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The ability to assess and manage corporate credit risk enables financial institutions and investors to 
mitigate risk, enhance the precision of their decision-making, and adapt their strategies in a prompt 
and effective manner. The growing quantity of data and the increasing complexity of indicators have 
rendered traditional machine learning methods ineffective in enhancing the accuracy of credit risk 
assessment. Consequently, academics have begun to explore the potential of models based on deep 
learning. In this paper, we apply the concept of combining Transformer and CNN to the financial field, 
building on the traditional CNN-Transformer model’s capacity to effectively process local features, 
perform parallel processing, and handle long-distance dependencies. To enhance the model’s ability to 
capture financial data over extended periods and address the challenge of high-dimensional financial 
data, we propose a novel hybrid model, TCN-DilateFormer. This integration improves the accuracy of 
corporate credit risk assessment. The empirical study demonstrates that the model exhibits superior 
prediction accuracy compared to traditional machine learning assessment models, thereby offering a 
novel and efficacious tool for corporate credit risk assessment.
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Enterprise credit risk is not only a major concern in the financial sector but is also closely tied to societal 
development. Credit risk impacts the survival of banks, influencing the stability of both the country and society1. 
To maintain national economic stability in the wave of globalization, it is essential to actively assess enterprise 
credit risk and implement effective risk assessment methods2.

The evaluation of enterprise credit risk can also be regarded as a study of corporate financial distress, essentially 
a binary or multi-class classification problem3. With the continuous growth in data volume and complexity, the 
development of credit risk assessment methods has progressed through three stages: manual judgment based 
on experience, statistical discriminant analysis, and big data evaluation using machine learning techniques4. 
This evolution reflects a shift from qualitative to quantitative analysis and from indicator-based to model-based 
approaches5. Although traditional assessment methods have addressed corporate credit risk identification to 
some extent, the changing financial market environment and the explosive growth of data urgently call for more 
efficient and accurate evaluation models.

This study aims to develop a novel hybrid model to enhance the accuracy and reliability of credit risk 
prediction. Specifically, it proposes a hybrid model based on the CNN and Transformer framework but replaces 
the standard components with temporal convolutional network (TCN) and DilateFormer modules to optimize 
the extraction and modeling of time-series features. For publicly listed companies, default cases are a minority, 
leading to a significant imbalance between default and non-default data. To address this issue, a Gaussian noise-
based data augmentation technique is employed during model training to improve the classification performance 
under imbalanced sample conditions. Additionally, this study modifies the attention mechanisms in both the 
TCN and DilateFormer modules, introducing optimizations in both the temporal and channel dimensions. 
These enhancements significantly improve the model’s feature extraction capability and prediction performance.

Based on the above analysis, this study establishes a hybrid model based on TCN-DilateFormer to evaluate 
the credit risk of publicly listed companies, utilizing real financial indicator data from the CSMAR Database 
covering the years 2012 to 2022. The model employs the TCN module to extract local features from raw financial 
data, while the DilateFormer module processes and integrates sequence features. Ultimately, the model outputs 
credit risk prediction labels for each company, enabling accurate judgment and prediction of corporate defaults.
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The key innovations of this study are as follows: (1) A novel hybrid model based on CNN and Transformer 
is designed, enhancing the model’s capability in handling time-series classification tasks. (2) Gaussian noise 
is introduced into the default data to address the issue of data imbalance, thereby improving the model’s 
generalization ability and prediction accuracy. (3) The attention mechanism is refined to achieve joint 
optimization across the temporal and channel dimensions, significantly boosting the model’s feature extraction 
capability and prediction performance.

Our complete workflow, as illustrated in Fig. 1, comprises several key steps: data import and processing, 
model training and validation, parameter optimization, result analysis, and future outlook. The remainder of this 
paper is organized as follows: Sect “Related works” reviews related work on credit risk analysis. Sect “Theoretical 
explanation of CNN and Transformer” provides a theoretical overview of CNN, Transformer, and related 
models. Sect “Methodology” details the architecture and design of the TCN-DilateFormer model. Sect “Data” 
introduces the dataset and data processing methods. Sect  “Empirical analysis” presents the experiments and 
provides a discussion of the results. Sect  “Discussion” explores the future prospects of the proposed model. 
Sect “Conclusion” concludes the study with key findings.

Related works
Manual discrimination methods
Early credit risk assessment primarily relied on expert judgment. Sowers and David (1942)6 developed personal 
credit risk evaluation metrics, using experience-based assessments and expert scoring to judge individual risks. 
Early methods included the 5  C factor analysis and the DuPont financial analysis. However, these methods 
heavily depended on subjective expert opinions, resulting in evaluation outcomes that were often unconvincing 
due to their significant subjectivity7.

Statistical discriminant analysis methods
Following Fisher’s pioneering work on credit rating using the least squares method8, researchers increasingly 
adopted rigorous statistical approaches. Statistical methods based on linear discrimination were widely utilized 
to address the limitations of manual judgment, integrating the concept of mathematical modeling into the field 
of credit risk assessment9. Among these, Altman’s multiple discriminant analysis model10 became a landmark, 
driving the development of statistical models in credit evaluation. Representative methods in this category 
include the Z-score model and Logistic regression11, as well as multivariate statistical models such as multiple 
discriminant analysis and multivariate regression analysis. These models typically offer high accuracy, relying 
on only a few variables to effectively discriminate between samples. Their strong interpretability makes them 
particularly effective in low-dimensional data analysis tasks. However, these models impose strict assumptions, 
which real-world financial data often fail to fully satisfy, limiting their applicability. Additionally, their predictive 
capabilities have gradually been surpassed by subsequent machine learning methods12.

Machine learning-based methods
With the advent of the era of big data, machine learning methods have demonstrated significant advantages in 
credit risk assessment. Compared to traditional statistical models, machine learning algorithms such as support 
vector machines (SVMs), neural networks, and random forests are better equipped to handle large-scale data 
and model complex nonlinear relationships. For instance, Xiaohong Yu13 achieved a 100% recognition rate for 
samples using a random forest-based P2P lending risk warning model. Similarly, Luo et al.14 applied a non-kernel 
surface SVM model to credit risk assessment and demonstrated its superior predictive performance compared to 
traditional classification models. These studies highlight the remarkable effectiveness and advantages of machine 
learning algorithms over traditional statistical methods in credit risk evaluation. However, machine learning 
methods face challenges in processing large-scale nonlinear data and are sensitive to data quality. Inaccurate or 
noisy data can negatively impact the performance of these models.

