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This paper provides a novel approach to estimating CO₂ emissions with high precision using machine 
learning based on DPRNNs with NiOA. The data preparation used in the present methodology involves 
sophisticated stages such as Principal Component Analysis (PCA) as well as Blind Source Separation 
(BSS) to reduce noise as well as to improve feature selection. This purified input dataset is used in the 
DPRNNs model, where both short and long-term temporal dependencies in the data are captured well. 
NiOA is utilized to tune those parameters; as a result, the prediction accuracy is quite spectacular. 
Experimental results also demonstrate that the proposed NiOA-DPRNNs framework gets the highest 
value of R2 (0.9736), lowest error rates and fitness values than other existing models and optimization 
methods. From the Wilcoxon and ANOVA analyses, one can approve the specificity and consistency 
of the findings. Liebert and Ruple firmly rethink this rather simple output as a robust theoretic and 
empirical framework for evaluating and projecting CO2 emissions; they also view it as a helpful 
guide for policymakers fighting global warming. Further study can build up this theory to include 
other greenhouse gases and create methods enabling instantaneous tracking for sophisticated and 
responsive approaches.
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Concerns about the increasing intensity of carbon dioxide (CO2) emissions have increased in recent decades 
because emissions have been associated with global warming and climate change1,2. Carbon dioxide, generated 
by human actions in factories, cars, buses, and power generation from thermal stations through fossil fuel 
combustion, has resulted in the buildup of an atmospheric blanket of greenhouse gases3–5. This accumulation 
puts a cover, which is heat, and this has resulted in global warming. The impact of these additional emissions 
is devastating, resulting in the melting of polar ice caps, rising levels of the sea, alterations in ecosystems, and 
extreme weather, including but not limited to floods, droughts, and hurricanes. Reduction of CO2 emissions is 
no longer a question of environmentalism; it is a social, economic, and global health question requiring practical 
solutions6–8.

Figure  1 depicts the critical issue at the heart of this study: industrial activities release vast amounts of 
CO2 into the atmosphere. The figure showcases a large industrial complex with multiple smokestacks emitting 
thick clouds of smoke, symbolizing the ongoing contributions of industry to global CO2 levels9. This visual 
representation emphasizes the urgent need for accurate predictions of CO2 emissions, as it highlights the scale 
of emissions from industrial sources and their role in accelerating climate change. So, this figure serves as a 
backdrop to the methodology and study proposed in this study, reinforcing the importance of developing 
accurate tools and models to mitigate the environmental impacts of these emissions.

CO2 emission forecasting is, therefore, an essential part of environmental control and climate change policy 
measurement. Such concrete predictions allow governments, certain industries, and environmental agencies to 
have predictions on what may happen in the coming years, formulate their future policies on how to approach 
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the issue of climate change, and decide on how to reduce the impact of climate change in the world10. In other 
words, if the trends of future CO2 emissions can be forecasted, policymakers can fashion and implement emission 
control policies in areas thought to have the propensity to expand, such as energy production or transport. In 
the same way, industries can redesign themselves to meet environmental standards for sustainability and the 
economic bottom line11–13.

The whopping CO2 emissions raise the need to employ modern techniques in predicting CO2 emissions 
since the traditional statistical methods fail to capture nature and the source of variation in emission levels. 
Consequently, the adoption of machine learning (ML) methodologies has garnered attention in recent years due 
to their ability to analyze big and complicated data and employ historical data to make predictions14,15. It is noted 
that machine learning models for time series data are preferable when it comes to forecasting CO2 emissions 
because they can reflect both short-term and long-term dynamics of the emissions’ fluctuations16–18.

Metaheuristic optimization is pivotal in enhancing the performance and efficiency of complex stochastic 
machine learning models, especially when working with large, dynamic datasets like those used in this study to 
predict CO₂ emissions. These algorithms are designed to approximate optimal solutions for difficult optimization 
problems characterized by expansive search spaces and numerous local optima. Traditional optimization 
methods often struggle to navigate such nonlinear landscapes effectively, making methods of mathematics a 
critical alternative19,20.

By incorporating stochastic techniques, metaheuristic algorithms offer the flexibility to explore diverse 
regions of the search space while mitigating the risk of premature convergence to suboptimal solutions. This 
adaptability ensures robust and efficient optimization, allowing these algorithms to identify near-optimal 
solutions even in highly complex and fluctuating problem domains21.

Further, as opposed to conventional optimization techniques, metaheuristics are more general and can work 
with extensive search spaces and are capable of coming out of the local optimum via stochastic methods22,23. 
Furthermore, applying metaheuristic optimization to machine learning models for environmental prediction, 
such as CO2 emission, enhances flexibility and reliability. They are flexible in that they may be used on any 
environmental data set and adapt in real time to changes in the problem domain24–26.

Feature selection is one of the most important procedures in the data preprocessing phase in the construction 
of ML models, specifically when used with large-volume data that can include extraneous or merely duplicate 
information27–29. In feature selection, the various correlations that are relevant to the prediction outcome of a 
model are considered while eliminating the rest that is more noise. In choosing the most important variables, the 

Fig. 1.  Industrial emissions contributing to global CO2 levels.
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model will be able to concentrate on the significant variables of the given dataset, which in turn helps to enhance 
its accuracies, prevent overtraining and decrease the costs of the algorithm computation30–32.

When it comes to the process of CO2 emissions prediction, feature selection is also a crucial step that 
defines what factors should be considered for the prediction, including industrial production, energy usage, 
transportation, and legislation. Some of the attributes include these, and the overall successful CO2 emissions 
prediction is strongly determined by the correct selection of features in the model33,34. Moreover, feature 
selection serves to decrease the noise level, which can help the ML algorithm detect the significant patterns 
associated with the features35. The feature selection methods used in this study, metaheuristic approaches, make 
certain that the key features are captured while at the same time minimizing the number of features captured. 
Furthermore, by applying feature selection, this study optimizes the dataset given to the Dual-Path Recurrent 
Neural Networks (DPRNNs) model such that the model only processes crucial information. This step is relevant, 
especially in environments where there are many features to analyze, and many of them may not be helpful in 
solving a given problem. Moreover, with skilled feature selection, all machine-generated predictions can be more 
interpretable by studyers and policymakers, indicating which factors have the greatest impact on CO2 emissions 
and how they can be addressed by certain policies36.

This approach, which teaches information preprocessing, noise filtering, machine learning, and numerous 
optimization strategies, is explained to create solid approaches to gauge CO2 emissions. This study is of great 
importance for climate change mitigation efforts on the international level because accurate forecasts contribute 
to the development of political, industrial, and economic strategies in response to greenhouse gas emissions. The 
correct projection of CO2 emissions is not only important for enhancing environmental performance but also 
can be a strong stimulus for economic growth due to potential investment in the effective use of resources and 
the creation of energy-saving technologies. This framework is designed as an approach that would help close the 
gap between Prediction and Action.

To this end, the Ninja Optimizer (NiOA) is used within this study study as the metaheuristic optimization 
algorithm to adjust the DPRNNs’ parameters. This means that NiOA is always equipped to harmonize between 
the efficiency of exploration and exploitation so that it does not stagnate on a local optimum, as this kind of 
model usually has a chance to end at the global optimum. NiOA, therefore, comes in handy in reducing such 
errors by allowing dynamic control of the model parameters. Slackness or oversights, as well as the level of 
accuracy of the model in its predictions. Metaheuristic algorithms such as NiOA are most beneficial when the 
optimization problem is characterized by many local optima, or is non-convex, so deterministic methods cannot 
provide the best solution. Thus, the multi-modal functions and the application of adaptive methods for the 
regulation of the search in NiOA make it an important factor that can contribute to the improvement of the 
DPRNNs in the task of CO2 emissions forecasting.

This study introduces a novel approach of combining the Dual-Path Recurrent Neural Networks (DPRNNs) 
with the Ninja Metaheuristic Optimization Algorithm (NiOA) to predict CO₂ emissions with less error. Unlike 
prior models, this technique integrates short and long-temporal function identification with a high-level 
optimization, so they do not get stuck at local optima. Key contributions include:

•	 Novel integration: This paper integrates DPRNNs, with a novel method, NiOA, for the first time to increase 
the reliability of emissions forecasting.

•	 Advanced optimization: NiOA shows better exploration and exploitation than JAYA, HHO, and SCA in 
avoiding the local optima traps.

•	 Comprehensive preprocessing: Reduces noise with PCA and BSS and selects proper features with bNiOA that 
improve data quality and model performance.

•	 Application-specific focus: Focuses on cement production emissions for which the global lowering of CO2 
emissions can potentially create a significant impact: Uses improved datasets and new methods by employing 
static modeling for improvement.

•	 Empirical validation: Sits atop the podium of robust models with the lowest error metrics as indicated by 
ANOVA and Wilcoxon tests.

•	 Real-world adaptability: It has the feature of real-time CO2 monitoring, and its technique can be easily applied 
to other greenhouse gases crucial to global climate change policies.

This study is organized into several key sections that follow a logical flow, starting with an introduction to the 
global issue of CO2 emissions and the importance of developing accurate predictive models. The subsequent 
section provides an overview of prior work in CO2 emissions prediction, the use of machine learning, and 
optimization in the forecast. This literature review forms the background for the novel strategies applied in this 
study. In the present article, the materials and methods section explain the dataset used in the study, the selected 
deep learning models, and the metaheuristic optimization techniques incorporated.

In the proposed methodology section, the study explains the critical steps of data preprocessing, noise 
reduction using Blind Source Separation (BSS), and how the DPRNNs model is used for time-series forecasting 
of CO2 emissions. The integration of NiOA is also highlighted as an essential tool for fine-tuning the model’s 
parameters and improving performance. The subsequent section of experimental results then describes the 
results of feature selection and optimized DPRNNs, showing the effectiveness of the presented framework. 
Lastly, the conclusion and future direction section gives a summary of the study findings, as well as identifying 
areas for further studies.

Related studies
Carbon dioxide (CO2) is among the leading greenhouse gases comprising the largest warming and climate 
change percentage. CO2 is a greenhouse gas that is released by using fossil fuels for industrial uses or for 
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transportation, burning forests, or as a result of many activities performed by human beings and because of 
all these, it remains in the atmosphere to emit heat back to the earth. Especially in the past few decades, the 
rapid increase in CO2 concentration in the atmosphere has attracted much attention in the scientific community 
regarding sources, effects and potential control options. To implement effective environmental policies, create 
efficient power systems and address COP agreements, including the Paris Agreement, timely and accurate CO2 
emissions forecasting remains paramount. These studies illustrate the further development of analytical tools 
and optimization methodologies, such as machine learning and optimization, to address a complex system 
problem, which is CO2 emission reduction on a global scale.

