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Research on credit risk of listed
companies: a hybrid model based
on TCN and DilateFormer

Chuanhe Shen! & Junzhe Wuy2*?

The ability to assess and manage corporate credit risk enables financial institutions and investors to
mitigate risk, enhance the precision of their decision-making, and adapt their strategies in a prompt
and effective manner. The growing quantity of data and the increasing complexity of indicators have
rendered traditional machine learning methods ineffective in enhancing the accuracy of credit risk
assessment. Consequently, academics have begun to explore the potential of models based on deep
learning. In this paper, we apply the concept of combining Transformer and CNN to the financial field,
building on the traditional CNN-Transformer model’s capacity to effectively process local features,
perform parallel processing, and handle long-distance dependencies. To enhance the model’s ability to
capture financial data over extended periods and address the challenge of high-dimensional financial
data, we propose a novel hybrid model, TCN-DilateFormer. This integration improves the accuracy of
corporate credit risk assessment. The empirical study demonstrates that the model exhibits superior
prediction accuracy compared to traditional machine learning assessment models, thereby offering a
novel and efficacious tool for corporate credit risk assessment.
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Enterprise credit risk is not only a major concern in the financial sector but is also closely tied to societal
development. Credit risk impacts the survival of banks, influencing the stability of both the country and society’.
To maintain national economic stability in the wave of globalization, it is essential to actively assess enterprise
credit risk and implement effective risk assessment methods?.

The evaluation of enterprise credit risk can also be regarded as a study of corporate financial distress, essentially
a binary or multi-class classification problem®. With the continuous growth in data volume and complexity, the
development of credit risk assessment methods has progressed through three stages: manual judgment based
on experience, statistical discriminant analysis, and big data evaluation using machine learning techniques®.
This evolution reflects a shift from qualitative to quantitative analysis and from indicator-based to model-based
approaches’. Although traditional assessment methods have addressed corporate credit risk identification to
some extent, the changing financial market environment and the explosive growth of data urgently call for more
efficient and accurate evaluation models.

This study aims to develop a novel hybrid model to enhance the accuracy and reliability of credit risk
prediction. Specifically, it proposes a hybrid model based on the CNN and Transformer framework but replaces
the standard components with temporal convolutional network (TCN) and DilateFormer modules to optimize
the extraction and modeling of time-series features. For publicly listed companies, default cases are a minority,
leading to a significant imbalance between default and non-default data. To address this issue, a Gaussian noise-
based data augmentation technique is employed during model training to improve the classification performance
under imbalanced sample conditions. Additionally, this study modifies the attention mechanisms in both the
TCN and DilateFormer modules, introducing optimizations in both the temporal and channel dimensions.
These enhancements significantly improve the model’s feature extraction capability and prediction performance.

Based on the above analysis, this study establishes a hybrid model based on TCN-DilateFormer to evaluate
the credit risk of publicly listed companies, utilizing real financial indicator data from the CSMAR Database
covering the years 2012 to 2022. The model employs the TCN module to extract local features from raw financial
data, while the DilateFormer module processes and integrates sequence features. Ultimately, the model outputs
credit risk prediction labels for each company, enabling accurate judgment and prediction of corporate defaults.
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The key innovations of this study are as follows: (1) A novel hybrid model based on CNN and Transformer
is designed, enhancing the model’s capability in handling time-series classification tasks. (2) Gaussian noise
is introduced into the default data to address the issue of data imbalance, thereby improving the model’s
generalization ability and prediction accuracy. (3) The attention mechanism is refined to achieve joint
optimization across the temporal and channel dimensions, significantly boosting the model’s feature extraction
capability and prediction performance.

Our complete workflow, as illustrated in Fig. 1, comprises several key steps: data import and processing,
model training and validation, parameter optimization, result analysis, and future outlook. The remainder of this
paper is organized as follows: Sect “Related works” reviews related work on credit risk analysis. Sect “Theoretical
explanation of CNN and Transformer” provides a theoretical overview of CNN, Transformer, and related
models. Sect “Methodology” details the architecture and design of the TCN-DilateFormer model. Sect “Data”
introduces the dataset and data processing methods. Sect “Empirical analysis” presents the experiments and
provides a discussion of the results. Sect “Discussion” explores the future prospects of the proposed model.
Sect “Conclusion” concludes the study with key findings.

Related works

Manual discrimination methods

Early credit risk assessment primarily relied on expert judgment. Sowers and David (1942)° developed personal
credit risk evaluation metrics, using experience-based assessments and expert scoring to judge individual risks.
Early methods included the 5 C factor analysis and the DuPont financial analysis. However, these methods
heavily depended on subjective expert opinions, resulting in evaluation outcomes that were often unconvincing
due to their significant subjectivity’.

Statistical discriminant analysis methods

Following Fisher’s pioneering work on credit rating using the least squares method?, researchers increasingly
adopted rigorous statistical approaches. Statistical methods based on linear discrimination were widely utilized
to address the limitations of manual judgment, integrating the concept of mathematical modeling into the field
of credit risk assessment®. Among these, Altman’s multiple discriminant analysis model'® became a landmark,
driving the development of statistical models in credit evaluation. Representative methods in this category
include the Z-score model and Logistic regression'!, as well as multivariate statistical models such as multiple
discriminant analysis and multivariate regression analysis. These models typically offer high accuracy, relying
on only a few variables to effectively discriminate between samples. Their strong interpretability makes them
particularly effective in low-dimensional data analysis tasks. However, these models impose strict assumptions,
which real-world financial data often fail to fully satisfy, limiting their applicability. Additionally, their predictive
capabilities have gradually been surpassed by subsequent machine learning methods!2

Machine learning-based methods

With the advent of the era of big data, machine learning methods have demonstrated significant advantages in
credit risk assessment. Compared to traditional statistical models, machine learning algorithms such as support
vector machines (SVMs), neural networks, and random forests are better equipped to handle large-scale data
and model complex nonlinear relationships. For instance, Xiaohong Yu'* achieved a 100% recognition rate for
samples using a random forest-based P2P lending risk warning model. Similarly, Luo et al.'* applied a non-kernel
surface SVM model to credit risk assessment and demonstrated its superior predictive performance compared to
traditional classification models. These studies highlight the remarkable effectiveness and advantages of machine
learning algorithms over traditional statistical methods in credit risk evaluation. However, machine learning
methods face challenges in processing large-scale nonlinear data and are sensitive to data quality. Inaccurate or
noisy data can negatively impact the performance of these models.

