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Anti-patterns are explicit structures in the design that represents a significant violation of software
design principles and negatively impacts the software design quality. The presence of these Anti-
patterns highly influences the maintainability and perception of software systems. Thus it becomes
necessary to predict anti-patterns at the early stage and refactor them to improve the software
quality in terms of execution cost, maintenance cost, and memory consumption. In the anti-pattern
prediction domain, during research analysis, it was realized that there had been very little work
instigated on addressing both class imbalance and feature redundancy problems jointly to enhance
models’ performance and prediction accuracy. It has been perceived in the literature survey to study
droughts with a comprehensive comparative analysis of different sampling and feature selection
strategies. To achieve greater precision results and performance, this research constructs a web service
anti-pattern prediction model over preprocessed software source code metrics using sampling and
feature selection techniques to handle imbalanced data and feature redundancy to gain flawless web
service anti-pattern prediction outcomes. Considering the above erudition, we have applied different
variants of aggregation measures to find the metrics at the system level. These extracted metrics are
used as input, so we have also applied different variants of feature selection techniques to remove
irrelevant features and select the best combination of features. After finding important features, we
have also applied different variants of data sampling techniques to overcome the problem of class
imbalance. Finally, we have used thirty-three different classifiers to find import patterns that help
identify anti-patterns. These all techniques are compared using Accuracy and Area Under the ROC
(receiver operating characteristic curve) Curve (AUC). The experimental result of web service anti-
pattern prediction models validated on 226 WSDL files illustrates that the least square support vector
machine (LSSVM) with RBF kernel attains the best performance among the other 33 competing
classifiers employed with the lowest Friedman mean rank value of 1.18. During comparative analysis
over different feature subset selection techniques, the outcome indicates the mean accuracy value of
88.40% and mean AUC value of 0.88 for the models developed using significant features are higher

in comparison to other techniques. The result shows the up-sampling methods (UPSAM) method
secured the highest mean accuracy % and mean AUC with values of 86.14% and 0.87, respectively. The
experimental result indicates the performance of the web service anti-pattern prediction models is
adversely impacted by class imbalance and irrelevance of features. The outcome demonstrates that the
performance of trained models improved with an AUC value between 0.805 to 0.99 post-application
of sampling and feature selection strategies without using feature selection and sampling techniques.
The outcome implies that USMAP achieves better performance. The result demonstrates that the
models developed using significant features drive the desired effect compared to other implemented
feature selection techniques.
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System autonomy, heterogeneity, and context adaptability are critical in the software business, leading to the
development of web services based on service-oriented architecture (SOA). For successful businesses and
contemporary governments, SOA is the progression of distributed computing toward integrating expert
departments and IT. Services may be accessed via the internet using the web service implementation of SOA,
which is agnostic of the platform and programming language. SOA is generally regarded in IT systems as the
technology that can improve the receptivity of both business and IT organizations since it is self-adaptable to
context. Web services may be built in various languages and on various platforms, allowing them to be used on
a wide range of devices.

Modeling Service-Based Systems (SBSs) like Paytm, DropBox and Amazon are made feasible by SOA, and
the growth of these systems causes many challenges. As new devices and technologies are introduced, SBSs must
evolve to keep up with the demands of their users. Like any other big and complicated system, SBSs are prone
to ongoing modification to accommodate new user needs and modify the execution circumstances. It’s also
possible that all of these modifications may decrease SBS’ Quality of Service (QoS) and result in a retro design,
which has been given the name of “Anti-patterns”. Structures like these imply a breach of fundamental design
principles and a decrease in design quality. Because they make it challenging to improve and maintain a software
system, anti-patterns are helpful for spotting issues with its design, source code, or overall project management.
Therefore, it has become compulsory to develop prediction models that help to detect anti-patterns present in
web services. Software quality researchers have used simple models to predict different types of anti-patterns
based on source code metrics that help improve the software quality in terms of execution cost, maintenance
cost, and memory consumption. Empirical experiments have been carried out in the past related to web service
anti-pattern predictions (Travassos et al.2, Marinescu et al.’, Munro et al.%, Ciupke et al.®> Simon et al.%, Rao et
al.”, Khomh et al.8, Moha et al.”). Though these research works have raised the need to develop perdition models,
it was realized that there had been very little work instigated on addressing both class imbalance and feature
redundancy problems jointly to enhance models’ performance and prediction accuracy. It has been perceived in
the above work to study droughts with a comprehensive comparative analysis of different sampling and feature
selection strategies.

In this work, we investigate the predictive power of different aggregation measures which are used for finding
file-level metrics, feature selection techniques that are used for selecting significant features, data sampling
techniques that are used for handling the class imbalance nature of datasets, and different variants of machine
learning for finding the pattern. Here, our focus is on how accurately these techniques help to predict anti-
patterns present in web services. Initially, we selected 226 different web-service as WSDL from various domains
such as finance, tourism, health, education, etc. Then we applied the WSDL2Java tool to each WSDL file to
extract the java files. After extracting the java files, we have used CKJM! tool proposed by Chidamber and
Kemerer to find metrics at the class level. Since our objective is to find the anti-pattern present in the WSDL
file, so we have applied different variants of aggregation measures to find metrics at the system level. After
computing metrics at the system level, we have also applied feature selection techniques to find the significant
set of features, which are later used as input for the anti-pattern prediction models. We also observed that the
considered data have imbalanced nature of classes. Henceforth, to handle the class imbalance problem and its
impact on the prediction accuracy of the models, we have also used five data sampling techniques. We compare
the performance of the models generated using this sampling technique with the model developed using the
original data (ORGD).

Finally, we have applied different categories of machine learning techniques to find import patterns that
help to identify anti-patterns present in unseen WSDL files. Initially, we have applied the most frequently used
classifiers like different variants of Naive Bayes (Bernoulli, Gaussian, Multinomial), decision trees, logistic
regression, support vector machines with different kernels, and artificial neural networks with different back-
propagation algorithms. Different researcher mainly uses these types of classifiers to predict software quality
parameters. Then, advanced levels of classifiers like least square support vector machines with multiple kernels
and extreme and weighted extreme learning machines with multiple kernels have been used to find better sets of
patterns for anti-pattern predictions. Finally, we have used ensemble learning and deep-learning approaches to
find the best patterns for anti-pattern predictions. The predictive power of these techniques is evaluated in terms
of accuracy and AUC values and validated with 5-fold cross-validation approaches on 226 different web-service.
In order to find the significant impact of the techniques, we have used Wilcoxon Signed Rank Test (WSRT) with
Friedman mean rank (FMR).

The major contributions of this research work are:

o Proposed a framework to predict web service anti-patterns based on extracted java files of WSDL.

« Proposed a framework using the aggregation measures concept to extract file-level metrics from class-level
metrics.

o Usage of different sampling approaches to counter the class imbalance problem.

« Usage of different feature selection techniques to remove irrelevant features and set the right sets of features.

« thirty-three different classifiers are considered to develop a model to identify the files with anti-patterns.

« Various statistical tests were conducted to determine the effectiveness of the proposed anti-pattern detection
model.The paper is organized as follows: Section 2 provides the summary of related work in the field of soft-
ware fault prediction. Section 3 explains the used methodologies in our experimentation. The research frame-
work, result analysis, and model performance is presented in Sections 4 and 5. Section 6 covers the compar-
ative analysis. The final results discussion and conclusion work are depicted in Sections 7 and 8 respectively.
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Related work

There is a good number of existing methods proposed by various researchers to predict anti-patterns or code
smells present in object-oriented software. A manual procedure to identify anti-pattern or design smells is
proposed by Travassos et al.2. They have used manual reviews and reading techniques types of concepts to find
the smells that do not meet the specification. A similar kind of work is also proposed by Marinescu et al.® to
predict the design smell present in software systems based on extracted metrics from the source code of the
software system. They have executed their proposed work on the IPLASMA tool with the help of some detection
techniques to find the pattern that helps to identify smells in a software system. They have applied ten detection
techniques to predict anti-patterns or code smells. The major limitations of their approach are that extensive
knowledge of metric-based rules is required to detect an anti-pattern successfully, and the varied threshold
values lead to a varied outcome. Munro and his team* also proposed one new method with the objective to
overcome the limitations of text-based descriptions for predicting systematically characterized code smells. They
have applied metric-based heuristics concepts to detect anti-patterns.

