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This study develops the you only look once segmentation (YOLOSeg), an end-to-end instance 
segmentation model, with applications to segment small particle defects embedded on a wafer die. 
YOLOSeg uses YOLOv5s as the basis and extends a UNet-like structure to form the segmentation head. 
YOLOSeg can predict not only bounding boxes of particle defects but also the corresponding bounding 
polygons. Furthermore, YOLOSeg also attempts to obtain a set of better weights by combining with 
several training tricks such as freezing layers, switching mask loss, using auto-anchor and introducing 
denoising diffusion probabilistic models (DDPM) image augmentation. The experiment results on the 
testing image set show that YOLOSeg’s average precision (AP) and intersection over union (IoU) are as 
high as 0.821 and 0.732 respectively. Even when the sizes of particle defects are extremely small, the 
performance of YOLOSeg is far superior to current instance segmentation models such as mask R-CNN, 
YOLACT, YUSEG, and Ultralytics’s YOLOv5s-segmentation. Additionally, preparing the training image 
set for YOLOSeg is time-saving because it needs neither to collect a large number of defective samples, 
nor to annotate pseudo defects, nor to design hand-craft features.
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Dies embedded on a wafer need to be inspected for defects before packaging to ensure product quality, chiefly by 
visual inspection (VI) or automated optical inspection (AOI). However, as for the VI, inexperienced operators 
may miss or overkill defects, compounded by the fact that their standards for detecting defects can vary more 
than those of experienced operators. The AOI system is easily disturbed by the surrounding environment, such 
as light source attenuation, surge, and vibration, which affect the inspection results. In addition, the algorithm 
of the machine is often customized, and the features used for image recognition must be manually described by 
experts, which often cannot be generalized when dies or wafers with various types of appearances are inspected. 
This is the reason why researchers have attempted to incorporate deep learning models into defect inspection 
systems in recent years. Because deep learning models automatically extract features, the design of the algorithms 
can be feature-free and may be generalized, leading to a certain degree has invariance against interference such 
as translation and rotation.

Factory workers often lack time to collect defect samples, and they need to spend a lot of time and manpower 
on defect annotation. Therefore, the first contribution of the method proposed in this study is to meet the needs 
of image augmentation through the denoising diffusion probabilistic models (DDPM)1. By generating pseudo 
defective images, both the number of images and the diversity of defects can be increased, enabling the model 
to learn more defect features, to improve the ability of the model itself to segment defects, and to alleviate the 
burden of collecting a large number of training images. However, while DDPM can generate pseudo images, it 
does not provide corresponding annotation files. Based on this, the second contribution of this study is the auto-
annotation for pseudo defects through digital image processing (DIP) procedures. The combination of DDPM 
and DIP enables the generation of image sets and annotation sets that can be used to train models, saving the 
cost of sample collection and the cost of defect annotation.

Besides image augmentation, the third contribution of this study is to propose a novel you only look once 
segmentation (YOLOSeg) model that can detect and segment small defects. YOLOSeg is based on the you only 
look once, version 5 s (YOLOv5s) object detection model, aiming to obtain the predictive bounding boxes of the 
defects, which facilitates identifying the locations and sizes of the defects. Additionally, it has a UNet-like model 
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architecture, which obtains the predictive bounding polygons of defects, and further delineates the contours of 
defects. To sum up, YOLOSeg is an instance segmentation model because it can predict not only the bounding 
boxes but the bounding polygons of the targeted objects.

The rationale to develop YOLOSeg is that the die particle defects in this study are quite small. There is a need 
to measure the area of those small defects in practice because it provides information to the traceability system 
to track and trace along the manufacturing process. When using current instance segmentation models, such 
as the mask regional-based convolutional neural networks (mask R-CNN)2, the you only look at coefficients 
(YOLACT)3, the segmenting objects by locations (SOLO)4, the YUSEG5, or the Ultralytics’s YOLOv5s-
segmentation (https://github.com/ultralytics/yolov5) to segment small particle defects, they often encounter 
serious mis-detection problems, which affects the prediction performance. In this study YOLOSeg makes good 
use of multi-scale detection, which performs defect segmentation at various scales on the feature maps extracted 
and integrates the information of the bounding boxes and the bounding polygons into the loss function. As a 
result, the end-to-end training is achieved. Thus, the quality of the die appearance could be checked.

The rest of this paper is structured as follows. Firstly, the existing literature on wafer inspection and the 
applications of generative model based image augmentation in different defect inspection cases are reviewed in 
Sect. “Literature Reeviw”. Sect. “Methodology” describes the proposed methodology which includes the image-
capturing hardware, the DDPM and the auto-annotation mechanism, and the model proposed YOLOSeg. 
Section “Results and analysis‘‘ presents the experimental results of a real-world die defect inspection problem. A 
model spot checking experiment is conducted to show the designing rationale of proposed YOLOSeg structure. 
Training tricks are suggested according to ablation studies. The defect segmentation results and comparative 
analysis are also exhibited. The concluding remarks and suggestions for future study are discussed in Sect. 
“Conclusion”.

Literature review
Generally, available die or chip defect inspection techniques could be the golden template matching method, 
the design-rule checking method, machine learning, and deep learning. The golden template matching method 
reveals pixel-wise difference between the image to be inspected and the pre-established golden template, where 
the significant difference indicates the potential defects. However, alignment issues must be addressed before 
running this method. When running the design-rule checking method, engineers must manually describe 
the geometric and textural features of each component according to the die or chip structure, component 
appearance and defect appearance. Then they design a series of detecting logic for the defects as well as the 
category to which the defects belong. Machine learning is mainly to establish the mapping relationship between 
die/chip features and defect categories through supervised learning. However, the design-rule checking method, 
machine learning need to design another completely different feature when the die/chip geometric features or 
appearances are greatly different, which may result in time-consuming operation.