Deep learning-based methods
As a branch of machine learning, deep learning has gained wide application in credit risk assessment due to its 
advantages in automatically learning and extracting high-dimensional features from data15. Neural networks, 
one of the representative techniques of deep learning16, are commonly used for tasks such as classification 
and regression. Among these, convolutional neural networks (CNNs) are particularly notable for their robust 
ability to extract local features, significantly reducing computational complexity and the number of training 
parameters17. CNNs are widely used for image feature extraction and sequence feature mining. Existing studies 
have applied CNNs to the financial sector; for example, some researchers have constructed CNN-LSTM hybrid 
models for personal risk assessment, estimating customer default probabilities18. However, CNNs are more 
suited to handling data with local spatial structures, such as images or text, and struggle to capture long-term 
dependencies and global information in time-series data19, which are essential in credit risk analysis. Recently, 
Transformer models have achieved breakthrough advancements in artificial intelligence through self-supervised 
predictive encoding and have been widely applied to tasks such as natural language processing, computer vision, 
and time-series analysis20. For example, Tian et al.21 employed Swin-MSP to train an image recognition model, 
incorporating spectral masking pretraining techniques and hierarchical architectures for layered modeling of 
hyperspectral data. Transformer models excel at extracting latent information from complex, high-dimensional 
datasets and effectively capturing time-series features and logical relationships, thereby offering more precise 
assessments in credit risk prediction. Existing research has applied Transformer models to corporate credit 
risk analysis. Stevenson et al. utilized a Transformer-based BERT model combined with textual data to predict 
the credit risk of micro-enterprises, achieving promising results; however, their study did not consider time-
series data22. Similarly, Korangi et al. developed the Transformer-based TEP model to predict the credit risk of 
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medium-sized listed companies, outperforming traditional models23. Despite its strong ability to capture long-
term dependencies, the TEP model still has room for improvement in local feature extraction.

Development of hybrid models
To overcome the limitations of single models, researchers have explored combining CNN and Transformer 
architectures, leveraging the local feature extraction capability of CNNs and the long-distance dependency 
modeling power of Transformers to improve the performance of credit risk prediction24. However, traditional 

Fig. 1.  Overall framework diagram.
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CNN and Transformer models both face limitations when handling time-series-based credit risk classification 
tasks, leaving their hybrid CNN-Transformer models room for further refinement. One key issue is that hybrid 
models heavily depend on the Transformer component for processing dynamic time-series data. Due to the 
structural limitations of CNNs, expanding the receptive field often requires adding more convolutional layers 
to enhance data reception. However, excessively deep networks may result in gradient explosion or vanishing 
problems, leading to information loss and reduced prediction accuracy. To address these challenges, some 
studies have introduced improved CNN-based modules, such as temporal convolutional networks (TCNs)25, 
and incorporated DilateFormer modules in the Transformer component26 to optimize the temporal analysis 
capability of these models.

In summary, while existing models have made significant progress in corporate credit risk assessment, 
numerous challenges remain. Developing effective hybrid models that integrate multiple techniques for 
classifying time-series financial data is a key direction for future research.

Theoretical explanation of CNN and Transformer
CNN and TCN architectures
CNN is a widely used and powerful deep learning architecture that mimics the human visual system to efficiently 
recognize and classify objects and features in images. Its local connectivity and weight-sharing features 
significantly reduce model parameters, making it suitable for large-scale data processing. The main components 
of CNN include four core modules: the convolutional layer, activation layer, pooling layer, and fully connected 
layer. The convolutional layer, a key component of CNN, operates by sliding a set of convolutional kernels 
over the input data to extract local features, generating a two-dimensional matrix called the feature map. The 
mathematical expression for the convolution operation is:

	
O (m, n) =

∑
i

∑
j

I (m + I, n + j) · K (I, j) + b� (1)

Where I is the input image data, K is the convolution kernel, O is the output feature map, (m, n) are the input 
image coordinates, (i, j) are the convolution kernel coordinates, and b is the bias term.

The pooling layer processes the feature maps generated by the convolutional layer to reduce their size, decrease 
computational load, and prevent overfitting. The pooling layer is typically located after the convolutional layer, 
with the two layers often alternating. Common pooling methods include average pooling and max pooling, 
which compute the average and maximum values, respectively.

Specifically:

	 O (m, n) = max(I, j)∈wI (m · · · + I, n · · · + j)� (2)

	
O (m, n) = 1

|w|
∑

(I, j)∈W I (m · · · + I, n · · · + j)� (3)

where W is the pooling window and s is the step size. The fully connected layer integrates the high-level features 
extracted by the convolutional and pooling layers, enabling classification and prediction. The convolutional and 
pooling layers handle feature extraction, while the fully connected layer performs classification.

Its mathematical formulation is as follows

	 O = w · I + b� (4)

Where I is the input feature vector, W is the weight matrix, b is the bias vector and O is the output feature vector.
In nonlinear multi-classification tasks, activation functions are employed to introduce nonlinearity into 

the model, enabling the calculation of probabilities for a sample belonging to different categories based on the 
output vectors of fully connected layers. This enhances the model’s representational capability. In this model, 
the ReLU activation function is used in the TCN layers to introduce nonlinearity, while the GeLU activation 
function is utilized in the DilateFormer module.

Both ReLU and GeLU are advanced activation functions widely adopted in neural network architectures, 
particularly in fields like natural language processing and computer vision. GeLU, by incorporating the Gaussian 
distribution characteristics of the input, smoothly activates neurons. Compared to ReLU, GeLU provides a 
superior nonlinear transformation, making it especially effective in Transformer-based models.

Its mathematical expression is:

	

GeLU (x) = x · Φ (x)
Φ (x) = 1

2

(
1 + erf

(
x√
2

))
� (5)

CNN’s 2D convolution is highly effective for processing image and spatial data, but 1D convolution is typically 
employed for temporal data. However, CNN’s structure is not inherently designed for temporal data, making it 
challenging to achieve optimal results. CNN uses a fixed-size receptive field to capture local features but lacks 
temporal dependency, leading to weak contextual connections and potential loss of associated information, 
which limits its performance in temporal classification tasks. To better handle corporate annual financial report 
data, this paper introduces the temporal convolutional network (TCN), a CNN-based variant model.
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TCN is a neural network architecture specifically designed for processing time-series data. It is optimized 
through a series of specialized designs and performs well in tasks requiring long-term dependencies. Unlike 
CNN, TCN primarily uses causal convolution, which differs from traditional bidirectional convolution. Causal 
convolution imposes one-way temporal constraints, ensuring the model relies solely on past information without 
accessing future data when making predictions. The output at time t is computed using only the inputs at time 
t and earlier.

