

Thus, we establish the two-stage robust optimization model with a min-max objective to obtain the ESF location-
allocation scheme under demand uncertainty. The model is presented as follows:

Notations Description

Sets

I Set of demand points, i ∈ I

J Set of candidate ESF, j ∈ J

Parameters

fj The fixed construction cost of opening a ESF at location j

Qj The maximum capacity of ESF at location j

Di The demand at demand point i

τ The unit transportation cost of emergency supplies

pi The unit deprivation cost of unmet demand at demand point i

α The influence coefficient of material packaging on environment

β The influence coefficient of transport vehicle on environment

q The maximum capacity of the transport vehicle

cij The travel distance between demand point i and ESF at location j

Decision variables

yj Binary variable; equals 1 if a ESF is built at location j and 0 otherwise

xij Continuous variable; amount of emergency supplies that travels from ESF at location j to demand point i

ui Continuous variable; unmet demand of demand point i

Table 2.  The notations.
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P1

	
min

y

{∑
j∈J

fjyj + max
z

g(y, z)

}
� (3.2)

	 s.t. yj ∈ {0, 1}, ∀j ∈ J,� (3.3)

where g(y, z) is the second-stage cost:

P2

	
g(y, z) = min

x,u

∑
i∈I

∑
j∈J

τcijxij +

(∑
i∈I

∑
j∈J

αxij +
∑
i∈I

∑
j∈J

βcij
xij

q

)
+

∑
i∈I

piui� (3.4)

	
s.t.

∑
j∈J

xij + ui ≥ d̄i + zid̂i, ∀i ∈ I,� (3.5)

	

∑
i∈I

xij ≤ Qjyj , ∀j ∈ J,� (3.6)

	
ΓL,r ≤

∑
i∈I

brizi ≤ ΓU,r, ∀r ∈ R,� (3.7)

	 xij ≥ 0, ∀i ∈ I, j ∈ J,� (3.8)

	 ui ≥ 0, ∀i ∈ I.� (3.9)

The objective function (3.2) minimizes the sum of the ESF location cost in the first stage and the worst-
case allocation cost in the second stage. The objective function (3.4) details the costs involved in the second 
stage from three main dimensions: cost-effectiveness, environmental sustainability, and demand satisfaction. 
Specifically, it includes (a) the cost of transporting emergency supplies, which relates to cost-effectiveness; 
(b) the cost of harmless treatment of waste materials packaging and carbon emissions during transportation, 
which corresponds to environmental sustainability; (c) the deprivation cost of unmet demand, which reflects 
the impact on victims’ demand satisfaction. Constraints (3.3) define the binary ESF location decision variables. 
Constraints (3.5) ensure that the demand of the each demand point is satisfied as much as possible. Constraints 
(3.6) denote the maximum capacity limitation of each ESF. Constraints (3.7) present the correlation expression 
of demand uncertainty. Constraints (3.8) and (3.9) define the value range of continuous decision variables xij  
and ui.

In above proposed model, the second stage problem is formulated as a bi-level programming problem, whose 
core lies in the interdependent and interactive nature of the bi-level decisions. Furthermore, the introduction 
of the demand uncertainty set increases the number of nonlinear constraints in the model, which significantly 
elevating the complexity and challenge of the solving. To successfully tackle this model, we will illustrate the 
transformation strategy of the model and present the corresponding algorithmic approach in section “Solution 
algorithms”.

Solution algorithms
In this section, we mainly introduce the reformulation of the proposed model and the solution algorithms.

Model reformulation
In order to efficiently solve the two-stage robust optimization model proposed in this paper, we intend to 
adopt a decomposition strategy to disassemble the original model into two parts: the master problem and the 
subproblem, and then gradually approach the optimal solution of the model by solving master and subproblem 
alternately. Figure 2 shows the alternately solving framework and its specific process intuitively.

On this basis, we further derive the equivalent master problem and subproblem forms of the proposed model 
in section “Model formulation”. The detailed transformation process is as follows.

