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To enhance high-frequency perceptual information and texture details in remote sensing images and 
address the challenges of super-resolution reconstruction algorithms during training, particularly 
the issue of missing details, this paper proposes an improved remote sensing image super-resolution 
reconstruction model. The generator network of the model employs multi-scale convolutional kernels 
to extract image features and utilizes a multi-head self-attention mechanism to dynamically fuse 
these features, significantly improving the ability to capture both fine details and global information in 
remote sensing images. Additionally, the model introduces a multi-stage Hybrid Transformer structure, 
which processes features at different resolutions progressively, from low resolution to high resolution, 
substantially enhancing reconstruction quality and detail recovery. The discriminator combines 
multi-scale convolution, global Transformer, and hierarchical feature discriminators, providing a 
comprehensive and refined evaluation of image quality. Finally, the model incorporates a Charbonnier 
loss function and total variation (TV) loss function, which significantly improve training stability and 
accelerate convergence. Experimental results demonstrate that the proposed method, compared to 
the SRGAN algorithm, achieves average improvements of approximately 3.61 dB in Peak Signal-to-
Noise Ratio (PSNR), 0.070 (8.2%) in Structural Similarity Index (SSIM), and 0.030 (3.1%) in Feature 
Similarity Index (FSIM) across multiple datasets, showing significant performance gains.
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Remote sensing images contain rich details and perceptual information, which effectively support scene 
understanding and environmental analysis. In the field of remote sensing, image super-resolution (SR) 
reconstruction technology is particularly important and is widely applied in tasks such as environmental 
monitoring, object detection, and scene classification. In recent years, with the rapid development of blind super-
resolution techniques, traditional bilinear downsampling models have gradually been replaced by more complex 
deep learning degradation models. Super-resolution networks based on Generative Adversarial Networks 
(GAN)1have shown excellent performance in image restoration. Since the introduction of the first attention-
based super-resolution model, RCAN2, in 2018, the application of attention mechanisms in super-resolution 
reconstruction has garnered widespread attention. However, due to the limitations of remote sensing image 
sensors and the effects of atmospheric disturbances, long-distance imaging, and spectral noise3, traditional 
downsampling models struggle to accurately simulate the real degradation process, resulting in distortion in the 
reconstructed remote sensing images.

With the rapid advancement of attention mechanisms, their computational capabilities have significantly 
increased4. However, this also brings increased model complexity and computational burden, limiting the 
practicality of attention-based super-resolution models in real-world applications. Moreover, although GAN 
networks generate realistic images through learning strategies that make human perception more convincing, 
they still tend to produce noticeable artifacts when compensating for high-frequency details (such as image 
edges) and subtle feature representations5. For instance, in remote sensing images, detail edges may become 
blurred or unnaturally sharpened, making artifacts more easily noticeable to the human eye.

To address the challenges of insufficient detail extraction in low-resolution images, the ineffectiveness of 
degradation models, and the underperformance of reconstructed feature representations, it is necessary to 
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strike a balance between model complexity and real-world applicability6. Additionally, adopting more effective 
degradation models to better simulate the actual degradation process of remote sensing images is essential. In 
response to the challenges of high-frequency detail reconstruction in current remote sensing images, this paper 
proposes an improved remote sensing super-resolution (SR) reconstruction model with the following specific 
improvements:

	1.	� Multi-Scale Feature Extraction and Dynamic Feature Fusion: Image features are extracted using mul-
ti-scale convolutional kernels (7 × 7, 5 × 5, 3 × 3) and dynamically fused using a multi-head self-attention 
mechanism. This enhances the ability to capture and represent both fine details and global information in 
remote sensing images, contributing to the generation of clearer and higher-quality high-resolution images.

	2.	� Multi-Stage Hybrid Transformer Structure: After feature fusion, the image is processed through three cus-
tom Transformer modules. Each Transformer includes linear layers, positional encoding, and layer normali-
zation, and uses self-attention mechanisms to process features at different resolutions. The first stage handles 
low-resolution features, the second stage refines them to medium resolution, and the third stage elevates 
them to high resolution, progressively improving image quality and detail.

	3.	� Comprehensive Discriminator for Multi-Dimensional Evaluation: The comprehensive discriminator in-
tegrates multi-scale convolution, global Transformer, and hierarchical feature discriminators to provide a 
thorough evaluation of image quality. By combining the strengths of different discriminators, the model 
enhances the quality and realism of the generated images from multiple perspectives.

Related work
Degradation model
Current image super-resolution (SR) methods typically rely on traditional bicubic downsampling7and 
conventional degradation models8,9, or their variants10,11. These models usually simulate the degradation process 
of images through blurring, downsampling, and noise addition. However, in real-world scenarios, noise may not 
only originate from the image itself but also be introduced by camera sensors or JPEG compression, exhibiting 
signal randomness and non-uniformity12. Even if the blurring part is accurately simulated, a mismatch between 
the noise and the actual image can significantly reduce the effectiveness of super-resolution reconstruction. 
Therefore, models like BSRGAN13and Real-ESRGAN14, which are closer to the real degradation scenarios, are 
particularly important.