The mathematical expression for this is:

	
y (t) =

K−1∑
k=0

w (k) · x (t − k)� (6)

where y(t) is the output at time t, w(k) is the weight k of the convolution kernel, x(t) is the input at time t, and K 
is the convolution kernel size.

Due to the limited size of the convolution kernel, causal convolution requires stacking additional layers to 
capture longer sequence information. To address this and capture longer time dependencies, TCN introduces 
dilated convolutions. By adjusting the dilation factor, dilated convolution expands the receptive field without 
significantly increasing computational burden. The dilation factor grows exponentially with network depth, 
enabling the network to cover a broader time span.

The mathematical expression for this is:

	
y (t) =

K−1∑
k=0

w (k) · x (t − k · d)� (7)

where d is the expansion factor.
TCNs frequently incorporate residual connections to mitigate the issue of vanishing gradients during deep 

network training. Residual connections allow each layer to directly learn useful information from the previous 
layer and facilitate information flow across multiple layers, thereby enhancing the network’s learning capacity. 
The mathematical expression for this is:

	 y (t) = F (x (t) , W ) + x (t)� (8)

where y(t) is the residual module output, x(t) is the residual module input, F(x) is the convolution output and W 
is the convolution kernel weights.

Transformer and DilateFormer structure
 Transformer is a deep learning model based on a self-attention mechanism designed for processing sequential 
data, such as text and time series. Key features of the Transformer include the self-attention mechanism, which 
enables the model to consider all other elements when processing each element in the sequence; the multi-
head attention mechanism, which learns different aspects of the sequence through multiple “heads”; positional 
encoding, which provides information about the position of elements; and a feed-forward neural network and 
normalization layer, which, along with residual connections, enhances the training process. The strengths of the 
Transformer lie in its parallel processing capabilities and its effective handling of long-distance dependencies, 
enabling it to excel in a wide range of tasks.

To enhance the processing capability of Transformer, this paper introduces the DilateFormer module. 
DilateFormer is a variant that incorporates a dilation attention mechanism into graph neural networks, originally 
designed to process high-dimensional image features. It aims to improve the performance and efficiency of the 
Transformer when handling long sequence data. In time series tasks, DilateFormer expands the model’s receptive 
field using a sliding window dilation attention mechanism, thereby capturing longer-range dependencies while 
effectively controlling computational complexity. Additionally, DilateFormer increases the receptive field of each 
attention head by expanding the self-attention range and adjusts the dilation rate to more efficiently capture 
long-distance dependencies. This makes it particularly well-suited for time series analysis, text processing, and 
other tasks requiring an understanding of long-range context.

TCN-DilateFormer hybrid model based on CNN-Transformer
CNN excels at capturing local features but is limited by the size of the convolutional kernel, making it difficult 
to capture global information in long-term dependent time series data. In contrast, the Transformer has strong 
global feature extraction capabilities due to its global attention mechanism, but it is less effective than CNN in 
processing local features. The CNN-Transformer model combines the strengths of both CNN and Transformer, 
retaining CNN’s advantage in local feature extraction while leveraging Transformer’s global feature extraction 
capability, resulting in more comprehensive and efficient data processing.

TCN enhances time-series tasks by using a dilated convolution structure that ensures temporal coherence. 
Compared to CNN, TCN’s causal and dilated convolution is specifically designed to capture long-range time 
dependencies without incorporating future information. Since trends and patterns in financial cycles often 
require analysis over longer time scales, TCN’s structure effectively aligns with the characteristics of financial 
data. Additionally, the residual connections and dilated convolution layers in TCN effectively capture long-
range dependencies, which are crucial for understanding and predicting credit risk based on historical financial 
performance.
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Additionally, financial data often exhibit complex temporal dynamics and periodic patterns with long-term 
continuity in time series. Since DilateFormer is designed to enhance feature extraction in high-dimensional image 
tasks by effectively capturing long-distance relationships in high-pixel images, and given that high-dimensional 
financial data shares similar characteristics of high parameters and complexity, this paper abstracts the features 
of financial indicators into pixels and the years into channels, which aligns perfectly with DilateFormer’s input 
requirements.

Methodology
This section introduces the details of the TCN-DilateFormer model. In the first subsection, we provide an 
overview of the model’s overall structure, followed by a detailed explanation of the Channel Attention used in 
TCN and the Multi-scale Attention employed in DilateFormer in the second subsection.

Overall structure
The overall structure of the TCN-DilateFormer model is illustrated in Fig. 2. The model adopts a typical Encoder–
Decoder architecture, consisting of three main components: the TCN layer, the DilateFormer layer, and the 
output mapping layer, which include modules such as the TCN Block and DilateFormer Block. Input data is 
processed through multiple modules, enabling the model to effectively extract multi-scale temporal features in 
different stages, thereby improving prediction accuracy.

First, the feature data is fed into the model. This data is time-series data obtained through sliding window 
and data augmentation processes, which will be explained in detail in subsequent sections. We define the input 
data as X ∈ RB× C× H , where B represents the batch size, C the dimensionality of the input features, and H 
the length of the time series. These feature data are first passed into the TCN Layer for local feature extraction.

The TCN Layer is composed of multiple stacked TCN Blocks. The number of stacks is determined by the 
parameter N1, which is set to N1 = 4 in this model. Unlike standard TCN, each TCN Block in this model includes 
not only a dilated convolution layer but also a Batch Normalization layer and a ReLU activation function to 
stabilize the training process. Additionally, a Dropout layer is incorporated to prevent overfitting. The output 
features from multiple stacked blocks are passed to the output via skip connections, mitigating the vanishing 
gradient problem and retaining low-level information from the input features. The output formula for the TCN 
Block is as follows:

	 Xout = Re LU (BatcnNorm (Conv1D (Xin))) + Xin� (9)

Where Xin is the input. The design of multiple stacked blocks efficiently captures the local dependencies 
between adjacent time steps while ensuring stable gradient flow throughout the network. At the end of the 
TCN Layer, an attention module approximating channel attention is included. This module generates attention 
weights using global average pooling, which are then used to reweight the feature channels. The details of this 
attention mechanism will be discussed in the next subsection.

