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YOLOSeg with applications
to wafer die particle defect
segmentation
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This study develops the you only look once segmentation (YOLOSeg), an end-to-end instance
segmentation model, with applications to segment small particle defects embedded on a wafer die.
YOLOSeg uses YOLOV5s as the basis and extends a UNet-like structure to form the segmentation head.
YOLOSeg can predict not only bounding boxes of particle defects but also the corresponding bounding
polygons. Furthermore, YOLOSeg also attempts to obtain a set of better weights by combining with
several training tricks such as freezing layers, switching mask loss, using auto-anchor and introducing
denoising diffusion probabilistic models (DDPM) image augmentation. The experiment results on the
testing image set show that YOLOSeg's average precision (AP) and intersection over union (loU) are as
high as 0.821 and 0.732 respectively. Even when the sizes of particle defects are extremely small, the
performance of YOLOSeg is far superior to current instance segmentation models such as mask R-CNN,
YOLACT, YUSEG, and Ultralytics’s YOLOv5s-segmentation. Additionally, preparing the training image
set forYOLOSeg is time-saving because it needs neither to collect a large number of defective samples,
nor to annotate pseudo defects, nor to design hand-craft features.

Keywo rds Auto-annotation, Defect segmentation, Wafer die, You only look once (YOLO), Denoising
diffusion probabilistic models (DDPM)

Dies embedded on a wafer need to be inspected for defects before packaging to ensure product quality, chiefly by
visual inspection (VI) or automated optical inspection (AOI). However, as for the VI, inexperienced operators
may miss or overkill defects, compounded by the fact that their standards for detecting defects can vary more
than those of experienced operators. The AOI system is easily disturbed by the surrounding environment, such
as light source attenuation, surge, and vibration, which affect the inspection results. In addition, the algorithm
of the machine is often customized, and the features used for image recognition must be manually described by
experts, which often cannot be generalized when dies or wafers with various types of appearances are inspected.
This is the reason why researchers have attempted to incorporate deep learning models into defect inspection
systems in recent years. Because deep learning models automatically extract features, the design of the algorithms
can be feature-free and may be generalized, leading to a certain degree has invariance against interference such
as translation and rotation.

Factory workers often lack time to collect defect samples, and they need to spend a lot of time and manpower
on defect annotation. Therefore, the first contribution of the method proposed in this study is to meet the needs
of image augmentation through the denoising diffusion probabilistic models (DDPM)'. By generating pseudo
defective images, both the number of images and the diversity of defects can be increased, enabling the model
to learn more defect features, to improve the ability of the model itself to segment defects, and to alleviate the
burden of collecting a large number of training images. However, while DDPM can generate pseudo images, it
does not provide corresponding annotation files. Based on this, the second contribution of this study is the auto-
annotation for pseudo defects through digital image processing (DIP) procedures. The combination of DDPM
and DIP enables the generation of image sets and annotation sets that can be used to train models, saving the
cost of sample collection and the cost of defect annotation.

Besides image augmentation, the third contribution of this study is to propose a novel you only look once
segmentation (YOLOSeg) model that can detect and segment small defects. YOLOSeg is based on the you only
look once, version 5 s (YOLOV5s) object detection model, aiming to obtain the predictive bounding boxes of the
defects, which facilitates identifying the locations and sizes of the defects. Additionally, it has a UNet-like model
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architecture, which obtains the predictive bounding polygons of defects, and further delineates the contours of
defects. To sum up, YOLOSeg is an instance segmentation model because it can predict not only the bounding
boxes but the bounding polygons of the targeted objects.

The rationale to develop YOLOSeg is that the die particle defects in this study are quite small. There is a need
to measure the area of those small defects in practice because it provides information to the traceability system
to track and trace along the manufacturing process. When using current instance segmentation models, such
as the mask regional-based convolutional neural networks (mask R-CNN)?, the you only look at coefficients
(YOLACT)?, the segmenting objects by locations (SOLO)*, the YUSEG®, or the Ultralyticss YOLOV5s-
segmentation (https://github.com/ultralytics/yolov5) to segment small particle defects, they often encounter
serious mis-detection problems, which affects the prediction performance. In this study YOLOSeg makes good
use of multi-scale detection, which performs defect segmentation at various scales on the feature maps extracted
and integrates the information of the bounding boxes and the bounding polygons into the loss function. As a
result, the end-to-end training is achieved. Thus, the quality of the die appearance could be checked.

The rest of this paper is structured as follows. Firstly, the existing literature on wafer inspection and the
applications of generative model based image augmentation in different defect inspection cases are reviewed in
Sect. “Literature Reeviw”. Sect. “Methodology” describes the proposed methodology which includes the image-
capturing hardware, the DDPM and the auto-annotation mechanism, and the model proposed YOLOSeg.
Section “Results and analysis“ presents the experimental results of a real-world die defect inspection problem. A
model spot checking experiment is conducted to show the designing rationale of proposed YOLOSeg structure.
Training tricks are suggested according to ablation studies. The defect segmentation results and comparative
analysis are also exhibited. The concluding remarks and suggestions for future study are discussed in Sect.
“Conclusion”

Literature review

Generally, available die or chip defect inspection techniques could be the golden template matching method,
the design-rule checking method, machine learning, and deep learning. The golden template matching method
reveals pixel-wise difference between the image to be inspected and the pre-established golden template, where
the significant difference indicates the potential defects. However, alignment issues must be addressed before
running this method. When running the design-rule checking method, engineers must manually describe
the geometric and textural features of each component according to the die or chip structure, component
appearance and defect appearance. Then they design a series of detecting logic for the defects as well as the
category to which the defects belong. Machine learning is mainly to establish the mapping relationship between
die/chip features and defect categories through supervised learning. However, the design-rule checking method,
machine learning need to design another completely different feature when the die/chip geometric features or
appearances are greatly different, which may result in time-consuming operation.