These advanced degradation models focus on three core factors: the blur kernel k15, the downsampling kernel 
s, and the noise n. By randomly permuting the order of these factors (e.g., ksn, nks, snk) and combining 

different implementation methods (such as bicubic downsampling, nearest-neighbor, bilinear downsampling, 
etc.), a more complex degradation process in real scenes can be better simulated. Specifically, these factors are 
sequentially applied in a random order during the degradation process and then stacked once again in the final 
step. This also highlights the importance of JPEG noise in the degradation model, as it can further realistically 
reproduce the deterioration of image quality in the last step.

Natural image super-resolution
With the widespread application of deep learning in super-resolution (SR) image reconstruction tasks, 
performance has shown remarkable improvement, leading to the development of numerous SR reconstruction 
methods for natural images in recent years. Dong et al.16. proposed the Super-Resolution Convolutional Neural 
Network (SRCNN) model, which applies a three-layer convolutional neural network (CNN) to reconstruction 
tasks. This model uses CNNs to learn end-to-end feature mappings between low-resolution (LR) and high-
resolution (HR) images, significantly reducing computational complexity compared to traditional methods. 
Subsequently, Dong et al.17. introduced the FSRCNN model based on SRCNN, increasing the network depth to 
effectively reconstruct more high-frequency details, though this also increased the difficulty of network training. 
Kim et al.18. proposed the Deeply-Recursive Convolutional Network for Super-Resolution (VDSR) model, 
which achieves multi-level feature cascading through the connection of multiple CNN layers, thereby enhancing 
the learning rate and accelerating convergence, effectively demonstrating the importance of network depth in 
SR reconstruction. Ledig et al.19. introduced the Super-Resolution Generative Adversarial Network (SRGAN) 
model, incorporating Generative Adversarial Networks (GAN)20 into SR reconstruction tasks. In SRGAN, the 
generator and discriminator are trained collaboratively, making the network more attentive to the similarity 
in the feature space distribution and motivating the generation of natural images with high perceptual quality. 
Building on this foundation, Wang et al.21. proposed the Enhanced Super-Resolution Generative Adversarial 
Network (ESRGAN), which optimizes the SRGAN framework by employing Residual Dense Blocks (RDB)22 to 
reduce artifacts in the reconstructed results and sharpen edge textures.

Remote sensing image super-resolution
The structure of remote sensing images is more complex than that of natural images. Remote sensing images 
typically encompass a wide range of different scenes, such as buildings, farmlands, forests, and airports. A 
complete remote sensing image might consist of various scenes with significantly different textures and structural 
information, leading to inconsistent mapping relationships between high-resolution (HR) and low-resolution 
(LR) images across different scenes23. Additionally, the scale of objects in remote sensing images varies greatly. 
For example, objects like airplanes and vehicles may occupy only a few pixels in a remote sensing image, which 
is a stark contrast to natural images.

In the field of remote sensing, super-resolution (SR) is a severely ill-posed problem, and image quality is 
influenced by numerous factors such as atmospheric disturbance, ultra-long-range imaging, and spectral noise. 
To address these challenges, researchers have proposed various innovative models. Zhang et al.24. introduced 
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the Multi-Scale Attention Network (MSAN) model, incorporating scale attention networks to enhance scene 
adaptability and improve detail reconstruction in diverse remote sensing scenarios. Dong et al.25. proposed the 
Dense Sampling Super-Resolution (DSSR) model, utilizing a dense sampling mechanism to upsample multiple 
low-dimensional features, allowing the network to integrate multiple prior features during reconstruction. 
Subsequently, Dong et al.26. introduced the Second-Order Multi-Scale Super-Resolution (SMSR) model, 
leveraging a two-stage learning process to aggregate global and local large-scale and small-scale feature 
information, thereby strengthening the capability of multi-scale feature extraction.

For reconstruction methods based on Generative Adversarial Networks (GANs), Jiang et al.27. proposed the 
Edge-Enhanced GAN (EEGAN) model, which employs a super-dense sub-network and an edge enhancement 
network to improve SRGAN, making it suitable for remote sensing reconstruction tasks and enhancing the 
edge reconstruction capability of remote sensing images. Lei et al.28. proposed the Coupled Discriminator 
GAN (CDGAN) model, which adopts a coupled discriminator network structure to enhance the local details 
of the reconstructed images. Lin et al.29. introduced channel attention to achieve high-frequency focus on 
local contours and designed an edge loss to constrain the training process, ensuring that the edge details of 
the generated images remain more complete. Sui et al.30. integrated an additional Noise Discriminator (ND), 
employing an adversarial learning strategy in data distribution learning to enhance the diversity of generated 
data and the detailed texture prediction of the diffusion model. These methods address some critical issues in 
remote sensing image super-resolution reconstruction to varying degrees, thereby improving the reconstruction 
quality of remote sensing images in complex scenes.