The DilateFormer layer is used to further process the features initially extracted by the TCN Layer, enabling 
multi-scale analysis and temporal modeling. It consists of three parts: the Encoder, Bottleneck, and Decoder, 
with the core module being the DilateFormer Block. The DilateFormer Block is capable of handling multi-scale 
temporal dependencies and capturing global information in long time series.It employs layer normalization to 
normalize the input features and utilizes multi-scale dilated attention for multi-scale attention computation. The 
multi-scale attention mechanism uses convolutions with different dilation rates to extract features at various 
temporal scales. Its calculation formula is expressed as follows:

	 Xd = Conv1D (X, dilation = d) , d ∈ {1, 2, 4} .� (10)

Subsequently, the attention mechanism is used for fusion to capture dependencies across different time steps:

Fig. 2.  Model architecture diagram.
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	 Q = XstackedWQ, K = XstackedWK , V = XstackedWV � (11)

	
A = Softmax

(
QKT

√
dk

)
· V � (12)

	 Xout = Concat (A1, A2, A4)� (13)

Where dk  is represents the dimension of each head. The attention output is passed through a two-layer fully 
connected network (FFN) and undergoes nonlinear transformation using the GeLU activation function. Its 
formula is as follows:

	 XF F N = Linear (Re LU (Linear (X)))� (14)

Residual connections are introduced within the multi-scale attention and FFN modules to ensure stable feature 
propagation and gradient flow. The Encoder consists of N2 stacked DilateFormer Blocks, where N2 is defined as 2 
in this model. Each DilateFormer Block is followed by a Down Sample module, which uses stride-2 convolution 
to reduce the temporal length while increasing the number of channels:

	 Xdown = BatcnNorm(Conv1D (X) , Xdown ∈ RB×2C× H
2 � (15)

Following the Encoder is the Bottleneck, which contains a single DilateFormer Block. Unlike the FFN in 
Transformer, which uses only linear mapping, the Bottleneck incorporates multi-scale dilated convolutions, 
enabling the simultaneous capture of both local and global features. The Decoder is composed of Up Sample 
Layers, Fusion Layers, and N3 stacked DilateFormer Blocks, designed to restore the temporal resolution and 
integrate the multi-scale features from the Encoder output. The Up Sample Layers use ConvTranspose1D to 
expand the temporal length:

	 Xup = ConvT ranspose1D (X) , Xup ∈ RB× C
2 ×2H � (16)

Finally, the Fusion Layer combines the upsampled features from the Decoder with the corresponding features 
from the Encoder through concatenation and 1D convolution:

	 Xfused = Conv1D ([Xup; Xencoder])� (17)

The temporal features output by the DilateFormer are then passed to the fully connected layer for prediction. In 
the mapping layer, global average pooling is performed along the temporal dimension, and a linear transformation 
projects the global features into the target space:

	 Y = Linear (Xglobal)� (18)

This results in the final binary classification prediction, Y ∈ RB× outputdim, completing the corporate default 
prediction task.

Channel attention
In time-series tasks, the importance of feature channels often varies. Inspired by the Squeeze-and-Excitation 
(SE) mechanism27 from the image domain, which extracts global channel features through global pooling 
and generates attention weights using fully connected networks, we designed a modified channel attention 
mechanism tailored for time-series tasks within the TCN. This mechanism dynamically adjusts the weights 
of each feature channel by reweighting the channel dimension of the input features. As shown in the model 
architecture Fig. 3, for the input tensor X ∈ RB× C× H , global average pooling is first used to extract the global 
feature representation of each channel:

	
z = 1

H

H∑
i=1

X [:, :, i] , z ∈ RB×C � (19)

After that, a two-layer fully connected network is used to achieve weight adjustment:

	 a = σ (W2 · Re LU (W1 · z)) , a ∈ RB×C � (20)

Where W1, W2 are learnable weight matrices, σ is sigmoid. Compared with the general channel attention 
mechanism, such a design realizes the dynamic weighting of feature channels, and the lightweight architecture 
can efficiently handle large-scale time series tasks with relatively low computational costs.

Multi-scale dilated attention
In the DilateFormer, we designed the multi-scale dilated attention (MSDA) module, which combines the 
advantages of multi-scale dilated convolutions and self-attention mechanisms. This design efficiently captures 
both local and global dependencies in time series with relatively low computational complexity. As illustrated in 
Fig. 4, the module first employs three DilatedConv1D operations with different dilation rates to generate multi-
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scale feature maps. Feature stacking is then performed across these different feature maps, and Self-Attention is 
applied to compute Q, K, and V, capturing global temporal dependencies. The attention weights are calculated 
according to the previously mentioned formula, and the attention features from different scales are then fused 
through weighted summation, producing the final multi-scale feature representation. The computation processes 
for the dilated convolution and attention module can be expressed as follows:

	 X(i)
scale = DilatedConv (X, rate = ri)� (21)

Fig. 3.  Channel attention.
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MSDA (X) =

s∑
i=1

Attention (Qi, KiVi)� (22)

Where ri is the dilation rate of the i-th dilated convolution, and S is the number of scales. With this design, the 
Channel Attention mechanism allows the model to filter out important features and reduce interference from 
redundant information during the early stages of training. In the later stages, the multi-scale dilated attention 
mechanism captures long-range dependencies on a global scale, enhancing the model’s ability to understand 
complex patterns within the sequence. This design enables an effective division of labor between the two 
mechanisms.

Fig. 4.  Multi-scale dilated attention.
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The TCN-DilateFormer model processes corporate data by feeding it into the improved CNN structure, 
TCN, for time-series feature extraction, while leveraging the Transformer-based DilateFormer to capture long-
range dependencies in the corporate feature data. This combination enables the model to effectively extract 
spatial features while simultaneously capturing dynamic temporal changes when handling data with both spatial 
and temporal dimensions. It offers a novel approach for processing time-series corporate credit data.

Data
Introduction to the dataset
Credit risk is closely tied to financial risk, and in the domestic stock exchange market, various methods are 
used to assess the financial risk of a listed company, with the most common being the application of the ST or 
*ST symbol. When a listed company incurs losses for three consecutive years, it is labeled as an ST company, 
indicating a risk of delisting. This label acts as an early warning to the company’s shareholders. Therefore, such a 
company can be considered high-risk in terms of credit risk, and studying these companies can provide insights 
into the credit risk of listed enterprises.

The data used in this study was sourced from the CSMAR Database, comprising annual data from 3762 
publicly listed companies in the manufacturing and mining industries on the A-share market from 2012 to 
2022. Category labels were constructed based on whether a company was classified as ST. If a company was 
designated as ST in a particular year, the label was set to 1, representing a positive sample; otherwise, the label 
was set to 0, representing a negative sample. If a company’s stock code in a given year was identified as ST or *ST, 
it was classified as a defaulting company for that year, and the corresponding data was considered default data. 
According to this criterion, out of the 3762 companies, 320 were identified as defaulting companies.