Literature on wafer and die/chip defect segmentation

In recent years, the application of deep learning to wafer, die or chip defect detection has attracted widely
attention®. This is mostly because the models eliminate manual feature extraction, and the model trained is
resistant to shift, rotation, exposure, and noise. Therefore, deep learning-related models have been utilized to
solve problems like defect classification, detection, and segmentation7‘14 on wafers, dies, or chips. Among these
three task, classification methods identify whether an image contains defects or not, but they cannot provide
information on the exact location and extent of the defects. Although defect classification seems relatively easy,
itis not easy to achieve in practice. The reason is that the area of defects on an image is often much smaller which
makes it difficult to achieve a satisfactory classification accuracy. Detection methods further identify where
the defects are located. But they not only ignore the issue of object angles but also often result in overlapping
bounding boxes for adjacent defects. On the other hand, segmentation methods provide a more detailed and
accurate representation of the defects’ contours, enabling a more precise analysis of defects” shape, size, and
location. Wen et al. proposed a die defect segmentation method, in which the feature maps were first generated
by feature pyramid networks with atrous convolution (FPNAC); then region proposals were generated with the
region proposal network (RPN)!3. Finally, the region proposals are mapped to the corresponding blocks and
fed into the deep multi-branches neural network (DMBNN) for segmentation. Its mean pixel accuracy (MPA)
was 93.97%, with the mean intersection over union (mlIoU) at 83.58%. Tao et al. segmented the conductive
particle defects in chips on glass substrate'%. A multi-frequency feature learning CNN was proposed, comprising
a UNet module, a multi-frequency module (MFM), and an active contour without edge (ACWE) loss function.
It aimed to enhance multi-frequency feature fusion of conductive particles, to accelerate network training and
to extract finer defect contour features. Experimental results showed that their method outperforms current
mainstream models. The rate of precision, recall, and mIoU reached 92.71%, 90.95%, and 81.61%, respectively.
Nakazawa and Kulkarni presented a method for detecting and segmenting abnormal wafer map defect patterns
using an encoder-decoder architecture’®. Synthetic wafer maps are used for training, validation, and testing,
demonstrating the model’s capability to detect unseen defect patterns in real wafer maps. The results show
that the proposed method effectively detects and segments defects, significantly enhancing the accuracy and
reliability. Chiu and Chen proposed a method combining data augmentation and Mask R-CNN for classifying
mixed-type wafer map defects'. Using real-world WM-811 K data, their approach enhanced defect pattern
classification and segmentation by incorporating copy-paste and rotational augmentation techniques. The model
achieved a single-type classification accuracy of 97.7%, with mixed-type classification showing 82% accuracy
and a hamming loss of 0.155. Nag et al. introduced WaferSegClassNet (WSCN), a light-weight network designed
for both classification and segmentation of semiconductor wafer defects'’. Utilizing an encoder-decoder
architecture and N-pair contrastive loss, WaferSegClassNet effectively handled single and mixed-type defects.
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It achieved high accuracy of 98.2% and Dice coefficient of 0.9999 on the MixedWM38 dataset. The model was
significantly lighter at 0.51 MB and faster, requiring only 150 epochs to converge compared to state-of-the-art
models. Wong used YOLOV5-segmentation to capture the region of interest (ROI) of the IC chip area'®. This step
was essential for isolating the chip accurately, allowing focused detection of defects like die rotations and cracks.
The model performed well, achieving a high mean average precision (mAP) of 99.5%.

Based on the summarization of the above literature, classification methods identify whether an image
contains defects or not, but they cannot provide information on the exact location and extent of the defects.
Although defect classification seems relatively easy, it is not easy to achieve in practice. The reason is that the
area of defects on an image is often much smaller which makes it difficult to achieve a satisfactory classification
accuracy. Detection methods further identify where the defects are located. But they not only ignore the issue
of object angles but also often result in overlapping bounding boxes for adjacent defects. On the other hand,
segmentation methods provide a more detailed and accurate representation of the defects’ contours, enabling
a more precise analysis of defects’ shape, size, and location. However, there is still room for improvement in
the current methods’ ability to segment small defects. The proposed YOLOSeg has potential in detecting small
die defects in semiconductor processes and can be a valuable addition to the field of defect analysis and quality
control.

Literature on generative model based image augmentation for defect segmentation
applications

Generative models, such as generative adversarial networks (GAN) and DDPM, have been instrumental in
advancing artificial intelligence, particularly in their ability to generate realistic and diverse synthetic data.
Goodfellow et al. proposed a prototype of GAN, which consists of a generator and a discriminator'®. The
generator randomly selects a real image from the image set and a pseudo image generated by a random number
vector, whereas the discriminator interprets the authenticity of the pseudo image according to features of the
real image. Through training and experience, the discriminator increases its ability to interpret the difference
between the real and the pseudo images, making the generator try to generate more “realistic” pseudo images.
Theoretically, the generator could ultimately generate very “real” pseudo images to the effect that it becomes
difficult to distinguish the real image from the pseudo one. Thus, by continuous adversarial learning process
between the two networks, it may be possible to create a better generative model. Ho et al. proposed a prototype
of a DDPM, which consists of a forward and a reverse process'. In the forward process, Gaussian noise is
gradually added to the original image over several steps, progressively making it resemble pure noise. In the
reverse process, a neural network learns to reverse the noise additions. It predicts and subtracts the noise at each
step, gradually reconstructing the original image from the noise.