Methods
To address the challenges in reconstructing high-frequency details in remote sensing images, this paper proposes 
a GAN-based improved remote sensing super-resolution (SR) reconstruction model. The model mainly consists 
of a generator and a discriminator. The generator network produces SR images at a specified upscaling factor, 
which are then inputted into the discriminator network along with the HR images. The discriminator assesses 
the authenticity of the images, determining whether the input is real or generated.

Generator model building
The generator network is composed of three main modules: a multi-scale feature extraction module, a dynamic 
feature fusion module, and a multi-stage Hybrid Transformer, as shown in Fig. 1. These modules work in 
synergy, enabling the generator to progressively extract, fuse, and refine features from the low-resolution (LR) 
image, ultimately generating a high-quality high-resolution (HR) image.

	1.	� Multi-Scale Feature Extraction Module: Similar to traditional multi-scale feature extraction methods, this 
model employs convolutional kernels of different scales (7 × 7, 5 × 5, 3 × 3) to extract multi-level features from 
the low-resolution image. This approach effectively captures various details and semantic features within 
the image, enhancing the network’s perceptual ability. The input consists of images of size x ∈ RN*3*H*W, 
where N represents the batch size, 3 is the number of input channels (RGB channels), and H and W denote 
the height and width of the image, respectively. In this module, the input image is processed through multiple 
convolutional kernels to extract multi-scale features. These features are then concatenated along the channel 
dimension, followed by a 1 × 1 convolution for channel fusion, resulting in high-dimensional multi-scale fea-
tures fms = Conv1*1 ∈ RN*C*H*W. The concatenated features merge local and global information across 
the channel dimension, thereby providing a richer input for subsequent processing.

	2.	� Dynamic Feature Fusion Module: This module primarily utilizes a multi-head self-attention mechanism31 
to dynamically fuse multi-scale features. First, the input feature fms is reshaped into a sequential form for use 
in the subsequent self-attention mechanism. The multi-head self-attention mechanism reweights and fuses 
the features. For each position i, its output is computed as a weighted sum of queries Q, keys K, and values 
V. The calculation formula is as follows:

Fig. 1.  Structure of generating network.
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Q, K, V = Softmax

(
QKT

√
dk

)
V � (1)

In the formula, Q, K, V represents queries, keys, and values, while the matrix dk is the scaling factor. The 
reweighted features are further fused through a 1 × 1 convolution to generate a new feature map:

	 ffused = Conv1∗1(fms + Attention_out)� (2)

The feature fusion module combines the local feature capturing ability of convolution operations with the global 
dependency modeling capability of the self-attention mechanism. By dynamically fusing features, it enhances 
the flexibility of feature representation and adaptively selects the most beneficial features for the final image 
generation.

3.Multi-Stage Hybrid Transformer: After feature fusion, ffused is processed through a multi-stage Hybrid 
Transformer structure. This structure is divided into three stages, each consisting of a custom Transformer 
module. Each Transformer module includes a linear layer (Linear) and a standard Transformer architecture. 
The linear layer converts the channel dimension of the input features from C to the embedding dimension of 
the Transformer model. The input sequence is then processed through the Transformer modules, each of which 
includes multi-head self-attention and a feed-forward neural network. The Transformer in the first stage processes 
low-resolution features, maintaining the shape; the second stage processes medium-resolution features, refining 
the features; and the third stage processes high-resolution features, providing rich feature representations for 
subsequent image generation. Through progressive processing across multiple stages, features are progressively 
refined and enhanced to adapt to different resolution levels. The specific results of the HSHT module are shown 
in Fig. 2.

After feature fusion, the model enters the multi-stage Hybrid Transformer structure, which consists of three 
custom Transformer modules. Each Transformer module includes a linear layer (Linear) for feature mapping, a 
position encoding layer (PE) to enhance positional information of the sequence, and a layer normalization layer 
(LN) to stabilize the training process. Each stage of the Transformer module uses self-attention mechanisms and 
contextual modeling to optimize feature representation.

Specifically, the first stage processes low-resolution features by mapping ffused through the linear layer and 
position encoding, followed by layer normalization before inputting into the Transformer module, with the 
output restored to the original image size. The second stage upsamples the image by a factor of two using a 
deconvolution layer, with the reshaped features fed into the second Transformer module to further enhance 
image details. The third stage again upsamples the image by a factor of two using a deconvolution layer, and the 
reshaped features are input into the third Transformer module for final high-resolution processing. This multi-
stage processing effectively enhances the image resolution and quality.

After multi-stage feature processing, the generator concatenates these features along the channel dimension 
and finally uses a 1 × 1 convolution to fuse the channels, generating the final RGB image.

Fig. 2.  HSHT module structure.
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Discriminator model building
After generating the SR image, it is evaluated along with the HR image using the comprehensive discriminator 
module, as shown in Fig. 3. This module comprises three independent discriminators, each responsible for 
handling different feature scales and patterns, with the aim of providing a comprehensive assessment of the 
quality of the generated image.