Ciupke et al.> presented a method to study legacy code by specifying design problems as queries. Their
approach is based on extracting the occurrences of the problems using models designed using extracted metrics
from the source code of software systems. Simon and his team® proposed methods based on visualization
concepts to find the correlation between fully automated approaches, which are productive, systematic, and
time-consuming. The major advantage of their strategies is there is no need for effective manual inspections.

Rao et al.’” introduced a method to propose anti-patterns based on the Design Propagation Probability
concept to design the models that will treat like detection techniques. Based on the design Propagation
Probability concept, they have focused on two anti-patterns, such as Divergent change and Shotgun surgery.
Similarly, Khomh and his team® presented the method with the help of anti-pattern definition, Goal Question
Metric(GQM), and Bayesian Detection Expert(BDTEX) to develop Bayesian Belief Networks(BBN). The BBN
method allows quality analysts to use their prior probability to predict anti-patterns.

Moha et al.’ proposed an automated method to predict different types of anti-patterns like Spaghetti Code,
Functional Decomposition, Blob, and Swiss Army Knife. Their proposed methods also help to identify 15
underlying code smells. They gave the DECOR name of their proposed methods containing all the necessary
steps used to specify and detect code and design smells. Their team also proposed another detection method
called DETEX® which helped to provide a platform to convert the rules extracted from the DECOR method into
detection algorithms. They have clearly explained the correlation between the metrics extracted from code with
different categories of anti-patterns.

Hemanta Kumar Bhuyan and Vinayakumar Ravi presented the importance of feature selection techniques in
data mining applications'!. They have proposed the optimization model using a Lagrangian multiplier to find
and analyze a new class. They have used several classifiers with searching and statistical methods to validate the
proposed subfeatures. Their finding confirms that their proposed methods benefit novel classes based on selected
subfeature data. Hemanta Kumar Bhuyan and Narendra Kumar Kamila also provide the content related to the
importnace of the feature selection techniques in data mining applications'. The have used fuzzy probabilities
to proposed privacy preservation of individual data for both feature and sub-feature selection. They conclused
that the fuzzy random variable approach confined the expected range on which the selection of sub-feature from
feature database is made easy. Similar work is also done by Hemanta Kumar Bhuyan et al. to find the importance
of feature selection during model development!®. They proposed methods to choose the optimal feature for
classification by utilizing mutual information (MI) and linear correlation coefficients (LCC). Their proposed
methods offers the best selection on the same data set as compared to others.

Motivation

Based on the above survey, profound research has been conducted in the area of web service anti-pattern
prediction models using machine learning approaches. However, further analysis indicates there is very little
investment seen in converting file-level metrics using class-level, handling class imbalance of datasets, removing
irrelevant features, and comparing wide varieties of machine learning techniques. As a result, there is a need
for in-depth research to evaluate the performance of anti-pattern prediction models by combining aggregation,
feature selection, and sampling techniques. This point is our primary motivation for our present work. It
leads us to endow our focus on implementing the proposed model to address the substantial gap identified to
extemporize the performance and predictability of the anti-pattern prediction model by engaging aggregation,
sampling, and feature selection techniques jointly with a wide variety of machine learning techniques. This
research work exploits the implication of sixteen aggregation measures, seven feature selection techniques, five
sampling strategies, and thirty-three different classifiers to develop the best web service anti-pattern prediction
models. The performance of these developed models is analyzed using AUC and Accuracy metrics. This leads to
the contextual following research questions (RQ):

RQ 1: Can web-service anti-patter prediction models be developed using source code metrics and machine learn-
ing?

RQ2: What is the significant impact of considering reduced sets of features as input on the performance of models?

RQ 3: What is the significant impact of sampling techniques on the predictability of anti-pattern prediction mod-
els?

RQ4: What effect do different classifiers have on predicting anti-patterns using source code metrics?

Methodologies
This section enlightens on the components required for our study. We are providing information on datasets,
feature selection techniques, sampling strategies, and classification approaches.
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Data set
with a size of
1°288.

H Aggregation
Measures

1*288 is the No. of WSDL files*(No. of Source code metrics(18) * No. of aggregation Measures(16))

Fig. 1. Pre-processing of dataset.

OO-metrics Metrics-explanation

Ca: Afferent coupling The number of classes using the features defined inside a given class

Avg-CC: Average cyclomatic complexity | Mean complexity of methods defined inside class

AMC: Average method complexity Mean size of methods defined inside class

CAM: Cohesion among methods of class | Ratio of the sum of parameters of methods and product of unique parameters of methods

CBM: Coupling between methods Total number of methods linked with inherited methods

CBO: Coupling between object classes The number of classes linked with a given class

DAM: Data access metric Ratio of protected or private attributes and the total number of attributes
DIT: Depth of inheritance tree Max depth of tree

Ce: Efferent coupling The number of classes that a specific class uses

IC: Inheritance coupling The number of parent classes with which a given class is associated.
LCOM: Lack of cohesion in methods The number of methods in a class that are unrelated despite the fact that some of the class’s fields are shared
LCOM3 Methods lack of cohesion. Henderson-Sellers version

LOC: Lines of code The number of lines in the source code’s text

MAx-CC: Max cyclomatic complexity Maximum cyclomatic complexity of a classs methods

MOA: Measure of aggregation Number of data declarations (class fields) with user-defined class types

MFA: Measure of functional abstraction | The ratio of the number of methods inherited by a class to the total number of methods accessible by the class’s member methods

NOC: Number of children Number of immediate descendants of the class

NPM: Number of public methods Number of methods defined as public inside class

RFC: Response for a Class Number of unique methods executed after receiving message
WMC: Weighted methods per class Summation of methods complexity defined inside class

Table 1. Object-oriented software project datasets.

Data collection

We have prepared the datasets in this experiment to validate our proposed anti-pattern prediction model
framework. Figure 1 shows the working procedure to prepare datasets. Initially, we applied the WSDL2Java tool
on the WSDL file to extract the java files. These extracted java files are used as an input of CKJM!° tool to find
object-oriented metrics as mentioned in Table 1 at the class level. CKJM takes java files as an input and computes
metrics at the class level, but we need metrics at the system level because, in the experiment, we predict the anti-
pattern at the WSDL level. To achieve this, we have applied aggregation measures to find metrics at the system
level. Vasilescu et al.'* suggested using multiple aggregation measures to find metrics at the higher level without
losing information. They have empirically proved that the use of a single aggregation measure creates a data
loss problem. So, in this work, we have applied 16 aggregation measures as mentioned in Table 2 on class-level
metrics to find metrics at the system level.

Experimental dataset

This experiment makes use of publicly available web-services datasets consisting of 226 WSDL files shared by
Ouni et al. on GitHub https://github.com/ouniali/WSantipatterns. Table 3 shows the a detailed description of the
considered datasets in terms of different types of anti-patterns. The first column of the table contains the name
of anti-patterns like Fine-Grained anti-pattern (FGWS), Chatty anti-pattern (CSW), God Object anti-pattern
(GOWS), Data ant-pattern (DWS), Ambiguous Anti-pattern (AWS). The second column contains the number
web-service not having these patterns, the third column contains the number web-service having these patterns,
and the last column contains the percentage of web-service having these patterns. From Table 3, we can say that
the 13 web-service has FGWS anti-pattern with 5.75 %.
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Table 2. Aggregation measures.

Anti-pattern | NAP | AP | %AP
CWS 205 |21 [9.29
FGWS 213 |13 | 575
AWS 202 |24 |10.62
GOWS 205 |21 |9.29
DWS 212 |14 |6.19

Table 3. Datasets.