Literature on wafer and die/chip defect segmentation
In recent years, the application of deep learning to wafer, die or chip defect detection has attracted widely 
attention6. This is mostly because the models eliminate manual feature extraction, and the model trained is 
resistant to shift, rotation, exposure, and noise. Therefore, deep learning-related models have been utilized to 
solve problems like defect classification, detection, and segmentation7–14 on wafers, dies, or chips. Among these 
three task, classification methods identify whether an image contains defects or not, but they cannot provide 
information on the exact location and extent of the defects. Although defect classification seems relatively easy, 
it is not easy to achieve in practice. The reason is that the area of defects on an image is often much smaller which 
makes it difficult to achieve a satisfactory classification accuracy. Detection methods further identify where 
the defects are located. But they not only ignore the issue of object angles but also often result in overlapping 
bounding boxes for adjacent defects. On the other hand, segmentation methods provide a more detailed and 
accurate representation of the defects’ contours, enabling a more precise analysis of defects’ shape, size, and 
location. Wen et al. proposed a die defect segmentation method, in which the feature maps were first generated 
by feature pyramid networks with atrous convolution (FPNAC); then region proposals were generated with the 
region proposal network (RPN)13. Finally, the region proposals are mapped to the corresponding blocks and 
fed into the deep multi-branches neural network (DMBNN) for segmentation. Its mean pixel accuracy (MPA) 
was 93.97%, with the mean intersection over union (mIoU) at 83.58%. Tao et al. segmented the conductive 
particle defects in chips on glass substrate14. A multi-frequency feature learning CNN was proposed, comprising 
a UNet module, a multi-frequency module (MFM), and an active contour without edge (ACWE) loss function. 
It aimed to enhance multi-frequency feature fusion of conductive particles, to accelerate network training and 
to extract finer defect contour features. Experimental results showed that their method outperforms current 
mainstream models. The rate of precision, recall, and mIoU reached 92.71%, 90.95%, and 81.61%, respectively. 
Nakazawa and Kulkarni presented a method for detecting and segmenting abnormal wafer map defect patterns 
using an encoder-decoder architecture15. Synthetic wafer maps are used for training, validation, and testing, 
demonstrating the model’s capability to detect unseen defect patterns in real wafer maps. The results show 
that the proposed method effectively detects and segments defects, significantly enhancing the accuracy and 
reliability. Chiu and Chen proposed a method combining data augmentation and Mask R-CNN for classifying 
mixed-type wafer map defects16. Using real-world WM-811  K data, their approach enhanced defect pattern 
classification and segmentation by incorporating copy-paste and rotational augmentation techniques. The model 
achieved a single-type classification accuracy of 97.7%, with mixed-type classification showing 82% accuracy 
and a hamming loss of 0.155. Nag et al. introduced WaferSegClassNet (WSCN), a light-weight network designed 
for both classification and segmentation of semiconductor wafer defects17. Utilizing an encoder-decoder 
architecture and N-pair contrastive loss, WaferSegClassNet effectively handled single and mixed-type defects. 
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It achieved high accuracy of 98.2% and Dice coefficient of 0.9999 on the MixedWM38 dataset. The model was 
significantly lighter at 0.51 MB and faster, requiring only 150 epochs to converge compared to state-of-the-art 
models. Wong used YOLOv5-segmentation to capture the region of interest (ROI) of the IC chip area18. This step 
was essential for isolating the chip accurately, allowing focused detection of defects like die rotations and cracks. 
The model performed well, achieving a high mean average precision (mAP) of 99.5%.

Based on the summarization of the above literature, classification methods identify whether an image 
contains defects or not, but they cannot provide information on the exact location and extent of the defects. 
Although defect classification seems relatively easy, it is not easy to achieve in practice. The reason is that the 
area of defects on an image is often much smaller which makes it difficult to achieve a satisfactory classification 
accuracy. Detection methods further identify where the defects are located. But they not only ignore the issue 
of object angles but also often result in overlapping bounding boxes for adjacent defects. On the other hand, 
segmentation methods provide a more detailed and accurate representation of the defects’ contours, enabling 
a more precise analysis of defects’ shape, size, and location. However, there is still room for improvement in 
the current methods’ ability to segment small defects. The proposed YOLOSeg has potential in detecting small 
die defects in semiconductor processes and can be a valuable addition to the field of defect analysis and quality 
control.

Literature on generative model based image augmentation for defect segmentation 
applications
Generative models, such as generative adversarial networks (GAN) and DDPM, have been instrumental in 
advancing artificial intelligence, particularly in their ability to generate realistic and diverse synthetic data. 
Goodfellow et al. proposed a prototype of GAN, which consists of a generator and a discriminator19. The 
generator randomly selects a real image from the image set and a pseudo image generated by a random number 
vector, whereas the discriminator interprets the authenticity of the pseudo image according to features of the 
real image. Through training and experience, the discriminator increases its ability to interpret the difference 
between the real and the pseudo images, making the generator try to generate more “realistic” pseudo images. 
Theoretically, the generator could ultimately generate very “real” pseudo images to the effect that it becomes 
difficult to distinguish the real image from the pseudo one. Thus, by continuous adversarial learning process 
between the two networks, it may be possible to create a better generative model. Ho et al. proposed a prototype 
of a DDPM, which consists of a forward and a reverse process1. In the forward process, Gaussian noise is 
gradually added to the original image over several steps, progressively making it resemble pure noise. In the 
reverse process, a neural network learns to reverse the noise additions. It predicts and subtracts the noise at each 
step, gradually reconstructing the original image from the noise.