	1.	� Multi-Scale Convolution Discriminator: This discriminator begins by processing the input image through 
three progressively larger convolutional layers to extract features at different scales. Initially, the image is 
downsampled from 256 × 256 to 128 × 128, followed by 64 × 64 and 32 × 32. Each convolutional layer incre-
mentally increases the number of feature channels and applies the ReLU activation function to introduce 
non-linearity. Subsequently, a series of residual convolutional blocks further refine the features at the 32 × 32 
scale. Finally, the processed feature maps are flattened and passed through a fully connected layer to output 
the discrimination score. This module captures local details and overall structure by processing features at 
various scales, thus providing a comprehensive assessment of the generated image’s quality.

	2.	� Global Transformer Discriminator: This discriminator employs a pre-trained Swin Transformer to extract 
global contextual features. The Swin Transformer model, based on the Swin Transformer architecture, cap-
tures the global structural information of the image through deep learning. The input image is first processed 
by the Swin Transformer for feature extraction, and the extracted features are then classified through a fully 
connected layer. Given its ability to handle both global and detailed features, this module primarily assesses 
the overall quality and structural consistency of the generated image.

	3.	� Hierarchical Feature Discriminator: This module first applies a 3 × 3 convolutional kernel to increase the 
number of channels in the input image to 256, using the ReLU activation function to extract features. After 
convolution, the feature maps are flattened and passed to a fully connected layer to generate the discrimi-
nation score. This module is designed to capture detailed features of the image and assess the quality of the 
details and texture through flattening and classification operations.

Through the collaborative work of these discriminator modules, the generator is able to progressively enhance 
the quality of the generated images, ensuring that the final output possesses higher resolution and greater realism.

Loss function
High-resolution (HR) remote sensing images contain rich high-frequency information, perceptual details, and 
environmental content. To achieve more detailed reconstruction of the image, this experiment incorporates 
content loss32, pixel loss33, adversarial loss34, and total variation (TV) loss35 to jointly constrain the generator, 
enhancing the overall robustness of the model.

Content Loss. In the generative network, adversarial learning helps maintain the realism of generated images 
but often results in significant artifacts and uncertain details. To ensure that the generated super-resolved (SR) 
image better aligns with the content distribution of the real high-resolution (HR) image, improve reconstruction 

Fig. 3.  Structure of Discriminator network.
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quality, and limit excessive high-frequency content, this experiment further incorporates the Charbonnier loss 
function to enhance the consistency between the SR image and the HR image. The expression for content loss is:

	 Lcont = EISR [ρ ( IHR − ISR )] � (3)

	 ρ (x) = (x2 + ϵ 2)1/2 � (4)

In the expression, ρ (*) denotes the Charbonnier loss function, with ϵ  set to 10 − 3.
Perceptual Loss. In the SRGAN model, perceptual loss is computed using features extracted from the DenseNet 

network before activation layers, rather than after. As the network deepens, most of the feature information after 
activation gradually fades, so the pre-activation features retain more information. Perceptual loss encourages the 
network to recover more high-frequency details to achieve perceptual alignment. In this experiment, perceptual 
loss is defined using the Charbonnier loss between the DenseNet features of the SR image and the HR image, 
both before activation. Its expression is:

	 Lpercep = EISR {ρ [υ feat(n) (ISR) − υ feat(n) (IHR) ]} � (5)

In the equation, υ feat(n) (*) represents the feature information extracted from the DenseNet model before the 
activation layer. In this experiment, the features are chosen from just before the maximum pooling layer in the 
4th layer and just after the convolutional layer in the 3rd layer of the DenseNet-201 model.

Adversarial Loss. The loss feedback from the discriminator network can optimize the generator network, 
encouraging it to produce more natural images while simultaneously improving the performance of the 
discriminator network. Therefore, the adversarial loss needs to consider both the generator and the discriminator 
networks. The expression for adversarial loss is:

	 Ladv = −EIHR {log[ 1 − DRa(IHR, ISR) ]} − EISR {log[ DRa(ISR, IHR) ]} � (6)

The expression for the discriminator loss is:

	 Ladv = −EIHR {log[ DRa(IHR, ISR) ]} − EISR {log[ 1 − DRa(ISR, IHR) ]} � (7)

Total Variation (TV) Loss. Remote sensing images are inevitably affected by noise during acquisition, and the 
reconstruction process can amplify this noise while also introducing new noise. Noise with false information 
tends to have higher total variation in the image. The total variation of noisy images is significantly higher than 
that of non-noisy images. By minimizing the total variation loss, it is possible to reduce noise in the image while 
preserving edges. Therefore, TV loss is introduced, and its expression is:

	
LTV =

∑
i,j∥ ISR

i+1,j − ISR
i,j ∥1 + ∥ ISR

i,j+1 − ISR
i,j ∥1� (8)

In the expression, ISR
i,j  represents the pixel value at point (i, j), while i and j denote the corresponding point 

coordinates in the horizontal and vertical directions of the SR image. The introduction of TV loss helps suppress 
the generation of artifacts in SR images and prevents overfitting of the model during training.