With appropriate combinations with deep learning models, the generative models managed to significantly
improve the prediction performance. Performing image augmentation through generative models is currently
one of the most popular research topics. The idea is to add training images and to diversify the defect patterns
by generating pseudo defective images, thereby improving the model’s prediction performance and avoiding
overfitting during the training process. Auto-annotation algorithms could be beneficial after pseudo images
are generated. Chen et al. developed a set of particle defect detection algorithms through YOLOV3 for defect
detection, and utilized DIP to segment the primary and secondary axes of the defect, which served as a grading
tool for die quality!!. The experimental results showed that the pseudo defective images with size 64 x 64
generated by GAN archived 7.33% higher tested by AP. Tsai et al. worked on solar-power wafer patches (size
50% 50 with heterogeneous textures)?’. The first step was to augment the defective image set by two times
through CycleGAN, and the second was to feed these image patches into a CNN model similar to LeNet structure
for training. As for the inference, the experiment involved moving a 50 x50 sliding window move upon the
500 % 500 original image. The experimental results showed that the pixel classification accuracy rate was 81.5%.
De Ridder et al. introduced SEMI-DiffusionInst, a new framework for resist wafer defect classification and
segmentation using a DDPM with size of 480 x 480%!. This approach leveraged deep learning for precise defect
inspection in SEM images, outperforming previous methods in both bounding box and segmentation accuracy
by 3.83% and 2.10%, respectively. The study benchmarked various feature extractor networks, achieving notable
improvements, especially in detecting line collapse and thin bridge defects. Wijaya et al. analyzed microstructure
relationships in porous copper used in semiconductor wafers??. Their method integrated tomographic image
acquisition, segmentation, feature extraction, and synthetic microstructure reconstruction. Using a UNet model,
they achieved a segmentation accuracy of 95% and found that DDPM with size of 224 x 224 outperformed
cGAN in generating realistic microstructure images, crucial for predicting material properties like electrical
conductivity.

According to the literature review, the application of GAN and DDPM to semiconductors is an area that is still
largely underexplored at present®!!. Furthermore, there is rare research combining DDPM image augmentation
with defect segmentation models, which serves as the rationale for this research and may also constitute one of
the contributions of this study. Because of its powerful generating ability and its stability?®, this study chooses
the DDPM to increase the diversity of defects. This is achieved by generating pseudo defective images, thereby
saving time for sample collection of the defects.

Methodology

The overall process of this research is shown in Fig. 1. This section will introduce the image-capturing hardware,
the physical image structure and manual annotation methods. Additionally, it will discuss the details of the
YOLOSeg proposed in this study, the important training tricks of the YOLOSeg, post-processing methods, and
the metrics used.
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Fig. 1. The overall flowchart of the proposed methodology.
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Fig. 2. The image-capturing system and the wafer die. (a) hardware configuration ''; (b) patch of a die; (c)
manual annotation.

The hardware to capture die images and the manuval annotation of defects

In this study, the imaging system shown in Fig. 2(a).!! captures images of the die surface. The charge-coupled
device (CCD) model of this system is a Hitachi KP-FD202GV. The CCD is associated with an Olympus lens that
has a 5X optical magnification. A 12 V/100W coaxial yellow light ring halogen lamp provides homogeneous
lighting to highlight the surface features of the die. During imaging, each die is sequentially captured using an
S-shaped scanning path controlled by a two-axis movement controller. The main pattern on the die is not exactly
centered in the image to avoid overemphasizing positioning precision. Although a slight shift occurs, it is limited
to a few pixels and does not affect the integrity of the die pattern. This slight shift between images renders the
traditional golden template matching method inapplicable. Therefore, a deep learning method is suitable in this
case thanks to its anti-shift ability.

The partial patch of the wafer die surface in this study is shown in Fig. 2(b). Due to the non-disclosure
agreement with the company that provided the image, the full picture of the wafer die cannot be shown, and
Fig. 2(b) has been discolored. The die mainly includes a pad, an ion implantation zone, a bottom layer, etc.
The pads are used to be contacted by probes for in-circuit-test (ICT) of the die. The ion implantation area is
used to accelerate the ion electric field, so that high-energy ions could be implanted into the die to generate
a photolithography pattern. The bottom layer is a thin film protective layer to prevent the components from
moisture, corrosion and so on. During the manufacturing process of the wafer, the surface of the die will be
polluted by the falling of particles. The shape, particle size and falling position of the particles are uncertain,
whose appearances are generally dark.

After gathering the die image set, an annotation file for each image is prepared for model training. As shown
in Fig. 2(c), Labelme is used to mark defects, with each vertex of the bounding polygon along the defect contour
manually defined and assigned a class label. This coordinate and class data are saved in JSON format as ground
truth and then converted to YOLO format to align with YOLOSeg model training requirements. These bounding
polygons also allow us to derive the minimum bounding box for each defect, providing additional ground truth
for assessing defect detection performance.

Small defect segmentation model: YOLOSeg

The structure of proposed YOLOSeg is shown in Fig. 3. The YOLOV5s structure in the YOLOV5 family is chosen
as a base detection model. The backbone consists of a Focus layer, cross-stage-partial (CSP) with or without
residual blocks (named CSP1_ or CSP2 , respectively, where n represents the number of repetitions) and naive
convolution (Conv) layers. In the neck, a spatial pyramid pooling fast (SPPF) block and path aggregation network
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Fig. 3. The proposed YOLOSeg structure.