Deep learning-based methods

As a branch of machine learning, deep learning has gained wide application in credit risk assessment due to its
advantages in automatically learning and extracting high-dimensional features from data!®. Neural networks,
one of the representative techniques of deep learning'®, are commonly used for tasks such as classification
and regression. Among these, convolutional neural networks (CNNs) are particularly notable for their robust
ability to extract local features, significantly reducing computational complexity and the number of training
parameters'”. CNNs are widely used for image feature extraction and sequence feature mining. Existing studies
have applied CNNs to the financial sector; for example, some researchers have constructed CNN-LSTM hybrid
models for personal risk assessment, estimating customer default probabilities'®. However, CNNs are more
suited to handling data with local spatial structures, such as images or text, and struggle to capture long-term
dependencies and global information in time-series data'®, which are essential in credit risk analysis. Recently,
Transformer models have achieved breakthrough advancements in artificial intelligence through self-supervised
predictive encoding and have been widely applied to tasks such as natural language processing, computer vision,
and time-series analysis?’. For example, Tian et al.>! employed Swin-MSP to train an image recognition model,
incorporating spectral masking pretraining techniques and hierarchical architectures for layered modeling of
hyperspectral data. Transformer models excel at extracting latent information from complex, high-dimensional
datasets and effectively capturing time-series features and logical relationships, thereby offering more precise
assessments in credit risk prediction. Existing research has applied Transformer models to corporate credit
risk analysis. Stevenson et al. utilized a Transformer-based BERT model combined with textual data to predict
the credit risk of micro-enterprises, achieving promising results; however, their study did not consider time-
series data?. Similarly, Korangi et al. developed the Transformer-based TEP model to predict the credit risk of
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Fig. 1. Overall framework diagram.

medium-sized listed companies, outperforming traditional models?. Despite its strong ability to capture long-
term dependencies, the TEP model still has room for improvement in local feature extraction.

Development of hybrid models

To overcome the limitations of single models, researchers have explored combining CNN and Transformer
architectures, leveraging the local feature extraction capability of CNNs and the long-distance dependency
modeling power of Transformers to improve the performance of credit risk prediction*!. However, traditional
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CNN and Transformer models both face limitations when handling time-series-based credit risk classification
tasks, leaving their hybrid CNN-Transformer models room for further refinement. One key issue is that hybrid
models heavily depend on the Transformer component for processing dynamic time-series data. Due to the
structural limitations of CNNG, expanding the receptive field often requires adding more convolutional layers
to enhance data reception. However, excessively deep networks may result in gradient explosion or vanishing
problems, leading to information loss and reduced prediction accuracy. To address these challenges, some
studies have introduced improved CNN-based modules, such as temporal convolutional networks (TCNs)%,
and incorporated DilateFormer modules in the Transformer component®® to optimize the temporal analysis
capability of these models.

In summary, while existing models have made significant progress in corporate credit risk assessment,
numerous challenges remain. Developing effective hybrid models that integrate multiple techniques for
classifying time-series financial data is a key direction for future research.

Theoretical explanation of CNN and Transformer

CNN and TCN architectures

CNN is a widely used and powerful deep learning architecture that mimics the human visual system to efficiently
recognize and classify objects and features in images. Its local connectivity and weight-sharing features
significantly reduce model parameters, making it suitable for large-scale data processing. The main components
of CNN include four core modules: the convolutional layer, activation layer, pooling layer, and fully connected
layer. The convolutional layer, a key component of CNN, operates by sliding a set of convolutional kernels
over the input data to extract local features, generating a two-dimensional matrix called the feature map. The
mathematical expression for the convolution operation is:

O(mn)=> "> T(m+1In+j) K(I,j)+b N

Where I is the input image data, K is the convolution kernel, O is the output feature map, (m, n) are the input
image coordinates, (i, j) are the convolution kernel coordinates, and b is the bias term.

The pooling layer processes the feature maps generated by the convolutional layer to reduce their size, decrease
computational load, and prevent overfitting. The pooling layer is typically located after the convolutional layer,
with the two layers often alternating. Common pooling methods include average pooling and max pooling,
which compute the average and maximum values, respectively.

Specifically:

O(m,n):maX(I7j)€wI(m~~-—|—I,n~~-+j) (2)
O (mum) = (o S (L)L (e Lo +) ©)

where W is the pooling window and s is the step size. The fully connected layer integrates the high-level features
extracted by the convolutional and pooling layers, enabling classification and prediction. The convolutional and
pooling layers handle feature extraction, while the fully connected layer performs classification.

Its mathematical formulation is as follows

O=w-I+5b (4)

Where I is the input feature vector, W is the weight matrix, b is the bias vector and O is the output feature vector.

In nonlinear multi-classification tasks, activation functions are employed to introduce nonlinearity into
the model, enabling the calculation of probabilities for a sample belonging to different categories based on the
output vectors of fully connected layers. This enhances the model’s representational capability. In this model,
the ReLU activation function is used in the TCN layers to introduce nonlinearity, while the GeLU activation
function is utilized in the DilateFormer module.

Both ReLU and GeLU are advanced activation functions widely adopted in neural network architectures,
particularly in fields like natural language processing and computer vision. GeLU, by incorporating the Gaussian
distribution characteristics of the input, smoothly activates neurons. Compared to ReLU, GeLU provides a
superior nonlinear transformation, making it especially effective in Transformer-based models.

Its mathematical expression is:

GeLU (z) =z - ® (z)
@(x)z%(l—!—eTf(%)) (5)

CNN’s 2D convolution is highly effective for processing image and spatial data, but 1D convolution is typically
employed for temporal data. However, CNN’s structure is not inherently designed for temporal data, making it
challenging to achieve optimal results. CNN uses a fixed-size receptive field to capture local features but lacks
temporal dependency, leading to weak contextual connections and potential loss of associated information,
which limits its performance in temporal classification tasks. To better handle corporate annual financial report
data, this paper introduces the temporal convolutional network (TCN), a CNN-based variant model.
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TCN is a neural network architecture specifically designed for processing time-series data. It is optimized
through a series of specialized designs and performs well in tasks requiring long-term dependencies. Unlike
CNN, TCN primarily uses causal convolution, which differs from traditional bidirectional convolution. Causal
convolution imposes one-way temporal constraints, ensuring the model relies solely on past information without
accessing future data when making predictions. The output at time t is computed using only the inputs at time
tand earlier.