The master problem is written as:
MP

	
min

y

∑
j∈J

fjyj + η,� (4.1)

	
s.t. η ≥

∑
i∈I

∑
j∈J

τcijxl
ij +

∑
i∈I

∑
j∈J

αxl
ij +

∑
i∈I

∑
j∈J

βcij

xl
ij

q
+

∑
i∈I

piu
l
i,� (4.2)
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∑
j∈J

xl
ij + ui ≥ d̄i + zl

id̂i, ∀i ∈ I,� (4.3)

	

∑
i∈I

xl
ij ≤ Qjyj , ∀j ∈ J,

yj ∈ {0, 1}, ∀j ∈ J.

� (4.4)

The MP seeks to obtain the optimal location decision based on the set of worst cases determined in the subproblem. 
zl

i  represents the lth scenario identified by the subproblem. xl
ij  and ul

i represent the decision variable values 
related to the lth scenario obtained by the subproblem. Since constraint (4.2) is a subset of demand uncertainty 
set (3.1), MP naturally provides an effective relaxation for the original two-stage robust optimization model. By 
gradually adding important scenarios (4.2)–(4.4) to the MP, a stronger lower bound can be expected.

After obtaining the optimal location decision y∗ of MP, we identify important scenarios by solving the following 
subproblem.

Fig. 2.  Alternately solving framework for the proposed two-stage robust optimization model.
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SP1

	

max
z

min
x,u

∑
i∈I

∑
j∈J

τcijxij +
∑
i∈I

∑
j∈J

αxij +
∑
i∈I

∑
j∈J

βcij
xij

q
+

∑
i∈I

piui,

s.t.
∑
j∈J

xij + ui ≥ d̄i + zid̂i, ∀i ∈ I,

∑
i∈I

xij ≤ Qjy∗
j , ∀j ∈ J,

ΓL,r ≤
∑
i∈I

brizi ≤ ΓU,r, ∀r ∈ R,

xij ≥ 0, ∀i ∈ I, j ∈ J,

ui ≥ 0, ∀i ∈ I.

The SP1 is a bi-level optimization problem. To solve it successfully, we utilize the Karush-Kuhn-Tucker (KKT) 
conditions to transform the above bi-level optimization problem into the single-level optimization problem, 
which is presented as follows.

SP2

	

max
z,x

∑
i∈I

∑
j∈J

τcijxij +
∑
i∈I

∑
j∈J

αxij +
∑
i∈I

∑
j∈J

βcij
xij

q
+

∑
i∈I

piui

s.t. cij + α + βcij
xij

q
− πi − θj = 0, ∀i ∈ I, j ∈ J,

(d̄i + zid̂i) −
∑
j∈J

xij − ui ≤ 0, ∀i ∈ I,

∑
i∈I

xij − Qjy∗
j ≤ 0, ∀j ∈ J,

πi(d̄i + zid̂i −
∑
j∈J

xij − ui) = 0, ∀i ∈ I,� (4.5)

	 θj

(∑
i∈I

xij − Qjy∗
j

)
= 0, ∀j ∈ J,

ΓL,r ≤
∑
i∈I

brizi ≤ ΓU,r, ∀r ∈ R,

xij ≥ 0, ∀i ∈ I, j ∈ J,

ui ≥ 0, ∀i ∈ I,

� (4.6)

where πi and θj  are introduced dual variables. It is obvious that constraints (4.5) and (4.6) contain nonlinear 
terms, which significantly complicate the solving process. To overcome this difficulty, we perform linearization 
of these constraints (4.5) and (4.6) by using the big-M method, thereby transforming the above model into the 
following equivalent form.
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SP3

	