(PAN) are used for feature fusion. At the end of the model, three convolutional YOLOheads provide multi-scale
anchor-based predictions. Information at the bottom of each feature map in Fig. 3 represents its spatial size as
well as number of channels, respectively. In each YOLOhead, the spatial size is downsized to 32, 16, and 8 times
and number of channels is 18 because number of defect classes is 1 and each of them has 3 anchors.

In addition to the object detection component of YOLOV5s, there is an auxiliary fully connected network
called ProtoNet®. When combined with the detection head, this network completes the Ultralytics’s YOLOv5s-
segmentation architecture for instance segmentation?®. In image segmentation, however, the main challenge lies
in reconstructing the original image from a vector derived from the feature maps learned by the backbone®.
The backbone of YOLOVS5s is adapted to function as an encoder in a UNet-inspired structure. For the decoder,
feature maps from the smallest scale of YOLOheads are chosen as the entry point. The neck structure of YOLOv5s
enables a sophisticated fusion of semantic and fine-grained information. To facilitate information exchange at
larger scales, additional shortcut connections between the encoder and decoder are incorporated. This structure
is referred to as the UNEThead in YOLOSeg.

Specifically, a raw image passes through the backbone of the detection model and, simultaneously, is processed
by a convolutional layer before entering the decoder to reduce the semantic gap. Two additional sets of feature
maps are also extracted from the encoder at 304 x 304 and 152 x 152 scales for feature fusion within the decoder.
The decoder first up-samples the input (initially 76 x76) from the neck by a factor of two using a transpose
convolution; the resulting feature maps are then concatenated with those from the encoder. This concatenated
output is processed through a CSP bottleneck block with three CSP2_layers, a process that is repeated three
times with progressively decreasing output channels. Finally, a depthwise convolution (DW Conv) is applied to
produce the final prediction mask.

Notice that since coco.json, which is used for segmentation mAP computation, requires the same size of input
image during training process for consistency. We train the detection part first. Then we train the segmentation
part only by freezing the detection part. The total loss function consists of two components: one is the loss of
YOLOVS5s used for bounding boxes and classification; the other is a mask loss for segmentation. The formula for
the total loss is given as follows:

bbow’@\bbow) mask "‘ma,sk) (1)

Loss = Lossyolo (y + aLosSmask (y Y

Among them, Loss_, includes the complete IoU (CIoU) loss that was used to measure the prediction
performance of the position and size for the bounding box. In addition, Loss  includes the binary cross
entropy (bce) loss with logits loss that was used to measure the prediction performance of the objectness for the
bounding box. Note that because this study only predicts one class of defect, the item previously used by Loss, i,
for predicting performance of the bounding box type is excluded here. y°** and y**°* represent the ground-truth
and prediction results of the bounding box, respectively. Loss . mainly refers to dice loss, which is used to
measure the prediction performance of the bounding polygon. y"** and §™# are the binary mask of ground-
truth and the predicted mask, and a is the weight of mask loss. The larger the value is, the more important the
contribution of the mask loss is.

Tricks for training the YOLOSeg

In the process of model training, YOLOSeg has several important training tricks that affect the performance of
the prediction: such as implementing the freezing mechanism during training process, determining the type
of loss function, using an auto-anchor mechanism during model initialization to automatically determine the
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default size of the anchor boxes, and last but not least, utilizing advanced image augmentation. The definition
and purpose of each training trick are stated in the following.

1) The freezing mechanism during training process: When training YOLOSeg, it may be challenging to
simultaneously learn the detection part and the segmentation part. Therefore, as a training trick, all network
weights are initially learned. After achieving a stable loss value, the weights of the detection part are frozen, and
only the weights of the segmentation part undergo fine-tuning. This process continues until the detection part
has been able to properly detect the size and position of the defect. With a well-trained detection model, the
decoder can then focus more effectively on transforming feature maps from neck and backbone into prediction
mask.

2) Determine the type for Loss . to segment small objects: Compared with the entire die image, the
proportion of defects is very small. If traditional bce loss was used to measure the segmentation performance,
it would come up with the issue of unbalanced classification. The study considers two loss functions that can
improve the detection of small objects, including dice loss and combination of bee and dice loss (bce-dice). For
bee loss, each pixel pair of the ground-truth mask and predicted mask is computed; that is,

LOSSbce (ymask7§'mask) — 7% j\] [g;_mask % lOg (y;’nask) + (1 _ ’y\;’nask) % lOg (1 _ y'{nask)} (2)

where N is total number of pixels and i is the index of pixel. Since the defects to be detected only occupy a
very small area of the entire die image, the mechanism of bce will guide the model to learn a large area of the
background, resulting in low prediction performance?. Therefore, it is necessary to increase the weight of the
defect area?”. Dice loss is calculated as twice the ratio of the area of the intersection of the ground-truth and the
predicted mask, and the total areas of them.

3)

N mask ~mask
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where € is an extremely small value used for avoiding dividing by zero. Neither dice nor bce loss performed
particularly well alone, so a combination loss function was implemented. The combination of bce and dice loss
is the summation of both.

LOSSbecfdice (ymask’?jmask‘) — LOSSbce (ymask7§<mask) + Lossdice (ymask7 /y‘vnask) (4)

bce-dice loss has been proven to outperform bce or dice alone?. The main reason is that bce loss can guide
dice loss in its learning process. If the defect segmentation result under an iteration is not within the range of
indicated small defects at all, then the dice loss would be 0, and the correct gradient descent direction could not
be learned. In this situation, with the help of bce loss, the network can find a learning direction.