The mathematical expression for this is:

y()= ) w(k)-z(t—k) (6)

where y(t) is the output at time ¢, w(k) is the weight k of the convolution kernel, x(¢) is the input at time ¢, and K
is the convolution kernel size.

Due to the limited size of the convolution kernel, causal convolution requires stacking additional layers to
capture longer sequence information. To address this and capture longer time dependencies, TCN introduces
dilated convolutions. By adjusting the dilation factor, dilated convolution expands the receptive field without
significantly increasing computational burden. The dilation factor grows exponentially with network depth,
enabling the network to cover a broader time span.

The mathematical expression for this is:

y()= ) w(k)-z(t—Fk-d )

where d is the expansion factor.

TCNs frequently incorporate residual connections to mitigate the issue of vanishing gradients during deep
network training. Residual connections allow each layer to directly learn useful information from the previous
layer and facilitate information flow across multiple layers, thereby enhancing the network’s learning capacity.
The mathematical expression for this is:

y(t) = F(z(t),W)+z(t) (8)

where y(t) is the residual module output, x(2) is the residual module input, F(x) is the convolution output and W
is the convolution kernel weights.

Transformer and DilateFormer structure

Transformer is a deep learning model based on a self-attention mechanism designed for processing sequential
data, such as text and time series. Key features of the Transformer include the self-attention mechanism, which
enables the model to consider all other elements when processing each element in the sequence; the multi-
head attention mechanism, which learns different aspects of the sequence through multiple “heads”; positional
encoding, which provides information about the position of elements; and a feed-forward neural network and
normalization layer, which, along with residual connections, enhances the training process. The strengths of the
Transformer lie in its parallel processing capabilities and its effective handling of long-distance dependencies,
enabling it to excel in a wide range of tasks.

To enhance the processing capability of Transformer, this paper introduces the DilateFormer module.
DilateFormer is a variant that incorporates a dilation attention mechanism into graph neural networks, originally
designed to process high-dimensional image features. It aims to improve the performance and efficiency of the
Transformer when handling long sequence data. In time series tasks, DilateFormer expands the model’s receptive
field using a sliding window dilation attention mechanism, thereby capturing longer-range dependencies while
effectively controlling computational complexity. Additionally, DilateFormer increases the receptive field of each
attention head by expanding the self-attention range and adjusts the dilation rate to more efficiently capture
long-distance dependencies. This makes it particularly well-suited for time series analysis, text processing, and
other tasks requiring an understanding of long-range context.

TCN-DilateFormer hybrid model based on CNN-Transformer

CNN excels at capturing local features but is limited by the size of the convolutional kernel, making it difficult
to capture global information in long-term dependent time series data. In contrast, the Transformer has strong
global feature extraction capabilities due to its global attention mechanism, but it is less effective than CNN in
processing local features. The CNN-Transformer model combines the strengths of both CNN and Transformer,
retaining CNN’s advantage in local feature extraction while leveraging Transformer’s global feature extraction
capability, resulting in more comprehensive and efficient data processing.

TCN enhances time-series tasks by using a dilated convolution structure that ensures temporal coherence.
Compared to CNN, TCN’s causal and dilated convolution is specifically designed to capture long-range time
dependencies without incorporating future information. Since trends and patterns in financial cycles often
require analysis over longer time scales, TCN’s structure effectively aligns with the characteristics of financial
data. Additionally, the residual connections and dilated convolution layers in TCN effectively capture long-
range dependencies, which are crucial for understanding and predicting credit risk based on historical financial
performance.
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Additionally, financial data often exhibit complex temporal dynamics and periodic patterns with long-term
continuity in time series. Since DilateFormer is designed to enhance feature extraction in high-dimensional image
tasks by effectively capturing long-distance relationships in high-pixel images, and given that high-dimensional
financial data shares similar characteristics of high parameters and complexity, this paper abstracts the features
of financial indicators into pixels and the years into channels, which aligns perfectly with DilateFormer’s input
requirements.

Methodology

This section introduces the details of the TCN-DilateFormer model. In the first subsection, we provide an
overview of the model’s overall structure, followed by a detailed explanation of the Channel Attention used in
TCN and the Multi-scale Attention employed in DilateFormer in the second subsection.

Overall structure

The overall structure of the TCN-DilateFormer model is illustrated in Fig. 2. The model adopts a typical Encoder-
Decoder architecture, consisting of three main components: the TCN layer, the DilateFormer layer, and the
output mapping layer, which include modules such as the TCN Block and DilateFormer Block. Input data is
processed through multiple modules, enabling the model to effectively extract multi-scale temporal features in
different stages, thereby improving prediction accuracy.

First, the feature data is fed into the model. This data is time-series data obtained through sliding window
and data augmentation processes, which will be explained in detail in subsequent sections. We define the input
dataas X € RB* ©*H where B represents the batch size, C the dimensionality of the input features, and H
the length of the time series. These feature data are first passed into the TCN Layer for local feature extraction.

The TCN Layer is composed of multiple stacked TCN Blocks. The number of stacks is determined by the
parameter N, which is set to N, =4 in this model. Unlike standard TCN, each TCN Block in this model includes
not only a dilated convolution layer but also a Batch Normalization layer and a ReLU activation function to
stabilize the training process. Additionally, a Dropout layer is incorporated to prevent overfitting. The output
features from multiple stacked blocks are passed to the output via skip connections, mitigating the vanishing
gradient problem and retaining low-level information from the input features. The output formula for the TCN
Block is as follows:

Xout = Re LU (BatenNorm (ConvlD (Xin))) + Xin 9)

Where X, is the input. The design of multiple stacked blocks efficiently captures the local dependencies
between adjacent time steps while ensuring stable gradient flow throughout the network. At the end of the
TCN Layer, an attention module approximating channel attention is included. This module generates attention
weights using global average pooling, which are then used to reweight the feature channels. The details of this
attention mechanism will be discussed in the next subsection.