During data processing, a padding procedure is applied to fit the temporal convolutional network model. 
The time step for each enterprise sample is adjusted to a maximum of 11 years, with samples of fewer than 11 
years padded with zero vectors. The processed data is then merged into a unified tensor for model input. This 
preprocessing method ensures data consistency and facilitates smooth model training.

Selection of indicators
This paper draws on the research of Tong Menghua and other scholars28 and utilizes the existing indicator 
system in the CSMAR database to construct a financial indicator system encompassing six aspects: solvency, 
operating ability, profitability, development ability, ratio structure, and cash flow analysis. To ensure data quality, 
indicators with more than 20% missing values were excluded. Linear regression was used to fill in the missing 
values for the remaining indicators, and the raw data was standardized to eliminate the influence of scale. During 
the standardization process, the mean (µ) and standard deviation (σ) of the original features were first calculated. 
The mean (µ) was then subtracted from the original features and the result divided by the standard deviation 
(σ) to ensure the data conformed to a standard normal distribution with a mean of 0 and a variance of 1. The 
calculation process is shown in Eq. Ultimately, 32,246 data points from 3762 enterprises, covering 132 financial 
indicators were used. According to the previous definition, the dataset consists of 32,246 entries, including 672 
default data entries, accounting for 2.08% of the total data. This represents a highly imbalanced sample. As 
shown in Table 1 below.

	
Xnorm =

X − Xmin
Xmax − Xmin

� (23)

where Xmin is the minimum value of the data, Xmax is the maximum value of the data, and Xnorm is the normalized 
value.

Data processing
Credit risk default data typically suffer from an imbalance where positive class samples significantly outnumber 
negative class samples, necessitating a sample balancing process to prevent model overfitting. In this study, the 
dataset comprises 31,574 non-default samples (class 0) and 672 default samples (class 1), resulting in a 50-
fold difference between the two classes, indicating an extremely imbalanced dataset. It is commonly accepted 
that in binary classification tasks, maintaining a ratio between 1:1 and 1:10 for positive and negative samples 
optimizes model performance. The commonly used method to address this issue is the SMOTE algorithm, which 
oversamples minority class samples. However, some scholars have noted that SMOTE focuses solely on quantity 
and overlooks the distributional characteristics of neighboring samples, leading to potential randomness and 
redundancy in the newly generated data29.This paper adopts a data training method from an algorithmic 
perspective to address the issue of sample imbalance.

The data processing methodology in this study is illustrated in the Fig. 5 below and primarily includes data 
loading and preprocessing, sliding window sampling, data augmentation, negative sample downsampling, and 
cross-validation splitting. In the original dataset, the stock code of each company is used as its ID. Each company 
has 11 years of data comprising 132 financial indicators and the corresponding annual category label (0 or 1). 
First, the data is grouped by company ID to create a time-series data list organized by enterprise ID:

Total data quantity Label 0 Label 1

32,246 31574 672

Table 1.  Comparison of two labels.
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Fig. 5.  Data processing flowchart.

 

Primary indicators Secondary indicators

Debt repayment ability

Current Ratio, Quick Ratio, Conservative Quick Ratio, Cash Ratio, Debt to Asset Ratio, Long-Term Debt to Total Assets Ratio, Tangible Asset Debt 
Ratio, Tangible Assets to Interest-Bearing Debt Ratio, Equity Multiplier, Equity to Debt Ratio, Equity to Liability Ratio, Long-Term Capital to Liability 
Ratio, Long-Term Debt to Equity Ratio, Long-Term Debt to Working Capital Ratio, EBITDA to Total Liabilities, Net Operating Cash Flow to Total 
Liabilities, Net Operating Cash Flow to Interest-Bearing Debt, Tangible Net Worth to Debt Ratio, Working Capital, Cash Flow to Maturity Debt 
Coverage Ratio, Cash to Gross Profit Ratio, Current Liability Ratio, Non-Current Liability Ratio.

Management capability

Accounts Receivable Turnover Ratio, Accounts Receivable Turnover Days, Inventory Turnover Ratio, Inventory Turnover Days, Operating Cycle, 
Accounts Payable Turnover Ratio, Working Capital Turnover Ratio, Cash and Cash Equivalents Turnover Ratio, Current Assets Turnover Ratio, Fixed 
Assets Turnover Ratio, Non-Current Assets Turnover Ratio, Total Assets Turnover Ratio, Equity Turnover Ratio, Accounts Receivable to Revenue 
Ratio, Inventory to Revenue Ratio, Fixed Assets to Revenue Ratio, Current Assets to Revenue Ratio, Working Capital to Current Assets Ratio, 
Working Capital Ratio, Working Capital to Net Assets Ratio.

Profitability

Return on Assets (ROA), Net Profit Margin on Total Assets (ROA), Net Profit Margin on Current Assets, Net Profit Margin on Fixed Assets, Return 
on Equity (ROE), Earnings Before Interest and Taxes (EBIT), Profit Before Tax and After Interest, Earnings Before Interest, Taxes, Depreciation, 
and Amortization (EBITDA), Net Profit to Total Profit Ratio, Total Profit to EBIT Ratio, EBIT to Total Assets Ratio, Return on Invested Capital 
(ROIC), Return on Long-Term Capital, Gross Profit Margin, Operating Cost Ratio, Operating Profit Margin, Net Operating Profit Margin, Total 
Operating Cost Ratio, Selling Expense Ratio, Administrative Expense Ratio, Financial Expense Ratio, Sales and Administrative Expense Ratio, Cost-
Expense-Profit Ratio, Asset Impairment Loss to Operating Revenue, EBITDA Margin, EBIT Margin, Core Business Profit Margin, Operating Profit 
Contribution, Net Profit Attributable to Parent Company Contribution, Net Profit Attributable to Minority Interests Contribution.

Development capability
Return on Equity Attributable to Parent Company (ROE), Comprehensive Income Attributable to Parent Company, Capital Preservation and 
Appreciation Rate, Capital Accumulation Rate, Fixed Assets Growth Rate, Total Assets Growth Rate, Operating Revenue Growth Rate, Total 
Operating Revenue Growth Rate, Total Operating Cost Growth Rate, Selling Expenses Growth Rate, Administrative Expenses Growth Rate, 
Sustainable Growth Rate, Shareholders’ Equity Growth Rate, Net Asset Value Per Share Growth Rate, Comprehensive Tax Rate.