With appropriate combinations with deep learning models, the generative models managed to significantly 
improve the prediction performance. Performing image augmentation through generative models is currently 
one of the most popular research topics. The idea is to add training images and to diversify the defect patterns 
by generating pseudo defective images, thereby improving the model’s prediction performance and avoiding 
overfitting during the training process. Auto-annotation algorithms could be beneficial after pseudo images 
are generated. Chen et al. developed a set of particle defect detection algorithms through YOLOv3 for defect 
detection, and utilized DIP to segment the primary and secondary axes of the defect, which served as a grading 
tool for die quality11. The experimental results showed that the pseudo defective images with size 64 × 64 
generated by GAN archived 7.33% higher tested by AP. Tsai et al. worked on solar-power wafer patches (size 
50 × 50 with heterogeneous textures)20. The first step was to augment the defective image set by two times 
through CycleGAN, and the second was to feed these image patches into a CNN model similar to LeNet structure 
for training. As for the inference, the experiment involved moving a 50 × 50 sliding window move upon the 
500 × 500 original image. The experimental results showed that the pixel classification accuracy rate was 81.5%. 
De Ridder et al. introduced SEMI-DiffusionInst, a new framework for resist wafer defect classification and 
segmentation using a DDPM with size of 480 × 48021. This approach leveraged deep learning for precise defect 
inspection in SEM images, outperforming previous methods in both bounding box and segmentation accuracy 
by 3.83% and 2.10%, respectively. The study benchmarked various feature extractor networks, achieving notable 
improvements, especially in detecting line collapse and thin bridge defects. Wijaya et al. analyzed microstructure 
relationships in porous copper used in semiconductor wafers22. Their method integrated tomographic image 
acquisition, segmentation, feature extraction, and synthetic microstructure reconstruction. Using a UNet model, 
they achieved a segmentation accuracy of 95% and found that DDPM with size of 224 × 224 outperformed 
cGAN in generating realistic microstructure images, crucial for predicting material properties like electrical 
conductivity.

According to the literature review, the application of GAN and DDPM to semiconductors is an area that is still 
largely underexplored at present9,11. Furthermore, there is rare research combining DDPM image augmentation 
with defect segmentation models, which serves as the rationale for this research and may also constitute one of 
the contributions of this study. Because of its powerful generating ability and its stability23, this study chooses 
the DDPM to increase the diversity of defects. This is achieved by generating pseudo defective images, thereby 
saving time for sample collection of the defects.

Methodology
The overall process of this research is shown in Fig. 1. This section will introduce the image-capturing hardware, 
the physical image structure and manual annotation methods. Additionally, it will discuss the details of the 
YOLOSeg proposed in this study, the important training tricks of the YOLOSeg, post-processing methods, and 
the metrics used.
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The hardware to capture die images and the manual annotation of defects
In this study, the imaging system shown in Fig. 2(a).11 captures images of the die surface. The charge-coupled 
device (CCD) model of this system is a Hitachi KP-FD202GV. The CCD is associated with an Olympus lens that 
has a 5X optical magnification. A 12 V/100W coaxial yellow light ring halogen lamp provides homogeneous 
lighting to highlight the surface features of the die. During imaging, each die is sequentially captured using an 
S-shaped scanning path controlled by a two-axis movement controller. The main pattern on the die is not exactly 
centered in the image to avoid overemphasizing positioning precision. Although a slight shift occurs, it is limited 
to a few pixels and does not affect the integrity of the die pattern. This slight shift between images renders the 
traditional golden template matching method inapplicable. Therefore, a deep learning method is suitable in this 
case thanks to its anti-shift ability.

The partial patch of the wafer die surface in this study is shown in Fig.  2(b). Due to the non-disclosure 
agreement with the company that provided the image, the full picture of the wafer die cannot be shown, and 
Fig. 2(b) has been discolored. The die mainly includes a pad, an ion implantation zone, a bottom layer, etc. 
The pads are used to be contacted by probes for in-circuit-test (ICT) of the die. The ion implantation area is 
used to accelerate the ion electric field, so that high-energy ions could be implanted into the die to generate 
a photolithography pattern. The bottom layer is a thin film protective layer to prevent the components from 
moisture, corrosion and so on. During the manufacturing process of the wafer, the surface of the die will be 
polluted by the falling of particles. The shape, particle size and falling position of the particles are uncertain, 
whose appearances are generally dark.

After gathering the die image set, an annotation file for each image is prepared for model training. As shown 
in Fig. 2(c), Labelme is used to mark defects, with each vertex of the bounding polygon along the defect contour 
manually defined and assigned a class label. This coordinate and class data are saved in JSON format as ground 
truth and then converted to YOLO format to align with YOLOSeg model training requirements. These bounding 
polygons also allow us to derive the minimum bounding box for each defect, providing additional ground truth 
for assessing defect detection performance.

Small defect segmentation model: YOLOSeg
The structure of proposed YOLOSeg is shown in Fig. 3. The YOLOv5s structure in the YOLOv5 family is chosen 
as a base detection model. The backbone consists of a Focus layer, cross-stage-partial (CSP) with or without 
residual blocks (named CSP1n or CSP2n, respectively, where n represents the number of repetitions) and naïve 
convolution (Conv) layers. In the neck, a spatial pyramid pooling fast (SPPF) block and path aggregation network 

Fig. 2.  The image-capturing system and the wafer die. (a) hardware configuration 11; (b) patch of a die; (c) 
manual annotation.

 

Fig. 1.  The overall flowchart of the proposed methodology.
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(PAN) are used for feature fusion. At the end of the model, three convolutional YOLOheads provide multi-scale 
anchor-based predictions. Information at the bottom of each feature map in Fig. 3 represents its spatial size as 
well as number of channels, respectively. In each YOLOhead, the spatial size is downsized to 32, 16, and 8 times 
and number of channels is 18 because number of defect classes is 1 and each of them has 3 anchors.