Ψ(y∗) = max
z,x,u,π,θ,ω,ν

∑
i∈I

∑
j∈J

τcijxij +
∑
i∈I

∑
j∈J

αxij +
∑
i∈I

∑
j∈J

βcij
xij

q
+

∑
i∈I

piui

s.t. cij + α + βcij
xij

q
− πi − θj = 0, ∀i ∈ I, j ∈ J,

(d̄i + zid̂i) −
∑
j∈J

xij − ui ≤ 0, ∀i ∈ I,

∑
i∈I

xij − Qjy∗
j ≤ 0, ∀j ∈ J,

−πi ≤ Mωi, ∀i ∈ I,

−(d̄i + zid̂i) + (
∑
j∈J

xij + ui) ≤ M(1 − ωi), ∀i ∈ I,

−θj ≤ Mνj , ∀j ∈ J,∑
i∈I

xij − Qjy∗
j ≤ M(1 − νj), ∀j ∈ J,

ΓL,r ≤
∑
i∈I

brizi ≤ ΓU,r, ∀r ∈ R,

xij ≥ 0, ∀i ∈ I, j ∈ J,

ui ≥ 0, ∀i ∈ I.

C&CG algorithm for the proposed model
The C&CG algorithm was initially proposed by Zeng and Zhao58, which was implemented in a master-
subproblem framework. Specifically, C&CG algorithm is to solve the master problem to obtain the first stage 
decisions, and then tackle the subproblem to generate new variables and constraints to be added to the master 
problem, approximating the optimal solution by iterations. The detailed procedures of the C&CG algorithm to 
solve the proposed model is given in Algorithm 1.

Algorithm 1.  C&CG algorithm for solving the two-stage location-allocation model

Numerical study and analysis
In this section, we verify the availability of the proposed model and the effectiveness of the C&CG algorithm 
through a practical case, and gain some key management insights based on numerical results. In addition, all 
numerical experiments are conducted on a PC with a 3.0 GHz AMD Ryzen 54600 H CPU and 16 GB RAM.

Instance set
We utilize an instance to investigate the ESF location and emergency supplies allocation in Wuhan, Hubei 
province during the COVID-19 epidemic, and the relevant data comes from Yang et al.59. The whole city is 
divided into 13 demand points of control areas in conformity with the division of large-scale areas. A total of 
10 facilities, including large open spaces, stadiums, and convention centers are listed as candidate ESF to deliver 
emergency supplies for 13 demand points. The distribution of demand points and candidate ESF in Wuhan 
is presented in Fig. 3, which can be made on https://dingtuyi.com. Specifically, the red triangle represents the 
demand point and the blue circle represents candidate ESF.

The impact of uncertainty budget on ESF location-allocation scheme
The introduction of demand uncertainty set increases the complexity of the proposed two-stage robust 
optimization model, which makes it a significant challenge to find the optimal solution. Therefore, in order to 
explore the specific influence of demand uncertainty set on location allocation scheme, we designed a series of 
numerical experiments under the uncertainty budget constraint 0 ≤

∑
i∈I

zi ≤ Γ obtained from historical 
data, and systematically studied the influence of the increase of Γ on the ESF location-allocation scheme and the 
performance of the C&CG algorithm. The results are shown in Table 3.
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Table 3 illustrates that when Γ increases from 1 to 13, the CPU time experiences a slight augmentation. 
Notably, all scenarios can be optimally resolved, with demand satisfaction exceeding 99%. Furthermore, the 
total number of opening ESF rises from 6 to 7. This phenomenon can be attributed to the fact that when Γ takes 
a larger value, the total demand increases, necessitating opening additional ESF to mitigate demand uncertainty. 
However, due to the objective function of the second stage in the model involving the coupling of transportation 
cost, environmental impact cost and deprivation cost, which comprehensively affects the ESF location decisions. 
As a result, there are a few scenarios where demand are not entirely met, as it proves more economical to merely 
penalize unmet demand.

The impact of uncertainty budget on the solutions
In this section, considering that demand is a key factor affecting the solution results of the model, we conducted 
the experiments to analyze the impact of increasing demand uncertainty on the optimal location decision and 
the cost function values by adjusting the uncertainty budget Γ. Experiments are conducted by setting Γ ∈ [1, 13] 
and the results are shown in Figs. 4, 5 respectively.