Ratio structure

Proportion of Parent Company’s Shareholders’ Equity, Proportion of Minority Shareholders’ Equity, Turnover Tax Rate, Income Tax Rate, Proportion 
of Other Comprehensive Income, Proportion of Comprehensive Income Attributable to Parent Company, Proportion of Comprehensive Income 
Attributable to Minority Shareholders, Parent Company’s Shareholders’ Equity to Invested Capital Ratio, Fixed Assets Ratio, Intangible Assets Ratio, 
Tangible Assets Ratio, Equity Ratio, Retained Earnings to Assets Ratio, Long-Term Assets Adequacy Ratio, Shareholders’ Equity to Fixed Assets Ratio, 
Operating Liabilities Ratio, Financial Liabilities Ratio, Proportion of Minority Shareholders’ Equity, Proportion of Profit from Financial Activities, 
Proportion of Non-Operating Income, Receivables Asset Ratio, Non-Current Assets Ratio, Fixed Assets Ratio, Intangible Assets Ratio, Tangible 
Assets Ratio, Equity Ratio, Retained Earnings to Assets Ratio, Long-Term Assets Adequacy Ratio, Shareholders’ Equity to Fixed Assets Ratio.

Cash flow analysis
Cash Content of Net Profit, Cash Content of Operating Revenue, Net Cash Content of Operating Revenue, Net Cash Content of Operating Profit, Net 
Cash Flow from Financing Activities to Creditors, Net Cash Flow from Financing Activities to Shareholders, Corporate Cash Flow, Equity Cash Flow, 
Original Free Cash Flow of the Firm, Original Free Cash Flow to Equity, Total Cash Recovery Rate, Operating Index, Cash Adequacy Ratio, Cash 
Reinvestment Ratio, Cash to Investment Coverage Ratio.

Table 2.  Coverage scope of indicators at various levels.
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	 D = {Did1, Did2, . . . Didn}� (24)

Where n is the number of enterprises. Subsequently, a sliding window with a length of K is applied to slice the 
time series of each company, ensuring the preservation of the temporal characteristics of the data. Specifically, 
starting from year t, data from K consecutive years is used as the sample features to predict the category label of 
the company for year K + 1:

	 Xt = {Did [t] , Did [t + 1] , . . . , Did [t + K − 1] ,}� (25)

	 Yt = Did [t + K]� (26)

Where t = 1,2,…,T-K. To evaluate the robustness of the model, we use Stratified K-Fold Cross-Validation to 
divide the samples. This ensures that the proportion of positive and negative samples in each fold’s training 
and validation sets is consistent with that of the original dataset, avoiding biases in sample distribution that 
could affect model evaluation. Specifically, the dataset is randomly split into k non-overlapping subsets in a 
stratified manner, maintaining the original ratio of classes. During each training iteration, one subset is used as 
the validation set, while the remaining k−1 subsets are used as the training set. In this study, the baseline model 
is configured with k = 5.

To address the issue of sample imbalance between the two classes, during each round of cross-validation, we 
performed data augmentation on the default (label 1) samples when the subset was used as a training set, while 
leaving the validation set unchanged. Specifically, the default data with label 1 was subjected to n-fold repeated 
sampling. It is generally accepted that deep learning models, due to their strong generalization capabilities, 
can handle repeated sampling datasets with 5 to 10 times the original data. Considering the overall size of our 
dataset, we applied 5-fold repeated sampling to the default data. During the repetition process, Gaussian noise 
with a standard deviation of sigma was added. Assuming the feature value of a positive sample X+ is xi:

	 x̂i = max (xi + ∫ , 0) , ∫ ∼ N
(
0, σ2)

� (27)

In this experiment,σis set to 0.05. Additionally, to align with the characteristics of financial indicators, only 
non-negative values are retained for the enhanced sample features. After this operation, the number of default 
samples in the training set is expanded to k + 1 times the original data.

To further balance the samples, we performed downsampling on the non-default data based on the expanded 
number of default samples. The non-default data was downsampled to twice the size of the enhanced default 
data to reduce the risk of model bias toward non-default data, while mitigating the data loss issue caused by 
downsampling.

	 X̂− = RandonSample
(
X−, min

(∣∣X−∣∣ , 1.5 ×
∣∣X+∣∣))

� (28)

By performing data augmentation on the training set, the issue of data imbalance was effectively mitigated, 
ensuring the model’s learning capability for minority class samples and the fairness of performance evaluation. 
Table 3 presents a comparison of the data volumes before and after augmentation.

Evaluation criteria
Credit risk assessment models aim to quantitatively distinguish customers’ credit levels, requiring evaluation 
metrics to reflect the classification accuracy of the model. When there is a significant imbalance between the 
number of positive and negative samples, metrics such as precision, recall, and their composite measures (e.g., 
F1-score), as well as specificity, provide a more comprehensive evaluation of model performance. This study 
employs the following metrics to evaluate the accuracy of the model.

Recall measures the proportion of actual defaulting firms that the model correctly identifies. A high recall rate 
indicates that the model is effective at identifying defaulting firms. It is calculated using the following formula:

	
recall = T P

T P + F N
� (29)

Precision measures the proportion of firms predicted by the model as defaulting that actually do default. A high 
precision rate indicates that the model is more accurate in predicting defaulting firms, with a lower rate of false 
positives. It is calculated using the following formula:

	
Pr ecision = T P

T P + F P
� (30)

Label Validation set ki Raw training set ki Training set Ki (augmented)

1 135 135 810

0 6374 6374 1620

Table 3.  Comparison of the data volumes.
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Where TP (true positive) refers to the number of samples that the model correctly predicted as positive, while 
FN (false negative) refers to the number of samples that the model incorrectly predicted as negative but were 
actually positive. FP (false positive) refers to the number of samples that the model incorrectly predicted as 
positive but were actually negative.

The F1 score is the harmonic mean of precision and recall, providing a comprehensive assessment of the 
model’s accuracy and recall. It is calculated using the following formula:

	
F 1 score = 2 × Pr ecision × Re call

Pr ecision + Re call
� (31)

Specificity is an important metric for measuring the model’s ability to correctly classify the negative class. 
Compared to the aforementioned metrics, it focuses more on the model’s performance on negative samples. In 
highly imbalanced datasets, Specificity can effectively compensate for the limitations of Precision and Recall. Its 
calculation formula is:

	
Specificity = T N

T N + F P
� (32)

Focal loss
In our task, the two classes are extremely imbalanced. Therefore, during training, we used the Focal Loss function, 
which is specifically designed to address imbalance issues. Unlike the traditional cross-entropy loss function, 
Focal Loss introduces a weighting factor that assigns higher weights to minority class samples, optimizing the 
classification of imbalanced categories. Its calculation formula is:

	 Lfocal (pi) = −at(1 − pt)γ log (pt)� (33)

Where pi represents the predicted probability, at is the balancing factor which is used to adjust the impact of 
positive and negative samples on the loss,γis the focusing factor which is employed to adjust the degree of weight 
decay for easily classified samples.