Integrating the aforementioned loss functions, the total expression for the generation loss is:

	 LG = λ Lcont + Lpercep + η Ladv + γ LTV� (9)

Experimental configuration
Dataset and parameter settings
To validate the applicability of the proposed method under varying spatial resolutions, different sensor acquisition 
conditions, and minor perturbations, five distinct remote sensing image datasets were selected: PatternNet36, 
AID37, WHU-RS1938, NWPURESISC4539, and UCMERCED40. All these datasets consist of multi-class RGB 
images, covering a range of land cover types and scenarios, aiming to thoroughly evaluate the super-resolution 
performance of the model across different resolutions and imaging conditions.

PatternNet: Created by Xidian University, this dataset serves as a benchmark for large-scale high-resolution 
remote sensing image classification and retrieval. The images are sourced from the National Agricultural Imagery 
Program (NAIP) with a resolution of 1 m per pixel and a size of 256 × 256 pixels. It includes 30,400 images across 
38 land cover categories, such as buildings, airports, farmland, and forests.

AID: Developed by Wuhan University, this dataset is designed for remote sensing image classification tasks. It 
contains 10,000 high-resolution aerial images with resolutions ranging from 0.5 m to 8 m and image dimensions 
of 600 × 600 pixels. The dataset covers 30 categories of scenes, including airports, commercial areas, agricultural 
zones, and forests, reflecting a wide range of surface cover types.

WHU-RS19: Released by Wuhan University, this high-resolution remote sensing dataset focuses on remote 
sensing image classification tasks. It includes 950 images across 19 land cover types, with each type having 50 
images, and each image is 600 × 600 pixels. The dataset provides diverse land cover types, suitable for assessing 
the model’s generalization capability.

NWPURESISC45: Released by Northwestern Polytechnical University, this dataset supports research in 
remote sensing image classification. It comprises 31,500 images across 45 different scene categories, with 700 
images per category and a size of 256 × 256 pixels. The dataset offers rich scene information for evaluating model 
performance in diverse scenarios.
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UCMERCED: A classic high-resolution remote sensing image dataset released by the University of 
California, Merced, widely used in remote sensing image classification research. It contains 2,100 images across 
21 categories, with each category having 100 images. The images have a resolution of 0.3 m and a size of 256 × 256 
pixels. This dataset is commonly used as a benchmark for validating model accuracy and robustness.

In the experiments, the training dataset consists of 20,000 images randomly selected from these datasets. 
All images from AID and WHU-RS19 were included in the training set, while images from PatternNet and 
NWPURESISC45 were randomly sampled to ensure diversity and coverage in the training data. The 2,100 images 
from the UCMERCED dataset were used exclusively as high-resolution (HR) images for the test set, providing a 
comprehensive evaluation of the performance and generalization capability of the super-resolution (SR) models.

Before training, all high-resolution images were resized to a uniform dimension of 256 × 256 pixels. To 
enhance data diversity and model generalization, all training images underwent random cropping, rotation, 
and were processed to generate corresponding low-resolution (LR) images using Gaussian blur, bicubic 
downsampling, and the addition of Gaussian noise to the HR samples. This data preprocessing approach enables 
the model to better handle various levels of image blurring and noise disturbances.

The model is implemented using the PyTorch framework and trained with mixed precision on two NVIDIA 
A100 80GB GPUs. During training, the Adam optimizer is used with the following parameters: β1 = 0.9 and 
β2 = 0.99. The overall loss function weight λ is set to 10, η to 5 × 10 − 3, and γ to 10 − 6. The total number of 
training iterations is 200,000, with a batch size of 16 and an initial learning rate of 10 − 6. The learning rate is 
halved every 50,000 iterations.

Evaluation metrics
In this experiment, the evaluation metrics used are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 
Index (SSIM), and Feature Similarity Index (FSIM)41. The detailed explanation of these metrics is as follows:

Peak Signal-to-Noise Ratio (PSNR): A higher PSNR value indicates better quality of the reconstructed image. 
PSNR is commonly used to quantify the quality of image reconstruction and reflects the difference between the 
reconstructed image and the reference high-resolution image. The specific formula for PSNR is as follows:

	
P SNR = log10

(
MAX2

MSE

)
∗ 10 � (10)

In the formula, MAX represents the maximum possible pixel value in the image, and MSE denotes the Mean 
Squared Error between the reconstructed image and the reference image.

Structural Similarity (SSIM): The closer the SSIM value is to 1, the higher the similarity in structural 
information between the reconstructed super-resolution (SR) image and the reference high-resolution 
(HR) image. SSIM measures image similarity by comparing luminance, contrast, and structure, serving as a 
comprehensive quality assessment metric. The formula is as follows:

	
SSIM(x, y) =

(2µ xµ y + c1)(2σ xy + c2)
(µ 2

x + µ 2
y + c1)(σ 2

x + σ 2
y + c2) � (11)

Where µ x and µ y are the mean values of images x and y, respectively; σ 2
x and σ 2

y are the variances of images x 
and y, respectively; σ xy is the covariance between images x and y; and c1 and c2 are constants used for stability.