Data balancing techniques

The information in Table 3 confirms that the considered datasets have no equal distribution of anti-patterns,
i.e., only 9.29% of WSDL files have CSW type of anti-pattern. This information confirms that the considered
datasets have a class imbalance problem. So, we have applied five data sampling techniques as Adaptive Synthetic
Sampling Technique (ADASYN), Synthetic Minority Oversampling Technique (SMOTE), SVMSMOTE,
Borderline SMOTE (BLSMOTE), and UP sampling Technique (UPSAM), to generate balanced data. The
predictive ability of these techniques is also compared using the model trained on original data to find the

impact of using sampling techniques.

o SMOTE": The concept of SMOTE is based on nearest neighbors. It will generate minority class instances.
« Borderline smote (BLSMOTE)'®: BLSMOTE creates new instances of the minority class utilizing the closest

neighbors of these cases in the border region between classes.

o SVM-SMOTE (SVMSMOTE)Y: SVMSMOTE generates new minority class samples over the border with

SVM to establish a boundary line between the classes using SVM'8.

o Adaptive synthetic sampling technique (ADASYN)": ADASYN is built on the notion of adaptively producing
minority data samples depending on their distributions. More synthetic data is created for minority-class
samples that are more difficult to learn than for minority-class samples that are simpler to understand. This
strategy helps to lessen the learning bias imposed by the initial unbalanced data distribution. Still, it may also
adaptively move the decision boundary to concentrate on samples that are harder to learn, which is very use-
ful when dealing with large datasets. The most significant distinction between SMOTE and ADASYN is how
synthetic sample points for minority data points are generated in each system?. In ADASYN, we consider a
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density distribution 7, which determines the number of synthetic samples to create for a given point, while
in SMOTE, all minority points have the same weight.

o Upsampling (UPSAM) technique: Upsampling is the technique in which the instances from the minority class
are randomly duplicated?!.

Selection of relevant metrics

In the process of Knowledge Data Discovery (KDD), Feature Selection (FS) is a vital part of the pre-processing
step. Some of the numerous names given to Feature Selection Algorithms include Attribute Selection, Instance
Selection, Data Selection, Feature Construction, Variable Selection, and Feature Extraction, to mention just
a few. They are primarily used to remove unnecessary and redundant material. Feature selection methods?
enhance the quality of data and boost data mining algorithms” accuracy by minimizing the data’s complexity
in terms of space and time. Eliminating duplicate and irrelevant data is the primary goal of feature selection.
Several feature selection methods have been released in the last decade; however, the vast majority of them do
not perform well on high-dimensional datasets with a significant number of duplicated features. As a result,
feature selection is more critical in eliminating irrelevant features?*?%. As a result, machine learning algorithms
can concentrate on the features required to build a classification model. Two subclasses of feature selection
techniques can be generally distinguished:

o Metrics selection using feature ranking techniques: In this technique, each feature is ranked according to a few
key criteria before some features that are appropriate for a particular project are chosen.

o Metrics selection using feature subset selection techniques: In feature subset selection, our objective is to find a
subset of features that have strong predictive power

Metrics selection using feature ranking techniques

o Selection of significant features(SIGF) Initially, we applied hypothesis testing to each metric to find “whether
the metric can differentiate the WSDL file having anti-pattern or not”?. So, In this experiment, we have ap-
plied the Wilcoxon signed-rank test at a 0.05 level to find the difference between the metric values for a file
having an anti-pattern and not having an anti-pattern. This test is mainly used to find whether two dependent
samples are significantly the same or different.

o Features ranking using information gain (INFG) An attribute ranking approach that’s both simple and quick
is widely employed in text classification applications when the sheer volume of data makes it impossible to
utilize more complicated methods?. If P is an attribute and Q is a class, then eq. 1 and 2 provide the values for
the entropy of the class before and after the attribute is observed:

H(Q)=—_ p(q)log, p(q) 1)
qeQ
H(QIP) == p(p) > plalp)log, p(alp) @)
peP qeQ

When the entropy of a class lowers by a certain level, it indicates how much new information about that class
has been supplied by the attribute, which is referred to as information gain.

Based on the information gain value between the class and each P;, a score is awarded to each P;:

IG; = H(Q) — H(Q|P;) = H(P)) — H(Pi|Q)

= H(P) + H(Q) - H(P, Q) ©

o Features ranking using gain ratio (GNR) The gain ratio is a modification of the information gain that decreases
the bias of the information gain. When picking an attribute, the gain ratio considers the number and size of
branches?’. When the intrinsic information is taken into account, it corrects the information gained. Intrinsic
information is the entropy of instance distribution into branches, i.e., how much information is required to
determine which branch an instance belongs to. The value of an attribute decreases as the number of intrinsic
information increases.

GNR = Qain of at.tribute . (4)
intrisinc information of attribute

»

o Features ranking using OneR attribute evaluation (OneR) OneR, short for “One Rule,” is a straightforward but
accurate classification algorithm that generates one rule for each predictor in the data and then selects the
rule; with the slightest total error as its “one rule” A rule for a predictor is created by creating a frequency table
for each predictor and comparing it to the objective (the target)?®. Compared to state-of-the-art classification
algorithms, it has been shown that OneR creates rules that are only marginally less accurate while also making
straightforward rules for people to comprehend.

Scientific Reports |

(2025) 15:5183 | https://doi.org/10.1038/s41598-025-86454-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

o Features extraction using principal component analysis (PCA) Principle Component Analysis(PCA)? is ap-
plied to find the new values of features with high variance. The concept is based on removing highly corre-
lated features and finding new sets of feature values. Here, we have applied PCA with the varimax rotation
technique on extracted sets of file-level source code metrics. In this work, we have considered all the Principle
Components whose eigenvalue is greater than 1.

Metrics selection using feature subset selection techniques

o Selection of features using correlation coefficient (CORR) Correlation Coefficient feature selection is used to
remove the features having high co-relation with other features. In this paper, we have used the concept of
Pearson’s correlation to find the pair of features having highly correlated or not, i.e., >=0.7 or <=-0.7 repre-
sent the high correlation®®. After finding highly correlated features, we have to select one feature among the
two based on certain conditions.

o Selection of Features using CFS subset Evaluator (CFS): This technique assesses the effectiveness of the subset
of features by taking into consideration the predictive ability of each feature. This technique selects the subset
of features with low inter-correlation but is highly correlated with the target class’!.

o Selection of features using genetic algorithm (GA) Genetic algorithm?? helps to search for the best set of fea-
tures that can improve the performance of the models. The advantage of this technique is that it permits
the best solution to rise out of the best of earlier solutions. The core idea of this technique is to combine the
various solutions from generation to extract the best features(genes) from each one to create new and more
fitted individuals. Figure 2 shows the flowchart for GA to find the best sets of metrics. Initially, we generated
50 numbers of chromosomes with each gene of the chromosome containing the value 0 or 1, i.e., 0 for not
considering features and 1 for considering features. Then, we computed the fitness value of each chromosome
using Equation 5. Equation 5 is designed to maximize the accuracy and minimize the number of features. Af-
ter finding the fitness value of all chromosomes, we selected the chromosome with a higher fitness value. The
higher fitness value chromosome compared with the stopping condition. If satisfied, stop; otherwise, we will
proceed with the next step. The next step is to apply crossover and mutation to all chromosomes and get half
the number of the chromosomes i.e., two chromosomes combined using crossover to get one chromosome.
The remaining half of the chromosomes are generated randomly. The above process will continue until we
meet the stopping conditions.

TotalFeatures — lectedFeatures
Fitness = 0.8 x Accuracy + 0.2 OtdtFeat SelectedFeat 5)
TOtalFeatuT'es

Classification techniques

The primary objective of this research is to find the pattern based on source code metrics extracted from the
WSDL fil€s Java file that help to predict anti-patterns present in unseen WSDL files. These patterns are identified
using thirty different variants of machine learning techniques as shown in Table 4. These machine learning
are validated using 5-fold cross-validation, and their ability to predict anti-patterns is computed in terms of
accuracy and AUC values.

Proposed framework
Figure 3 shows our framework consisting of several steps. The dataset contemplated has a set of WSDL files
considered as the input. The detailed steps of the proposed framework are given below:

o As shown in Fig. 3, we have calculated the Chidamber and Kemerer Java Metrics(CKJM) for each Java file
generated from the WSDL file. Then, we applied different aggregation measures to the CKJM metrics com-
puted from each Java file to generate file-level metrics.

o After finding metrics at the system level using different aggregation measures, we have also applied feature
selection techniques to find the relevant set of features and remove irrelevant features. This set of metrics is
later used as input to generate models for detecting web service anti-patterns. The Min-max normalization
approach is used for normalizing the values of all selected features in the range of 0 to 1.