During model training, its calculation formula for the entire batch is as follows:

	
L = 1

N

N∑
i=1

Lfocal

(
pt

(i))� (34)

Where N represents the number of samples in the current batch, Lfocal

(
pt

(i)) is the Focal Loss of the i-th 
sample.

Empirical analysis
In this section, we will provide a detailed explanation of the experimental setup, using the TCN-DilateFormer 
model to perform binary classification predictions on time-series financial data of listed companies to determine 
whether a company defaults. Subsequently, we conducted comparative experiments with other models and 
validated the robustness of the model through ablation experiments.

Default analysis of listed companies
The experiments were conducted on a workstation equipped with two NVIDIA GeForce RTX 3080 × 2 GPUs 
and an Intel(R) Xeon(R) Silver 4214R processor. The PyTorch 1.8.1 framework with CUDA 11.1 was used, and 
multi-GPU parallel acceleration was implemented using PyTorch’s DataParallel mode. Model parameters were 
initialized using a uniform distribution. During training, the dropout rate was set to 0.2, and the number of 
epochs was set to 100.

The TCN channel configuration was set to [64,128,256,512], and the Transformer hidden dimension was 
set to 64. Training was conducted with a batch size of 16, a maximum of 100 training epochs, and 1000 samples 
per epoch. The optimizer used was Adam with an initial learning rate of 0.0001. MultiStepLR scheduler was 
employed to adjust the learning rate, reducing it by a factor of 0.1 every 30 epochs. For Focal Loss, the settings 
were γ = 2.0 and α = 0.25.

We compared the TCN-DilateFormer model with classical models and two SOTA models, including 
CNN-LSTM, CNN-Transformer, and state-of-the-art models for time-series classification tasks: TimeMIL30 
and ConvTimeNet31. For all models, the optimal parameter settings from the respective literature were used. 
The Precision, Recall, F1 Score, and Specificity of the model with the minimum loss in each experiment were 
calculated. Each model was subjected to five-fold cross-validation, and the average results were reported. The 
results are presented in Table 4.

All models demonstrated relatively high overall performance in terms of Precision, Recall, and F1 Score, 
with performance gradually improving from CNN-LSTM to TCN-DilateFormer. It can be observed that in the 
time-series binary classification task for credit risk analysis of listed companies, our model consistently achieved 
the best performance. Specifically, the Precision was 0.9681, Recall 0.8689, F1 Score 0.9157, and Specificity 
0.9809. This further indicates that TCN-DilateFormer exhibits strong performance and has potential in binary 
classification tasks involving time-series financial data. Figure 6 provides a more intuitive visualization of the 
evaluation metrics for each model.
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Parameter optimization experiment
In this section, we modify the dilation factors in the TCN Layer and the number of DilatedConv1D layers in 
the Multi-Scale Dilated Attention of the DilateFormer layer to identify the optimal parameter combination. In 
these experiments, all parameters remain consistent with the main experiment except for the adjusted ones. The 
average results of various performance metrics are computed through cross-validation.

First, parameter optimization experiments were conducted for the dilation factors. The original model’s 
dilation setting of [1,2,4,8] was used as the baseline. While keeping the number of TCN layers and channels 
unchanged, the dilation factors were modified to [1,1,2,2] and [1,2,8,16] for two additional experiments. The 
results of the three experiments are presented in the Table 5.

As shown in the results, reducing the dilation factor leads to slight decreases in Precision, F1 Score, and 
Recall, while increasing the dilation factor does not achieve the expected improvement. Therefore [1,2,4,8], is 
considered the optimal combination.

Next, we modify the scales in the Multi-Scale Dilated Attention mechanism to observe the model’s 
performance. The baseline is the original model’s setting of [1,2,4]. We then modify it to [1,4] and [1,2,4,8] and 
repeat the experiments with these two parameter sets. The results are presented in Table 6.

From the results in the table, the performance differences across the groups are minimal. When using only 
[1,4], the model’s performance declines significantly. While increasing the scales to [1,2,4,8] results in a slight 

Dilation factor Precision F1 score Recall Specificity

[1,1,2,2] 0.9487 0.9083 0.8533 0.9765

[1,2,4,8] 0.9681 0.9157 0.8689 0.9809

[1,2,8,16] 0.9562 0.9140 0.8665 0.9799

Table 5.  Comparison of experimental results with different dilation factors. Significant values are given in 
bold.

 

Fig. 6.  Model performance comparison.

 

Model Precision Recall F1 Score Specificity

CNN-LSTM 0.8437 0.6488 0.6677 0.8772

CNN-Transformer 0.8610 0.7122 0.7705 0.8853

ConvTimeNet 0.9452 0.8235 0.8798 0.9734

TimeMIL 0.9398 0.7972 0.8635 0.9715

TCN-DilateFormer 0.9681 0.8689 0.9157 0.9809

Table 4.  Model results comparison. Significant values are given in bold.
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improvement in Recall, the overall performance difference remains small. To avoid the additional computational 
cost and potential overfitting caused by an overly complex model structure, we retain [1,2,4] as the parameter 
combination.

Parameter sensitivity & robustness analysis
In this section, we modify three parameters, learning rate, window size, and the standard deviation of Gaussian 
noise to observe changes in model performance. In each experiment, only the parameter being adjusted is 
modified, while all other settings remain unchanged. The performance metrics are then calculated and reported.

Using a learning rate of 0.0001 as the baseline, we adjust it to 0.0002 and 0.0005, repeating the experiments. 
The results are presented in Table 7.

The results in the table indicate that the model performs well when the learning rate is set to 0.0001 or 0.0002, 
but performance declines significantly when the learning rate is increased to 0.0005. This suggests that the model 
has a certain tolerance to changes in the learning rate, but as the learning rate increases, the model’s ability to 
converge stably decreases, leading to performance degradation. Therefore, a learning rate of 0.0001 is selected.

The size of the sliding window determines the amount of historical data the model can utilize for prediction. 
Considering that each company only has 11 years of data, we set the window size to 3, 5, and 10, respectively. 
The experiments are repeated with other parameters unchanged to observe changes in model performance. The 
results are shown in Table 8.