Figure 4 shows the trend of the optimal location decision and the total cost function value as uncertainty 
budget Γ gradually increases. The location decision aims at effectively responding to the demand at demand 

Γ CPU time(s) Iter. Gap
Facility location 
strategy Demand satisfaction rate

1 3.10 2 0.00 [1,2,3,5,6,7] 6 99.99%

2 3.09 2 0.00 [1,2,4,6,7,9] 6 99.58%

3 3.12 2 0.00 [1,3,4,5,8,9,10] 7 100.00%

4 3.09 2 0.00 [1,3,4,5,8,9,10] 7 100.00%

5 3.12 2 0.00 [1,3,4,5,8,9,10] 7 100.00%

6 3.12 2 0.00 [1,3,4,5,8,9,10] 7 100.00%

7 3.11 2 0.00 [1,3,4,5,8,9,10] 7 100.00%

8 3.21 2 0.00 [1,3,4,5,7,8,10] 7 100.00%

9 3.18 2 0.00 [3,4,6,7,8,9,10] 7 100.00%

10 3.11 2 0.00 [1,3,4,6,7,9,10] 7 100.00%

11 3.42 2 0.00 [2,3,4,5,6,7,8] 7 100.00%

12 3.15 2 0.00 [1,2,3,4,6,7,10] 7 100.00%

13 3.16 2 0.00 [1,2,3,4,6,7,9] 7 99.67%

Table 3.  The impact of uncertainty budget on the ESF location-allocation scheme.

 

Fig. 3.  The nodes distribution of the Wuhan case.
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points, which is inherently related to the total cost function value. Generally, with the increase in the number 
of ESF, the total cost function value exhibits an upward trend. As shown in Fig. 4, when the Γ is increased 
from 2 to 3, a new ESF is opened and incorporated into the original location decision, resulting in a significant 
increase in the total cost function value. However, for Γ ≥ 3, the number of ESF remains constant, and the total 
cost function value increases only marginally. This phenomenon can be attributed to the fact that, during the 
initial phase of demand fluctuation, the original location decision struggles to fully meet the escalating demand, 
prompting the system to increase the number of ESF to deal with this situation. Nevertheless, as Γ further 
increases, the total demand increases slightly from the original, and the existing ESF are sufficient to meet the 
rising demand. Therefore, the system does not open more ESF, but improves the allocation scheme to achieve the 
balance between the various cost functions.

Figure 5 shows the dynamic evolution of various cost function values in the model in detail, including 
open facility cost, transportation cost, environmental impact cost and deprivation cost. Obviously, it can be 
observed that the cost of opening ESF remains stable when Γ ≥ 3. Meanwhile, the transportation cost shows a 
continuous fluctuation trend, which further proves that when Γ ≥ 3, the system can cope with the slight rising 
demand by fine adjustment and optimization of transportation strategy. In addition, it is worth noting that the 

Fig. 5.  The impact of uncertainty budget Γ on the cost functions.

 

Fig. 4.  The impact of uncertainty budget Γ on optimal solutions.
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variation trend in environmental impact cost and transportation cost are highly consistent. The reason is that the 
environmental impact cost includes the social cost caused by carbon emissions during transportation and the 
cost of harmless treatment of waste materials packaging, both of which are directly affected by the quantity of 
transported materials and transportation distance, so their variation trends are obviously synchronous.

The impact of the environmental impact cost on the solutions
In order to illustrate the impact of the introduction of environmental impact cost on the solution results of the 
model, we compare the solution results of the proposed model with the model excluding environmental impact 
cost, as shown in Figs. 6, 7.