Im‘trlla;lly Equation 5
number is used to Stopping Reduce
of chro- R Cgmqu? crite- Fea-
mosomes ’ ‘ltn%bf rion tures
are Va UE O met 7 set
randomly each chro-
generated mosome
N
/0
b ][ emor
are randomly CQ—pomt
generated ross-over
Fig. 2. Flow chart representing GA execution.
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Classifiers

Description

Naive Bayes Algorithm (NB)*?

Notable for multi-class prediction. Utilizing this algorithm, we can foresee the likelihood of different classes of target variables. In this work,
we use three variants of naive Bayes algorithms to generate models for predicting web service anti-patterns i.e., Gaussian Naive Bayes(GNB),
Multinomial Naive Bayes(MNB), Bernoulli Naive Bayes(BNB).

Decision Tree (DT)>*

Represents the estimate of a target variable via the use of several independent variables in a decision model.

Logistic Regression Analysis
(LOGR)*

A statistical approach used to analyze a dataset in which there are one or more independent variables that may be used to predict the
outcomes of a dependent variable

Support Vector Classifier (SVC)*®

It functions as a non-probabilistic binary linear classifier by classifying input data into one of two categories which makes it an excellent
choice for developing a classification model. SVC with three different kernels i.e., linear (SVC-L), polynomial (SVC-P), and radial (SVC-R) are
employed for training models in this work.

Least Square Support Vector
Machine (LSSVM)*”

this algorithm applies minimization of the sum of squared errors to the objective functions. This is a supervised learning method that analyzes
data to recognize patterns. LSSVM with linear (LSSVM-Lin), Polynomial (LSSVM-Poly), and Radial Basis Functions (LSSVM-RBF) are used
for training the models.

Extreme Learning Machine
(ELM)*

This is a learning procedure for single hidden layer feed-forward neural networks. The key component of this approach is the random creation
of hidden nodes, in which hidden node parameters are assigned at random, regardless of training samples. The anti-pattern detection models
were trained with ELM using linear (ELM-Lin), polynomial (ELM-Poly), and radial basis functions (ELM-RBF).

Weighted Extreme Learning
Machine (WELM)*

When dealing with imbalanced data, this approach gives more weight to the minority class and less weight to the majority class. WELM
selects a weighting scheme based on the class distribution, and the weights created are inversely proportional to the number of samples in the
training set. We implemented four different kernel functions (Sigmoid, Radbas, Tribes, and Sine) to WELM to boost its speed even further.

Multi-Layer Perceptron (MLP)*

MLP can train a non-linear function approximator for either classification or regression from a collection of features and a target. It is different
from logistic regression because there can be one or more non-linear layers, called hidden layers, between the input and output layers.

MLP with Stochastic Gradient
Descent (MLP-SGD)

It is necessary to update the weights to reduce output error while using MLP. SGD is employed for this purpose. The SGD technique finds the
minima in error space by taking the 1st-order derivative of the total error function.

MLP with Quasi-Newton Method
(MLP-LNF)

is a quick optimization approach that may be used as an alternative to conjugate gradient methods. Calculating the 2nd order derivatives of
the total error function for each component of the gradient vector is required for this technique to be effective.

MLP with Stochastic Gradient with
Adaptive Learning Rate Method
(MLP-ADAM)

As the sample size is too small, the training procedure will take excessive time to converge. Although it is theoretically feasible to predict the
best value of the learning rate (cv) before training, it is practically impossible to predict the value of changes throughout the training process.
Thus, ADAM is employed for training the prediction model in this study.

K-Nearest Neighbour (KNN)*!

KNN is a non-parametric algorithm, which implies that it makes no assumptions about the data it is given as an input. It is sometimes referred
to as a lazy learner algorithm since it does not learn from the training set immediately; instead, it stores the dataset and then acts on the
dataset when it comes time to classify the data. During the training phase, the KNN algorithm saves the dataset and then classifies new data
into a category that is very comparable to the latest data.

Bagging Classifier (BAG)*

is an ensemble meta-assessor that fits base classifiers each on subjective subsets of the underlying dataset and afterward aggregates their
remote predictions performed either via voting or using averaging to form the concluding prediction.

Random Forest Classifier (RF)*

This algorithm makes decision trees on data samples and a while later receives the prediction from all of them and finally chooses the best
arrangement using the method of voting.

Extra Trees Classifier (EXTR)*

This actualizes a meta-assessor that suits different randomized decision trees or extra-trees on different sub-samples of the dataset and utilizes
averaging to enhance the predictive accuracy and supervises over-fitting.

AdaBoost Classifier (AdaB)*

is a meta-estimator that starts evolving by fitting a classifier on the first dataset and later on fits more duplicates of the classifier on the
equivalent dataset; however, the weights of incorrectly classified instances are changed with the end goal ensuing classifiers revolve more
around troublesome cases.

Gradient Boosting Classifier
(GraB)#

The ideology of the GraB classifier is to restrict the loss or the differentiation between the actual class estimation of the training instance and
the predicted class esteem. It facilitates constructing an additive model in a forward stage-wise style.

Deep Learning Technique (DL)*

Deep learning uses artificial neural networks, a kind of machine learning that works dependent on the structure and capacity of the human
brain. This algorithm uses various instances from the dataset or relevant examples for training the machines. The primary benefit of an ANN
over other types of algorithms is its novel information processing architecture. In this work, we have used Deep Learning(DL) technique with
a distinct number of hidden layers, i.e., DL with one hidden layer(DL1), DL with two hidden layers (DL2), DL with three hidden layers (DL3),
DL with four hidden layers (DL4), DL with five hidden layers (DL5) and DL with six hidden layers (DL6).

Table 4. Classification technique.

« While reviewing and inspecting the datasets, we observed that the considered data have an imbalanced nature
of classes. Henceforth, to handle the class imbalance problem and its impact on the prediction accuracy of the
models, we have also used five data sampling techniques. We compare the performance of the models gener-
ated using this sampling technique with the model developed using the original data (ORGD).

o After finding the balanced data with relevant sets of features as shown in Fig. 3, we have used a wide variety of
classifiers. These techniques comprise general ML classifiers (LOGR, DT, etc..), Advanced deep learning clas-
sifiers (ELM, WELM, etc..), DL with distinct hidden layers (DL1, DL2, etc..), and Ensemble classifiers (BAG,
EXTRA, etc..) to train the anti-pattern models and find important patterns that help to identify anti-pattern
on future data. These models are validated using a 5-fold cross-validation approach. Table 17 contains the
hyper-parameters used for model development.

« Finally, the impact and dependability of these techniques are measured using different performance parame-
ters such as AUC and Accuracy. Table 5 shows the naming conventions used in this work.

Results and analysis

In this segment of the paper, we showcase the results & performance obtained from feature ranking and feature
subset selection techniques over class-level metrics on the imbalanced and balanced dataset generated from
sampling techniques. To get these balanced datasets, we first used the stated five different sampling techniques
to overcome the class imbalance issue. Then we employed different variants of classifiers to detect the detect
anti-patterns. The model’s effectiveness was computed using different performance parameters. Considering the
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space constraint, we have included the results of the randomly selected one-feature ranking technique and one-
feature subset selection technique.

Feature selection results
Here, in this study, we would like to compare and contrast feature-subset selection and feature ranking techniques
to examine if any of the techniques is superior to the others or if all the techniques perform equally well.
Relevant feature sets are generated after the application of the feature selection techniques, namely:
Significant Features(SIGF) obtained by applying the Wilcoxon sign test, Information Gain(INFG), Gain
Ratio(GNR), Correlation coefficient(CORR), Genetic Algorithm(GA), CFS subset evaluator(CFS), OneR,
Principal Component Analysis(PCA) along with the 13 aggregation techniques namely: variance, arithmetic
mean, skewness, median, quartilel, theli index, standard deviation, quartile3, generalized entropy, maximum,
gini index, kurtosis and atkinson index are used as input for the generation of models for the detection of web
service anti-patterns. Along with this, a model using the original dataset(OD) is also generated for detecting
web service anti-patterns. The sets of features selected after applying each of the feature selection techniques
considered are given in Tables 6, 7, 8, 9 and 10. Tables 6, 7, 8, 9 and 10 contains the results for anti-pattern
type 1 to 5. The information present in Tables 6 suggested that the features like Q1(WMC), Mean(CBO), Gini
index(CBO), Hoover index(CBO), Generalized entropy (RFC), skewness(LCOM), Q1(Ca), Max(MOA) are best
set of features identified using information gain for AP1.