In the study37, the authors address the critical problem of air pollution and environmental degradation 
through the emission of greenhouse gas (GHG) by presenting a mixed approach of machine learning and a 
mathematical model for prediction. This study acquires energy data and links Iran’s GHG emissions from 1990 
up to 2018, including CO2, N2O, CH4, and Fluorinated gases. Using emissions estimation, nine algorithms are 
used, including ANN, AR, ARIMA, SARIMA, RF, and LSTM; the performance of the algorithms is tested using 
performance metrics. The values predict emissions up to 2028, and they also reveal higher efficiency when 
metaheuristic algorithms such as PSO and GWO are implemented in combination with the output of machine 
learning. The incorporation of PSO and GWO in the proposed machine learning framework increases the 
prediction accuracy by 31.7% and 12.8% compared to the individual machine learning methods. The study 
concludes that Iran’s GHG emissions targets will be over 1096 Mt/year by 2028, which supports the finding of 
the hybrid model.

In another study38, the authors consider an interesting approach towards reducing the role of fossil fuels 
and using renewable resources at the same time—the captured CO2 emissions are used for plant growth in the 
nearest greenhouses. This study aims to design a combination of a greenhouse system, an absorption chiller, 
and an Organic Rankine Cycle using high-temperature exhaust gases from the micro power plant. Exhaust in 
the system splits the generated CO2, which is then utilized to provide the right measure of CO2 necessary for 
the growth of plants inside the greenhouse as dictated by the standardized greenhouse CO2 norms. The system’s 
performance is studied in detail from energy, exergy, economic and environmental points of view. An artificial 
neural network integrated with the depth of the network is used to predict system response for two seasons, 
summer and winter, using climate data of 10 years. Following optimization, there was a 56% reduction in CO2 
generation and the overall specific energy and exergy efficiencies of 47.3% and 36.6%, respectively. Also, the 
increase in the greenhouse harvest led to generating more than $23 4 million in net interest annually.

According to39, the construction industry has significant sustainability problems, especially related to 
concrete and its aggregates and additives; cement making is a major polluter, a waste generator, a destroyer 
of biodiversity, and a threat to human health. One of the solutions for these problems is using sustainable 
concrete that will utilize construction and demolition waste (CDW) as a replacement for natural resources. 
However, the amendment of new solid wastes, including supplementary cementitious materials, recycled 
aggregates and geopolymers, creates concrete design complications that could not be addressed by traditional 
linear regression models when evaluating multi-level material systems. I systematically review the application 
of artificial intelligence (AI) in evaluating sustainable concrete, particularly mixture ratio, static performance 
and durability. The result remains consistent with the need to establish an elaborate database that covers the 
material composition and curing conditions crucial for defining the generalizability of the predictive equations. 
Machine learning (ML) models, which account for multicollinearity, can optimize concrete mixtures and predict 
performance, while feature importance analysis helps to uncover the influence of input variables and address 
the “black box” issue inherent in AI models. Further, the article presents the weaknesses of the existing study 
and the ideas for their improvement. Algorithmic and performance-based details and evaluation of sustainable 
concrete structures.

In the study40, an integrated model based on mixed-integer linear programming is proposed and applied 
to economize water and energy in buildings and estimate economic and environmental performances. It uses 
twelve machine learning algorithms to predict both the cost optimization and the reduction of carbon emission, 
with an accuracy of between 0.8 and 0.96 for cost optimization and between 0.79 and 0.91 for carbon emission 
reduction. The Extra Tree algorithm comes closer to the Light Gradient Boosting Machine, which displays the 
highest accuracy. Data dimensions were reduced using Principal Component Analysis (PCA), which slightly 
decreased prediction accuracy. Stepwise Regression determined the parameters influencing performance, and 
the overall model generally achieved low prediction errors for many geographical areas essential for sustainable 
resource utilization. Another study41 proposes a novel LSTM and MVO-based intelligent hybrid model to 
forecast and investigate air pollution due to the Combined Cycle Power Plants with special reference to NO2 
and SO2 emission concentrations. Specifically, the LSTM acts as a reconnaissance model, whereas the MVO 
improves the LSTM fundamental parameters to yield reduced forecast mistakes. The plain real data set was from 
a Combined Cycle Power Plant in Kerman, Iran, including wind speed, air temperature, and NO2/SO2 emissions 
for five months. The examination of two input parameters forms the following hypotheses. The current study 
examined two input parameter types and showed that the proposed LSTM-MVO outperformed benchmark 
models ENN-PSO, ENN-MVO, and LSTM-PSO and had higher accuracy in various inputs.

This study42 focuses on carbon dioxide (CO2) emissions, a major source of atmospheric pollution and global 
warming, by investigating the solution of carbon geological sequestration (CGS) in saline aquifers. It shows 
that reliable identification of critical trapping efficiency indexes – residual-trapping index (RTI) and solubility-
trapping index (STI)–is very problematic when relying on standard simulations. To improve prediction accuracy, 
the study develops six hybrid machine-learning models (HML) that integrate least-squares support vector 
machines (LSSVM) and radial basis function neural net study (RBFNN) with three optimization algorithms: 
other optimization techniques which are similar to the proposed model include genetic algorithm (GA), cuckoo 
optimization (COA), and particle swarm optimization (PSO). The current study, using 6810 records of geological 
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formation simulation datasets, suggests that HML models greatly surpass standalone machine learning models, 
with the LSSVM-COA model having the lowest root mean square errors of 0.00421 for RTI and 0.00067 for STI. 
The analysis also shows that residual gas saturation and permeability are among the most sensitive variables in 
the model. In conclusion, the HML-based approaches for prediction achieve even higher accuracy, which can 
significantly diminish the level of uncertainty that CGS projects face.

As pointed out by the authors in the study43, conducted energy has high implications in hospitals due to high 
operational costs, technologies, advanced equipment, sanitation standards and compliance with environmental 
conditions in both weather conditions. In the course of the conducted study done on two different climate 
zones of Turkey, Aksaray and Bursa, 1440 different scenarios were formulated and developed using building 
elements available in Revit BIM software. Such scenarios included differences in the thermal transmittance 
coefficient values, solar heat gain coefficient values, and building orientation angles. The study used machine 
learning models for the prediction of energy consumption, carbon dioxide (CO2) emissions, total expenditure, 
and the life cycle cost of the building. Thus, despite the great variety of options for using various types of building 
materials in the Revit BIM library, the practical testing of such materials during construction is carried out only 
with a narrowly selected list of options. The purpose of this study is as follows: to minimize the use of computer 
drafting or energy calculating programs and to reduce an estimation time for energy consumption and CO2 
emissions as well as the overall lifecycle costs in such similar architectural settings under such same climatic 
conditions. When it comes to all the tested machine learning algorithms, the one that was characterized by 
relatively high proximity between the algorithms’ output and actual values was the artificial neural net study. The 
R-squared (R2) values, a critical metric for evaluation, yielded promising results: In this study, energy R2 values 
of 0.95, total cost achieved values of 0.93 and 0.97, CO2 emissions of 0.94 and 0.97, and life cycle costs of 0.95 and 
0.94 for validation and test datasets, respectively were identified. These results suggest that the success obtained 
can be applied to data from all the regions in the country. In addition, the applied model angular dependency is 
used to identify energy consumption, costs, and CO2 emissions based on the TH values determined according 
to TS 825 in Turkish and building orientation angles.

The study described in44 aims to analyze the use of ML models to investigate committed environmental 
processes marked by high relative temporal and spatial dynamics. The current study aims to examine the 
performance of three categories of ML regression models, namely classical regression models, models of shallow 
learning and models of deep learning in estimating soil GHG emissions from an agricultural field. We used a 
five-year record of Enterprise survey mean weekly CO2 and N2O emissions and environmental, agronomic, 
and soil characteristics in a study conducted in Quebec, Canada. By comparing the statistical significance 
and cross-validation for predicting both CO2 and N2O flux, it was demonstrated that the Long Short-Term 
Memory (LSTM) model provided the highest R coefficient and the minimum RMSE compared to other loglinear 
considered ML models. Importantly, the accuracy of the LSTM model was higher than that of the biophysical-
based Root Zone Water Quality Model used in prior study. Cyclical and seasonal characteristics of CO2 and N2O 
fluxes were well described by the classical regression models such as Random Forest, SVM, and LASSO, with 
the determination coefficient, R = 0.75 for CO2 and R < 0.25 for N2O peak; however, the peak N2O flux values 
were not predicted well. The shallow ML models showed fairly poor performance in predicting the GHG fluxes 
compared to other categories of ML algorithms, whereby the CO2 flux (R < 0.7) and N2O flux (R < 0.3). More 
broadly, this piece of study, which presents a comparison between the LSTM model and previous study, indicates 
that the LSTM model proposed in this study can also be applied to simulate agricultural soil GHG emissions 
within a certain accuracy range, which provides a new idea for the application of machine learning methods in 
GHG emissions prediction.

In the study45, the authors discuss the environmental problem of decreasing CO2 emissions from fossil fuel-
fired power plants, wherein solvent-based post-combustion capture (PCC) technology is highlighted as critical 
to solving these emissions. The study presents the development of various machine learning models, including a 
fine tree, Matérn Gaussian process regression, rational quadratic, and squared exponential, which are compared 
against a feed-forward artificial neural net study model. Interestingly, the models demonstrated quite high 
accuracy in approximating the output of the PCC unit, which ranged from 98%. Additionally, machine learning 
models were employed to identify optimal operating conditions for the process, utilizing sequential quadratic 
programming and genetic algorithm (GA) optimization techniques. To this respect, the authors point out the 
benefits that can be gained in terms of machine learning while, at the same time, the complete mechanistic 
model is too cumbersome and time-consuming for asking for and receiving efficient optimal solutions. Some 
input variable parameters included reboiler duty, condenser duty, reboiler pressure, flow rate, temperature and 
flue gas pressure. The performance of all the models in predicting critical process outputs, including SER, CR, 
and PU of the condenser outlet stream, was an indication that the application of machine learning can greatly 
improve the efficiency of the PCC processes.

In the study identified as46, the authors present a multi-stage methodology aimed at efficiently predicting 
carbon dioxide emissions, focusing on two critical factors: energy use, on the one hand, and economic 
development, on the other hand. Data classification is done using self-organizing map clustering methodology, 
establishing individual cluster prediction models using adaptive neuro-fuzzy inference systems (ANFIS) and 
artificial neural net study (ANN). The approach is based on the several input variables associated with economic 
development and energy utilization in Group 20 countries. To improve the model, singular value decomposition 
is employed to condensation dimensions and predict the zero values in the data set. The findings also show 
that the chosen indicators allow for accurate prediction of carbon dioxide emissions using the multi-stage 
methodology offered by the authors. By comparing the result with that of other studies, it has been identified 
that the interconnection of ANFIS with ANN using the self-organizing map and singular value decomposition 
results in an MAE accuracy of 0.065. Notably, when comparing the SVD-self-organizing map-ANFIS with 
the SVD-self-organizing map-ANN method, it results in a better accuracy of 0.104 in the CO2 emissions 
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prediction. Additionally, the low accuracy of MLR was obtained (accuracy is 0.522) compared to the improved 
machine learning methods used in this study. Thus, the results pointing at the need for increased awareness 
of the relationship between economic development, CO2 emissions, and energy consumption gain the special 
emphasis that is necessary for formulating the energy and, in fact, economic policy for the countries that are 
members of Group 20 that are mostly aimed at the formation of the global economic governance.