The DilateFormer layer is used to further process the features initially extracted by the TCN Layer, enabling
multi-scale analysis and temporal modeling. It consists of three parts: the Encoder, Bottleneck, and Decoder,
with the core module being the DilateFormer Block. The DilateFormer Block is capable of handling multi-scale
temporal dependencies and capturing global information in long time series.It employs layer normalization to
normalize the input features and utilizes multi-scale dilated attention for multi-scale attention computation. The
multi-scale attention mechanism uses convolutions with different dilation rates to extract features at various
temporal scales. Its calculation formula is expressed as follows:

Xq = ConvlD (X, dilation =d), de€{1,2,4}. (10)

Subsequently, the attention mechanism is used for fusion to capture dependencies across different time steps:
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Fig. 2. Model architecture diagram.
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Q - XstackedWQ7 K = XstackedWK7 V= X.stackedWV (11)
T

A = Softmax (QK ) -V (12)
Vg

Xout = Concat (A17A27A4) (13)

Where dy, is represents the dimension of each head. The attention output is passed through a two-layer fully
connected network (FFN) and undergoes nonlinear transformation using the GeLU activation function. Its
formula is as follows:

Xrrn = Linear (Re LU (Linear (X))) (14)

Residual connections are introduced within the multi-scale attention and FFN modules to ensure stable feature
propagation and gradient flow. The Encoder consists of N, stacked DilateFormer Blocks, where N, is defined as 2
in this model. Each DilateFormer Block is followed by a Down Sample module, which uses stride-2 convolution
to reduce the temporal length while increasing the number of channels:

Xdown = BatenNorm(ConvlD (X)), Xdown € REx20x % (15)

Following the Encoder is the Bottleneck, which contains a single DilateFormer Block. Unlike the FFN in
Transformer, which uses only linear mapping, the Bottleneck incorporates multi-scale dilated convolutions,
enabling the simultaneous capture of both local and global features. The Decoder is composed of Up Sample
Layers, Fusion Layers, and N, stacked DilateFormer Blocks, designed to restore the temporal resolution and
integrate the multi-scale features from the Encoder output. The Up Sample Layers use ConvTIransposelD to
expand the temporal length:

Xup = ConvTransposel D (X), X, € R?* G x2H (16)

Finally, the Fusion Layer combines the upsampled features from the Decoder with the corresponding features
from the Encoder through concatenation and 1D convolution:

Xfu.sed = ConvlD ([Xup7 XencoderD (17)

The temporal features output by the DilateFormer are then passed to the fully connected layer for prediction. In
the mapping layer, global average pooling is performed along the temporal dimension, and a linear transformation
projects the global features into the target space:

Y = Linear (Xgiobal) (18)

This results in the final binary classification prediction, Y € RE eutputdim

prediction task.

, completing the corporate default

Channel attention

In time-series tasks, the importance of feature channels often varies. Inspired by the Squeeze-and-Excitation
(SE) mechanism?’ from the image domain, which extracts global channel features through global pooling
and generates attention weights using fully connected networks, we designed a modified channel attention
mechanism tailored for time-series tasks within the TCN. This mechanism dynamically adjusts the weights
of each feature channel by reweighting the channel dimension of the input features. As shown in the model
architecture Fig. 3, for the input tensor X € RZ* “* H global average pooling is first used to extract the global
feature representation of each channel:

H
1 .
=5 E X[ :1], z € RBXC (19)
i=1

After that, a two-layer fully connected network is used to achieve weight adjustment:
a=0Wsy -ReLU (Wy-2)), acRP*C (20)

Where W1, Wa are learnable weight matrices, o is sigmoid. Compared with the general channel attention
mechanism, such a design realizes the dynamic weighting of feature channels, and the lightweight architecture
can efficiently handle large-scale time series tasks with relatively low computational costs.

Multi-scale dilated attention

In the DilateFormer, we designed the multi-scale dilated attention (MSDA) module, which combines the
advantages of multi-scale dilated convolutions and self-attention mechanisms. This design efficiently captures
both local and global dependencies in time series with relatively low computational complexity. As illustrated in
Fig. 4, the module first employs three DilatedConv1D operations with different dilation rates to generate multi-
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Fig. 3. Channel attention.

scale feature maps. Feature stacking is then performed across these different feature maps, and Self-Attention is
applied to compute Q, K, and V, capturing global temporal dependencies. The attention weights are calculated
according to the previously mentioned formula, and the attention features from different scales are then fused
through weighted summation, producing the final multi-scale feature representation. The computation processes
for the dilated convolution and attention module can be expressed as follows:

Xu)scale = DilatedConv (){7 rate = Ti) (21)
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Fig. 4. Multi-scale dilated attention.

MSDA(X) =) Attention (Qi, K;Vi) (22)

=1

Where r; is the dilation rate of the i-th dilated convolution, and § is the number of scales. With this design, the
Channel Attention mechanism allows the model to filter out important features and reduce interference from
redundant information during the early stages of training. In the later stages, the multi-scale dilated attention
mechanism captures long-range dependencies on a global scale, enhancing the model’s ability to understand
complex patterns within the sequence. This design enables an effective division of labor between the two
mechanisms.
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The TCN-DilateFormer model processes corporate data by feeding it into the improved CNN structure,
TCN, for time-series feature extraction, while leveraging the Transformer-based DilateFormer to capture long-
range dependencies in the corporate feature data. This combination enables the model to effectively extract
spatial features while simultaneously capturing dynamic temporal changes when handling data with both spatial
and temporal dimensions. It offers a novel approach for processing time-series corporate credit data.

Data

Introduction to the dataset

Credit risk is closely tied to financial risk, and in the domestic stock exchange market, various methods are
used to assess the financial risk of a listed company, with the most common being the application of the ST or
*ST symbol. When a listed company incurs losses for three consecutive years, it is labeled as an ST company,
indicating a risk of delisting. This label acts as an early warning to the company’s shareholders. Therefore, such a
company can be considered high-risk in terms of credit risk, and studying these companies can provide insights
into the credit risk of listed enterprises.

The data used in this study was sourced from the CSMAR Database, comprising annual data from 3762
publicly listed companies in the manufacturing and mining industries on the A-share market from 2012 to
2022. Category labels were constructed based on whether a company was classified as ST. If a company was
designated as ST in a particular year, the label was set to 1, representing a positive sample; otherwise, the label
was set to 0, representing a negative sample. If a company’s stock code in a given year was identified as ST or *ST,
it was classified as a defaulting company for that year, and the corresponding data was considered default data.
According to this criterion, out of the 3762 companies, 320 were identified as defaulting companies.

During data processing, a padding procedure is applied to fit the temporal convolutional network model.
The time step for each enterprise sample is adjusted to a maximum of 11 years, with samples of fewer than 11
years padded with zero vectors. The processed data is then merged into a unified tensor for model input. This
preprocessing method ensures data consistency and facilitates smooth model training.