Feature Similarity (FSIM): A higher FSIM value, closer to 1, indicates greater similarity between the 
reconstructed SR image and the HR image in terms of feature information. FSIM primarily assesses image 
similarity through phase congruency and gradient magnitude, which helps capture finer details and texture 
information in the image more effectively. The specific formula is as follows:

	
F SIM(x, y) =

∑
i
P Ci• SL (i) • SP (i)∑

i
P Ci

� (12)

In the formula, PCi represents the phase congruency of the image pixels, which reflects the local structural 
information of the image; SL (i) indicates the luminance similarity of the image pixels; and SP (i) represents 
the gradient similarity of the image pixels.

Experimental results
Comparative experiments
The proposed algorithm was quantitatively compared with four super-resolution reconstruction methods: 
Bicubic, SRGAN19, ESRGAN21, and SRTransGAN42 on the PatternNet, AID, WHU-RS19, NWPURESISC45, 
and UCMERCED datasets. Tables 1, 2 and 3 show the average PSNR, SSIM, and FSIM values for these five 
algorithms across different datasets.

The results indicate that deep learning-based reconstruction algorithms significantly outperform the 
traditional Bicubic algorithm. The proposed method exhibits superior performance compared to the other 
comparative algorithms in 2×, 3×, and 4× upscaling tasks. Specifically, for the 4× upscaling task across the 
three test sets, the proposed algorithm achieves a PSNR approximately 3.61 dB higher than SRGAN, an SSIM 
approximately 0.070 higher (about 8.2% improvement), and an FSIM approximately 0.030 higher (about 3.1% 
improvement). These results demonstrate that the proposed algorithm outperforms existing classical methods 
on multiple metrics, especially showing significant advantages in high-magnification reconstruction tasks.
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Ablation experiments
To comprehensively evaluate the contribution of each module in the generator and discriminator networks to 
the final image quality and network performance, we conducted systematic ablation experiments. The results are 
shown in Tables 4 and 5:

Generator network ablation experiments
Multi-Scale Feature Extraction Module: Removing the multi-scale convolution kernels and using only a single-
scale (3 × 3) convolution kernel for feature extraction. The results indicate that the high-resolution images 
generated with this configuration lack detail and global structure, highlighting the importance of multi-scale 
feature extraction in capturing image details and enhancing the network’s perceptual capability.

Dynamic Feature Fusion Module: Replacing the multi-head self-attention mechanism with simple feature 
concatenation. The results show a significant decline in the detail and quality of the generated images after 
removing dynamic feature fusion, underscoring the critical role of the multi-head self-attention mechanism in 
optimizing feature representation and dynamically adjusting feature weights.

Multi-Stage Hybrid Transformer: Gradually removing different stages of the Hybrid Transformer structure 
(retaining only the first stage Transformer, and retaining the first two stages Transformers). The experiments 
demonstrate that each stage is crucial for the gradual enhancement of image details and resolution. Removing 
any stage affects the quality of the final generated image, confirming the importance of each stage in the overall 
process.

Dataset Scale Bicubic SRGAN ESRGAN SRTransGAN Proposed algorithm

PatternNet

×2 0. 856 0.937 0. 960 0. 962 0. 972

×3 0. 794 0.883 0. 906 0. 918 0. 935

×4 0. 737 0.814 0. 848 0. 881 0. 897

AID

×2 0. 812 0.892 0. 902 0. 990 0. 998

×3 0. 760 0.917 0. 957 0. 954 0. 967

×4 0. 713 0.874 0. 908 0. 924 0. 936

WHU-RS19

×2 0. 800 0.920 0. 944 0. 934 0. 954

×3 0. 742 0.861 0. 897 0. 896 0. 922

×4 0. 689 0.898 0. 926 0. 964 0. 988

NWPURESISC45

×2 0 0.797 0.841 0. 916 0. 953 0 0.971

×3 0 0.716 0.813 0. 899 0. 922 0 0.965

×4 0 0.669 0.874 0. 946 0. 972 0 0.983

UCMERCED

×2 0 0.813 0.914 0. 944 0. 941 0 0.969

×3 0 0.736 0.843 0. 883 0. 916 0 0.932

×4 0 0.621 0.871 0. 923 0. 968 0 0.979

Table 2.  Average SSIM of different algorithms on PatternNet, AID, WHU-
RS19,NWPURESISC45,UCMERCED.

 