As described in the study47, the authors examine the highly significant percentage that the building sector 
makes up within the global CO2 emissions in relation to energy use, with figures indicating that the sector 
used to take up to 50% of the emissions. This context shows why the sector is rather critical in the fight 
against decarbonization worldwide. This study discusses and compares different methods of ML techniques to 
forecast the CO2 emissions from buildings through 2050. The analyzed methods are linear regression, ARIMA, 
shallow neural net studies, and deep neural net studies; both univariate and multivariate modeling were used. 
Further, we identify that various extract features are used in this case, including lagged values and polynomial 
transformation. The analysis covers a broad range of regions of the world, including Brazil, India, China, South 
Africa, the United States, Great Britain, the world average, and the European Union. Several assessments are 
performed to assess and analyze the accuracy of these ML methodologies and to make useful recommendations 
on how CO2 emission forecasting in the building sector can be optimized.

The study presented in48 analyses the critical problem of carbon emissions in the Yellow River Basin, which 
is an essential ecological and economic area in China. Considering this basin is important for achieving the 
country’s peak carbon goals, the studyers use the quadratic assignment procedure-regression analysis to analyze 
carbon emissions and pay a special focus on the disparities in regions. To improve forecasting precision, a 
new machine learning model with LSTM associated with the sparrow search algorithm for carbon emission 
prediction has been developed. The study helps expose an alarming increase in carbon dioxide emissions within 
the Yellow River Basin accompanied by distinct provincial disparity. Most importantly, the carbon emission 
intensity was reduced, showing a gradual decline. Also, carbon emissions are said to be below one-tenth of those 
of Shandong, which is the highest emitter in the country. The study shows how GDP per capita emerged as the 
key determinant for carbon emissions between 2000 and 2010, while the population level became predominant 
after 2010. Most notably, the present proposed LSTM model greatly improves the predictability ratio by a mean 
absolute percentage error of 44.38% less than that of the normal LSTM study. This study is relevant in income 
as it unveils crucial information on formulating proper emission reduction policies given the Specifications of 
the Yellow River Basin.

Based on the study done in49, the authors focus on the challenges inherent in the enhancement of thermal 
efficiency of hydrogen production processes to reduce the emission of carbon dioxide (CO2). At the present 
time, the most preferred method in hydrogen production is steam methane reforming, which is famous for its 
CO2 emissions. This study focuses on the second problem of low-carbon hydrogen production, considering 
both overall thermal efficiency and CO2 emissions. To this end, a novel deep neural network is proposed, which 
is integrated with the optimization algorithm to improve its stability. This model is linked to a multi-objective 
particle swarm optimization algorithm that employs dominated solutions. Optimized solutions, obtained by 
experimental results, are Pareto optimal, with thermal efficiency between 77.5% and 87.0% and CO2 emissions 
varying between 577.9 and 597.6 tons per year. Also, the Pareto-optimal front’s analysis gives decision-makers 
multiple proportional solutions that consider various operations’ characteristics. The results obtained in this 
study can be beneficial for further development of recommendations aimed at increasing the efficiency and 
flexibility of processes of hydrogen production.

In the study discussed in50, the authors focus on the problem of global economic growth as an activity that 
causes more and more degradation of long-term planetary sustainability, providing examples of the relationship 
between increased levels of economic development and the concentration of anthropogenic greenhouse 
gases, CO2 in particular, that lead to a growth of the planetary heat load and are damaging to both the natural 
environment and society. That is why classic methods of predicting economic indicators and CO2 emissions 
using a neural network often encounter drawbacks such as gradient disappearance or explosion, which can result 
in forecasts being inaccurate. In order to compensate for these challenges, this study presents a new prediction 
model that will incorporate RESNET, a residual neural network that has been developed to improve the energy 
structures of a country or region in the entire world. The RESNET adapts incorporation of skip connections 
within its inner residual blocks since deeper neural networks cause vanishing gradient issues, hence assisting the 
model in retaining the input data by passing a few of them directly. It leads to higher predictive precision in this 
optimization. The basic economic model of the study employs information on 24 different countries or regions’ 
demand for natural gas, hydroelectricity, oil, coal, nuclear energy and renewable energy from 2009 to 2020. In 
this frame study, the undesired output is CO2 emission, whereas the desired output is the per capita GDP of the 
country. Experimental results show that the proposed RESNET has better accuracy and function performance 
than traditional CNN, RBF, ELM, and BP approaches. Moreover, the model presented can be utilized as a 
reference and development pattern for areas with low rates of energy efficiency, promising to improve energy 
performance, contribute to economic progress and provide more efficient regulation of CO2 emissions.

In the analysis made in51, the authors stress that the growth of humanity is currently a global problem, 
although pollution of the environment and the dispersion of haze hinder its development. Past studies have 
established vehicle emission fumes as one of the main causes of environmental pollution and haze, as well as 
population growth resulting in a heightened number of vehicles with high energy demands. The study examines 
the viability of intelligent routing technology that draws from data to reduce the total carbon footprints 
of vehicles within a road network. Towards this urgently needed objective, the authors design a traffic flow 
prediction model based on a combination of a genetic algorithm and support vector regression improved by 
particle swarm optimization. This approach helps develop a model with the objective of estimating the amount 
of exhaust emission from vehicles while considering anticipated road conditions as well as fuel consumption. 
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Next, a low-carbon-emission-oriented navigation algorithm was proposed based on a spatially optimized 
dynamic path planning algorithm. Detailed findings of the present study reveal that this proposed navigation 
strategy can notably minimize the total vehicular carbon emissions and can thus seek the establishment of low 
carbon emission ITS and towards the progress of the smart city.

The level of air pollution in India, in general, has been on the increase, as determined by the study done in52 
on the climate and health impacts of air pollution. A major factor contributing to degraded indoor air quality 
in urban settings is carbon dioxide (CO2), which is generated in part by human activities. CO2 measurements 
and verification using conventional approaches can be expensive and cumbersome, oftentimes involving the 
use of complicated measurement instruments. To overcome these limitations, this study uses ML to predict the 
concentration of CO2 in offices. Measurements used in this study were real-time measurements, including CO2 
Levels of the indoor environment, number of occupants, area per person, outside temperature, wind velocity, 
relative humidity, and Air Quality Index. A set of 10 algorithms, including artificial neural networks (ANN), 
support vector machines (SVM), decision trees (DT), Gaussian process regression (GPR), linear regression 
(LR), ensemble learning (EL) and their optimized counterparts, were used to forecast CO2 levels. The results 
demonstrated that the optimized GPR model outperformed the other models in terms of prediction accuracy, 
achieving impressive metrics with R, RMSE, MAE, NS, and a20-index values of 0.98874, 4.20068 ppm, 3.35098 
ppm, 0.9817, and 1, respectively. This study provides valuable insights for designers, studyers, healthcare 
professionals, and smart city developers, enabling them to assess indoor air quality effectively and design 
appropriate air ventilation systems to monitor CO2 levels in buildings.

As lauded in the study conducted in53, the construction sector ranks among industries responsible for the 
emission of carbon dioxide (CO2), which has a vital effect on global warming. The reduction of the use of CO2 
is very important, and incorporating new technologies can complement this cause. Therefore, this study aims 
to provide a critical analysis of the role of AI and ML in CO2 emission reduction in construction. An overview 
of practice approaches outlined in the literature is provided; the study seeks to offer meaningful information 
enhancing the development and coordination of construction enterprises. The study uses a systematic review 
approach and derives a dataset with 78 studies from the relevant literature search. The study approach applied 
both content analysis of information sources and simultaneous necessary analytical mapping of co-occurrence 
terms, co-authorship networks, and publication origins. The reviewed studies were categorized into five 
conceptual clusters: These subcategories are (1) sustainable materials and components design/production, 
renewable vehicles and equipment, (2) energy and life cycle assessment, (3) optimization, decision support, and 
solution platforms, and (4) field monitoring. Possible deficits in the current state of literature were determined 
in each cluster, which resulted in the presentation of directions for future study. This study fills the gap in the 
literature by providing suggestions about intelligent techniques that can help reduce CO2 emissions in the 
construction sector.

According to the study in54, the prediction of CO2 emissions is very significant in the promotion of China’s 
carbon peak and carbon neutralization strategy. This study proposes a new two-stage forecasting method with 
SVR, RF, Ridge, and ANN models as a way of conducting an empirical investigation. The approach is compared 
with a single-step forecasting method with a dataset of nine independent variables for the years 1985 to 2020. 
The results show that while “h” ranges between 1 and 8, the average RMSE and MAE of two-stage models, 
including SVR–SVR, SVR–RF, SVR–Ridge and SVR–ANN, are closer to zero and less than those of the single-
stage models. Notably, the SVR–ANN model achieved the lowest forecast errors, while the SVR–RF model 
exhibited the highest errors. Specifically, the mean percentage reductions in forecast errors for RMSE between 
the two-stage and single-stage models are 36.06 for SVR–SVR vs. SVR, 5.98 for SVR–RF vs. RF, 43.05 for SVR–
Ridge vs. Ridge, and 14.81 for SVR–ANN vs. ANN. For MAE, the reductions are similarly substantial, indicating 
the effectiveness of the two-stage procedure. In addition, this methodology is considered suitable for forecasting 
other variables like the consumption of fossils and renewable energy sources, making it useful in a variety of 
energy and environmental analyses.