Selection of indicators

This paper draws on the research of Tong Menghua and other scholars®® and utilizes the existing indicator
system in the CSMAR database to construct a financial indicator system encompassing six aspects: solvency,
operating ability, profitability, development ability, ratio structure, and cash flow analysis. To ensure data quality,
indicators with more than 20% missing values were excluded. Linear regression was used to fill in the missing
values for the remaining indicators, and the raw data was standardized to eliminate the influence of scale. During
the standardization process, the mean () and standard deviation (o) of the original features were first calculated.
The mean (p) was then subtracted from the original features and the result divided by the standard deviation
(0) to ensure the data conformed to a standard normal distribution with a mean of 0 and a variance of 1. The
calculation process is shown in Eq. Ultimately, 32,246 data points from 3762 enterprises, covering 132 financial
indicators were used. According to the previous definition, the dataset consists of 32,246 entries, including 672
default data entries, accounting for 2.08% of the total data. This represents a highly imbalanced sample. As
shown in Table 1 below.

X-X

Xorm = ————in_ 23
T T X'max — Xmin 23)

where X . is the minimum value of the data, X, _is the maximum value of the data,and X, . is the normalized
value.

Data processing

Credit risk default data typically suffer from an imbalance where positive class samples significantly outnumber
negative class samples, necessitating a sample balancing process to prevent model overfitting. In this study, the
dataset comprises 31,574 non-default samples (class 0) and 672 default samples (class 1), resulting in a 50-
fold difference between the two classes, indicating an extremely imbalanced dataset. It is commonly accepted
that in binary classification tasks, maintaining a ratio between 1:1 and 1:10 for positive and negative samples
optimizes model performance. The commonly used method to address this issue is the SMOTE algorithm, which
oversamples minority class samples. However, some scholars have noted that SMOTE focuses solely on quantity
and overlooks the distributional characteristics of neighboring samples, leading to potential randomness and
redundancy in the newly generated data?®.This paper adopts a data training method from an algorithmic
perspective to address the issue of sample imbalance.

The data processing methodology in this study is illustrated in the Fig. 5 below and primarily includes data
loading and preprocessing, sliding window sampling, data augmentation, negative sample downsampling, and
cross-validation splitting. In the original dataset, the stock code of each company is used as its ID. Each company
has 11 years of data comprising 132 financial indicators and the corresponding annual category label (0 or 1).
First, the data is grouped by company ID to create a time-series data list organized by enterprise ID:

Total data quantity | Label 0 | Label 1
32,246 31574 672

Table 1. Comparison of two labels.
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Primary indicators Secondary indicators
Current Ratio, Quick Ratio, Conservative Quick Ratio, Cash Ratio, Debt to Asset Ratio, Long-Term Debt to Total Assets Ratio, Tangible Asset Debt
Ratio, Tangible Assets to Interest-Bearing Debt Ratio, Equity Multiplier, Equity to Debt Ratio, Equity to Liability Ratio, Long-Term Capital to Liability
Debt repayment ability | Ratio, Long-Term Debt to Equity Ratio, Long-Term Debt to Working Capital Ratio, EBITDA to Total Liabilities, Net Operating Cash Flow to Total

Liabilities, Net Operating Cash Flow to Interest-Bearing Debt, Tangible Net Worth to Debt Ratio, Working Capital, Cash Flow to Maturity Debt
Coverage Ratio, Cash to Gross Profit Ratio, Current Liability Ratio, Non-Current Liability Ratio.

Management capability

Accounts Receivable Turnover Ratio, Accounts Receivable Turnover Days, Inventory Turnover Ratio, Inventory Turnover Days, Operating Cycle,
Accounts Payable Turnover Ratio, Working Capital Turnover Ratio, Cash and Cash Equivalents Turnover Ratio, Current Assets Turnover Ratio, Fixed
Assets Turnover Ratio, Non-Current Assets Turnover Ratio, Total Assets Turnover Ratio, Equity Turnover Ratio, Accounts Receivable to Revenue
Ratio, Inventory to Revenue Ratio, Fixed Assets to Revenue Ratio, Current Assets to Revenue Ratio, Working Capital to Current Assets Ratio,
Working Capital Ratio, Working Capital to Net Assets Ratio.

Profitability

Return on Assets (ROA), Net Profit Margin on Total Assets (ROA), Net Profit Margin on Current Assets, Net Profit Margin on Fixed Assets, Return
on Equity (ROE), Earnings Before Interest and Taxes (EBIT), Profit Before Tax and After Interest, Earnings Before Interest, Taxes, Depreciation,

and Amortization (EBITDA), Net Profit to Total Profit Ratio, Total Profit to EBIT Ratio, EBIT to Total Assets Ratio, Return on Invested Capital
(ROIC), Return on Long-Term Capital, Gross Profit Margin, Operating Cost Ratio, Operating Profit Margin, Net Operating Profit Margin, Total
Operating Cost Ratio, Selling Expense Ratio, Administrative Expense Ratio, Financial Expense Ratio, Sales and Administrative Expense Ratio, Cost-
Expense-Profit Ratio, Asset Impairment Loss to Operating Revenue, EBITDA Margin, EBIT Margin, Core Business Profit Margin, Operating Profit
Contribution, Net Profit Attributable to Parent Company Contribution, Net Profit Attributable to Minority Interests Contribution.

Development capability

Return on Equity Attributable to Parent Company (ROE), Comprehensive Income Attributable to Parent Company, Capital Preservation and
Appreciation Rate, Capital Accumulation Rate, Fixed Assets Growth Rate, Total Assets Growth Rate, Operating Revenue Growth Rate, Total
Operating Revenue Growth Rate, Total Operating Cost Growth Rate, Selling Expenses Growth Rate, Administrative Expenses Growth Rate,
Sustainable Growth Rate, Shareholders’ Equity Growth Rate, Net Asset Value Per Share Growth Rate, Comprehensive Tax Rate.