Figure 6 shows the difference between the proposed model in this paper and the model without considering 
the environmental impact cost. As can be seen from Fig. 6, compared with the model without considering the 
environmental impact cost, the proposed model will not have a significant impact on the location decision, 
but there are differences in the material allocation scheme. Furthermore, Fig. 7 deeply compares the carbon 
emissions generated by the two models in the process of material transportation. Obviously, the proposed model 
has significant advantages in reducing the carbon emissions. This result shows that in emergency management, 

Fig. 7.  The impact of the introduction of environmental impact cost on the carbon emission.

 

Fig. 6.  The impact of the introduction of environmental impact cost on the solution.
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although the urgency of emergencies often makes environment sustainability temporarily ignored, the 
consideration of environmental impact cost will not greatly change the location decision, but can effectively 
reduce the adverse impact on the environment. Therefore, due to the durability of ESF, it is of great practical 
value to include the consideration of environmental impact cost in location strategy in the long term.

The sensitivity analysis of unit deprivation cost
The selection of unit deprivation cost for unmet demand has great influence on ESF location-allocation scheme. 
Setting a higher unit deprivation cost is conducive to increasing the cost of opening ESF to reduce the unmet 
demand, but a lower unit deprivation cost results in insufficient ESF and pre-deployed emergency supplies, which 
may lead to the inability to transport emergency supplies to the demand point. Figure 8 shows the sensitivity 
analysis of the unit deprivation cost p.

The results presented in Fig. 8 indicate that when the unit deprivation cost p is less than 50, the unmet 
demand remains high and the total cost of the system changes dramatically. This phenomenon arises due to the 
p being set too small, resulting in the deprivation cost of increased unmet demand being more economical than 
the expense of opening additional ESF. Consequently, The total cost increases with the increase of p. When the p 
exceeds 60, the new optimal solution will not be significantly different even if the p further increases. Therefore, 
in order to meet the demand as much as possible, it is necessary to set the p to a value greater than 60.

Fig. 9.  Location-allocation scheme.

 

Fig. 8.  Sensitivity analysis of unit deprivation cost p.
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Due to the limitation of space, we exemplify the ESF location-allocation scheme for the scenario with Γ = 6 
in Fig. 9 and Table 4. According to the location-allocation scheme in Fig. 9, seven candidate ESF are opened, 
including candidate ESF 1, candidate ESF 3, candidate ESF 4, candidate ESF 5, candidate ESF 6, candidate ESF 
8 and candidate ESF 10. Demand points 9 and 11 are assigned to candidate ESF 1, demand point 2 to candidate 
ESF 3, demand points 1 and 6 to candidate ESF 4, demand points 4, 5 and 7 to candidate ESF 5, demand points 
6, 12 and 13 to candidate ESF 6, demand point 3 and 8 to candidate ESF 8 and demand points 4, 9 and 10 to 
candidate ESF 10. We summarize this result in Table 4.

The performance analysis of the C&CG algorithm
In order to verify the solution effect of C&CG algorithm for the proposed two-stage robust optimization model, 
we compare the performance of the algorithm with examples of different scales (each group of examples is 
randomly selected from 49 nodes in the United States). Table 5 shows the CPU time, iterations and tolerance of 
C&CG algorithm under different scale examples.

As shown in Table 5, with the gradual increase of the scale of the problem, the CPU time of C&CG algorithm 
shows an increasing trend. This phenomenon can be attributed to the increase in the number of demand points, 
which leads to a significant increase in the complexity of demand uncertainty set, and then the constraints to 
be met in the model increase, thus prolonging the time required for the solution process. However, it is worth 
noting that the C&CG algorithm can converge in relatively few iterations, which fully demonstrates its efficiency 
in solving the proposed model. Therefore, the C&CG algorithm has obvious applicability and advantages for the 
proposed model.