According to the study conducted in55, the authors argue that the transportation sector has a bad impact on 
emission levels and the economic growth of developing countries. Today, the transportation sector continues to 
depend on fossil fuels for over 99% of its energy supplies; this leads to about six and a half million deaths per year 
from the effects of air pollution diseases worldwide. There is a need for more knowledge concerning the energy 
demand and additionally CO2 emissions in a particular country to alter future energy investments and policies. 
In this regard, three machine learning techniques, deep learning (DL), support vector machine (SVM), and 
artificial neural network (ANN), are used to predict transportation-based CO2 emissions and energy demand in 
Turkey. The independent variables that have been used for the analysis are GDP per capita, population, vehicle 
kilometers and year. The results reveal a highly positive relationship between the year of investigation, economic 
factors, population, vehicle kilometers traveled, transportation energy consumption, and CO2 emissions. For a 
comprehensive comparison, the results from these algorithms are evaluated using six commonly used statistical 
metrics: R2, RMSE, MAPE, MBE, rRMSE, and MABE. The R2 values for all machine learning algorithms range 
from 0.8639 to 0.9235, with RMSE values remaining below 5 × 106 tons for CO2 emissions and 2 Mtoe for energy 
demand. According to established classifications, the forecasting results are generally deemed “excellent” for 
the rRMSE metric (less than 10%) and exhibit “high prediction accuracy” for the MAPE metric (also less than 
10%). Furthermore, two mathematical models are utilized to project future energy demand and CO2 emissions 
from the transportation sector in Turkey up to the year 2050. The results suggest an annual growth rate of 
3.7% for transportation-related energy demand and 3.65% for CO2 emissions. By 2050, both energy demand 
and CO2 emissions from the transportation sector in Turkey are expected to be nearly 3.4 times higher than 
current levels. This study underscores the necessity for policymakers to adjust the next energy commitments and 
develop different policies, regulations, and measures regarding energy consumption and emission reduction in 
the transportation sector.
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The study in56 addresses the issue of CO2 emission prediction with reference to climate change, industries, and 
the COVID-19 impact. The authors use four Seasonal Autoregressive of Integrated Moving Average (SARIMA) 
models to provide estimates of global total CO2 emissions for one or more periods from the year 2022 to 2072, 
particularly in the post-COVID-19 era. Evaluating the data by the mean absolute percentage error (MAPE) to 
measure accuracy, the post-COVID model got the lowest figure of 0.09, thus confirming the application of the 
model in emissions forecasting. The forecast of CO2 emissions over 2022–2027 amounts to 36,218.59 million 
tons to 37,921.47  million tons. The results align well with the Intergovernmental Panel on Climate Change 
model, suggesting that these forecasts could inform policies aimed at CO2 reduction. The study also suggests the 
direction in which other inflation determinants could be included in future study to improve prediction results.

As highlighted by the authors in57, the transport sector plays a central role in the growth of many countries’ 
economies, though the emission of pollutants in the atmosphere, especially in developing countries, is well known. 
Persistent reliance on fossil fuels and excessive emission of greenhouse gasses, particularly carbon dioxide (CO2) 
emissions caused by the combustion of fossil-fueled vehicles, requires countries to acquire detailed knowledge of 
these emissions in order to aid their future energy policies and investment plans. Using three machine learning 
methods, namely ordinary least squares regression, support vector machine, and gradient boosting regression, 
this study estimates transport-related CO2 emissions while utilizing socio-transport features. There are 30 
countries selected for the analysis: the first emission tier, including the five highest emission countries, which 
are responsible for 61% of global CO2 emissions, and the second emission tier, including the 25 next countries, 
which are responsible for 35% of total emissions. Employing four-fold cross-validation, a number of statistical 
measures of model performances such as R2, MAE, rRMSE, and MAPE are estimated. The results reveal that the 
GBR model, which integrates socioeconomic and transportation features (GBR_ALL), demonstrates the best 
performance, achieving an R2 of 0.9943, rRMSE of 0.1165, and MAPE of 0.1408.

Table 1 presents an overview of previous studies in the domain of employing ML, optimization algorithms, 
and the integration of both sides to predict and forecast/suppress GHG discharge across various segments. The 
studies address issues related to environmental concerns, including air pollution, green construction, energy 
utilization, and CO2 capture using techniques like ANN, SVM, and LSTM. Climate change help improve modern 
prediction models and thus supports the development of strategies for emission reductions by increasing 
the efficiency of emission forecasts, increasing the effectiveness of energy use, and offering the most suitable 
solutions in terms of the specific requirements of the sectors, including energy and construction sectors, the 
transportation sector and so on.

CO2 is a significant contributor to global greenhouse gas emissions and is widely recognized as a key driver 
of climate change. Its emissions primarily result from human activities such as burning fossil fuels for energy, 
industrial processes, and deforestation. As illustrated in the table, many studies focus on developing advanced 
machine learning models and optimization techniques to predict, monitor, and reduce CO2 emissions across 
various sectors, including energy production, construction, and transportation. Accurate prediction models, 
such as those using neural networks and hybrid approaches, are essential for informing policy decisions and 
enhancing the efficiency of carbon mitigation strategies. These models help identify the most critical factors 
influencing CO2 emissions, allowing for more targeted interventions to reduce atmospheric concentrations of 
this harmful gas. The integration of renewable energy, sustainable materials, and optimized energy systems plays 
a crucial role in the global effort to curtail CO2 emissions, ensuring a more sustainable and climate-resilient 
future.

Materials and methods
In this section, the following aspects of study are explained: the dataset used for the analysis in order to predict 
CO2 emissions, the deep learning models used to perform this analysis, and the meta-heuristic optimization 
techniques used to optimize the models used in the studies.

Dataset
The data set utilized in this study focuses on cement production data as an essential driver of CO2 emissions, 
given the high carbon footprint of cement industries. Most of the data was extracted from the United States 
Geological Survey (USGS), and some historical data was collected from the Carbon Dioxide Information 
Analysis Center (CDIAC). The basic data were received with the help of the CDIAC database of the year 2019. 
More input records were sharpened for Soviet states before the dissolution of the Soviet Union. By using the 
USGS data, a control point was established as to what was from 1990 onwards; minor adjustments had to be 
made, though, due to slight inconsistencies. Whenever the cement production data of the recent past were 
not available, a simple interpolation method was used to maintain a filled dataset. By using this approach, 
the studyers were able to develop a sound continuous data set that was vital in the emissions prediction. The 
obtained dataset was collected from Kaggle, an open-source platform, which serves to increase its relevance for 
environmental studies.

Cement is one of the most important sources of direct CO2 emissions since the process of cement-making 
involves the use of limestone (calcium carbonate) to generate clinker with the emission of large volumes of 
carbon dioxide. Therefore, the dataset acts as a mirror image of industrial activity while providing an estimate 
of national emissions in countries where other emission data might be scarce. The method of back-calculating 
and adjustment of the dataset provides a comparison of historical data and the current levels of production, thus 
providing a good picture of trends in emissions across various parts of the world. The dataset is sourced from 
an online repository available at https://www.​kaggle.com/d​atasets/noot​eboom/globa​l-CO2-cement-emissions.
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Metaheuristic optimization
In fact, the performance of the developed machine learning models, including time series forecasting, depends 
on the choice of appropriate temporal parameters. For optimal tuning of these parameters, the study used 
several metaheuristic algorithms. The metaheuristic optimization methods are especially favored for large 
and multidimensional tasks where the use of simple optimization approaches is either unadvisable or leads 
to excessive computation time. In this study, the main optimization technique used is the Ninja Optimizer 
Algorithm (NiOA). NiOA balances exploration and exploitation phases in the search process to avoid local 
optima. on the one hand, for new solutions across a range of options and, on the other, for better solutions, 
taking it from an explored region of the solution space. This balance is important in order to prevent getting 
locked into local optima—solutions that, on the surface, look like the best ones but are, in fact, suboptimal at 
the global scale.

Ref. Problem addressed Methodology Algorithms/models Results/outcomes Additional insights

37
Air pollution and GHG 
emissions in Iran’s energy 
sector

Machine learning and 
metaheuristic algorithms

ANN, AR, ARIMA, 
SARIMA, RF, LSTM, 
PSO, GWO

Improved prediction accuracy by 31.7% 
(PSO) and 12.8% (GWO); forecast emissions 
to exceed 1096 Mt/year by 2028

Hybrid models enhance predictive 
accuracy significantly.

38 Mitigating fossil fuel impact 
using CO2 in greenhouses

Energy, exergy, economic, 
and environmental 
analysis

Deep ANN, absorption 
chiller, Organic Rankine 
Cycle

56% reduction in CO2 emissions, energy 
efficiency of 47.3%, exergy efficiency of 
36.6%, $23.4 M annual net interest

Optimized greenhouse systems 
reduce emissions and boost profits

39 Sustainability in concrete 
using waste materials

Artificial intelligence 
for sustainable concrete 
assessment

ML models for mixture 
optimization

Optimized concrete mixtures and durability 
predictions and addressed multicollinearity.

AI solves complexity in sustainable 
material design.

40 Water and energy 
consumption in buildings

ML algorithms for cost 
and carbon reduction

Light Gradient Boosting 
Machine, Extra Tree, 
PCA

Prediction accuracy 0.8–0.96 (cost), 
0.79–0.91 (carbon), stepwise regression key 
variable identification

Effective for sustainable resource 
management

41 NO2 and SO2 emissions 
from power plants

Hybrid LSTM and MVO 
model

LSTM, MVO, ENN-
PSO, ENN-MVO

The LSTM-MVO model showed superior 
prediction accuracy compared to benchmark 
models.

A highly accurate model for 
emissions in power plants

42
Predicting CO2 
sequestration efficiency in 
saline aquifers

Hybrid machine learning 
models (HML)

LSSVM-COA, LSSVM-
GA, RBFNN

LSSVM-COA achieved the lowest RMSE, 
enhancing CGS accuracy

Significant improvement in CGS 
prediction and project reliability

43 Energy consumption and 
CO2 emissions in hospitals

Machine learning with 
BIM materials ANN R²: 0.93–0.97 for cost and CO2 predictions, 

strong generalizability across regions
ML models enhance building energy 
and emission forecasting.

44 Soil GHG emissions in 
agricultural fields

ML models for 
environmental variability

LSTM, RF, SVM, 
LASSO

LSTM achieved highest prediction accuracy 
(R = 0.87 for CO2, R = 0.86 for N2O)

LSTM outperformed biophysical 
models for GHG predictions

45 CO2 reduction via post-
combustion capture

ML models with 
optimization techniques

Fine Tree, GPR, ANN, 
GA, SQP

Models achieved 98% accuracy in predicting 
the outputs of PCC units

ML enhances efficiency and reduces 
complexity in PCC processes

46 CO2 emissions and 
economic growth

Self-organizing map, 
ANFIS, ANN ANFIS, ANN, SVD The multi-stage method achieves superior 

accuracy over traditional linear regression.
SVD enhances model accuracy and is 
helpful for policy-making

47 CO2 emissions prediction in 
buildings

ML approaches for 
decarbonization

Linear Regression, 
ARIMA, Shallow and 
Deep Neural Netstudys

Comparative analysis informs strategies for 
decarbonization in buildings

Effective ML models for long-term 
CO2 predictions

48 Carbon emissions in the 
Yellow River Basin LSTM with optimization LSTM, Sparrow Search 

Algorithm
Reduced MAPE by 44.38%, highlighted 
regional disparities in emissions

Practical model for region-specific 
emission reduction policies

49 Low-carbon hydrogen 
production optimization

Hybrid deep neural 
network, multi-objective 
optimization

Deep Neural Netstudys, 
Particle Swarm 
Optimization

Thermal efficiency of 77.5–87.0%, CO2 
emissions 577.9-597.6 tons/year

Pareto solutions guide hydrogen 
production efficiency

50 CO2 emissions and energy 
structure analysis

RESNET model for energy 
optimization

RESNET, CNN, RBF, 
ELM, BP

RESNET outperformed traditional models, 
improving predictive accuracy

Skip connections mitigate 
vanishing gradient issue, enhancing 
performance

51 Vehicle emissions and 
intelligent navigation

GA-PSO with support 
vector regression

Genetic Algorithm, 
PSO, SVR

Optimized navigation reduced vehicle 
carbon emissions significantly

Advances in intelligent 
transportation systems for emission 
reductions

52 Indoor air quality prediction 
using ML

CO2 concentration 
prediction in office 
environments

GPR, ANN, SVM, 
DT, EL

Optimized GPR achieved the highest 
accuracy (R = 0.98874, RMSE = 4.2 ppm)