Ratio structure

Proportion of Parent Company’s Shareholders’ Equity, Proportion of Minority Shareholders’ Equity, Turnover Tax Rate, Income Tax Rate, Proportion
of Other Comprehensive Income, Proportion of Comprehensive Income Attributable to Parent Company, Proportion of Comprehensive Income
Attributable to Minority Shareholders, Parent Company’s Shareholders’ Equity to Invested Capital Ratio, Fixed Assets Ratio, Intangible Assets Ratio,
Tangible Assets Ratio, Equity Ratio, Retained Earnings to Assets Ratio, Long-Term Assets Adequacy Ratio, Shareholders’ Equity to Fixed Assets Ratio,
Operating Liabilities Ratio, Financial Liabilities Ratio, Proportion of Minority Shareholders’ Equity, Proportion of Profit from Financial Activities,
Proportion of Non-Operating Income, Receivables Asset Ratio, Non-Current Assets Ratio, Fixed Assets Ratio, Intangible Assets Ratio, Tangible
Assets Ratio, Equity Ratio, Retained Earnings to Assets Ratio, Long-Term Assets Adequacy Ratio, Shareholders’ Equity to Fixed Assets Ratio.

Cash flow analysis

Cash Content of Net Profit, Cash Content of Operating Revenue, Net Cash Content of Operating Revenue, Net Cash Content of Operating Profit, Net
Cash Flow from Financing Activities to Creditors, Net Cash Flow from Financing Activities to Shareholders, Corporate Cash Flow, Equity Cash Flow,
Original Free Cash Flow of the Firm, Original Free Cash Flow to Equity, Total Cash Recovery Rate, Operating Index, Cash Adequacy Ratio, Cash
Reinvestment Ratio, Cash to Investment Coverage Ratio.

Table 2. Coverage scope of indicators at various levels.
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Fig. 5. Data processing flowchart.
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D = {Dia1, Diaz2, ...Dian} (24)

Where n is the number of enterprises. Subsequently, a sliding window with a length of K is applied to slice the
time series of each company, ensuring the preservation of the temporal characteristics of the data. Specifically,
starting from year t, data from K consecutive years is used as the sample features to predict the category label of
the company for year K+ 1:

Xt:{Did[t],Did[t—‘rl},...,Did[t-FK—l],} (25)
Y: = Dygq [t+ K} (26)

Where t=1,2,...,T-K. To evaluate the robustness of the model, we use Stratified K-Fold Cross-Validation to
divide the samples. This ensures that the proportion of positive and negative samples in each fold’s training
and validation sets is consistent with that of the original dataset, avoiding biases in sample distribution that
could affect model evaluation. Specifically, the dataset is randomly split into k non-overlapping subsets in a
stratified manner, maintaining the original ratio of classes. During each training iteration, one subset is used as
the validation set, while the remaining k—1 subsets are used as the training set. In this study, the baseline model
is configured with k=5.

To address the issue of sample imbalance between the two classes, during each round of cross-validation, we
performed data augmentation on the default (label 1) samples when the subset was used as a training set, while
leaving the validation set unchanged. Specifically, the default data with label 1 was subjected to n-fold repeated
sampling. It is generally accepted that deep learning models, due to their strong generalization capabilities,
can handle repeated sampling datasets with 5 to 10 times the original data. Considering the overall size of our
dataset, we applied 5-fold repeated sampling to the default data. During the repetition process, Gaussian noise
with a standard deviation of sigma was added. Assuming the feature value of a positive sample X is z;:

Zi =max (z; + [,0) , [~ N(0, o°) (27)

In this experiment,ois set to 0.05. Additionally, to align with the characteristics of financial indicators, only
non-negative values are retained for the enhanced sample features. After this operation, the number of default
samples in the training set is expanded to k+ 1 times the original data.

To further balance the samples, we performed downsampling on the non-default data based on the expanded
number of default samples. The non-default data was downsampled to twice the size of the enhanced default
data to reduce the risk of model bias toward non-default data, while mitigating the data loss issue caused by
downsampling.

X~ = RandonSample (Xf,min(|X7|,1.5>< |X+’)) (28)

By performing data augmentation on the training set, the issue of data imbalance was effectively mitigated,
ensuring the model’s learning capability for minority class samples and the fairness of performance evaluation.
Table 3 presents a comparison of the data volumes before and after augmentation.

Evaluation criteria
Credit risk assessment models aim to quantitatively distinguish customers’ credit levels, requiring evaluation
metrics to reflect the classification accuracy of the model. When there is a significant imbalance between the
number of positive and negative samples, metrics such as precision, recall, and their composite measures (e.g.,
F1-score), as well as specificity, provide a more comprehensive evaluation of model performance. This study
employs the following metrics to evaluate the accuracy of the model.

Recall measures the proportion of actual defaulting firms that the model correctly identifies. A high recall rate
indicates that the model is effective at identifying defaulting firms. It is calculated using the following formula:

TP
— - 2
recall N (29)

Precision measures the proportion of firms predicted by the model as defaulting that actually do default. A high
precision rate indicates that the model is more accurate in predicting defaulting firms, with a lower rate of false
positives. It is calculated using the following formula:

TP

Precision = TP+ FP (30)

Label | Validation setk; | Raw training setk; | Training set K; (augmented)
1 135 135 810
0 6374 6374 1620

Table 3. Comparison of the data volumes.
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Where TP (true positive) refers to the number of samples that the model correctly predicted as positive, while
FN (false negative) refers to the number of samples that the model incorrectly predicted as negative but were
actually positive. FP (false positive) refers to the number of samples that the model incorrectly predicted as
positive but were actually negative.

The F1 score is the harmonic mean of precision and recall, providing a comprehensive assessment of the
model’s accuracy and recall. It is calculated using the following formula:

Precision x Recall
F1 =2 31
seore % Precision + Re call (31)

Specificity is an important metric for measuring the model’s ability to correctly classify the negative class.
Compared to the aforementioned metrics, it focuses more on the model’s performance on negative samples. In
highly imbalanced datasets, Specificity can effectively compensate for the limitations of Precision and Recall. Its
calculation formula is:

Speci ficity = % (32)

Focal loss

In our task, the two classes are extremely imbalanced. Therefore, during training, we used the Focal Loss function,
which is specifically designed to address imbalance issues. Unlike the traditional cross-entropy loss function,
Focal Loss introduces a weighting factor that assigns higher weights to minority class samples, optimizing the
classification of imbalanced categories. Its calculation formula is:

Lfocal (pz) = _at(l - pt)’y 1Og (pt) (33)

Where p; represents the predicted probability, a; is the balancing factor which is used to adjust the impact of
positive and negative samples on the loss,yis the focusing factor which is employed to adjust the degree of weight
decay for easily classified samples.