In addition to the object detection component of YOLOv5s, there is an auxiliary fully connected network 
called ProtoNet3. When combined with the detection head, this network completes the Ultralytics’s YOLOv5s-
segmentation architecture for instance segmentation24. In image segmentation, however, the main challenge lies 
in reconstructing the original image from a vector derived from the feature maps learned by the backbone25. 
The backbone of YOLOv5s is adapted to function as an encoder in a UNet-inspired structure. For the decoder, 
feature maps from the smallest scale of YOLOheads are chosen as the entry point. The neck structure of YOLOv5s 
enables a sophisticated fusion of semantic and fine-grained information. To facilitate information exchange at 
larger scales, additional shortcut connections between the encoder and decoder are incorporated. This structure 
is referred to as the UNEThead in YOLOSeg.

Specifically, a raw image passes through the backbone of the detection model and, simultaneously, is processed 
by a convolutional layer before entering the decoder to reduce the semantic gap. Two additional sets of feature 
maps are also extracted from the encoder at 304 × 304 and 152 × 152 scales for feature fusion within the decoder. 
The decoder first up-samples the input (initially 76 × 76) from the neck by a factor of two using a transpose 
convolution; the resulting feature maps are then concatenated with those from the encoder. This concatenated 
output is processed through a CSP bottleneck block with three CSP2n layers, a process that is repeated three 
times with progressively decreasing output channels. Finally, a depthwise convolution (DW Conv) is applied to 
produce the final prediction mask.

Notice that since coco.json, which is used for segmentation mAP computation, requires the same size of input 
image during training process for consistency. We train the detection part first. Then we train the segmentation 
part only by freezing the detection part. The total loss function consists of two components: one is the loss of 
YOLOv5s used for bounding boxes and classification; the other is a mask loss for segmentation. The formula for 
the total loss is given as follows:

	 Loss = Lossyolo

(
ybbox, ŷbbox

)
+ αLossmask

(
ymask, ŷmask

)
� (1)

Among them, Lossyolo includes the complete IoU (CIoU) loss that was used to measure the prediction 
performance of the position and size for the bounding box. In addition, Lossyolo includes the binary cross 
entropy (bce) loss with logits loss that was used to measure the prediction performance of the objectness for the 
bounding box. Note that because this study only predicts one class of defect, the item previously used by Lossyolo 
for predicting performance of the bounding box type is excluded here. ybbox and ŷbbox represent the ground-truth 
and prediction results of the bounding box, respectively. Lossmask mainly refers to dice loss, which is used to 
measure the prediction performance of the bounding polygon. ymask and ŷmask are the binary mask of ground-
truth and the predicted mask, and α is the weight of mask loss. The larger the value is, the more important the 
contribution of the mask loss is.

Tricks for training the YOLOSeg
In the process of model training, YOLOSeg has several important training tricks that affect the performance of 
the prediction: such as implementing the freezing mechanism during training process, determining the type 
of loss function, using an auto-anchor mechanism during model initialization to automatically determine the 

Fig. 3.  The proposed YOLOSeg structure.
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default size of the anchor boxes, and last but not least, utilizing advanced image augmentation. The definition 
and purpose of each training trick are stated in the following.

1) The freezing mechanism during training process: When training YOLOSeg, it may be challenging to 
simultaneously learn the detection part and the segmentation part. Therefore, as a training trick, all network 
weights are initially learned. After achieving a stable loss value, the weights of the detection part are frozen, and 
only the weights of the segmentation part undergo fine-tuning. This process continues until the detection part 
has been able to properly detect the size and position of the defect. With a well-trained detection model, the 
decoder can then focus more effectively on transforming feature maps from neck and backbone into prediction 
mask.

2) Determine the type for Lossmask to segment small objects: Compared with the entire die image, the 
proportion of defects is very small. If traditional bce loss was used to measure the segmentation performance, 
it would come up with the issue of unbalanced classification. The study considers two loss functions that can 
improve the detection of small objects, including dice loss and combination of bce and dice loss (bce-dice). For 
bce loss, each pixel pair of the ground-truth mask and predicted mask is computed; that is,

	
Lossbce

(
ymask, ŷmask

)
= − 1

N

∑N

i

[
ŷmask

i × log
(
ymask

i

)
+

(
1 − ŷmask

i

)
× log

(
1 − ymask

i

)]
� (2)

where N is total number of pixels and i is the index of pixel. Since the defects to be detected only occupy a 
very small area of the entire die image, the mechanism of bce will guide the model to learn a large area of the 
background, resulting in low prediction performance26. Therefore, it is necessary to increase the weight of the 
defect area27. Dice loss is calculated as twice the ratio of the area of the intersection of the ground-truth and the 
predicted mask, and the total areas of them.

	
Lossdice

(
ymask, ŷmask

)
= 2

∑N

i
ymask

i × ŷ
mask

i∑N

i
ymask

i + ŷ
mask

i + ϵ
� (3)

where ϵ is an extremely small value used for avoiding dividing by zero. Neither dice nor bce loss performed 
particularly well alone, so a combination loss function was implemented. The combination of bce and dice loss 
is the summation of both.

	 Lossbec−dice

(
ymask, ŷmask

)
= Lossbce

(
ymask, ŷmask

)
+ Lossdice

(
ymask, ŷmask

)
� (4)

bce-dice loss has been proven to outperform bce or dice alone28. The main reason is that bce loss can guide 
dice loss in its learning process. If the defect segmentation result under an iteration is not within the range of 
indicated small defects at all, then the dice loss would be 0, and the correct gradient descent direction could not 
be learned. In this situation, with the help of bce loss, the network can find a learning direction.