Useful for designing smart 
ventilation systems

53 Reducing CO2 emissions in 
construction

AI and ML in construction 
sustainability

Content analysis, co-
occurrence mapping

Highlighted gaps and future directions for 
CO2 mitigation in construction

AI effectively addresses multiple 
construction-related emission 
challenges

54 CO2 emission forecasting 
in China

Two-stage forecasting 
with SVR SVR, RF, Ridge, ANN Two-stage models demonstrated lower 

forecast errors, especially SVR-ANN
Effective forecasting model for 
broader energy applications

55 Transportation sector 
emissions in Turkey ML models for forecasting Deep Learning, SVM, 

ANN
R²: 0.8639–0.9235 for CO2, energy demand; 
projections up to 2050

Insights for revising energy policies 
in transportation

56 Post-COVID global CO2 
emissions forecasting SARIMA models SARIMA Forecast accuracy with MAPE as low as 0.09 Supports CO2 reduction policy 

alignment with IPCC models

57 Transportation-based CO2 
emissions globally OLS, SVM, GBR GBR, SVM, OLS GBR model achieved R² of 0.9943 for 

transportation emissions
Socioeconomic and transportation 
factors are key in emissions modeling

Table 1.  Summary of studies addressing GHG emissions reduction and prediction using machine learning and 
optimization techniques.
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Several sample metaheuristic algorithms were used for testing purposes to compare the performance of 
NiOA. The financial nature of the problem means that it needs a mathematical method to guide the optimizer in 
the solution space; the SCA, which is based on trigonometric functions, sin/cosines, enables the optimizer to find 
new areas in the solution space as well as refine the areas that have been revisited. Harris Hawks Optimization 
Algorithm (HHO), which relies upon the hunting behavior of Harris Hawks, incorporates new strategies for 
converging towards optimal solutions. This behavior replicates natural conditions where certain animals catch 
others more effectively within certain conditions that are met to get a better result that will benefit the survival 
of the hawk. Finally, the JAYA algorithm is a basic but quite efficient optimization algorithm whose objective 
is to improve solutions that are near the more efficient candidates and, conversely, to move away from the 
inefficient ones. The optimality of such an approach derives from the fact that it eliminates the need for complex 
calculations, ensuring that it is computationally inexpensive and highly efficient. These optimization methods, as 
different in their functionality, aim to fine-tune the machine learning models employed in the study58.

Deep learning models
In this work, the task of emission estimation using cement production data consisted of models that would 
reflect temporal aspects and complexity of the data. Several deep learning architectures were used each due to 
their different characteristics in handling sequential data and thus capturing short term changes as well as long 
term trends.

The primary model was Dual-Path Recurrent Neural Networks (DPRNNs) since it can directly handle both 
short and long-term relativities of time series data. DPRNNs incorporate two distinct pathways: one that captures 
local patterns and another that captures broader trends, to give the model the ability to capture brief specific 
changes in emissions, such as diurnal or seasonal fluctuations, while also enabling the model to track large-scale 
industrial changes over the long term as well as policy changes. This double method of modeling supplies a better 
explanation of the input factors affecting CO2 emissions as well as enhanced temporal forecast59.

However, the authors also experimented with Traditional Recurrent Neural Networks (RNNs) in their 
endeavors. RNNs are built to keep a record of passed values because they are used in sequential or time series 
data. However, because of the vanished gradient problem, which hinders their memorization abilities over 
long sequences, their ability to capture long trends tends to be negatively affected. In order to overcome these 
constraints, Gated Recurrent Units (GRUs) were incorporated into the current analysis. In GRUs, we add gating 
mechanisms that assist the model in the decision of which messages to remember and which ones to forget, 
enhancing long-term memory but, at the same time, ensuring computational effectiveness. GRUs are especially 
significant for those cases when the model must work with both recent and older data while not implementing 
more complicated models60.

LSTM Networks was also used because of its capability of handling long-term dependencies on sequential 
data, as widely documented in previous studies. LSTMs utilize a system of gates to regulate the flow of 
information, thereby capturing important patterns in the data for the long term. This makes them suitable for 
processes such as CO2 emissions, where past industrial experience and policy continue to affect future emissions 
for longer periods. The use of these models enables this study to cover a cross-sectional of time-series forecasting 
methods, with DPRNN having the best performance. Favorable outcomes because of its complex design and its 
capacity to address both unit and cumulative evidence in the shortest possible timeframe61,62.

Combined, the dataset, optimization approaches, and deep learning models generate a paradigm enabling 
them to achieve successful predictions of CO2 emissions that can prove valuable for policy and industrial 
decision-makers interested in decreasing their negative influence on the environment.

Proposed methodology
The proposed methodology presents a systematic approach for accurately predicting CO2 emissions by 
leveraging advanced data processing and machine learning techniques. As shown in Fig. 2, the structure starts 
with the collection and preparation of the raw and unstructured Global CO2 Emissions Dataset from several 
sources from all around the world. It may contain missing values or noise, which will affect the effectiveness 
of the models because the current dataset can be noisy. Thus, the strategy for the treatment of results starts 
with intensive data preparation, which is the first section of the methodology. This phase helps keep the data 
unadulterated and of a high standard, which is more helpful for further preparation. Some of the common tasks 
carried out under data preprocessing are as follows: dealing with missing values, scaling of values, dealing with 
outliers, and making sure that data values of all input features are consistent. This is important in shaping the 
input dataset to the type that is appropriate for the other parts of the framework.

After the dataset gets preprocessed, several additional processing steps are exercised in order to proceed 
with the final and necessary noise reduction steps to increase the quality and credibility of the dataset. These 
techniques include Copula, PCA, BSS, and a second PCA, which is applied after the BSS. The Copula method 
used in this study is helpful in modeling the dependency relations among the variables, while the PCA, on the 
other hand, is useful in data dimensionality reduction. BSS is then used to isolate the independent sources from 
the mixture of signals in the dataset so as to get the best and cleanest source possible. The second extraction of 
the PCA carried out after BSS aims to purify the dataset further from any unwanted information. These measures 
act together to help mitigate interference and noise and regularize the input data set in general, therefore making 
it better suited for machine learning.

Subsequent to the data pre-processing and noise reduction, the cleaned data is used to train the NiOA-
DPRNNs model, which is a dual-path recurrent neural network fine-tuned using NiOA. This particular type 
of machine learning model is selected because it can recursively look for short-term and long-term temporal 
patterns that would be helpful in time-series forecasts, such as the prediction of CO2 emission over time. In 
the NiOA-DPRNNs model, DPRNNs provide two parallel pathways, which include modeling two disparate 
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temporal scales to boost the forecast performance. Ninja Optimization adds to the model in that it optimizes the 
parameters of the model so that it will be operating at an optimal capacity. Ninja Optimization, as a metaheuristic 
algorithm, updates the search distribution to search for the best parameter set, avoiding getting stuck at local 
optima and improving the model’s robustness across different datasets.

The last stage in the development of the presented methodology is using statistical analysis to confirm the 
effectiveness of the proposed model. After having computed the NiOA-DPRNNs model to predict future CO2 
emissions, such prediction is statistically tested and validated in order to minimize any potential error. The 
statistical analysis involves things like mean squared error (MSE), root mean squared error (RMSE), and other 
forms of measurement that help determine the efficiency of the model predicted. By applying this stringent 
analysis, one is able to pinpoint the possible deviations as well as the possible sources of error within the 
predictions, hence improving the results given by the model.

Data preprocessing
Data preprocessing of the raw data is the first identified activity within the proposed framework. The raw and 
unstructured data, in this case, is in the Global CO2 Emissions Dataset, where all messy data has to undergo a 
thorough process of cleaning to reformat it to an analysis-ready state. This includes processing missing values, 
dealing with outliers, scaling and transforming values, and checking for data consistency. All these are crucial 
in the pre-processing of the data before feeding it to the noise reduction stage, as well as the machine learning 
algorithm. Data preprocessing helps the model not to make errors and uncertainties that will, in one way or 
another, affect its outcome. Therefore, this phase allows the input data to be not only accurate but also relevant to 
the occurrence of the trends, which ultimately improves the accuracy of the predicted CO2 emissions.

In the data preprocessing phase, Principal Component Analysis (PCA) and Blind Source Separation (BSS) 
were utilized for noise reduction and feature optimization. PCA was configured to retain components that 
captured at least 95% of the dataset’s variance, resulting in the selection of 15 principal components out of 
the original feature set. This threshold was chosen to ensure a balance between dimensionality reduction and 
information retention. Following PCA, BSS was applied to extract independent signals, with its parameters tuned 
to maintain a mutual information score below 0.01, ensuring minimal overlap among the separated components. 
These steps ensured a refined and reproducible feature set for downstream analysis.

This building block, as shown in Fig. 3, depicts and compares the trend in CO2 emissions from the ten largest 
emitters in the world. The figure also displays differences in emissions between the countries and whether the 
emissions have risen, sank, or remained constant. This analysis is useful in determining specific sectors and 
countries that have the greatest responsibility for contributing to the global level of CO2 emissions and also in 
creating more specific approaches for making concrete efforts to lessen emissions in high-emitting zones. The 
figure achieves this by capturing the trends and patterns in the map, enabling a determination of past and future 
emission trends for the world’s biggest emitter based on the policies formulated.

Fig. 2.  Framework for CO2 emissions prediction using NiOA-DPRNNs model.
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Figure 4 presents the time series analysis of global cooperative carbon dioxide emissions in GCP, providing a 
general view of the emissions growth or shrinkage at the macro level around the world. This figure is important 
to examine the extent of climate change that is influenced by human interactions as well as the interacting 
consequences of emissions coming from different areas. This figure allows studyers to identify historical trends 
in emissions, determine the progress towards reaching global climate objectives (e.g., the Paris Agreement), and 
use trends as a basis for estimating future global emissions. Knowledge of emissions distribution is crucial to 
developing successful local and international strategies meant to address climate change.

Blind source separation (BSS)
Blind Source Separation (BSS) is one of the major approaches utilized in the improvement path in the proposed 
methodology to unpack combined signals or data inputs with no original signal information. Specifically, for the 
predictive analysis of CO2 emissions, BSS is used for the extraction of latent coherent features from the given set 
of data that may be contaminated with noise or overlapping. This technique can prove especially powerful when 
the data is not clear and observable, contradictory, or contains masked relations.