Conclusions and policy suggestions
In this paper, we propose a two-stage robust optimization model for the ESF location-allocation problem 
considering demand uncertainty and sustainability, aiming to provide effective support to victims after 
emergencies. In the process of model construction, we incorporate correlated demand uncertainty and precisely 
quantify it through developing a generalized budget uncertainty set. To address the computational challenges 
associated with solving the proposed model, we derive its equivalent form based on KKT conditions and 
linearization techniques, and solve it by C&CG algorithm successfully. Finally, with a case study on Wuhan, 
Hubei province, China, through in-depth numerical experiments and sensitivity analysis of related parameters, 
we get the optimization framework of ESF location-allocation problem under demand uncertainty. The main 
conclusions of this study and the corresponding policy suggestions are as follows: 

	(1)	� This study constructs a generalized budget uncertainty set framework, which allows for accurately deriving 
corresponding demand uncertainty set based on the diverse characteristics of emergencies. This framework 
not only contributes to the quantification of the specific impacts of demand uncertainty on ESF location 
and emergency supplies allocation decisions, but also provides a solid theoretical and empirical basis for 
scientific formulation and implementation of efficient emergency management strategies. Therefore, de-
cision makers should consider customizing uncertainty sets to simulate potential uncertainties, so as to 
obtain highly robust solutions.

|I| = |J|
Γ=2 Γ=4 Γ=6 Γ=8

CPU Gap #Iter CPU Gap #Iter CPU Gap #Iter CPU Gap #Iter

10 4.86 0.00 5 6.85 0.00 7 5.68 0.00 6 1.73 0.00 2

15 5.93 0.00 5 11.59 0.00 8 18.03 0.00 11 4.56 0.09 4

20 9.51 0.00 6 25.69 0.00 11 17.80 0.00 8 9.50 0.04 6

25 9.93 0.00 5 9.72 0.00 5 24.27 0.05 8 9.57 0.36 5

30 16.20 0.00 6 8.47 0.00 4 11.36 0.09 5 13.06 0.07 5

35 42.56 0.00 7 35.36 0.01 6 44.84 0.02 7 33.84 0.08 6

40 62.37 0.00 11 65.88 0.08 12 54.65 0.21 11 55.22 0.20 9

Table 5.  The performance analysis of C&CG algorithm.

 

Selected ESF Covered demand points

1 9, 11

3 2

4 1, 6

5 4, 5, 7

6 6, 12, 13

8 3, 8

10 4, 9, 10

Table 4.  Location-allocation scheme.
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	(2)	� The sensitivity analysis of uncertainty budget parameter reveals that with the increase of demand uncer-
tainty, more ESF need to be deployed to effectively hedge the potential risk of supplies shortage. This un-
derscores the importance of thoroughly considering and accurately quantifying demand uncertainty during 
ESF planning to address the diverse situations that may arise during the response phase. Therefore, deci-
sion makers need to implement the following strategies: firstly, moderately expanding the number of ESF; 
and secondly, enhancing facility flexibility. These measures will enhance the effectiveness of emergency 
response, ensuring timely and adequate provision of necessary services under demand uncertainty.

	(3)	� By comparing the solutions of the baseline model (without considering environmental impact cost) and the 
proposed model (incorporating environmental impact cost), we found that the inclusion of environmental 
impact cost will not significantly affect ESF location decisions, but also effectively reduce carbon emis-
sions. Therefore, decision makers can consider integrating environmental impact cost into the process of 
ESF location and emergency supplies allocation. By optimizing allocation strategies, we can reduce carbon 
emissions and promote sustainable development in emergency management.

	(4)	� Through the sensitivity analysis of the unit deprivation cost of unmet demand, we can accurately deter-
mine optimal parameter ranges and their influence on optimal solutions. This guides the optimization of 
ESF layouts and emergency supply allocation, ensuring dual economic and environmental benefits while 
meeting affected people’s needs. Decision makers should establish and refine the parameter optimization 
mechanism, leveraging sensitivity analysis to accurately define the range of key parameters, and regularly 
adjust them to ensure that these parameter settings can reflect the actual needs of current emergency man-
agement.In summary, the proposed model offers a comprehensive and sustainable perspective to the ESF 
location-allocation problem under demand uncertainty. In terms of future research, we can consider the 
comprehensive influence of more uncertainties such as facility disruption on location decisions.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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