3) Explore optimal anchor box default size: The default size of the 9 anchor boxes in YOLOSeg is learned from 
the COCO dataset, and the default anchor box width and height can be as large as 373 × 326 pixels, which may 
not be suitable for the image set of small defect detection in this study. Conceivably if the default size of the 
anchor box and the size of the detection target exist large differences, that will negatively influence performance 
of the defecting model. It is necessary to search for a proper default size of the anchor box through an automatic 
mechanism. First, perform k-means clustering through the width and height ground-truth of the anchor boxes 
in the training set to obtain centroids of the width and height of given number of anchor boxes. Then, the 
centroids are used as the initial condition of genetic evolution (GE) algorithm. The GE algorithm will perform 
several evolutions on all anchor boxes. During the process, the CIoU and the best possible recall (BPR) serve as 
the fitness function. After the evolution, if the fitness of a certain width and height combination improves, assign 
the result to the anchor box. If not, ignore it.

4) Image augmentation using DDPM: In the state-of-art object detection models, rich augmentation 
universally brings additional performance gain and provides robust model prediction when noise background is 
present. For defect detection, image quality is hardly changed significantly due to manufacturing requirements. 
Therefore, mosaic, flipping and affine transformation are turned off in the present implementation. In this study, 
the DDPM image augmentation is used to increase the number of training images and generate defects with rich 
appearance, which helps to work efficiently as shown in Fig. 4. However, it is too laborious for the DDPM to 
directly generate a complete wafer die defective image and it can only draw the approximate outline of the die. 
For this reason, this study refers to11’s generation strategy of “focusing solely upon the defects itself ”. According 
to the auto-annotation procedure of11, only the coordinate information of the bounding box is provided in the 
annotation file, so the extracted defect patch contains redundant die background. This study attempts to make 
a difference. It fully uses the JSON annotation information corresponding to each training image, and then 
constructs a mask according to the contour of each defect. As might be expected, because the learning object 
is simplified, DDPM may easily generate a variety of “realistic” pseudo defects. Even when performing auto-
annotation to the pseudo defects, since the white background and the gray pseudo defect sharply contrast each 
other’s brightness, the mask for extracting the pseudo defect may be feasible through the Otsu binarization. 
Later, randomly extract the pseudo defects, the embedded positions and the defect-free images, and one can 
embed pseudo defects in a certain coordinate position of the defect-free image, which ultimately creates the 
pseudo defective images and their corresponding annotation files.
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Metrics for evaluating the model performance
Instance segmentation models often use mAP and mIoU to evaluate the model performance. The mAP is 
generally used to evaluate the performance of object detection, which measures the union of ground-truth 
bounding boxes and prediction bounding boxes divided by the intersection to obtain the patch-level IoU. When 
the patch-level IoU between a ground-truth bounding box and a prediction bounding box is greater than or 
equal to the AP IoU threshold, it represents a true positive (TP), which means accurate detection. If the patch-
level IoU is smaller than the threshold, it represents false positive (FP), which means inaccurate detection. When 
the ground-truth box is not detected, it represents a false negative (FN). Next, sort by descending order the 
confidence of the prediction box, and calculate each precision and recall rate to draw the precision-recall curve 
(PR curve). The precision represents how many proportions in the prediction box are greater than the IoU 
threshold; the recall rate represents how many proportions in the ground-truth box are accurately detected. In 
addition, the AP is the area under the curve of the PR curve; the mAP is the average value of AP obtained by 
each object type.

On the other hand, mIoU is used to evaluate the prediction performance of object segmentation, which 
measures the union of ground-truth bounding polygons and prediction bounding polygons divided by the 
intersection to obtain pixel-level IoU. The average IoU value calculated after comparing the prediction results 
with the real ground-truth is the mIoU.

For there is only one class of defect to be detected in this study, the AP and the IoU are adopted as the metrics 
of performance evaluation. In this study, we AP@IoU = 0.5 is chosen as the primary metric for evaluating model 
performance. This decision is driven by the metric’s widespread acceptance and historical significance in the 
field of object detection. AP@IoU = 0.5 offers a balanced approach by considering a prediction correct if IoU 
with the ground truth is at least 0.5. This threshold is traditionally used as it represents a reasonable compromise 
between detection accuracy and tolerance for small localization errors, making it particularly suitable for 
practical applications where perfect alignment is less critical. Before evaluation, note that a post-processing 
of non-maximum suppression (NMS) and clear segmentation are used3. The NMS will find the one with the 
highest objectness from the predicted bounding boxes with a high overlap (defined by a NMS IoU threshold). 
The clear segmentation will consider the region of predicted mask within the bounding boxes only, and the 
other region is regarded as nothing, even if in actual the model may predict there is something there. The post-
processing is shown in Fig. 5. We then use the result masks to compute the AP and the IoU.

Results and analysis
This section will first introduce the data material. Subsequently, a series of experiments on proposed YOLOSeg 
will be conducted. These include explaining the rationale of network structure, determining the training tricks, 
and demonstrating the perdition performance. The YOLOSeg has several key hyper-parameters. The YOLOSeg 
structure has an input shape of 608 × 608 × 3, with 3 anchors for each YOLOhead and an NMS IoU threshold 
of 0.45. The metric for YOLOSeg is set to an AP IoU threshold of 0.5, and the auto-anchor has 1,000 evolutions 
of GE and 9 clusters of k-means. The weight of mask loss is set to 6 for the loss function. The optimizer has a 
momentum of 0.937, an initial learning rate of 0.01, a final learning rate of 0.1, and a decay rate of 0.0005. The 

Fig. 4.  Processes of DDPM image augmentation and auto-annotation.
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DDPM has an input shape of 64 × 64 × 3 and generates pseudo images at 1.25 times the original number of 
images. Considering these configurations, YOLOSeg can be fine-tuned for specific tasks and datasets.