Accuracy and AUC values analysis

In this work, We used a wide range of classifier techniques to find the important pattern that helps identify
different types of anti-patterns in web service. Initially, we have tried with most frequently used classifier
techniques such as three variants of Naive Bayes, Support Vector Classifier with linear Kernel (SVC-LIN), SVC
with the polynomial kernel (SVC-POLY), SVC with radial bias kernel (SVC-RBF), Logistic Regression Analysis
(LOGR) to find an important pattern. After, we used the advanced level of machine learning like extreme
learning machine(ELM), Least square SVM, weighted extreme learning machine (WELM) with different
kernels, and Ensemble classifiers such as AdaBoost Classifier(AdaB), Random Forest Classifier(RF), Bagging
Classifier(BAG), Extra Trees Classifier(EXTR), and Gradient Boosting Classifier(GraB). Further, the deep layer
technique with a varying number of hidden layers has also been used to find the important pattern that helps
to identify different types of anti-patterns present in web services. These techniques are validated using 5-fold
cross-validation approaches and compared using Accuracy and AUC performance values on the testing data.
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Abbreviation | Corresponding name Abbreviation | Corresponding name

AG1 Variance SIGF Significant Features

AG2 Arithmetic Mean INFG Information Gain Attribute Ranking

AG3 Skewness GNR Gain Ratio Ranking

AG4 Minimum OneR OneR attribute evaluation

AG5 Median PCA Principal Component Analysis

AG6 Quartile1(25%) CORR Correlation Coefficient Analysis

AG7 Theli Index CFS Classifier subset Evaluator

AG8 Standard Deviation GA Genetic Algorithm

AGY Quartile3(75%) ELM Extreme learning machine

AG10 Generalized Entropy WELM Weighted extreme learning machine

AG11 Maximum SVC-LIN Support Vector Classifier with linear Kernel
AGI12 Gini Index DL Deep Learning

AG13 kurtosis MLP-ADA MLP with stochastic gradient-based optimizer proposed by Kingma
AG14 Hoover Index DL-1 Deep Learning with 1 hidden Layer

AG15 Atkinson Index GraB Gradient Boosting Classifier

AG16 Shannon Entropy EXTR Extra Trees Classifier

AdaB AdaBoost Classifier FGWS Fine-Grained anti-pattern

CSW Chatty anti-pattern RF Random Forest Classifier

GOWS God Object anti-pattern BAG Bagging Classifier

DWS Data anti-pattern MLP-SG MLP with stochastic gradient descent.

AWS Ambiguous Anti-pattern LSSVM Least square SVM

GNB Gaussian Naive Bayes ADASYN Adaptive Synthetic Sampling Technique
BNB Bernoulli Naive Bayes SMOTE Synthetic Minority Oversampling Technique
MNB Multinomial Naive Bayes SVMSMOTE | Support Vector Machine SMOTE
BLSMOTE Borderline SMOTE SVC-POLY SVC with the polynomial kernel

UPSAM UP sampling Technique SVC-RBF SVC with radial bias kernel

KDD Knowledge Data Discovery | LOGR Logistic Regression Analysis

FS Feature Selection MLP Multi-layer Perceptron classifier

DT Decision Tree MLP-LNF MLP with quasi-Newton methods

Table 5. Naming conventions.

AP1 AP2 AP3 AP4 AP5

Q1(wmc) Gini index(cbo) Gini index(dit) Ql(wmc) skewness(rfc)
Mean(cbo) Hoover index(cbo) | Atkinson index(dit) Q3(wmc) Hoover index(rfc)

Gini index(cbo) Q1(ce) Shannon entropy(dit) | Median(noc) Atkinson index(rfc)
Hoover index(cbo) kurtosis(dam) Min(noc) Std(noc) Shannon entropy(rfc)
Generalized entropy(rfc) | skewness(dam) Max(noc) QIl(noc) Generalized entropy(rfc)
skewness(lcom) Min(moa) Median(noc) Generalized entropy(ca) | Theil index(rfc)

Ql(ca) Mean(moa) Std(noc) Theil index(ca) Min(lcom)

Max(moa) kurtosis(cam) Q1(noc) Std(cam) skewness(cam)

Table 6. Features selected after applying information gain for all the anti-patterns.

In this work, we have also examined the benefit of using different variants of sampling techniques like SMOTE,
UPSAMPLING, BLSMOTE, etc., to handle the class-imbalanced nature of data sets. To deal with the feature
redundancy problem, we have used different variants of aggregation techniques to find system-level metrics
using class-level metrics without losing important information. Further, different variants of feature selection
techniques have also been used to remove irrelevant metrics and find the best combination of reverent metrics.
Tables 11, 12, and 13 show the accuracy and AUC values of the models trained using the most frequently used
classifiers, advanced level of classifiers, and ensemble learning. The rows of the tables are used to represent the
input metrics for the models, and columns are used to represent the classifiers used to train the models, i.e., the
trained anti-pattern prediction model using MNB by taking all features as an input achieved 84.96% of Accuracy
and 0.86 value of AUC. The AUC value greater than 0.7 confirms that the trained models have the ability to
predict anti-patterns using source code metrics. The high-value AUC in the case of advanced level of machine
learning confirms that the models trained using the advanced level of machine learning, like LSSVM with
different kernels, and WELM with different kernels, have better ability for anti-pattern prediction as compared
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AP1 AP2 AP3 AP4 AP5

Var(noc) kurtosis(noc) Atkinson index(dit) | Min(noc) skewness(rfc)

Theil index(cbo) Var(cbo) Min(noc) Median(noc) Hoover index(rfc)
Generalized entropy(rfc) | Theil index(rfc) Max(noc) Std(noc) Atkinson index(rfc)
Min(lcom) Std(Icom) Median(noc) Q1(noc) Shannon entropy(rfc)
Max(lcom) Atkinson index(Icom) Std(noc) kurtosis(noc) Generalized entropy(rfc)
Std(lcom) Gini index(ca) Var(noc) Atkinson index(lcom) | Theil index(rfc)
skewness(lcom) Hoover index(ca) Q1(noc) Theil index(Icom) Min(lcom)
Median(cam) Shannon entropy(npm) | Min(loc) Min(loc) skewness(cam)

Table 7. Features selected after applying gain ratio for all the anti-patterns.

AP1 AP2 AP3 AP4 AP5

Hoover index(cbo) Atkinson index(Icom) Gini index(dit) Gini index(dit) Std(wmc)

kurtosis(rfc) Ql(ce) Atkinson index(dit) Atkinson index(dit) | kurtosis(cbo)
Generalized entropy(rfc) | kurtosis(ce) Shannon entropy(dit) | Min(noc) Generalized entropy(cbo)
Min(lcom) Gini index(ce) Max(noc) Max(noc) Var(rfc)

Max(lcom) Hoover index(lcom3) Min(lcom) Min(lcom) Atkinson index(ca)
Std(lcom) kurtosis(dam) Median(cam) Max(lcom) Q1(npm)

Var(lcom) skewness(dam) Std(cam) Theil index(lcom) Q3(loc)

Mean(ca) Generalized entropy(dam) Std(cam) Theil index(dam)

Table 8. Features selected after applying correlation coefficient for all the anti-patterns.

AP1 AP2 AP3 AP4 AP5
Var(noc) Var(cbo) Std(noc) Q3(wmc) Min(wmc)
Q3(noc) Std(Icom) Var(noc) Atkinson index(dit) Std(wmc)
Gini index(cbo) Gini index(ca) Q3(rfc) Median(noc) Var(wmc)
Generalized entropy(rfc) | Hoover index(ca) | skewness(rfc) Std(noc)
Min(lcom) Q1(ce) Q3(Icom) Q1(noc)
Std(Icom) kurtosis(dam) Atkinson index(lcom) | kurtosis(noc)
Std(cam) Ql(ce) Min(lcom)

Min(loc) Q3(lcom)

Shannon entropy(dam) | Atkinson index(lcom)

Mean(cam) Theil index(Icom)

Table 9. Features selected after applying CFS subset evaluator for all the anti-patterns.