Dataset Scale Bicubic SRGAN ESRGAN SRTransGAN Proposed algorithm

PatternNet

×2 29. 01 36. 58 36. 91 37. 76 37. 99

×3 26. 03 31. 32 32. 55 33. 76 34. 10

×4 24. 34 29. 74 30. 16 31. 23 31. 67

AID

×2 29. 43 37. 25 38. 37 37. 44 39. 55

×3 26. 82 33. 73 35. 02 36. 33 36. 52

×4 23. 34 31. 96 33. 18 34. 35 34. 73

WHU-RS19

×2 28. 59 36. 57 37. 15 38. 75 39. 06

×3 24. 55 33. 81 35. 84 37. 80 38. 08

×4 22. 96 31. 63 33. 94 35. 71 36. 08

NWPURESISC45

×2 28. 61 37. 04 38. 31 37. 81 38. 74

×3 25. 73 32. 28 35. 52 35. 07 37. 15

×4 23. 25 30. 98 32. 09 33. 73 34. 86

UCMERCED

×2 29. 13 36. 91 37. 14 37. 92 38. 69

×3 24. 81 34. 36 34. 61 34. 94 37. 33

×4 22. 18 32. 51 32. 55 32. 24 34. 94

Table 1.  Average PSNR of different algorithms on PatternNet, AID, WHU-
RS19,NWPURESISC45,UCMERCED.
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Discriminator network ablation experiments
Multi-Scale Convolution Discriminator: Removing the progressively increasing convolution layers and using 
only fixed-scale (3 × 3) convolution layers for processing the input images. The results indicate that this 
configuration lacks the ability to capture features at different scales, affecting the accurate assessment of the 
quality of generated images.

Global Transformer Discriminator: Replacing the pre-trained Swin Transformer with a traditional 
Convolutional Neural Network (CNN). Comparison results show that the Global Transformer Discriminator 
performs better than traditional CNNs in capturing global structure and consistency of images. Removing this 
module significantly decreases the overall quality and structural consistency evaluation of the generated images.

Hierarchical Feature Discriminator: Using only the basic configuration of convolutional layers and 
fully connected layers, without hierarchical feature processing. The results show a significant reduction 
in the evaluation of image details and texture quality, validating the effectiveness of the hierarchical feature 
discriminator in capturing detailed features.

Quantitative analysis
For visual effect analysis, we selected six random images from different scenes in the 4× magnification results 
of the PatternNet, WHU-RS19, AID, and NWPURESISC45 datasets, and compared their local details through 
magnified views, as shown in Fig. 4. From these images, it is observed that the Bicubic algorithm produces 
relatively blurry results with a lack of detail information. In contrast, SRGAN and ESRGAN algorithms generate 
results with more detailed information; however, ESRGAN introduces artifacts and noise in some edge details. 
Although SRTransGAN generally provides superior results, it also exhibits artifacts and noise in certain details 
and performs poorly in edge sharpening.

Experimental configuration Performance score

Baseline Model (Full Model) 0.998

Remove multi-scale convolutional discriminators 0.949

Removed the global Transformer discriminator 0.902

Remove hierarchical feature discriminators 0.971

Table 5.  Discriminator network ablation experiment.

 

Experimental configuration PSNR (dB) SSIM FSIM

Baseline Model (Full Model) 37.99 0.972 0.981

Removed the multi-scale feature extraction module 33.52 0.791 0.815

Removed the dynamic feature fusion module 34.83 0.835 0.874

Removal of multi-stage Highbride Transform 35.15 0.897 0.906

Table 4.  Generator network ablation experiments.

 

Dataset Scale Bicubic SRGAN ESRGAN SRTransGAN Proposed algorithm

PatternNet

×2 0. 861 0.988 0. 994 0. 997 0. 997

×3 0. 850 0.989 0. 990 0. 993 0. 996

×4 0. 834 0.976 0. 981 0. 986 0. 993

AID

×2 0. 824 0.989 0. 904 0. 908 0. 986

×3 0. 814 0.896 0. 900 0. 903 0. 903

×4 0. 798 0.887 0. 892 0. 897 0. 899

WHU-RS19

×2 0. 832 0.907 0. 910 0. 914 0. 915

×3 0. 822 0.902 0. 906 0. 909 0. 912

×4 0. 806 0.894 0. 898 0. 903 0. 909

NWPURESISC45

×2 0.841 0.913 0.920 0.926 0.947

×3 0.830 0.901 0.914 0.921 0.912

×4 0.809 0.895 0.906 0.917 0.929

UCMERCED

×2 0.827 0.903 0.917 0.935 0.974

×3 0.804 0.891 0.911 0.929 0.938

×4 0.796 0.874 0.904 0.923 0.942

Table 3.  Average FSIM of different algorithms on PatternNet, AID, WHU-
RS19,NWPURESISC45,UCMERCED.
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The proposed algorithm demonstrates clearer detail and texture information in the reconstruction results, 
particularly excelling in edge sharpening. The magnified details in the images reveal that the reconstructed 
images from the proposed algorithm closely match the real high-resolution (HR) images in terms of color and 
brightness, with especially impressive handling of ship edges. Furthermore, the proposed algorithm produces 
significantly clearer building details and textures compared to the other algorithms.

Model efficiency analysis
The proposed algorithm was evaluated for 4× image magnification on the PatternNet, WHU-RS19, AID, and 
NWPURESISC45 datasets, and compared with four other algorithms in terms of runtime, as shown in Fig. 5. From 
Fig. 5, it is evident that the SRGAN algorithm, due to its network structure incorporating batch normalization 
(BN) layers, has the slowest reconstruction speed and requires the most time. The Bicubic algorithm, being an 
interpolation operation, has the shortest runtime. The proposed algorithm, due to the introduction of the multi-
stage Hybrid Transformer, requires slightly more time compared to SRTransGAN.