3) Explore optimal anchor box default size: The default size of the 9 anchor boxes in YOLOSeg is learned from
the COCO dataset, and the default anchor box width and height can be as large as 373 x 326 pixels, which may
not be suitable for the image set of small defect detection in this study. Conceivably if the default size of the
anchor box and the size of the detection target exist large differences, that will negatively influence performance
of the defecting model. It is necessary to search for a proper default size of the anchor box through an automatic
mechanism. First, perform k-means clustering through the width and height ground-truth of the anchor boxes
in the training set to obtain centroids of the width and height of given number of anchor boxes. Then, the
centroids are used as the initial condition of genetic evolution (GE) algorithm. The GE algorithm will perform
several evolutions on all anchor boxes. During the process, the CloU and the best possible recall (BPR) serve as
the fitness function. After the evolution, if the fitness of a certain width and height combination improves, assign
the result to the anchor box. If not, ignore it.

4) Image augmentation using DDPM: In the state-of-art object detection models, rich augmentation
universally brings additional performance gain and provides robust model prediction when noise background is
present. For defect detection, image quality is hardly changed significantly due to manufacturing requirements.
Therefore, mosaic, flipping and affine transformation are turned off in the present implementation. In this study,
the DDPM image augmentation is used to increase the number of training images and generate defects with rich
appearance, which helps to work efficiently as shown in Fig. 4. However, it is too laborious for the DDPM to
directly generate a complete wafer die defective image and it can only draw the approximate outline of the die.
For this reason, this study refers to!s generation strategy of “focusing solely upon the defects itself”. According
to the auto-annotation procedure of'!, only the coordinate information of the bounding box is provided in the
annotation file, so the extracted defect patch contains redundant die background. This study attempts to make
a difference. It fully uses the JSON annotation information corresponding to each training image, and then
constructs a mask according to the contour of each defect. As might be expected, because the learning object
is simplified, DDPM may easily generate a variety of “realistic” pseudo defects. Even when performing auto-
annotation to the pseudo defects, since the white background and the gray pseudo defect sharply contrast each
other’s brightness, the mask for extracting the pseudo defect may be feasible through the Otsu binarization.
Later, randomly extract the pseudo defects, the embedded positions and the defect-free images, and one can
embed pseudo defects in a certain coordinate position of the defect-free image, which ultimately creates the
pseudo defective images and their corresponding annotation files.
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Fig. 4. Processes of DDPM image augmentation and auto-annotation.

Metrics for evaluating the model performance

Instance segmentation models often use mAP and mIoU to evaluate the model performance. The mAP is
generally used to evaluate the performance of object detection, which measures the union of ground-truth
bounding boxes and prediction bounding boxes divided by the intersection to obtain the patch-level IoU. When
the patch-level IoU between a ground-truth bounding box and a prediction bounding box is greater than or
equal to the AP IoU threshold, it represents a true positive (TP), which means accurate detection. If the patch-
level IoU is smaller than the threshold, it represents false positive (FP), which means inaccurate detection. When
the ground-truth box is not detected, it represents a false negative (FN). Next, sort by descending order the
confidence of the prediction box, and calculate each precision and recall rate to draw the precision-recall curve
(PR curve). The precision represents how many proportions in the prediction box are greater than the IoU
threshold; the recall rate represents how many proportions in the ground-truth box are accurately detected. In
addition, the AP is the area under the curve of the PR curve; the mAP is the average value of AP obtained by
each object type.

On the other hand, mIoU is used to evaluate the prediction performance of object segmentation, which
measures the union of ground-truth bounding polygons and prediction bounding polygons divided by the
intersection to obtain pixel-level IoU. The average IoU value calculated after comparing the prediction results
with the real ground-truth is the mIoU.

For there is only one class of defect to be detected in this study, the AP and the IoU are adopted as the metrics
of performance evaluation. In this study, we AP@IoU =0.5 is chosen as the primary metric for evaluating model
performance. This decision is driven by the metric’s widespread acceptance and historical significance in the
field of object detection. AP@IoU =0.5 offers a balanced approach by considering a prediction correct if IoU
with the ground truth is at least 0.5. This threshold is traditionally used as it represents a reasonable compromise
between detection accuracy and tolerance for small localization errors, making it particularly suitable for
practical applications where perfect alignment is less critical. Before evaluation, note that a post-processing
of non-maximum suppression (NMS) and clear segmentation are used®. The NMS will find the one with the
highest objectness from the predicted bounding boxes with a high overlap (defined by a NMS IoU threshold).
The clear segmentation will consider the region of predicted mask within the bounding boxes only, and the
other region is regarded as nothing, even if in actual the model may predict there is something there. The post-
processing is shown in Fig. 5. We then use the result masks to compute the AP and the IoU.

Results and analysis

This section will first introduce the data material. Subsequently, a series of experiments on proposed YOLOSeg
will be conducted. These include explaining the rationale of network structure, determining the training tricks,
and demonstrating the perdition performance. The YOLOSeg has several key hyper-parameters. The YOLOSeg
structure has an input shape of 608 x 608 x 3, with 3 anchors for each YOLOhead and an NMS IoU threshold
of 0.45. The metric for YOLOSeg is set to an AP IoU threshold of 0.5, and the auto-anchor has 1,000 evolutions
of GE and 9 clusters of k-means. The weight of mask loss is set to 6 for the loss function. The optimizer has a
momentum of 0.937, an initial learning rate of 0.01, a final learning rate of 0.1, and a decay rate of 0.0005. The

Scientific Reports |

(2025) 15:2311 | https://doi.org/10.1038/s41598-025-86323-1 natureportfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Predicted a
bounding . lear
boxes l[i TS D segmentation
r
e
Predicted

mask ~

—_— ~

Fig. 5. The idea of clear segmentation process.