AP1 AP2 AP3 AP4 AP5

Shannon entropy(noc) Gini index(rfc) Q3(wmc) QI1(wmc) Median(Icom)
Generalized entropy(rfc) | Hoover index(rfc) Median(noc) Median(noc) Var(lcom)

Min(lcom) Atkinson index(rfc) Std(noc) Q3(noc) QI1(lcom)

Max(lcom) Shannon entropy(rfc) QIl(noc) Std(cbo) Q3(lcom)

Std(lcom) Generalized entropy(rfc) | skewness(noc) Q3(rfc) skewness(lcom)
Median(ce) Theil index(rfc) Gini index(noc) kurtosis(rfc) Hoover index(lcom)
Max(moa) QIl(lcom) Theil index(ca) Hoover index(lcom) | Atkinson index(lcom)
Median(cam) skewness(cam) Shannon entropy(mfa) | Theil index(lcom) skewness(cam)

Table 10. Features selected after applying OneR for all the anti-patterns.

to other techniques. Similarly, the models trained on sampled data have a better ability to predict as compared
to the original data. Finally, the models developed by taking selected sets of features as input have a higher value
of AUC. Accuracy confirms that the models trained on reduced sets of features have a better capability of anti-
pattern prediction than all features.
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Accuracy AUC

MNB [BNB [GNB [DT [LOGR [KNN [SVL [SVP [SVR |MNB |BNB [GNB [ DT [LOGR [KNN [SVL [SVP [SVR
ORG-DATA
oD 84.96 | 69.03 | 68.58 |90.27 | 92.92 |91.59 | 88.94 |90.27 | 89.82 [0.86 |0.71 |0.76 |0.70 | 0.88 |0.80 |0.83 | 0.85 | 0.85
SIGF 8628 | 69.91 | 84.07 | 88.05 | 92.48 |92.04 | 89.82 | 89.82 | 88.94 |0.86 |0.72 |0.82 |0.67 | 0.89 |0.80 |0.88 | 0.87 |0.88
AG1 9027 | 76.99 | 87.61 | 91.15 | 91.15 |92.04 | 88.94 | 89.38 | 88.05 |0.51 |0.72 |0.89 |0.72 |0.84 |0.75 |0.86 | 0.71 |0.77
AG2 90.71 | 87.61 | 68.58 | 86.28 | 90.71 |89.38 | 66.81 |80.09 | 71.24 |0.71 |0.68 |0.80 |0.57 |0.77 |071 |0.73 |0.78 |0.78
AG3 89.82 | 86.28 | 85.40 | 88.05 | 90.71 |90.27 | 86.73 | 88.50 | 87.17 |0.85 |0.67 |0.89 |0.65 | 0.87 |0.75 |0.89 | 0.74 |0.82
AG4 89.82 | 86.28 | 73.45 | 89.82 | 90.27 |91.15 | 87.17 | 90.27 | 88.05 | 0.85 |0.67 |0.84 |0.66 | 0.84 | 070 |0.89 | 0.82 |0.84
AGS5 90.71 | 9027 | 57.96 | 89.38 |90.71 |89.38 |55.75 | 58.41 | 56.19 |0.56 | 057 |0.69 |0.63 |071 |070 |0.73 |0.72 |0.71
AG6 90.71 | 90.71 | 71.68 | 85.40 | 90.71 88.05 | 47.79 | 51.77 | 59.73 | 0.60 0.62 |0.70 |0.49 | 0.63 0.60 0.62 | 0.61 | 0.67
AG7 9027 | 87.17 |91.15 | 90.27 | 90.71 |92.04 |90.71 |89.82 | 89.82 [0.82 |067 |0.88 |0.68 |0.87 |08 |0.84 |0.51 |0.84
AGS 90.27 | 87.17 | 9027 | 89.38 | 90.71 |91.15 | 88.05 | 88.50 | 89.38 |0.87 |0.67 |0.86 |0.70 | 0.88 |0.75 |0.87 | 0.77 | 0.86
AGY9 90.71 | 89.82 | 80.09 | 88.05 | 90.71 87.61 | 69.47 | 74.78 | 73.45 | 0.70 0.35 |0.84 |0.61 |0.74 0.73 0.72 | 0.63 | 0.72
AG10 90.71 | 83.19 | 78.32 | 86.28 |90.71 |88.94 |71.24 |82.74 |79.65 |0.74 |0.68 |0.83 | 061 |0.80 |0.76 |0.81 |0.77 |0.81
AGI1 90.71 | 82.74 | 83.63 | 8540 |90.71 |88.94 |76.99 | 86.28 | 80.53 |0.78 |0.68 |0.84 |0.57 |0.85 |0.81 |084 |0.76 |0.82
AGI12 90.71 | 90.27 | 89.38 | 90.27 | 91.15 92.48 | 91.15 | 88.05 | 89.82 | 0.85 0.65 |0.82 0.73 | 0.84 0.75 0.83 | 0.83 | 0.87
AG13 90.71 | 82.74 | 84.07 | 87.17 |90.71 |88.50 | 76.99 | 86.73 | 81.86 |0.79 |0.68 |0.85 |0.60 | 0.85 |0.80 |0.83 |0.68 |0.82
INFG 89.82 | 72.57 | 76.11 |90.71 | 92.04 |90.27 |88.05 | 89.82 | 88.50 |0.87 |0.72 |0.83 |0.71 | 0.88 |0.76 |0.86 | 0.88 | 0.87
GNR 91.15 | 89.82 |92.48 | 91.59 | 91.15 |93.81 | 89.38 | 89.38 | 88.94 |0.91 |0.39 |0.92 |0.71 | 091 |0.86 |0.90 |0.90 |0.91
CORR 91.15 | 89.82 | 9159 | 91.59 | 91.59 |91.15 | 92.04 | 90.71 | 92.04 |0.86 |0.42 |0.86 |0.71 | 0.85 |0.86 |0.86 |0.86 |0.87
CFS 90.71 | 90.27 | 9027 |92.04 | 9248 |93.81 |87.17 |91.15 | 88.94 |0.74 |038 |0.92 |0.74 | 0.88 |0.86 |0.89 | 0.65 |0.86
OneR 90.71 | 90.71 |92.48 | 92.04 | 91.59 |90.27 | 88.94 | 89.82 | 88.50 |0.90 |0.42 |0.90 |0.76 | 0.87 |08 |0.88 | 0.87 |0.89
GA 91.15 | 89.82 | 9159 |92.48 | 90.71 |91.15 |90.27 |90.27 |89.82 [0.90 |038 |0.89 |0.74 | 0.86 |0.86 |0.86 |0.85 |0.90
PCA 90.71 | 90.27 | 88.94 | 89.38 | 90.71 |89.38 | 92.04 | 90.27 | 89.82 |0.48 |0.51 |0.76 |0.68 | 0.67 |0.81 |0.90 | 0.87 |0.82
SMOTE-DATA
oD 80.98 |82.93 | 82.44 |93.17 | 91.22 |90.24 | 7561 |76.83 | 76.34 [0.89 |0.84 |0.85 |0.93 |0.96 |0.96 |0.65 | 0.65 | 0.65
SIGF 79.76 | 82.93 | 87.07 | 93.41 | 90.24 |91.95 | 76.83 | 78.05 | 77.56 |0.89 |0.84 |0.88 |0.93 | 096 |0.97 |0.64 | 0.65 | 0.65
AGI 57.56 | 83.17 | 82.68 | 91.95 | 8537 | 88.78 | 63.90 | 62.20 | 67.80 |0.71 |0.85 |091 |0.92 | 092 |0.95 |0.53 | 0.53 |0.53
AG2 73.66 | 82.93 | 77.32 |90.73 | 76.10 86.34 | 68.05 | 73.41 | 72.44 |0.78 0.84 |0.88 091 | 0.81 0.93 0.55 | 0.59 | 0.58
AG3 80.00 | 8341 |83.90 | 89.02 | 86.34 |91.95 | 81.22 | 84.63 | 8390 |0.88 |0.84 |091 |0.89 | 092 |0.96 |0.76 | 0.77 |0.77
AG4 76.83 | 83.17 | 7732 | 91.95 | 81.46 | 90.98 | 71.46 | 71.46 | 74.63 |0.87 |0.85 |0.89 |0.92 | 0.89 |0.96 |0.60 | 0.62 |0.62
AG5 67.80 | 66.34 | 72.93 | 84.88 | 73.17 83.41 | 67.32 | 67.80 | 68.05 | 0.72 0.62 |0.79 0.89 | 0.76 0.91 0.53 | 0.55 | 0.55
AG6 65.12 | 71.71 | 7122 | 86.59 | 68.54 |83.41 | 60.98 | 62.93 | 63.66 | 0.67 |0.68 |0.77 |0.86 | 0.68 |0.87 |0.49 |0.50 |0.51
AG7 83.90 | 82.20 | 80.73 | 91.95 | 84.15 |91.95 | 72.68 | 71.71 | 76.10 |0.89 |0.84 |0.90 |0.92 | 093 |0.97 |0.64 | 0.64 |0.65
AGS 8146 | 82.44 | 8439 | 9171 |86.10 |91.95 | 66.59 | 69.02 | 68.29 |0.91 |0.83 |0.92 |0.92 | 093 |0.96 |0.53 | 0.54 |0.53
AG9 7829 | 48.05 | 82.68 |93.17 | 7829 |83.90 | 61.46 | 66.10 | 64.63 | 0.81 | 047 |0.92 |0.93 | 083 |0.93 |0.51 | 053 |0.53
AG10 7829 | 79.02 | 82.93 | 85.37 | 81.46 |87.07 | 72.20 | 73.17 | 74.15 |0.82 |0.78 |0.89 |0.85 | 0.87 |0.93 |0.60 | 0.62 | 0.62
AGI1 78.78 | 79.02 | 82.93 | 87.80 | 84.63 |89.02 | 74.15 | 7634 | 76.10 |0.85 |0.79 |0.90 |0.88 | 0.90 |0.94 |0.58 | 0.59 |0.60
AGI12 75.85 | 82.20 | 8146 | 91.22 | 79.51 |86.83 | 68.54 | 73.41 | 71.22 |0.89 |0.80 |0.87 |0.91 | 092 |0.94 |0.61 |0.61 |0.61
AG13 79.02 | 79.02 | 83.17 | 88.78 | 84.63 | 88.05 | 65.61 | 67.07 | 66.83 | 0.86 |0.80 |0.90 |0.89 | 091 |0.94 |0.53 |0.54 |0.54
INFG 8122 |82.20 | 83.41 |91.71 | 89.27 |89.76 | 7049 | 70.98 | 70.98 |0.89 |0.87 |0.87 |0.92 | 094 |0.96 |0.52 | 0.52 |0.52
GNR 85.37 | 56.59 | 84.63 | 87.8 |86.10 |87.07 |73.17 |73.90 | 7341 |092 |052 |092 |0.88 |0.94 |093 |0.62 |0.61 |0.61
CORR 8537 | 56.34 | 82.93 | 89.27 | 84.15 |91.22 | 6512 | 65.61 | 6537 |0.92 |049 |0.90 |0.90 | 091 |0.95 |0.50 | 0.51 |0.50
CFS 67.32 | 57.07 | 83.41 | 88.54 | 83.90 |86.59 | 78.29 | 80.00 | 81.71 |0.78 | 048 |0.91 |0.88 | 091 |0.93 |0.69 | 0.68 |0.69
OneR 85.61 | 56.34 | 84.63 | 89.27 | 86.83 91.46 | 67.80 | 67.80 | 67.56 | 0.93 0.53 |0.92 0.90 | 0.93 096 |0.52 |0.54 |0.52
GA 86.34 | 56.59 | 83.66 | 89.27 | 85.85 |91.46 | 66.59 | 66.83 | 67.07 |0.94 |0.52 |0.92 |0.89 | 093 |0.95 |0.53 | 0.54 |0.53
PCA 66.59 | 61.71 | 81.95 | 91.95 | 7537 |89.27 | 64.15 | 72.93 | 70.24 |0.65 |0.59 |0.85 |0.92 | 0.87 |0.95 |0.61 |0.62 |0.61
BLSMOTE-DATA
oD 8341 | 8341 |84.15 | 94.88 | 9244 |88.78 | 69.51 | 6951 | 68.54 |0.90 |0.86 |0.86 |0.95 | 0.96 |0.95 |0.53 | 053 |0.53
SIGF 8220 | 8341 |90.73 |91.71 | 92.44 |88.78 | 77.32 | 7732 | 78.05 |0.89 |0.86 |0.91 |0.92 | 095 |0.96 |0.64 | 0.65 |0.65
AG1 59.76 | 83.41 | 84.88 | 93.66 | 86.59 91.71 | 77.80 | 72.44 | 78.54 | 0.61 0.87 |0.93 0.94 | 0.93 097 |0.58 | 0.57 |0.58
AG2 7732 | 82.93 | 88.29 | 94.63 | 8439 |91.22 |72.93 | 7854 | 77.07 |0.81 |0.82 |0.95 |0.94 |0.85 |0.96 |0.56 | 0.61 |0.60
AG3 83.17 | 83.66 | 89.27 |92.20 | 90.00 |91.46 | 69.76 | 68.05 | 69.27 |0.92 |0.84 |0.96 |0.92 | 095 |0.97 |0.53 | 053 |0.53
AG4 84.63 | 83.66 | 87.56 | 92.20 | 88.78 | 92.68 | 69.76 | 69.76 | 70.73 |0.93 |0.85 |0.95 |0.93 | 094 |0.96 |0.51 |0.52 |0.51
AG5 67.07 | 66.34 | 74.88 | 84.63 | 75.85 |84.88 | 72.44 | 73.17 | 72.68 |0.67 |0.58 |0.78 |0.88 | 077 |0.90 |0.52 | 054 |0.53
AG6 70.73 | 7341 | 73.90 | 84.88 | 72.93 |81.22 | 6537 | 68.05 | 67.80 |0.73 |0.72 |0.82 |0.84 | 074 | 0.89 |0.55 | 0.58 |0.59
Continued
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Accuracy AUC