During model training, its calculation formula for the entire batch is as follows:

N
L= % Z Lfoca,l (pt“)) (34)
=1

Where N represents the number of samples in the current batch, Lyfoca (pt(i)) is the Focal Loss of the i-th
sample.

Empirical analysis

In this section, we will provide a detailed explanation of the experimental setup, using the TCN-DilateFormer
model to perform binary classification predictions on time-series financial data of listed companies to determine
whether a company defaults. Subsequently, we conducted comparative experiments with other models and
validated the robustness of the model through ablation experiments.

Default analysis of listed companies

The experiments were conducted on a workstation equipped with two NVIDIA GeForce RTX 3080 x2 GPUs
and an Intel(R) Xeon(R) Silver 4214R processor. The PyTorch 1.8.1 framework with CUDA 11.1 was used, and
multi-GPU parallel acceleration was implemented using PyTorch’s DataParallel mode. Model parameters were
initialized using a uniform distribution. During training, the dropout rate was set to 0.2, and the number of
epochs was set to 100.

The TCN channel configuration was set to [64,128,256,512], and the Transformer hidden dimension was
set to 64. Training was conducted with a batch size of 16, a maximum of 100 training epochs, and 1000 samples
per epoch. The optimizer used was Adam with an initial learning rate of 0.0001. MultiStepLR scheduler was
employed to adjust the learning rate, reducing it by a factor of 0.1 every 30 epochs. For Focal Loss, the settings
were y=2.0 and a=0.25.

We compared the TCN-DilateFormer model with classical models and two SOTA models, including
CNN-LSTM, CNN-Transformer, and state-of-the-art models for time-series classification tasks: TimeMIL3®
and ConvTimeNet*!. For all models, the optimal parameter settings from the respective literature were used.
The Precision, Recall, F1 Score, and Specificity of the model with the minimum loss in each experiment were
calculated. Each model was subjected to five-fold cross-validation, and the average results were reported. The
results are presented in Table 4.

All models demonstrated relatively high overall performance in terms of Precision, Recall, and F1 Score,
with performance gradually improving from CNN-LSTM to TCN-DilateFormer. It can be observed that in the
time-series binary classification task for credit risk analysis of listed companies, our model consistently achieved
the best performance. Specifically, the Precision was 0.9681, Recall 0.8689, F1 Score 0.9157, and Specificity
0.9809. This further indicates that TCN-DilateFormer exhibits strong performance and has potential in binary
classification tasks involving time-series financial data. Figure 6 provides a more intuitive visualization of the
evaluation metrics for each model.
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CNN-LSTM 0.8437 0.6488 | 0.6677 0.8772
CNN-Transformer | 0.8610 0.7122 | 0.7705 0.8853
ConvTimeNet 0.9452 0.8235 | 0.8798 0.9734
TimeMIL 0.9398 0.7972 | 0.8635 0.9715
TCN-DilateFormer | 0.9681 0.8689 | 0.9157 0.9809

Table 4. Model results comparison. Significant values are given in bold.

Model Performance Comparison

CNN-LSTM
CNN-Transformer
ConvTimeNet
I TimeMIL
mmm TCN-DilateFormer

Precision Recall

F1 Score Specificity
Metrics

Fig. 6. Model performance comparison.

[1,1,2,2] 0.9487 0.9083 0.8533 | 0.9765
[1,2,4,8] 0.9681 0.9157 | 0.8689 | 0.9809
[1,2,8,16] 0.9562 0.9140 0.8665 | 0.9799

Table 5. Comparison of experimental results with different dilation factors. Significant values are given in
bold.

Parameter optimization experiment

In this section, we modify the dilation factors in the TCN Layer and the number of DilatedConv1D layers in
the Multi-Scale Dilated Attention of the DilateFormer layer to identify the optimal parameter combination. In
these experiments, all parameters remain consistent with the main experiment except for the adjusted ones. The
average results of various performance metrics are computed through cross-validation.

First, parameter optimization experiments were conducted for the dilation factors. The original model’s
dilation setting of [1,2,4,8] was used as the baseline. While keeping the number of TCN layers and channels
unchanged, the dilation factors were modified to [1,1,2,2] and [1,2,8,16] for two additional experiments. The
results of the three experiments are presented in the Table 5.

As shown in the results, reducing the dilation factor leads to slight decreases in Precision, F1 Score, and
Recall, while increasing the dilation factor does not achieve the expected improvement. Therefore [1,2,4,8], is
considered the optimal combination.

Next, we modify the scales in the Multi-Scale Dilated Attention mechanism to observe the model’s
performance. The baseline is the original model’s setting of [1,2,4]. We then modify it to [1,4] and [1,2,4,8] and
repeat the experiments with these two parameter sets. The results are presented in Table 6.

From the results in the table, the performance differences across the groups are minimal. When using only
[1,4], the model’s performance declines significantly. While increasing the scales to [1,2,4,8] results in a slight
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Scale Precision | F1 Score | Recall | Specificity

[1,4] 0.9405 0.9020 0.8501 | 0.9682

[1,2,4] 0.9681 0.9157 0.8689 | 0.9809

[1,2,4,8] | 0.9521 0.9155 0.8702 | 0.9801

Table 6. Comparison of experimental results with different scales. Significant values are given in bold.

Learning rate | Precision | F1 Score | Recall | Specificity

0.0001 0.9681 0.9157 0.8689 | 0.9809
0.0002 0.9494 0.9112 0.8534 | 0.9787
0.0005 0.9125 0.8728 0.8231 | 0.9664

Table 7. Comparison of experimental results with different learning rates. Significant values are given in bold.

Window size | Precision | F1 Score | Recall | Specificity

3 0.9635 0.9128 0.8615 | 0.9785
5 0.9681 0.9157 0.8689 | 0.9809
10 0.9650 0.9145 0.8667 | 0.9798

Table 8. Comparison of experimental results with different window sizes. Significant values are given in bold.

improvement in Recall, the overall performance difference remains small. To avoid the additional computational
cost and potential overfitting caused by an overly complex model structure, we retain [1,2,4] as the parameter
combination.

Parameter sensitivity & robustness analysis

In this section, we modify three parameters, learning rate, window size, and the standard deviation of Gaussian
noise to observe changes in model performance. In each experiment, only the parameter being adjusted is
modified, while all other settings remain unchanged. The performance metrics are then calculated and reported.