Image dataset
The image dataset of wafer die defects analyzed in this study is provided by a technology company in Taiwan. The 
original image size contains 1232 × 972 × 3 pixels. In this study, 549 defective images were collected as the dataset 
for training the model, which has been divided into 90% for training and 10% for validation. Besides the training 
image set, the study also used the validation image set to conduct sampling surveys and sensitivity experiments 
for the model. Another 275 defective images were used as a testing image set to evaluate the segmentation 
performance of the model.

The particle defects in semiconductor data have distinct characteristics that pose challenges for detection and 
segmentation. Firstly, the size and shape of these defects are generally very small, often constituting less than 
0.02% of the entire image’s size. They typically appear as irregular dark spots on the wafer surface, though their 
shapes can vary. Secondly, the defects often exhibit low contrast against the wafer background, making them 
difficult to distinguish. The similar tones of the wafer surface and the defects create challenges for both manual 
annotation and automated detection processes. This low contrast necessitates advanced techniques for accurate 
defect identification and segmentation. The characteristics, small size and low contrast, are prevalent in wafer die 
defects, yet they present significant difficulties for existing segmentation methods, which often lack the precision 
required for accurate measurement. This dataset was chosen for its representative nature of common challenges 
in semiconductor defect inspection. By using this dataset, we aim to demonstrate and develop more effective 
techniques capable of overcoming these limitations, thereby advancing the accuracy and reliability of defect 
detection and segmentation in semiconductor manufacturing.

Figure 6 displays the ground-truth distribution in the training image set. Figure 6(a) shows the distribution 
of defect centroids, with x and y representing the coordinates of these centroids. In Fig. 6(a), except for the four 
pad areas, particle defects scattered at various positions within the wafer die image. There are many spot-like 
patterns on the pad area, and it is difficult for the human eye to distinguish them from the particle defects. 
Therefore, during annotation, we opted to exclude the pad areas from consideration to maintain annotation 
clarity and accuracy. Figure  6(b) is the scatter diagram representing the normalized size of the defects. It is 
evident that most defects are extremely small and their height and width constitute less than 0.02 of the entire 
image’s dimensions.

Model spot checking and designing rationale of YOLOSeg structure
On the basis of the object detection model, this study has developed an instance segmentation model for wafer 
die particle defects. As shown in Table 1, the mask R-CNN, the YOLACT, and the SOLO are chosen to conduct 
model spot checking, which is widely practiced nowadays. According to the experiment, AP and IoU of mask 
R-CNN can reach 0.747 and 0.597, respectively, which are approximately 13% and 7% higher than those of 
YOLACT. The AP and IoU of recently developed SOLO are merely 0.104 and 0.083, respectively. It means that 
SOLO exhibits very low prediction performance. Generally speaking, mask R-CNN is good but it takes 6,000 
iterations to train a model, YOLACT is also good but its prediction performance is not as good as mask R-CNN, 
whereas SOLO struggles to detect small defects and is less suitable for this scenario.

The reason to resort to the instance segmentation is because it involves two fields: the object detection and 
the semantic segmentation model. In addition, we also acknowledge that there are models specifically designed 
for small object detection or segmentation in the two fields aforementioned. For this purpose, we endeavor to 
use three object detection models (Faster R-CNN, SSD and YOLOv5s) and three semantic segmentation models 
(FCN, SegNet and UNet) to perform model spot checking, so as to construct a prototype model suitable for the 
case in this study.

Let us refer to Table 1 again. Among the object detection models, Faster R-CNN, SSD and YOLOv5s are equal 
or better than mask R-CNN and YOLACT as far as AP is concerned. The AP of YOLOv5s even reaches 0.830, 
about 8.5% greater than that of Faster R-CNN and SSD, indicating that YOLOv5s has much better detection 
ability for small objects such as particle defects. Therefore, this study decided to select YOLOv5s as the detector 
of defect prediction boxes. In terms of semantic segmentation model, the IoU of UNet reaches 0.887, which 

Fig. 5.  The idea of clear segmentation process.
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means that its defect segmentation ability is much higher than that of mask R-CNN, YOLACT and SOLO, and is 
64% greater than that of FCN and SegNet. Hence this study decided to select UNet as the segmenter of polygon 
boxes for defect prediction.

Based on the model spot-checking experiment, it was found that the existing instance segmentation models 
can perform to a certain extent in both small defect detection and small defect segmentation. However, the pure 
object detection model YOLOv5s performs better in small defect detection, while the pure semantic segmentation 
model UNet excels in small defect segmentation. The YOLOSeg proposed in this study is a combination of 
YOLOv5s and UNet, and this experiment may be regarded as the motif of the structural design of YOLOSeg.

Ablation studies
As one is undergoing the model training, the planned training tricks will exert influences upon the prediction 
performance of YOLOSeg. We initiate an ablation study to gradually increment model training tricks so as 
to explore the strength of each training trick’s contribution to the overall model. As shown in Table 2, this 
study selected Experiment A as the baseline. Experiment A trained the detection part and segmentation part 
for YOLOSeg at the same time; Experiment B was based on Experiment A and froze the detection part before it 
trained the segmentation part. Experiment C is based upon Experiment B. When Experiment C was training the 
segmentation part, its mask loss was switched from dice loss to bce-dice loss. Experiment D and Experiment E 
continued to put in mechanisms such as auto-anchor and DDPM image augmentation.