MNB | BNB | GNB | DT LOGR |KNN | SVL |SVP |SVR | MNB |BNB |GNB | DT | LOGR | KNN |SVL | SVP | SVR

AG7

80.98 | 78.78 | 81.46 | 90.49 | 85.85 |91.46 | 73.66 |71.95 | 76.34 | 0.88 |0.80 |0.90 |0.91 |0.91 0.96 |0.63 [0.63 |0.64

AG8

81.95 | 81.71 |86.59 |92.68 | 86.34 |92.20 | 67.07 | 67.80 | 68.05 | 0.86 |0.81 |0.89 |0.93 |0.90 0.96 |0.54 [0.55 |0.55

AG9Y

83.41 | 50.49 |89.76 | 95.37 | 83.41 |88.54 |72.20 |76.10 | 76.10 | 0.84 |0.46 |0.94 |0.95 | 0.86 0.95 |0.59 [0.62 |0.62

AGI10

80.49 | 80.98 |85.37 | 89.02 | 84.63 | 86.59 | 59.51 |59.76 | 60.00 | 0.81 |0.79 |0.91 |0.89 |0.89 0.95 |0.50 [0.50 |0.50

AGI1

80.98 | 81.22 | 85.85 | 89.27 | 86.10 |89.02 | 81.46 |83.90 |83.17 |0.87 |0.81 |0.92 |0.89 |0.93 0.94 |0.76 [0.77 |0.77

AGI12

79.76 | 82.44 | 84.39 | 91.22 | 82.68 | 88.54 |72.68 |74.63 |72.44 1091 |0.80 |0.90 |0.91 |0.92 0.95 |0.62 |[0.62 |0.63

AG13

79.27 | 79.27 | 82.68 | 88.05 | 84.39 | 86.34 | 66.83 | 67.07 | 67.32 | 0.84 |0.77 |0.90 |0.88 |0.91 0.94 |0.52 [0.52 |0.52

INFG

83.17 | 82.68 | 85.37 |93.17 | 90.49 |89.02 | 78.54 |79.27 | 78.29 |0.90 |0.88 |0.89 |0.94 |0.96 0.96 |0.60 |0.61 |0.61