The results indicate that the model performs slightly better when the window size is set to 5. This may be 
because a smaller window size limits the model’s ability to capture temporal information, while a larger window 
size introduces information redundancy. However, overall, all metrics show consistently good performance.

In the data augmentation process, Gaussian noise was added to minority class samples to expand the dataset. 
Next, we modify the standard deviation of the Gaussian noise to observe the model’s sensitivity to noise intensity. 
In the main experiment, the standard deviation of the Gaussian noise was set to 0.05. We adjust it to 0.01 and 0.1, 
respectively, and conduct experiments for each setting.

According to the results in Table  9, when the noise is too small, the effectiveness of data augmentation 
decreases, leading to a decline in model performance. Conversely, when the noise is too large, the increase in 
spurious features also results in performance loss. Overall, the model shows low sensitivity to changes in the 
standard deviation of Gaussian noise, demonstrating a certain degree of robustness.

Statistical test
In this section, we perform a significance test comparing the F1 Scores from the K-fold cross-validation of TCN-
DilateFormer, ConvTimeNet, and TimeMIL. F1 Score, being the harmonic mean of Recall and Precision, is a 
more representative metric.

The experiment uses five-fold cross-validation, and Table  10 presents the results of each cross-validation 
iteration for the three models:

This study employs the Wilcoxon Signed-Rank Test, a non-parametric paired statistical test used to evaluate 
whether there is a statistically significant difference in results under two different conditions for the same set 
of samples. We perform the Wilcoxon test to compare TCN-DilateFormer with TimeMIL and ConvTimeNet, 

Window size Precision F1 Score Recall Specificity

3 0.9635 0.9128 0.8615 0.9785

5 0.9681 0.9157 0.8689 0.9809

10 0.9650 0.9145 0.8667 0.9798

Table 8.  Comparison of experimental results with different window sizes. Significant values are given in bold.

 

Learning rate Precision F1 Score Recall Specificity

0.0001 0.9681 0.9157 0.8689 0.9809

0.0002 0.9494 0.9112 0.8534 0.9787

0.0005 0.9125 0.8728 0.8231 0.9664

Table 7.  Comparison of experimental results with different learning rates. Significant values are given in bold.

 

Scale Precision F1 Score Recall Specificity

[1,4] 0.9405 0.9020 0.8501 0.9682

[1,2,4] 0.9681 0.9157 0.8689 0.9809

[1,2,4,8] 0.9521 0.9155 0.8702 0.9801

Table 6.  Comparison of experimental results with different scales. Significant values are given in bold.
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respectively. For each test, the F1 Scores from cross-validation are paired such that the i-th F1 Score of TCN-
DilateFormer is compared with the i-th F1 Score of TimeMIL and ConvTimeNet.

Define the null hypothesis and alternative hypothesis as follows:
H0 = There is no significant difference in the F1 Scores between the two models.
H1 = The F1 Score of TCN-DilateFormer shows a significant difference compared to the control model.
Defineα = 0.05, When P<0.05, reject the null hypothesis, The results are shown in Table 11:
It can be observed that both p-values are less than α = 0.05. Therefore, the null hypothesis is rejected, indicating 

that the performance of TCN-DilateFormer is significantly superior to that of the comparison models.

Discussion
The TCN-DilateFormer hybrid model developed in this study demonstrates excellent performance in corporate 
credit risk analysis tasks, showcasing significant application potential. TCN provides efficient local feature 
extraction for time-series data, enabling precise capture of short-term dynamic changes in corporate financial 
indicators. DilateFormer, through its Multi-Scale Dilated Attention mechanism, effectively captures long-range 
dependencies in financial time-series data. Additionally, the data augmentation methods employed during 
training significantly improve the model’s performance in handling imbalanced data, enhancing its robustness.

We note that there is still room for improvement in the model. First, the model relies heavily on the quality 
of input data, and the effectiveness of data preprocessing directly impacts predictive performance. Second, the 
issue of training data wastage caused by the downsampling strategy employed during the data processing stage 
requires further investigation.

Future research will focus on optimizing the network structure to reduce computational complexity while 
maintaining model performance and adopting more innovative data processing methods to address the sample 
imbalance issue. Additionally, beyond financial time-series data, we will explore the application of the model to 
unstructured data and macroeconomic data to further enhance the accuracy of credit risk prediction. Moreover, 
we aim to investigate the model’s potential in other time-series tasks, such as individual customer default risk 
prediction and supply chain risk management, to broaden its applicability and provide effective solutions for a 
wider range of fields.

Conclusion
In this paper, we focus on time-series financial data and consider the advantages of CNN in capturing local 
sequence features and the Transformer’s strong global feature extraction capability. We innovatively integrate 
TCN, an improved CNN module, and DilateFormer, an enhanced Transformer module, to construct a TCN-
DilateFormer hybrid model. This model not only improves the performance of the traditional CNN-Transformer 
but also enhances the processing accuracy of time-series financial data, thereby improving the accuracy of 
enterprise credit risk assessment. TCN’s causal and dilated convolution designs allow the model to capture long-
term trends and patterns in financial data. DilateFormer, through the extension of the attention mechanism, 
effectively enhances the model’s ability to handle long-range dependencies in high-dimensional financial data.

Experimental results show that the TCN-DilateFormer model outperforms traditional time-series 
classification models in terms of precision, recall, and F1 score. Therefore, this study concludes that the TCN-
DilateFormer model is more effective in capturing local features and global dependencies in time-series data 
while maintaining high computational efficiency when handling large-scale data. In summary, this research 

Model W p-value

TimeMIL 4.3 0.039

ConvTimeNet 3.7 0.025

Table 11.  Wilcoxon signed-rank test results.

 

Model Fold1 Fold2 Fold3 Fold4 Fold5 Mean

TCN-DilateFormer 0.9194 0.9007 0.9277 0.9293 0.9014 0.9157

TimeMIL 0.8597 0.8701 0.8643 0.8657 0.8677 0.8635

ConvTimeNet 0.8781 0.8617 0.9093 0.8741 0.8758 0.8798

Table 10.  Five-fold cross-validation results of different models.

 

Noise_std Precision F1 score Recall Specificity

0.01 0.9605 0.9101 0.8620 0.9803

0.05 0.9681 0.9157 0.8689 0.9809

0.1 0.9645 0.9132 0.8644 0.9796

Table 9.  Comparison of experimental results with different noises. Significant values are given in bold.
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provides an effective tool for corporate credit risk assessment and offers new insights for deep learning-based 
corporate credit risk studies.

Data availability
The data that support the findings of this study are openly available in CSMAR at https://data.csmar.com/.
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