However, as shown in Tables 1, 2 and 3, despite the slight increase in time for the proposed algorithm 
compared to SRTransGAN, it achieves higher values in PSNR, SSIM, and FSIM metrics. This indicates that the 
proposed algorithm outperforms other comparison algorithms in terms of image reconstruction quality.

Fig. 4.  4x reconstruction results. (a) HR; (b) Bicubic; (c) SRGAN; (d) ESRGAN; (e) SRTransGAN; (f) 
Proposed algorithm.
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Conclusion
This paper presents an improved remote sensing image super-resolution reconstruction model based on a multi-
scale receptive field and Hybrid Transformer structure. The model significantly enhances remote sensing image 
super-resolution performance through innovative generator and discriminator designs, incorporating multi-
scale feature extraction, self-attention mechanisms, Transformer modules, and a comprehensive discriminator.

The strategy of multi-scale feature extraction and dynamic fusion enables the model to better capture detailed 
information and global structures in remote sensing images. By introducing convolutional kernels of varying 
sizes (7 × 7, 5 × 5, 3 × 3) in the generator, the model simultaneously extracts features at different scales, thereby 
effectively enhancing its ability to perceive local details and global information. Coupled with the multi-head 
self-attention mechanism, the model further achieves dynamic feature fusion, which contributes to improved 
detail representation in the reconstructed images, particularly in preserving and enhancing high-frequency 
information.

The introduction of the multi-stage Hybrid Transformer structure greatly improves the quality of the 
generated images. This structure processes image features progressively through three custom Transformer 
modules, enhancing image quality from low resolution to high resolution. Through this step-by-step refinement, 
the model can more accurately capture feature representations at different resolutions and effectively model 
features using self-attention mechanisms, ultimately significantly enhancing image detail recovery and visual 
quality.

The design of the discriminator is also a notable innovation of the model. By integrating multi-scale 
convolution, global Transformer, and hierarchical feature discriminators, the comprehensive discriminator 
evaluates the quality of generated images from multiple dimensions. The multi-scale convolution discriminator 
excels in capturing local features, the Transformer discriminator focuses on global information modeling, 
and the hierarchical feature discriminator emphasizes different levels of feature representations. This multi-
dimensional and multi-level evaluation approach allows the discriminator to more comprehensively and 
accurately assess image quality, providing valuable feedback to the generator and further improving the realism 
and detail representation of the generated images.

Additionally, this paper incorporates Charbonnier loss and Total Variation (TV) loss functions to improve 
model training stability and accelerate convergence. The use of these loss functions not only effectively mitigates 
instability during training but also significantly enhances the generator’s ability to capture image details, ensuring 
superior visual and perceptual performance of the generated remote sensing images.

Experimental results demonstrate that the proposed model achieves significant improvements in PSNR, 
SSIM, and FSIM metrics, particularly in the restoration of high-frequency texture details and enhancement of 
fine features, showcasing its outstanding performance.

Future work
Image matching
Applying the improved remote sensing image super-resolution reconstruction algorithm to images collected by 
drones has significantly enhanced the details and textures of the template images. This substantial improvement 
has notably increased the accuracy in subsequent image matching and target detection tasks.

In follow-up research, the Xfeat image matching method43 was used to match feature points in images. Both 
the original template and the template reconstructed using the proposed algorithm were employed for matching 
the same target image. The results are shown in Fig. 6.

Fig. 5.  Running time of different algorithms on PatternNet, WHU-RS19 ,AID and NWPURESISC45.
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From Fig. 6(a), it can be observed that on the left is the template image, and on the right is the target image. 
Due to errors in detail extraction, there is a noticeable discrepancy in the matching results. However, in Fig. 6(b), 
after performing super-resolution processing on the template image using the proposed algorithm, the detail 
reconstruction is significantly improved. The detail extraction in the image matching process becomes more 
accurate, and the matching results are more precise. This demonstrates the feasibility of the proposed method 
and establishes a foundation for accuracy enhancement in future work.

Image segmentation
After applying the improved super-resolution reconstruction algorithm proposed in this paper to remote sensing 
images, the reconstructed images exhibit finer details and edges, with clearer gradient information between 
the foreground and background. In subsequent research, the BiRefNet al.gorithm44 was used to separate the 
foreground and background of the remote sensing images. Both the original and reconstructed remote sensing 
images were segmented, and the segmentation results are shown in Fig. 7.

Figure 7(a) shows the original remote sensing image and its segmentation results. Due to the insufficient 
gradient information between the foreground and background, the details at the building edges are poor, leading 
to distortion at the edges after segmentation. In contrast, Fig. 7(b) uses the reconstructed remote sensing image, 
and the increased gradient differences between the foreground and background improve the segmentation 
results.

This research on image refinement lays a foundation for numerous future downstream applications. Future 
work will focus on high-resolution reconstruction of images in other domain scenarios to further enhance the 
generalization capability of the reconstruction algorithm.

Data availability
The data presented in this study are available at https:​​​//huggingfa​ce​.co/data​sets/bla​nchon/Pa​tt​ernNet.Code and 
models are publicly available at https://github.com/QJHyuntun/SR-net.git.
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