When using BSS, the sources of the emissions data are differentiated clearly, which is very important in 
enhancing the accuracy of the next employed machine learning models. BSS improves the general data set by 
filtering out the noise and isolating separate sets of attributes that are unique and capture different causes of CO2 
emissions. In cooperation with other methods, like PCA and Copula, BSS contributes to the prediction model 
inherently after providing clean and safe data.

Finally, comparable data for the Core dataset before the application of different methods and after the 
application of the Dimensionality Reduction and Separation techniques, namely PCA, ICA, and BSS, have been 
shown in Fig. 5. The figure shows how each of the techniques is useful in extracting desired elements from the 
dataset. To be precise, while PCA aims at reducing dimensionality and considering only the important features, 
and ICA tries to provide the statistically independent components, BSS is aimed at providing a clearer view of 
the original sources of the mixed signals. This comparison shows how BSS outperforms in decoupling separate 
signals as an important step in data preparation for enhancing the prediction of CO2 emissions.

Fig. 3.  CO2 emissions for top 10 emitters over time (cumulative data).
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Dual-path recurrent neural networks (DPRNNs)
Dual-Path Recurrent Neural Networks (DPRNNs), the Mean of using predictors to achieve high accuracy of 
predicted CO2 emissions, is considered one of the strategic advancements of the proposed methodology. This 
highly developed architecture is designed to address these challenges inherent in the time series datasets: data 
containing oscillations in the short term and trends in the long term, for example, the dataset of CO2 emissions 
across different countries. Unlike traditional Recurrent Neural Networks (RNNs) that struggle with retaining 
long-term dependencies due to issues like vanishing gradients, DPRNNs address these challenges by employing 
two distinct pathways. Specifically, the current design consists of two RNNs that process the dependencies of 
short and long durations, respectively. Such a structure enables the model to function well in handling temporal 
relations concerning different time scales.

The short-term pathway of the DPRNN highlights the fact that it abstracts from modeling the smallest 
integer data values plus fewer ones. This is particularly important when estimating CO2 emission rates since 
day-to-day activities, which elicit industrial activity, seasons, or energy consumption hikes, may lead to regularly 
oscillating figures. Thus, long short-term memory is capable of representing such short temporal dependencies, 
which describe immediate changes in the system irrelevant to those that occurred in the past and will take place 
in the future but specify a profound effect on emissions in a short range.

On the other hand, the long-term signal pathway of the DPRNN is aimed at obtaining trend and pattern 
information that changes on a large time scale. These remain fixed long-term factors that determine the levels 
of emissions by affecting the economic development of the countries, changes in laws and policies, switching 
over to renewable sources of energy, and gradual fluctuations in industrial activity. However, by processing this 
type of long-term data, the DPRNN guarantees that the model takes into account such trends and is relevant to 
making long-term forecasts. This way, it became possible to maintain and shape the long-term dependencies, 
which is otherwise difficult in most RNNs used in practice.

The strength of the DPRNN is that it combines both kinds of dependencies in one model, offering the 
best view of data. This dual-path structure means that the model can take advantage of the immediacies and 
localized patterns at the same time as the broader, more general trends, which makes for better and more 
accurate predictions. For instance, the DPRNN can successfully detect short-term bursts of emissions triggered 
by temporary factors such as fluctuating energy demand in the winter and segregate it from long-term trends, 
including a progressive decline in emissions arising from the application of improved technologies or compliance 
with environmental legislation.

However, DPRNNs are most suitable where temporal data is important, like in the modeling of climate or 
the forecasting of CO2 emissions. In this study, the cleaned and noise-reduced data set is applied to DPRNN 
architecture to make predictions that retain short-term fluctuations and long-term trends. This is critical for 

Fig. 4.  Global CO2 emissions over time.
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accurate forecasting of future CO2 emission rates because it enables the model to evaluate not only the macro-
level effects of recent changes but also the slow movements that define the emissions trajectory.

On balance, this framework of employing DPRNNs improves the overall point forecast capability of the 
model, which is valuable for providing effective and timely insights. In other words, DPRNNs allow the model 
to capture short and long dependencies of the data to ensure that the model can effectively depict the complexity 

Fig. 5.  Comparison of original data, PCA components, ICA components, and BSS components for signal 
separation.
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of CO2 emissions and provide a precise short term and long-term prediction. However, it increases the role of 
DPRNNs in the identified methodology for effective CO2 emission forecasting.

Ninja optimizer (NiOA)
The Ninja Optimizer (NiOA) is a high-performance meta-heuristic optimization algorithm used in the framework 
to improve the performance of the Dual-Path Recurrent Neural Networks (DPRNNs). NiOA functions by 
adjusting the network parameters in a profitable manner in that they can both exploit the search space while 
also avoiding local optima while moving more towards the global optima. The primary components of NiOA are 
established by the displacement of the agents (potential solutions), their interactions with other agents, external 
random values, positions in prior time, and mathematical functions like cosine wave and exponential functions.

NiOA relies on a set of control parameters to regulate the exploration and exploitation processes. These 
parameters include a, a random integer between 6 and 10, as well as factors like v1, r2, r3, J1, J2, and n, Each 
of these operates within a defined range to influence different aspects of optimization. For example, r2 and r3
control random exploration movements while J1 and J2 are responsible for tuning the exploitation phase. The 
choice of these parameters provides the necessary adaptability and means that NiOA can be useful for a wide 
range of optimization tasks.

Exploration phase
In the exploration phase, the location of the agent Ls is updated based on the current and past positions, along 
with random factors that drive the search, as shown in Eq.  (1). The position update equation incorporates a 
random factor r1, which allows the algorithm to explore new regions of the search space by calculating the 
difference between two positions at different times, t1 and t2. If the conditions are not met, the algorithm 
introduces randomness by selecting a new location from a predefined, allowing the exploration process to 
continue broadly. This mechanism ensures that the search covers a wide range of potential solutions, increasing 
the likelihood of finding the global optimum.

	 Ls (t + 1) = {Ls (t) + r1 · (Ls (t1) − Ls (t2)) , otherwise Random Ls (t) and ∈ FS � (1)

 where FS  represents the fitness solution, ensuring the agent explores new positions effectively.

The position of another agent, Ds, is updated through an equation that introduces periodic fluctuations using a 
cosine wave function, along with a random factor r2. This continuity enables the maintenance of variability in 
the agent substituting fixed value with γ, thus avoiding cases where the search is trapped within local optima. The 
cosine wave brings the cyclical behavior which allows the algorithm to go to new regions in a controlled manner 
which is like some biological systems, as detailed in Eq. (2):

	 Ds (t + 1) = Ds (t) + | Ds (t) | +r2 · Ds (t) · cos (2π t) � (2)

The search process further integrates the updated locations of Ls and Ds, enabling a composite search approach, 
as described in Eq. (3):

	 S (t + 1) = r1 · Ls (t + 1) + r2 · Ds (t + 1)� (3)

Exploitation phase
During the exploitation phase, the focus shifts from exploration to refining the solutions that have already been 
discovered. The algorithm uses a non-linear equation involving parameters. J1 and J2 to control the extent of 
exploitation, allowing for incremental improvements in the agent’s position. This phase is ideal for refining the 
solutions that are discovered in the exploration phase given the fact that algorithm fine tunes the result at this 
stage. The exploitation equation introduces non linearity that directs the optimizer to find local optima within 
the search space while driving the process towards the global optimum, due to small incremental steps.

The movement around the best solution is controlled by a non-linear equation, as shown in Eq. (4):

	
Ms (t + 1) = J1 · Ms (t) + 2 · J2 · (Ms (t) + (Ms (t) + J1)) ·

(
1 − Ms (t)

Ms (t) + J1

)2

� (4)

NiOA incorporates a resource or reward update mechanism to further refine the optimization process. This 
update is based on an exponential growth model that is influenced by a cosine function, introducing periodic 
growth in the resource or reward state. This periodic effect ensures that the optimization process remains adaptive 
and can respond to changing conditions during the search. The use of J2 as a control parameter allows for fine-
tuning of the reward updates, adding another layer of precision to the algorithm, as represented in Eq. (5):

	 Rs (t + 1) = Rs (t) + (1 + Rs (t) + J2) · exp (cos (2π ))� (5)

If the best solution has not changed for several iterations (usually 3), the NiOA applies an update equation 
that incorporates multiple terms, including the difference between the locations of agents Ls and Ds, and the 
contributions from Ms and Rs. This helps to ensure that the optimizer does not stagnate, as it forces updates 
to occur even when progress has slowed. The use of scaling factors i and n, along with the contribution of 
parameter, adds flexibility to this update mechanism, allowing the algorithm to adjust its approach based on the 
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current state of the optimization process. The updated search around the solution combines the refined values of 
Ms and Rs for better exploitation, as indicated in Eq. (6):

	 S (t + 1) = J1 · Ms (t + 1) + J2 · Rs (t + 1)� (6)

The optimization algorithm is fast and highly adaptive, known as the Ninja Optimizer (NiOA), and is designed 
to fine-tune the DPRNNs within this framework. Through a combination of random walks and fixed oscillations, 
as well as through non-linear adaptations and reward-based modifications, NiOA prevents the model from 
getting stuck and helps it manage a clearly divided search space. Such features as mutation strategies used, 
cosine functions, and dynamic parameter updates introduce certain levels of randomness and make the model 
resistant to local optima, ensure its fast transition to global optimum and predict the emissions of CO2 with very 
high degrees of accuracy.

Mutation
With NiOA, the author presents a mutation strategy to add an even greater level of diversification to the process. 
This entails a summation equation where signs change to form a type of non-linear mutation to the agent’s 
motion. Evidently, for this reason, the mutation parameter a is randomly taken within a range while its sign is 
preserved so that the magnitude of constructed mutations in two iterations is different. This strategy avoids the 
risk of making optimization too deterministic and gives the algorithm a chance to ‘break free’ from local optima 
and potentially find more promising regions of the search space.

So if the solution does not improve for three iterations, a mutation strategy introduces diversity by modifying 
the current solution based on multiple factors, as illustrated in Eq. (7):

	 s (t + 1) = Ls (t + 1) + i · n · (Ls (t + 1) − Ds (t + 1)) + i · n · (Ms (t + 1) + 2 · r1 · Rs (t + 1))� (7)

Finally, the parameters governing the exploration and exploitation phases ensure the algorithm’s adaptability 
and efficiency, as outlined in Eq. (8):

	 r1 ∈ [0,1] , r2 ∈ [0,1] , J1 ∈ [0,2] , J2 ∈ [0,2] , i ∈ [0,1] , n ∈ [0,2]� (8)

Experimental results
The experimental results section thoroughly compares various optimization techniques and predictive models for 
estimating CO₂ emissions. The models’ performance was assessed using error rates, fitness values, and statistical 
analyses, underscoring their effectiveness and precision. An 80/20 training-validation split was adopted across 
all experiments, allocating 80% of the data for training to identify patterns and relationships. In contrast, the 
remaining 20% was reserved for validating performance on previously unseen data.