During the training, the stochastic gradient descent (SGD) optimizer with momentum is chosen and the one-
cycler learning rate scheduler is used. The process of YOLO-based augmentation is also included. Experiments 
A and B show that if we train YOLOSeg with segmentation and detection tasks at once, predicting segmentation 
will have near zero performance compared with training detection first and train segmentation last while 
freezing detection part. This issue is possibly caused by the intrinsic property of segmentation and detection 
tasks, especially a small defect inspection problem. In Experiment A, a model has to learn both pixel level and 
bounding box level prediction, simultaneously. While in Experiment B, in the segmentation training process, 

Types Models AP@IoU = 0.5 IoU

Instance segmentation models

Mask R-CNN 0.747 0.597

YOLACT 0.613 0.523

SOLO 0.104 0.083

Object detection models

Faster R-CNN 0.801

–SSD 0.745

YOLOv5s 0.830

Semantic segmentation models

FCN

–

0.241

SegNet 0.256

UNet 0.887

Table 1.  Model spot checking for the training image set.

 

Fig. 6.  Distribution of ground-truth in the training image set. (a) distribution of the centroid; (b) distribution 
of the normalized width and height.
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the detection model part already possesses well-trained weight and bias for extracting useful information about 
defect location. With the aid of a detection model, the decoder can focus on how to transform feature maps from 
neck and backbone to prediction initial mask.

From Experiment B one knows that after freezing the detection part, the learning button of the segmentation 
part was pushed. Moreover, one sees from Experiment C that the most crucial training trick in this research is 
switching the mask loss of the segmentation part to bce-dice loss after the detection part was frozen. When the 
segmentation part gained the learning opportunity, dice loss continued to evaluate from a global perspective, 
while bce loss in a complementary fashion zooms in pixel by pixel from a microscopic perspective. The results of 
Experiment C show that when the AP rises slightly, there has been an explosive surge in the IoU.

This study also tried to switch dice loss towards focal loss, but the IoU could only reach 0.415, far lower than 
the performance of bce-dice loss, which was 0.715. The auto-anchor algorithm is found to be harmful for the 
AP about 3% but may increase IoU over 1% from the result of Experiment D for extremely small defects. The 
k-means and GE algorithm often offer small default anchor size which causes unstable gradient information flow 
or insufficient receptive field for prediction. Finally, Experiment E introduced the DDPM image augmentation 
to increase the quantity of training images and generate pseudo defects with rich appearances. With the help 
of this, it can be found a significant advantage in the improvement of the IoU. While AP bounces back slightly 
across experiments C, D, and E, the IoU increases from 0.715 in C to 0.754 in E. This indicates that DDPM 
augmentation significantly improves segmentation quality. Training with DDPM adds computational overhead, 
but this is balanced by a significant improvement in segmentation quality. The better segmentation accuracy 
justifies the extra training cost, making the trade-off worthwhile.

Die defect inspection performance of models
This experiment compared the prediction performance on the testing image set between state-of-the-art 
instance segmentation models and the proposed YOLOSeg. In particular, mask R-CNN2, YOLACT3, YUSEG5, 
and Ultralytics’s YOLOv5s-segmentation were chosen but SOLO4 was excluded from the comparison due to 
its underwhelming performance during the model spot checking process in sub-Sect. “Model spot checking 
and designing rationale of YOLOSeg structure”. In addition, YUSEG can be regarded as a two-stage YOLOSeg 
where YOLO and UNet were trained separately. First, YOLO was used to detect the defects in the input image, 
and then cropped it into patches in accordance with the prediction boxes. Then, put the cropped patches into 
UNet for defect segmentation. Whereas the proposed YOLOSeg is an end-to-end model and thus can also be 
called the one-stage YOLOSeg. Besides, the primary difference between the proposed YOLOSeg and Ultralytics’s 
YOLOv5s-segmentation lies in the segmentation head. YOLOSeg enhances the YOLOv5s model by integrating 
a UNet-like structure into the segmentation head.

Table 3 presents a comparison of different instance segmentation models in terms of number of model 
parameters in million, AP@IoU = 0.5, and IoU during testing stage. Mask R-CNN has the highest parameter 
count at 44 million, followed by YUSEG with 38.2 million and YOLACT with 31.2 million. Ultralytics’s 
YOLOv5s-segmentation is much lighter with 7.6 million parameters. The YOLOSeg models include additional 
parameters for augmentation: YOLOSeg with DCGAN has 3.9 million for DCGAN and 7.15 million for 
YOLOSeg, totaling 11.05 million, while YOLOSeg with DDPM has 7 million for DDPM and 7.15 million for 
YOLOSeg, totaling 14.15 million. The additional parameters for DCGAN and DDPM do not affect inference 
directly. In terms of AP@IoU = 0.5, Ultralytics’s YOLOv5s-segmentation leads with 0.872, showing strong 
detection capabilities. The YOLOSeg models also exhibit high AP, with 0.813 for DCGAN and 0.821 for DDPM, 

Methods Parameters (m) AP@IoU = 0.5 IoU

Mask R-CNN 2 44 0.745 0.594

YOLACT 3 31.2 0.592 0.528

YUSEG 5 38.2 0.743 0.576

Ultralytics’s YOLOv5s-segmentation 7.6 0.872 0.433

YOLOSeg with DCGAN image augmentation 3.9 + 7.15 0.813 0.722

YOLOSeg with DDPM image augmentation 7 + 7.15 0.821 0.732

Table 3.  Metrics of testing image set by instance segmentation models.

 

Experiment
Training tricks A B C D E

Freezing detection part ✓ ✓ ✓ ✓

Switching to bce-dice loss ✓ ✓ ✓

Applying auto-anchor ✓ ✓

Applying DDPM image augmentation ✓

AP@IoU = 0.5 0.822 0.826 0.836 0.801 0.816

IoU 0.008 0.059 0.715 0.727 0.754

Table 2.  Ablation studies of training tricks for the training image set.