DDPM has an input shape of 64x64x3 and generates pseudo images at 1.25 times the original number of
images. Considering these configurations, YOLOSeg can be fine-tuned for specific tasks and datasets.

Image dataset

The image dataset of wafer die defects analyzed in this study is provided by a technology company in Taiwan. The
original image size contains 1232 x 972 x 3 pixels. In this study, 549 defective images were collected as the dataset
for training the model, which has been divided into 90% for training and 10% for validation. Besides the training
image set, the study also used the validation image set to conduct sampling surveys and sensitivity experiments
for the model. Another 275 defective images were used as a testing image set to evaluate the segmentation
performance of the model.

The particle defects in semiconductor data have distinct characteristics that pose challenges for detection and
segmentation. Firstly, the size and shape of these defects are generally very small, often constituting less than
0.02% of the entire image’s size. They typically appear as irregular dark spots on the wafer surface, though their
shapes can vary. Secondly, the defects often exhibit low contrast against the wafer background, making them
difficult to distinguish. The similar tones of the wafer surface and the defects create challenges for both manual
annotation and automated detection processes. This low contrast necessitates advanced techniques for accurate
defect identification and segmentation. The characteristics, small size and low contrast, are prevalent in wafer die
defects, yet they present significant difficulties for existing segmentation methods, which often lack the precision
required for accurate measurement. This dataset was chosen for its representative nature of common challenges
in semiconductor defect inspection. By using this dataset, we aim to demonstrate and develop more effective
techniques capable of overcoming these limitations, thereby advancing the accuracy and reliability of defect
detection and segmentation in semiconductor manufacturing.

Figure 6 displays the ground-truth distribution in the training image set. Figure 6(a) shows the distribution
of defect centroids, with x and y representing the coordinates of these centroids. In Fig. 6(a), except for the four
pad areas, particle defects scattered at various positions within the wafer die image. There are many spot-like
patterns on the pad area, and it is difficult for the human eye to distinguish them from the particle defects.
Therefore, during annotation, we opted to exclude the pad areas from consideration to maintain annotation
clarity and accuracy. Figure 6(b) is the scatter diagram representing the normalized size of the defects. It is
evident that most defects are extremely small and their height and width constitute less than 0.02 of the entire
image’s dimensions.

Model spot checking and designing rationale of YOLOSeg structure

On the basis of the object detection model, this study has developed an instance segmentation model for wafer
die particle defects. As shown in Table 1, the mask R-CNN, the YOLACT, and the SOLO are chosen to conduct
model spot checking, which is widely practiced nowadays. According to the experiment, AP and IoU of mask
R-CNN can reach 0.747 and 0.597, respectively, which are approximately 13% and 7% higher than those of
YOLACT. The AP and IoU of recently developed SOLO are merely 0.104 and 0.083, respectively. It means that
SOLO exhibits very low prediction performance. Generally speaking, mask R-CNN is good but it takes 6,000
iterations to train a model, YOLACT is also good but its prediction performance is not as good as mask R-CNN,
whereas SOLO struggles to detect small defects and is less suitable for this scenario.

The reason to resort to the instance segmentation is because it involves two fields: the object detection and
the semantic segmentation model. In addition, we also acknowledge that there are models specifically designed
for small object detection or segmentation in the two fields aforementioned. For this purpose, we endeavor to
use three object detection models (Faster R-CNN, SSD and YOLOV5s) and three semantic segmentation models
(FCN, SegNet and UNet) to perform model spot checking, so as to construct a prototype model suitable for the
case in this study.

Let us refer to Table 1 again. Among the object detection models, Faster R-CNN, SSD and YOLOv5s are equal
or better than mask R-CNN and YOLACT as far as AP is concerned. The AP of YOLOvV5s even reaches 0.830,
about 8.5% greater than that of Faster R-CNN and SSD, indicating that YOLOv5s has much better detection
ability for small objects such as particle defects. Therefore, this study decided to select YOLOV5s as the detector
of defect prediction boxes. In terms of semantic segmentation model, the IoU of UNet reaches 0.887, which
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Fig. 6. Distribution of ground-truth in the training image set. (a) distribution of the centroid; (b) distribution
of the normalized width and height.

Types Models AP@IoU=0.5 | IoU
Mask R-CNN | 0.747 0.597

Instance segmentation models | YOLACT 0.613 0.523
SOLO 0.104 0.083
Faster R-CNN | 0.801

Object detection models SSD 0.745 -
YOLOV5s 0.830
FCN 0.241

Semantic segmentation models | SegNet - 0.256
UNet 0.887

Table 1. Model spot checking for the training image set.

means that its defect segmentation ability is much higher than that of mask R-CNN, YOLACT and SOLO, and is
64% greater than that of FCN and SegNet. Hence this study decided to select UNet as the segmenter of polygon
boxes for defect prediction.

Based on the model spot-checking experiment, it was found that the existing instance segmentation models
can perform to a certain extent in both small defect detection and small defect segmentation. However, the pure
object detection model YOLOV5s performs better in small defect detection, while the pure semantic segmentation
model UNet excels in small defect segmentation. The YOLOSeg proposed in this study is a combination of
YOLOvV5s and UNet, and this experiment may be regarded as the motif of the structural design of YOLOSeg.