Before feature selection and model training, meticulous data cleaning and preprocessing were done to ensure 
the dataset’s integrity and reliability. Missing values were addressed through statistical imputation techniques, 
such as mean or median substitution, depending on the distribution of the variables. Outliers were identified 
using interquartile range (IQR) analysis and either capped or removed to prevent them from skewing model 
results. Numerical features were scaled and normalized to standardize input ranges, promoting stability during 
model training.

Feature selection results
In this study, the feature selection process utilized binary-based methods, with a strong emphasis on the binary 
Ninja Optimizer Algorithm (bNiOA) to streamline the input dataset. The primary objective was to isolate the 
most critical and consistently influential features for enhancing predictive accuracy while discarding redundant 
or irrelevant ones. The bNiOA algorithm excelled in this task by minimizing errors and optimizing fitness values, 
effectively identifying a concise yet highly informative subset of features.

The feature selection problem was modeled as a binary vector, where each element represented the inclusion 
(1) or exclusion (0) of a feature. This binary framework allowed for efficient feature selection by toggling vector 
elements based on probabilistic values. Continuous values were transformed into binary form using a sigmoid 
function, defined as follows:

	
Sigmoid (XBest) = 1

1 + e−10(XBest−0.5)

At each iteration t, the binary output was determined by the best feature value ( XBest) using the rule:

	 X(t+1) = {1 if Sigmoid (XBest) ≥ 0.5 0 otherwise

This method effectively converted continuous values into binary decisions, enabling the selection of an optimal 
subset of features that balanced minimal redundancy with maximum predictive relevance.

Table 2 shows the performance metrics for feature selection results, comparing nine different feature selection 
algorithms: bNiOA, bSCA, bHHO, bJAYA, bSSA, bPSO, bGA, bGWO, and bWAO. The following parameters are 
used to demonstrate the results obtained by the methods: average error, the size of the selection, average fitness, 
the best fitness, the worst fitness, and the standard deviation of the obtained fitness values. Specifically, for feature 
selection reliability, bNiOA shows the lowest mean of average error = 0.4829, meaning it provides the highest 
accuracy. However, bNiOA presents the smallest selection size of 0.4508 as well as a low standard deviation of 
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fitness of 0.3835, which confirms its efficiency in contrast with the other approaches. These outcomes indicate 
that bNiOA is the most effective algorithm for addressing feature selection in this experiment.

Figure 6 exhibits the average of the error percent for the feature selection results of the various algorithms. 
The graph also highlights how well the proposed bNiOA performs when compared to the other techniques as 
it has the least average error. This is also useful in visually analyzing the correctness of the algorithms used, and 
highlight that indeed, bNiOA > bPSO and bWAO as they demonstrate higher error rates than bNiOA.

Table  3 gives details of the ANOVA table on the performance metrics of the feature selection methods. 
The table also shows that there is a statistically significant difference in the results of different feature selection 
methods based on the F-statistic of 399.1 and p < 0.0001. From this, it can be inferred that the kind of algorithm 
used heavily influences the feature selection, and the most successful one has been bNiOA in the analysis of the 
variance. The residual values in the ANOVA table are also small enough, thus indicating a good fit for the model 
to the data.

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.4746 8.0000 0.0593 F (8, 81) = 399.1 P < 0.0001

Residual (within columns) 0.0120 81.0000 0.0001

Total 0.4867 89.0000

Table 3.  ANOVA table for Performance Metrics results of feature selection.

 

Fig. 6.  Average error plot of feature selection results.

 

bNiOA bSCA bHHO bJAYA bSSA bPSO bGA bGWO bWAO

Average error 0.4829 0.5014 0.5240 0.5316 0.5488 0.6380 0.6606 0.6682 0.6854

Average select size 0.4508 0.6508 0.6508 0.8142 0.5736 0.7874 0.7874 0.9508 0.7102

Average Fitness 0.5612 0.5774 0.5758 0.5836 0.5835 0.7140 0.7124 0.7202 0.7201

Best fitness 0.4630 0.4977 0.5561 0.5477 0.5613 0.6343 0.6927 0.6843 0.6979

Worst fitness 0.5615 0.5646 0.6238 0.6238 0.6375 0.7012 0.7604 0.7604 0.7741

Standard deviation fitness 0.3835 0.3882 0.3876 0.3898 0.3888 0.5248 0.5242 0.5264 0.5254

Table 2.  Performance metrics results of feature selection.
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Wilcoxon Signed Rank test results of feature selection performance metrics are presented in Table 4 below. 
The P-value from using the Wilcoxon test, a non-parametric test, is 0.002 for all the methods of feature selection, 
making the result statistically significant. The sum of signed ranks for bNiOA is higher than those for the other 
methods, which means that bNiOA is superior to the other analyzed methods in terms of error reduction and 
feature selection precisions.

The results of the feature selection methods in terms of performance metrics for the dataset are provided in 
Table 5 in terms of minimum, maximum, and median values. The dispersion of results for bNiOA is small, their 
variation ranging from 0.0036, and the median value of bNiOA is also close to the minimum and maximum 
values, which also suggests uniformity. The mean error for bNiOA, 0.4829, is still smaller than all methods, 
hence affirming its effectiveness. The standard deviation for bNiOA is also very small (0.0009), which further 
supports that the method is accurate and reliable in the selection of features with minimal error.

Figure 7 shows the residuals, homoscedasticity, QQ plots and the heat map of the feature selection models. 
The residuals are approximately equally dispersed. Thus, the models do not have the heteroscedasticity issue. 
By observing the QQ plot, it is clear that the estimated results are normally distributed, thus making the results 
credible.

In terms of the performance analysis, a heat map is used to show all the basic statistics and orientation to the 
real performance of bNiOA in contrast to the other algorithms. The above figure also shows why bNiOA is the 
best feature selection method for future studies of aggressive behavior in children.

Optimized DPRNNs results
Table 6 contains the information about several deep learning structures such as DPRNNs, RNN, GRUs, LSTM, 
and MLPRegressor. The table also shows the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE) and correlation coefficient (r). DPRNNs give the lowest MSE of 0.0385 and the 
lowest RMSE of 0.0910, outcompeting all other models. The correlation coefficient, or r value for DPRNNs, is 
0.9406, which, on any scale, can be classified as an excellent means of prediction. Besides, the current study has 
shown that DPRNNs have better computational efficiency, where the model has been fitted within a shorter time 
compared to the LSTM and GRU models, which are the most commonly used models.

Table 7 highlights the performance metrics results for the optimized DPRNNs using different optimization 
techniques: NiOA, SC, HHO, and JAYA. The NiOA-DPRNNs provide the greatest predictability with the overall 

bNiOA bSCA bHHO bJAYA bSSA bPSO bGA bGWO bWAO

Minimum 0.4809 0.4995 0.5114 0.5272 0.5399 0.608 0.5991 0.6598 0.6354

25% percentile 0.4829 0.5014 0.524 0.5316 0.5488 0.633 0.6456 0.6682 0.6748

Median 0.4829 0.5014 0.5240 0.5316 0.5488 0.638 0.6606 0.6682 0.6854

75% percentile 0.4829 0.5014 0.5240 0.5316 0.5488 0.638 0.6606 0.6682 0.6854

Maximum 0.4845 0.5099 0.5277 0.5392 0.5500 0.6498 0.6881 0.6700 0.6995

Range 0.003596 0.01044 0.01634 0.012 0.01011 0.0418 0.089 0.01016 0.06411

Mean 0.4829 0.5021 0.5231 0.5319 0.5481 0.6342 0.6512 0.6676 0.6786

Std. deviation 0.0009 0.0028 0.0043 0.0029 0.0029 0.01199 0.0284 0.0028 0.0184

Std. error of mean 0.0002694 0.0008952 0.001353 0.0009177 0.0009148 0.003791 0.008979 0.0008772 0.005802

Sum 4.8290 5.0210 5.2310 5.3190 5.4810 6.342 6.5120 6.6760 6.7860

Table 5.  Statistical analysis of performance metrics results of feature selection.

 

bNiOA bSCA bHHO bJAYA bSSA bPSO bGA bGWO bWAO

Theoretical median 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000

Actual median 0.4829 0.5014 0.5240 0.5316 0.5488 0.638 0.6606 0.6682 0.6854

Number of values 10.0000 10.0000 10.0000 10.0000 10.0000 10 10.0000 10.0000 10.0000

Wilcoxon signed rank test

Sum of signed ranks (W) 55.0000 55.0000 55.0000 55.0000 55.0000 55 55.0000 55.0000 55.0000

Sum of positive ranks 55.0000 55.0000 55.0000 55.0000 55.0000 55 55.0000 55.0000 55.0000

Sum of negative ranks 0 0 0 0 0 0 0 0 0

P value (two-tailed) 0.0020 0.0020 0.0020 0.0020 0.0020 0.002 0.0020 0.0020 0.0020

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact Exact

P value summary ** ** ** ** ** ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.4829 0.5014 0.5240 0.5316 0.5488 0.638 0.6606 0.6682 0.6854

Table 4.  Wilcoxon signed rank test for performance metrics results of feature selection.
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lowest MSE = 0.0018, the minimal RMSE = 0.0294, and the maximal) r (= 0.9845. It clearly shows that the NiOA 
has greatly improved the DPRNNs over the other optimizers for achieving a higher level of accuracy in the 
models and, therefore, decreasing the overall prediction errors.

The RMSE graph related to optimized DPRNNs is shown in Fig. 8. From the figure, it can also be clear that 
the NiOA-DPRNNs always produce the least error rate, which supports the finding that the Ninja Optimizer is 

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI Fitted time

NiOA-DPRNNs 0.0018 0.0294 0.0358 0.0014 0.9845 0.9736 4.4325 0.9897 0.9610 0.006049

SC-DPRNNs 0.0064 0.0444 0.0528 0.0042 0.9665 0.9715 7.3659 0.9789 0.9569 0.010179

HHO-DPRNNs 0.0096 0.0665 0.0862 0.0068 0.9546 0.9655 8.3746 0.9782 0.9489 0.01069

JAYA-DPRNNs 0.0119 0.0806 0.0960 0.0095 0.9494 0.9614 9.6624 0.9674 0.9388 0.01132

Table 7.  Performance metrics results of optimized DPRNNs results.