 

Scientific Reports |         (2025) 15:2311 10| https://doi.org/10.1038/s41598-025-86323-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


demonstrating effective detection. Mask R-CNN and YUSEG have comparable AP values of 0.745 and 0.743, 
respectively, while YOLACT has the lowest AP at 0.592. The IoU shows that YOLOSeg with DDPM achieves 
the highest IoU of 0.732, indicating superior segmentation performance. YOLOSeg with DCGAN also shows a 
high IoU of 0.722. Mask R-CNN provides a decent IoU of 0.594, better than YUSEG at 0.576 and YOLACT at 
0.528. Ultralytics’s YOLOv5s-segmentation has the lowest IoU at 0.433, despite its high AP. There is a trade-off 
between AP and IoU. Ultralytics’s YOLOv5s-segmentation excels in AP, making it suitable for tasks prioritizing 
detection speed and efficiency, but its low IoU indicates less precise segmentation. In contrast, the proposed 
YOLOSeg models, especially with DDPM, balance high AP with significantly better IoU, making them ideal for 
applications requiring precise segmentation.

Figure 7 shows the qualitative prediction results of different instance segmentation models. Due to the signed 
non-disclosure agreement and the overlapping prediction results, we reproduced, sliced and discolored the 
prediction results of each model. Figure 7 shows that the proposed YOLOSeg is superior to the other instance 
segmentation models in terms of defect detection and segmentation. YOLOSeg has significantly fewer missing 
boxes, and the mask edge is closer to the defect contour.

Figure 8 illustrates two failure cases of the proposed YOLOSeg model. Comparing with Figs. 8(a3) and (b3), 
Figs. 8(a1)-(b2) show the detection and segmentation results where only a portion of the defects is identified. 
The model’s failure to detect all defects may be due to the subtle appearance of defects and their low contrast 
against the background. These reasons make it difficult to accurately detect and segment all defect areas.

Fig. 8.  Results missing detection and segmentation of die defect by proposed YOLOSeg. (a1) and (b1) the 
detection results; (a2) and (b2) the segmentation results; (a3) and (b3) the ground truth masks.

 

Fig. 7.  Results of die defect detection and segmentation. (a1) and (a3) patches of original images; (a2) and 
(a4) their corresponding ground truth masks; (b1)-(f4) the detection and segmentation results of Mask 
R-CNN, YOLACT, YUSEG, Ultralytics’s YOLOv5s-segmentation, and proposed YOLOSeg.
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Effects of DDPM image augmentation on prediction performance
The DDPM-based image augmentation method inputs the real particle defective patches. After adversarial 
learning, pseudo particle patches are generated and pasted randomly on the defect-free die images. Thereafter 
pseudo defective images can be generated, as Fig. 9 has presented below.

This study resorted to generating different numbers of pseudo defective images by virtues of DDPM and 
DCGAN, then augmented the training image set to 1 (the baseline), 1 and ¼, 1 and ½, 1 and ¾, and 2 times, 
respectively. After the images have been trained with the YOLOSeg, we continued to record the AP and the IoU 
trajectories of the training image set and the testing image set, as exhibited in Fig. 10. The AP of the training 
image set first rose slightly and then plunged sharply, while the IoU dropped dramatically first and then slightly 
went down. The AP and IoU of the testing image set are not only less than those of the training image set, but 
also show a decreasing trend. Overall, the best performance was recorded at the time when the pseudo image 
has been augmented to 1 and ¼ times. From this experiment, we have seen that particle defects generated by the 
DDPM and DCGAN can be naturally embedded on the wafer die image in different shapes, sizes, and numbers. 
This experiment increases the number of training images and diversifies the defects. More than that, YOLOSeg 
has the opportunity to learn richer appearances of the defect, eventually being a role to leverage the prediction 
performance of YOLOSeg.

Conclusion
Defective image collection, defect annotation, and feature engineering description are the most time-consuming 
tasks of defect inspection. The YOLOSeg proposed in this study effectively overcome these challenges step by step 
with DDPM generative pseudo defective images, DIP of auto-annotating pseudo defects, and fully convolutional 
automatic feature learning. Regardless of the variability in die patterns, adopting YOLOSeg, eliminates the 
need to collect a large number of defective samples, annotate numerous of defects, or rely heavily on feature 
engineering. Users only needs to prepare a few defective images with corresponding manual annotations. These 
can be adapted using the frozen layer, loss function conversion, auto-anchor, and the DDPM image augmentation 
to train YOLOSeg. After that, YOLOSeg is capable of predicting shapes, coordinates, and confidences of the 
defects. The conducted experiments show that YOLOSeg outperforms other current state-of-the-art models (AP 
reaching 0.821 and IoU reaching 0.732) including mask R-CNN, YOLACT, YUSEG, and Ultralytics’s YOLOv5s-
segmentation in the field of instance segmentation. These results endorse the applicability of YOLOSeg in the 
detecting and segmenting defects as small as the particles on the wafer die. YOLOSeg is potentially helpful for 
the defect detection and segmentation that has to deal with various kinds of wafer die patterns.

Each pixel in die images corresponds to 3.36  μm. The proposed method achieved an IoU score of 0.732 
which means that 73.2% of the segmented area accurately overlaps with the ground truth. Consequently, 

Fig. 10.  Trajectories of the AP and IoU with DDPM or DCGAN image augmentation.

 

Fig. 9.  Patches of the pseudo particle defect.
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the discrepancy from the ground truth is 26.8%. Although the proposed method represented a 20–30% 
improvement of IoU over state-of-the-arts, there is room for enhancement, especially given the stringent nano-
scale precision requirements in semiconductor manufacturing. Future research should focus on further refining 
the segmentation algorithms to reduce the error margin.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to restrictions 
from the anonymous semiconductor company in Taiwan but are available from the corresponding author upon 
reasonable request.
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