Ablation studies

As one is undergoing the model training, the planned training tricks will exert influences upon the prediction
performance of YOLOSeg. We initiate an ablation study to gradually increment model training tricks so as
to explore the strength of each training trick’s contribution to the overall model. As shown in Table 2, this
study selected Experiment A as the baseline. Experiment A trained the detection part and segmentation part
for YOLOSeg at the same time; Experiment B was based on Experiment A and froze the detection part before it
trained the segmentation part. Experiment C is based upon Experiment B. When Experiment C was training the
segmentation part, its mask loss was switched from dice loss to bee-dice loss. Experiment D and Experiment E
continued to put in mechanisms such as auto-anchor and DDPM image augmentation.

During the training, the stochastic gradient descent (SGD) optimizer with momentum is chosen and the one-
cycler learning rate scheduler is used. The process of YOLO-based augmentation is also included. Experiments
A and B show that if we train YOLOSeg with segmentation and detection tasks at once, predicting segmentation
will have near zero performance compared with training detection first and train segmentation last while
freezing detection part. This issue is possibly caused by the intrinsic property of segmentation and detection
tasks, especially a small defect inspection problem. In Experiment A, a model has to learn both pixel level and
bounding box level prediction, simultaneously. While in Experiment B, in the segmentation training process,
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Experiment

Training tricks A B C D E
Freezing detection part v v v v
Switching to bee-dice loss v v v
Applying auto-anchor v v
Applying DDPM image augmentation v
AP@IoU=0.5 0.822 | 0.826 | 0.836 | 0.801 | 0.816
TIoU 0.008 | 0.059 | 0.715 | 0.727 | 0.754

Table 2. Ablation studies of training tricks for the training image set.

Methods Parameters (m) | AP@IoU=0.5 | IoU

Mask R-CNN 2 44 0.745 0.594
YOLACT? 312 0.592 0.528
YUSEG® 38.2 0.743 0.576
Ultralytics's YOLOv5s-segmentation 7.6 0.872 0.433
YOLOSeg with DCGAN image augmentation | 3.9+7.15 0.813 0.722
YOLOSeg with DDPM image augmentation | 7+7.15 0.821 0.732

Table 3. Metrics of testing image set by instance segmentation models.

the detection model part already possesses well-trained weight and bias for extracting useful information about
defect location. With the aid of a detection model, the decoder can focus on how to transform feature maps from
neck and backbone to prediction initial mask.

From Experiment B one knows that after freezing the detection part, the learning button of the segmentation
part was pushed. Moreover, one sees from Experiment C that the most crucial training trick in this research is
switching the mask loss of the segmentation part to bce-dice loss after the detection part was frozen. When the
segmentation part gained the learning opportunity, dice loss continued to evaluate from a global perspective,
while bee loss in a complementary fashion zooms in pixel by pixel from a microscopic perspective. The results of
Experiment C show that when the AP rises slightly, there has been an explosive surge in the IoU.

This study also tried to switch dice loss towards focal loss, but the IoU could only reach 0.415, far lower than
the performance of bce-dice loss, which was 0.715. The auto-anchor algorithm is found to be harmful for the
AP about 3% but may increase IoU over 1% from the result of Experiment D for extremely small defects. The
k-means and GE algorithm often offer small default anchor size which causes unstable gradient information flow
or insufficient receptive field for prediction. Finally, Experiment E introduced the DDPM image augmentation
to increase the quantity of training images and generate pseudo defects with rich appearances. With the help
of this, it can be found a significant advantage in the improvement of the IoU. While AP bounces back slightly
across experiments C, D, and E, the IoU increases from 0.715 in C to 0.754 in E. This indicates that DDPM
augmentation significantly improves segmentation quality. Training with DDPM adds computational overhead,
but this is balanced by a significant improvement in segmentation quality. The better segmentation accuracy
justifies the extra training cost, making the trade-oftf worthwhile.

Die defect inspection performance of models

This experiment compared the prediction performance on the testing image set between state-of-the-art
instance segmentation models and the proposed YOLOSeg. In particular, mask R-CNNZ, YOLACT?, YUSEG®,
and Ultralytics's YOLOv5s-segmentation were chosen but SOLO* was excluded from the comparison due to
its underwhelming performance during the model spot checking process in sub-Sect. “Model spot checking
and designing rationale of YOLOSeg structure”. In addition, YUSEG can be regarded as a two-stage YOLOSeg
where YOLO and UNet were trained separately. First, YOLO was used to detect the defects in the input image,
and then cropped it into patches in accordance with the prediction boxes. Then, put the cropped patches into
UNet for defect segmentation. Whereas the proposed YOLOSeg is an end-to-end model and thus can also be
called the one-stage YOLOSeg. Besides, the primary difference between the proposed YOLOSeg and Ultralytics’s
YOLOv5s-segmentation lies in the segmentation head. YOLOSeg enhances the YOLOv5s model by integrating
a UNet-like structure into the segmentation head.

Table 3 presents a comparison of different instance segmentation models in terms of number of model
parameters in million, AP@IoU=0.5, and IoU during testing stage. Mask R-CNN has the highest parameter
count at 44 million, followed by YUSEG with 38.2 million and YOLACT with 31.2 million. Ultralytics’s
YOLOV5s-segmentation is much lighter with 7.6 million parameters. The YOLOSeg models include additional
parameters for augmentation: YOLOSeg with DCGAN has 3.9 million for DCGAN and 7.15 million for
YOLOSeg, totaling 11.05 million, while YOLOSeg with DDPM has 7 million for DDPM and 7.15 million for
YOLOSeg, totaling 14.15 million. The additional parameters for DCGAN and DDPM do not affect inference
directly. In terms of AP@IoU=0.5, Ultralyticss YOLOv5s-segmentation leads with 0.872, showing strong
detection capabilities. The YOLOSeg models also exhibit high AP, with 0.813 for DCGAN and 0.821 for DDPM,
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Fig. 7. Results of die defect detection and segmentation. (al) and (a3) patches of original images; (a2) and
(a4) their corresponding ground truth masks; (b1)-(f4) the detection and segmentation results of Mask
R-CNN, YOLACT, YUSEG, Ultralytics’s YOLOv5s-segmentation, and proposed YOLOSeg.
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Fig. 8. Results missing detection and segmentation of die defect by proposed YOLOSeg. (al) and (b1) the
detection results; (a2) and (b2) the segmentation results; (a3) and (b3) the ground truth masks.