 

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI Fitted time

DPRNNs 0.0385 0.0910 0.1126 0.0057 0.9406 0.9439 10.0154 0.8897 0.8713 2.01133

RNN 0.0708 0.2751 0.2251 -0.0368 0.9386 0.9420 20.8977 0.8318 0.8482 2.033982

GRUs 0.0726 0.2782 0.2372 -0.0499 0.9104 0.9137 21.5488 0.8156 0.8455 2.18951

LSTM 0.0747 0.2818 0.2324 0.0167 0.9080 0.9113 22.3236 0.8085 0.8347 3.322431

MLPRegressor 0.0771 0.2859 0.2387 -0.0264 0.9017 0.9050 23.2032 0.8002 0.8245 7.758872

Table 6.  Performance metrics results of deep learning models.

 

Fig. 7.  Residual, homoscedasticity, and QQ plots and heat map for the feature selection models.
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the best optimization technique for improving the DPRNNs model. This figure, to some extent, illustrates the 
amount of error reduction that can be accrued from NiOA optimization.

Figure 9 describes the analysis of RMSE size when various optimization techniques are used on the DPRNNs 
model. NiOA is seen to be far better than other methods in terms of the RMSE values obtained. This figure 
demonstrates the superiority of NiOA over other optimization techniques, such as HHO and JAYA, in achieving 
higher model parameter tuning precision and, subsequently, higher accuracy of the predictions made on weather 
patterns.

Figure 10 provides a detailed breakdown of the optimized DPRNNs model across various configurations. The 
NiOA-optimized DPRNNs remain to indicate the lowest RMSE, hence proving that it is the best optimization 
algorithm without comparatives. This figure shows how parameters have to be tuned in an optimum way in 
order to reduce the inaccuracies in the predictions for the model.

Fig. 8.  RMSE plot of optimized DPRNNs results.
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Table 8 shows the ANOVA of the optimized DPRNNs models for wind speed forecasts. The obtained F-statistic 
of 205.4 and a very low p-value of less than 0.0001, evidences towards a significant influence of the optimization 
methods on model performance. This indicates that NiOA elaborates a relatively significant enhancement over 
other optimization techniques and the ANOVA substantiated the statistical significance of the outcomes. A 
slight residual variance also speaks to the appropriateness of the fitted NiOA-optimized DPRNNs model.

In Table 9, the results from the Wilcoxon Signed Rank test for the optimized DPRNNs models are presented. 
This non-parametric test shows significant evidence that NiOA-DPRNNs outperform the other models at 
p = 0.002 across all configurations. The enhancement of signed ranks and other statistical measures summarizes 
how the effectiveness of NiOA can enhance the accuracy and reliability of DPRNN, thereby strengthening the 
existing proof against other optimization strategies.

Table  10 provides the original performance metrics of the chosen features and the optimized DPRNNs 
models in detail. As is seen from above, the range and standard deviation of NiOA-DPRNNs are the smallest 
of all, which can also prove that our method has been stable and precise in lowering the number of errors. The 
supplied and the expected nice values for NiOA-DPRNN are quite comparable. This depicts how accurate NiOA-
DPRNN is in bringing out minimal prediction errors. The comparison of different kinds of confidence intervals 
and other statistical measures strengthens the claim about the effectiveness of NiOA in this regard.

Figure 11 illustrates the residuals, homoscedasticity, and QQ plots, as well as a heat map for the optimized 
DPRNNs models. The plots show a normal distribution of residuals, with no signs of heteroscedasticity, validating 
the statistical assumptions. The QQ plot confirms the normality of the data, while the heat map provides a clear 
summary of the performance metrics, highlighting the strong performance of NiOA-optimized DPRNNs in 

Fig. 9.  Radar plot of performance metrics of optimized DPRNNs results.
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NiOA-DPRNNs SC-DPRNNs HHO-DPRNNs JAYA-DPRNNs

Theoretical median 0.0000 0.0000 0.0000 0.0000

Actual median 0.0294 0.0444 0.0665 0.0806

Number of values 10.0000 10.0000 10.0000 10.0000

Wilcoxon signed rank test

Sum of signed ranks (W) 55.0000 55.0000 55.0000 55.0000

Sum of positive ranks 55.0000 55.0000 55.0000 55.0000

Sum of negative ranks 0 0 0 0

P value (two tailed) 0.0020 0.0020 0.0020 0.0020

Exact or estimate? Exact Exact Exact Exact

P value summary ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.0294 0.0444 0.0665 0.0806

Table 9.  Wilcoxon signed rank test for performance metrics results of optimized DPRNNs results.

 

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.0147 3.0000 0.0049 F (3, 36) = 205.4 P < 0.0001

Residual (within columns) 0.0009 36.0000 0.0000

Total 0.0155 39.0000

Table 8.  ANOVA table for performance metrics results of optimized DPRNNs results.

 

Fig. 10.  Average error plot of feature selection results.
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comparison to other optimization techniques. This visual analysis further supports the conclusion that NiOA is 
the most effective method for optimizing DPRNNs.

Figure 12 depicts the Kernel Density Estimate (KDE) plot for the Mean Squared Error (MSE) of the optimized 
models, offering a detailed view of the error distribution across various optimization methods. The KDE curve 
represents the density of MSE values, showing how frequently specific error ranges occur within the dataset. 
This visualization is instrumental in evaluating the consistency and reliability of the model’s performance by 
highlighting the spread and central tendency of error metrics across all trials. The peak of the KDE curve marks 
the most frequent MSE values, while the tails indicate areas of higher variability or potential outliers.

Figure  13 illustrates the density distribution of algorithm performance across different optimization 
techniques, providing a comparative analysis of their effectiveness. The curves represent performance metrics 
for JAYA-DPRNNs, HHO-DPRNNs, SC-DPRNNs, and NiOA-DPRNNs, with each curve’s shape and spread 
shedding light on the consistency and variability of the respective algorithms. Sharper peaks suggest more 
consistent performance, whereas broader distributions reflect greater variability. This comparative evaluation 
helps identify which optimization approach delivers the most stable and reliable results, guiding the selection of 
the most effective algorithm for predictive modeling tasks.

This study focuses on the improvement of CO2 emissions prediction by using advanced feature selection and 
optimization methodologies, and experimental results substantiate them. In regard to the reduction of error and 
enhancement of model accuracy, the NiOA performed better than other algorithms on average. To do this, the 
methodology merges NiOA with Dual-Path Recurrent Neural Networks, which strikes an optimal short-term/
long-term trade-off, making the approach perform highly in time-series forecasting tasks. The performance 
of the models has also been further validated by employing the ANOVA test and the Wilcoxon Signed Ranks 
Test, which shows that the results are indeed statistically significant and greatly underlines the reliability of 
the optimized models. All in all, the proposed framework results in a precise way of estimating the total CO2 
emissions and may become a useful tool for policy-making activities fabricating climate change critically.

NiOA-DPRNNs SC-DPRNNs HHO-DPRNNs JAYA-DPRNNs

Number of values 10.0000 10.0000 10.0000 10.0000

Minimum 0.0291 0.0334 0.0447 0.0681

25% Percentile 0.0294 0.0444 0.0650 0.0780

Median 0.0294 0.0444 0.0665 0.0806

75% Percentile 0.0294 0.0444 0.0665 0.0806

Maximum 0.02965 0.05144 0.06952 0.08863

Range 0.0006 0.0180 0.0249 0.0206

10% Percentile 0.0291 0.0345 0.0462 0.0690

90% Percentile 0.0296 0.0507 0.0692 0.0878

95% CI of median

Actual confidence level 97.85% 97.85% 97.85% 97.85%

Lower confidence limit 0.0294 0.0444 0.0605 0.0778

Upper confidence limit 0.0294 0.0444 0.0665 0.0806

Mean 0.0294 0.0440 0.0640 0.0796

Std. Deviation 0.0001 0.0043 0.0072 0.0050

Std. Error of Mean 0.0000 0.0014 0.0023 0.0016

Lower 95% CI of mean 0.0293 0.0409 0.0589 0.0761

Upper 95% CI of mean 0.0295 0.0471 0.0692 0.0832

Coefficient of variation 0.4818% 9.822% 11.18% 6.302%

Geometric mean 0.0294 0.0438 0.0636 0.0795

Geometric SD factor 1.005 1.111 1.138 1.067

Lower 95% CI of geo. mean 0.0293 0.0406 0.0580 0.0759

Upper 95% CI of geo. mean 0.0295 0.0472 0.0697 0.0833

Harmonic mean 0.0294 0.0435 0.0631 0.0793

Lower 95% CI of harm. mean 0.02925 0.04025 0.05701 0.0757

Upper 95% CI of harm. mean 0.0295 0.0474 0.0706 0.0833

Quadratic mean 0.0294 0.0442 0.0644 0.0798

Lower 95% CI of quad. mean 0.0293 0.0411 0.0597 0.0762

Upper 95% CI of quad. mean 0.0295 0.0470 0.0687 0.0832

Skewness 0.0000 -1.3060 -2.6680 -0.9077

Kurtosis 4.5000 5.3450 7.4890 4.0960

Sum 0.2935 0.4398 0.6403 0.7964

Table 10.  Statistical analysis of performance metrics results of optimized DPRNNs results.

 

Scientific Reports |         (2025) 15:4021 23| https://doi.org/10.1038/s41598-025-86251-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusion and future direction
This study effectively presents an enhanced approach integrating DPRNNs with NiOA for accurate CO₂ emissions 
prediction. With sound preprocessing methodologies such as PCA and BSS, the input data is preprocessed and 
filtered so that only the most helpful information for the model’s implementation is fed to the algorithm to 
model short- and long-term dependencies inherent in the emissions data. The experimental results show that 
the predictability of the model is very high (R² = 0.9736) and is more efficient than a conventional model. The 
ANOVA and Wilcoxon tests established the efficacy and accuracy of the proposed method, where intra-annual 
volatility and trends in future inflation rates and oil price scatter plots ultimately demonstrate the usefulness 
of the proposed technique for supporting climate policy and industrial goals of reducing the environmental 
burden.

Potential topics for extended studies involve further developing the proposed framework for other climatically 
active gases, including methane and nitrous oxide. Real-time data integration can add even more value to its 
application since emissions patterns can be monitored continually, and adjustments can be made as necessary. 
The model can also be fine-tuned, for example, in sectors like transport, agriculture and energy, to provide sector 
solutions. Also, linking the predictive framework with policy simulation models will enable a policy impact 
assessment in the long run. Studying the integration of NiOA with other metaheuristic algorithms will open up 
a way of increasing the NiOA efficiency and effectiveness of the model.

Fig. 11.  Residual, homoscedasticity, and QQ plots and heat map for the optimized models.
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Fig. 12.  KDE plot of mean squared error (MSE) for the optimized models.
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Data availability
A publicly available dataset was analyzed in this study. This data can be found here: ​h​t​t​​​​p​​s​:​/​​/​w​​w​w​.​k​​a​g​g​l​​e​.​c​​​o​m​​/​d​a​​
t​a​s​e​t​s​/​n​o​o​t​e​b​o​o​m​/​g​l​o​b​a​l​-​C​O​2​-​c​e​m​e​n​t​-​e​m​i​s​s​i​o​n​s​​​​​.​​
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