Using a learning rate of 0.0001 as the baseline, we adjust it to 0.0002 and 0.0005, repeating the experiments.
The results are presented in Table 7.

The results in the table indicate that the model performs well when the learning rate is set to 0.0001 or 0.0002,
but performance declines significantly when the learning rate is increased to 0.0005. This suggests that the model
has a certain tolerance to changes in the learning rate, but as the learning rate increases, the model’s ability to
converge stably decreases, leading to performance degradation. Therefore, a learning rate of 0.0001 is selected.

The size of the sliding window determines the amount of historical data the model can utilize for prediction.
Considering that each company only has 11 years of data, we set the window size to 3, 5, and 10, respectively.
The experiments are repeated with other parameters unchanged to observe changes in model performance. The
results are shown in Table 8.

The results indicate that the model performs slightly better when the window size is set to 5. This may be
because a smaller window size limits the model’s ability to capture temporal information, while a larger window
size introduces information redundancy. However, overall, all metrics show consistently good performance.

In the data augmentation process, Gaussian noise was added to minority class samples to expand the dataset.
Next, we modify the standard deviation of the Gaussian noise to observe the model’s sensitivity to noise intensity.
In the main experiment, the standard deviation of the Gaussian noise was set to 0.05. We adjust it to 0.01 and 0.1,
respectively, and conduct experiments for each setting.

According to the results in Table 9, when the noise is too small, the effectiveness of data augmentation
decreases, leading to a decline in model performance. Conversely, when the noise is too large, the increase in
spurious features also results in performance loss. Overall, the model shows low sensitivity to changes in the
standard deviation of Gaussian noise, demonstrating a certain degree of robustness.

Statistical test
In this section, we perform a significance test comparing the F1 Scores from the K-fold cross-validation of TCN-
DilateFormer, ConvTimeNet, and TimeMIL. F1 Score, being the harmonic mean of Recall and Precision, is a
more representative metric.

The experiment uses five-fold cross-validation, and Table 10 presents the results of each cross-validation
iteration for the three models:

This study employs the Wilcoxon Signed-Rank Test, a non-parametric paired statistical test used to evaluate
whether there is a statistically significant difference in results under two different conditions for the same set
of samples. We perform the Wilcoxon test to compare TCN-DilateFormer with TimeMIL and ConvTimeNet,
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Noise_std | Precision | F1score | Recall | Specificity

0.01 0.9605 0.9101 0.8620 | 0.9803
0.05 0.9681 0.9157 | 0.8689 | 0.9809
0.1 0.9645 0.9132 0.8644 | 0.9796

Table 9. Comparison of experimental results with different noises. Significant values are given in bold.

Model Foldl | Fold2 | Fold3 |Fold4 | Fold5 | Mean
TCN-DilateFormer | 0.9194 | 0.9007 | 0.9277 | 0.9293 | 0.9014 | 0.9157
TimeMIL 0.8597 | 0.8701 | 0.8643 | 0.8657 | 0.8677 | 0.8635
ConvTimeNet 0.8781 | 0.8617 | 0.9093 | 0.8741 | 0.8758 | 0.8798

Table 10. Five-fold cross-validation results of different models.

Model W | p-value
TimeMIL 4.3 | 0.039
ConvTimeNet | 3.7 | 0.025

Table 11. Wilcoxon signed-rank test results.

respectively. For each test, the F1 Scores from cross-validation are paired such that the i-th F1 Score of TCN-
DilateFormer is compared with the i-th F1 Score of TimeMIL and ConvTimeNet.

Define the null hypothesis and alternative hypothesis as follows:

H,=There is no significant difference in the F1 Scores between the two models.

H,="The F1 Score of TCN-DilateFormer shows a significant difference compared to the control model.

Definea =0.05, When P<0.05, reject the null hypothesis, The results are shown in Table 11:

It can be observed that both p-values are less than a=0.05. Therefore, the null hypothesis is rejected, indicating
that the performance of TCN-DilateFormer is significantly superior to that of the comparison models.

Discussion

The TCN-DilateFormer hybrid model developed in this study demonstrates excellent performance in corporate
credit risk analysis tasks, showcasing significant application potential. TCN provides efficient local feature
extraction for time-series data, enabling precise capture of short-term dynamic changes in corporate financial
indicators. DilateFormer, through its Multi-Scale Dilated Attention mechanism, effectively captures long-range
dependencies in financial time-series data. Additionally, the data augmentation methods employed during
training significantly improve the model’s performance in handling imbalanced data, enhancing its robustness.

We note that there is still room for improvement in the model. First, the model relies heavily on the quality
of input data, and the effectiveness of data preprocessing directly impacts predictive performance. Second, the
issue of training data wastage caused by the downsampling strategy employed during the data processing stage
requires further investigation.

Future research will focus on optimizing the network structure to reduce computational complexity while
maintaining model performance and adopting more innovative data processing methods to address the sample
imbalance issue. Additionally, beyond financial time-series data, we will explore the application of the model to
unstructured data and macroeconomic data to further enhance the accuracy of credit risk prediction. Moreover,
we aim to investigate the model’s potential in other time-series tasks, such as individual customer default risk
prediction and supply chain risk management, to broaden its applicability and provide effective solutions for a
wider range of fields.

Conclusion
In this paper, we focus on time-series financial data and consider the advantages of CNN in capturing local
sequence features and the Transformer’s strong global feature extraction capability. We innovatively integrate
TCN, an improved CNN module, and DilateFormer, an enhanced Transformer module, to construct a TCN-
DilateFormer hybrid model. This model not only improves the performance of the traditional CNN-Transformer
but also enhances the processing accuracy of time-series financial data, thereby improving the accuracy of
enterprise credit risk assessment. TCN’s causal and dilated convolution designs allow the model to capture long-
term trends and patterns in financial data. DilateFormer, through the extension of the attention mechanism,
effectively enhances the model’s ability to handle long-range dependencies in high-dimensional financial data.
Experimental results show that the TCN-DilateFormer model outperforms traditional time-series
classification models in terms of precision, recall, and F1 score. Therefore, this study concludes that the TCN-
DilateFormer model is more effective in capturing local features and global dependencies in time-series data
while maintaining high computational efficiency when handling large-scale data. In summary, this research
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provides an effective tool for corporate credit risk assessment and offers new insights for deep learning-based
corporate credit risk studies.

Data availability
The data that support the findings of this study are openly available in CSMAR at https://data.csmar.com/.
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