demonstrating effective detection. Mask R-CNN and YUSEG have comparable AP values of 0.745 and 0.743,
respectively, while YOLACT has the lowest AP at 0.592. The IoU shows that YOLOSeg with DDPM achieves
the highest IoU of 0.732, indicating superior segmentation performance. YOLOSeg with DCGAN also shows a
high IoU of 0.722. Mask R-CNN provides a decent IoU of 0.594, better than YUSEG at 0.576 and YOLACT at
0.528. Ultralyticss YOLOv5s-segmentation has the lowest IoU at 0.433, despite its high AP. There is a trade-off
between AP and IoU. Ultralytics's YOLOv5s-segmentation excels in AP, making it suitable for tasks prioritizing
detection speed and efficiency, but its low IoU indicates less precise segmentation. In contrast, the proposed
YOLOSeg models, especially with DDPM, balance high AP with significantly better IoU, making them ideal for
applications requiring precise segmentation.

Figure 7 shows the qualitative prediction results of different instance segmentation models. Due to the signed
non-disclosure agreement and the overlapping prediction results, we reproduced, sliced and discolored the
prediction results of each model. Figure 7 shows that the proposed YOLOSeg is superior to the other instance
segmentation models in terms of defect detection and segmentation. YOLOSeg has significantly fewer missing
boxes, and the mask edge is closer to the defect contour.

Figure 8 illustrates two failure cases of the proposed YOLOSeg model. Comparing with Figs. 8(a3) and (b3),
Figs. 8(al)-(b2) show the detection and segmentation results where only a portion of the defects is identified.
The model’s failure to detect all defects may be due to the subtle appearance of defects and their low contrast
against the background. These reasons make it difficult to accurately detect and segment all defect areas.
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Fig. 9. Patches of the pseudo particle defect.
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Fig. 10. Trajectories of the AP and IoU with DDPM or DCGAN image augmentation.

Effects of DDPM image augmentation on prediction performance

The DDPM-based image augmentation method inputs the real particle defective patches. After adversarial
learning, pseudo particle patches are generated and pasted randomly on the defect-free die images. Thereafter
pseudo defective images can be generated, as Fig. 9 has presented below.

This study resorted to generating different numbers of pseudo defective images by virtues of DDPM and
DCGAN, then augmented the training image set to 1 (the baseline), 1 and %, 1 and %, 1 and %, and 2 times,
respectively. After the images have been trained with the YOLOSeg, we continued to record the AP and the IoU
trajectories of the training image set and the testing image set, as exhibited in Fig. 10. The AP of the training
image set first rose slightly and then plunged sharply, while the IoU dropped dramatically first and then slightly
went down. The AP and IoU of the testing image set are not only less than those of the training image set, but
also show a decreasing trend. Overall, the best performance was recorded at the time when the pseudo image
has been augmented to 1 and % times. From this experiment, we have seen that particle defects generated by the
DDPM and DCGAN can be naturally embedded on the wafer die image in different shapes, sizes, and numbers.
This experiment increases the number of training images and diversifies the defects. More than that, YOLOSeg
has the opportunity to learn richer appearances of the defect, eventually being a role to leverage the prediction
performance of YOLOSeg.

Conclusion
Defective image collection, defect annotation, and feature engineering description are the most time-consuming
tasks of defect inspection. The YOLOSeg proposed in this study effectively overcome these challenges step by step
with DDPM generative pseudo defective images, DIP of auto-annotating pseudo defects, and fully convolutional
automatic feature learning. Regardless of the variability in die patterns, adopting YOLOSeg, eliminates the
need to collect a large number of defective samples, annotate numerous of defects, or rely heavily on feature
engineering. Users only needs to prepare a few defective images with corresponding manual annotations. These
can be adapted using the frozen layer, loss function conversion, auto-anchor, and the DDPM image augmentation
to train YOLOSeg. After that, YOLOSeg is capable of predicting shapes, coordinates, and confidences of the
defects. The conducted experiments show that YOLOSeg outperforms other current state-of-the-art models (AP
reaching 0.821 and IoU reaching 0.732) including mask R-CNN, YOLACT, YUSEG, and Ultralytics’s YOLOv5s-
segmentation in the field of instance segmentation. These results endorse the applicability of YOLOSeg in the
detecting and segmenting defects as small as the particles on the wafer die. YOLOSeg is potentially helpful for
the defect detection and segmentation that has to deal with various kinds of wafer die patterns.

Each pixel in die images corresponds to 3.36 pm. The proposed method achieved an IoU score of 0.732
which means that 73.2% of the segmented area accurately overlaps with the ground truth. Consequently,
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the discrepancy from the ground truth is 26.8%. Although the proposed method represented a 20-30%
improvement of IoU over state-of-the-arts, there is room for enhancement, especially given the stringent nano-
scale precision requirements in semiconductor manufacturing. Future research should focus on further refining
the segmentation algorithms to reduce the error margin.

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due to restrictions
from the anonymous semiconductor company in Taiwan but are available from the corresponding author upon
reasonable request.
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