GNR

90.24 | 56.59 |86.34 | 91.95 | 87.80 |92.68 | 67.32 | 68.29 | 68.29 | 0.94 |0.53 |094 |0.92 |0.95 0.97 |0.54 [0.54 | 0.54

CORR

86.59 | 56.34 | 84.63 | 92.93 | 86.34 |91.95 | 66.59 | 68.05 | 66.34 | 0.93 |0.50 |0.91 |0.93 |0.92 0.96 |0.52 [0.52 |0.52

CFS

73.41 | 57.07 | 79.02 |90.73 | 80.73 | 87.80 | 65.61 |65.85 | 67.80 | 0.77 |0.51 |0.90 |0.91 |0.89 0.93 | 0.51 [0.50 |0.51

OneR

84.63 | 56.34 | 84.15 | 91.71 | 85.85 |92.20 | 74.63 | 76.59 | 7537 | 0.94 |0.51 |0.93 |0.92 |0.94 0.97 |0.62 |0.62 |0.62

GA

88.05 | 56.59 |86.34 | 94.63 | 87.07 |94.15 | 74.39 | 77.56 | 76.10 | 0.94 |0.53 |0.94 |0.94 |0.93 0.96 |0.64 |0.66 |0.64

PCA

66.59 | 61.71 | 56.83 | 90.49 | 80.98 | 88.54 | 67.56 |72.44 |70.24 | 0.65 |0.57 |0.78 |0.91 |0.90 0.95 |0.61 [0.62 |0.61

Table 11. Accuracy and AUC for Anti-pattern 1: Most Frequently Used Classifiers. Best performance value in
bold.

RQ Can web-service anti-patter prediction models be developed using source code metrics and machine
1: learning?

The high value of AUG, i.e., greater than 0.7, as shown in Table 11, 12, and 13 confirms that the
developed models have the ability to predict anti-patterns based on source code metrics. The

experimental findings confirmed that the models performed better after applying sampling and FS
techniques.

ANS:

Comparative analysis

This research aims to evaluate the impact of feature selection techniques, data-sampling techniques, and a wide
variety of machine learning on the performance of the web-service anti-pattern prediction models. Considering
this, we have applied twenty-two different sets of features, five different data-sampling, and thirty-two different
classifiers for anti-pattern prediction models. The predictive power of these techniques is computed using
Accuracy & AUC and compared with the help of box-plot diagrams and hypothesis rank-sum techniques.
The final intensive assessment and performance of these techniques individually are presented in subsequent
subsections.

Aggregation measures and feature selection techniques

In our experiment, different aggregation measures were used to find the source code metrics at the system
level from the class level without losing information. Further, eight feature selection techniques have also been
used to remove irrelevant and redundant features. After applying aggregation measures and feature selection
techniques along with the original features, all these feature sets are used as input for developing the models for
detecting web service anti-patterns. Finally, Statistical and AUC studies were used to determine the significance
and reliability of various feature selection strategies on five different types of anti-patterns.

Comparison of different aggregation measures and sets of features: Descriptive statistics and box-plot The Fig.
4a, b of Fig. 4 depict the box-plot for the Accuracy and AUC of different aggregation measures and sets of
features. The descriptive statistics of all employed feature selection techniques are presented in Table 14. The
following conclusions can be drawn from Fig. 4 and Table 14:

« All the models give reasonable accuracies ranging between 75-95 % and AUC values between 0.8-0.95.

o The models trained on all features achieves 83.35 mean accuracy and 0.80 as mean AUC.

« Among the aggregation measures, AG3 shows the best performance, with a mean AUC value of 0.86. At the
same time, the model developed using the feature set computed by using AG6 as input shows the worst per-
formance, with a mean AUC value of 0.76.

« Among all the feature sets which are considered as input for developing the models to detect web service
anti-patterns, SIGF is the best model, with a mean AUC value of 0.88. In contrast, the model developed with
features selected by PCA as input is the worst model, with a mean AUC value of 0.71. The model developed
by AG3 has the second-best performance, with a mean accuracy of 0.86.

Comparison of different aggregation measures and sets of features: Wilcoxon Signed Rank Test (WSRT) with
Friedman mean rank (FMR): In this experiment, we have also employed two statistical tests for hypothesis
analysis: Wilcoxon Signed Rank Test and Friedman Test. Initially, we applied WSRT to find pair-wise significant
differences between the predictive capability of the models trained by taking different sets of features as input.
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This test is used to test our considered null hypothesis “There is no significant impact on the performance of
anti-patter models after applying feature selection techniques” The considered hypothesis is only accepted if the
calculated p-value using WSRT is less than 0.05. Figure 5 shows the result of WSRT on different pairs of feature
sets, i.e., X symbol indicates that the p-value<0.05, and ] symbol indicates that the p-value>0.05. According
to Fig. 5, the predictive ability of the models is significantly impacted by using different sets of features. After
finding the impact of feature selection techniques, we have also applied Friedman’s mean rank (FMR) to find the
best sets of features for anti-pattern prediction. The last column of Table 14 shows the FMR for the aggregation
measures and the various applied feature selection techniques. According to FRM, the SIGF has the lowest
mean rank of 5.97. Hence, we conclude that the models trained by taking selected sets of features using SIGF
have a significantly better ability of prediction as compared to other techniques. Similarly, PCA has the highest
mean AUC rank, 17.90, indicating that the model developed with features selected by PCA will have the worst
performance.

R What is the significant impact of considering reduced sets of features as input on the performance of
2: models?

The experimental findings based on Figs. 4a, b, 5 and Table 14 confirmed that the models trained by taking

ANS: selected sets of features can predict significantly better than all features.

Sampling techniques

In this experiment, we have also considered five types of data imbalance techniques such as SMOTE, BLSMOTE,
SVMSOMTE, ADASYN, and UPSAM to tackle the class imbalance problem, and the resulting balanced datasets
are used as training data for anti-pattern prediction models. The significance and reliability of these employed
sampling strategies were determined using statistical and AUC analyses.

Comparison of sampling techniques using descriptive statistics and box-plots: Figure 6 shows the box-plot
diagram for accuracy and the AUC of the models trained on sampled datasets. These sample datasets are
generated using five different sampling techniques. The descriptive statistics for AUC and accuracy for sampling
techniques considered are summarized in Table 15. According to Fig. 6 and Table 15, the models trained on
sampled data using upsampling (UPSAM) with a mean AUC of 0.87 achieved better results. In contrast, the
model developed with the original data with a mean AUC of 0.70 has the worst performance. ADASYN and
SMOTE showed the worst performance among the data sampling techniques applied, with mean AUC values of
0.83 and 0.83, respectively.

Comparison of different sampling technique: Wilcoxon Signed Rank Test (WSRT) with Friedman mean rank
(EMR):

In this experiment, we have also employed two statistical tests for hypothesis analysis: Wilcoxon Signed
Rank Test and Friedman Test. Initially, we applied WSRT to verify the impact of sampling techniques on the
performance of anti-pattern prediction models. This test is used to test our considered null hypothesis “There is
no significant impact on the performance of anti-patter models after training on balanced data”. Figure 7 shows
the result of WSRT on different pairs of sampling techniques, i.e., X symbol indicates that the p-value<0.05, and
[ symbol indicates that the p-value>0.05. The information present in Fig. 7 suggested that the null hypothesis
was rejected for all comparable sampling technique pairs. Hence, we concluded that the predictive ability of
the models is significantly impacted by using sampling techniques. After verifying the conclusion like “the
performance of the models significantly improves after training on sampled data”, we have used the Friedman
test to find the best sampling techniques. The lower rank of the Friedman test represents the best results. Table
15 shows the Friedman test results for various data sampling techniques. From Table 15, we infer that UPSAM
has the best performance with a mean AUC rank of 2.13, whereas the model developed with the original dataset
has the worst performance with a mean rank of 5.41.

RQ What is the significant impact of sampling techniques on the predictability of anti-
3: pattern prediction models?

The experimental findings based on Figs. 6, 7 and Table 15 confirmed that the
predictive ability of the models is significantly impacted by using sampling
techniques. The performance of the models significantly improves after training on
sampled data.

ANS:

Classification techniques
In this work, 33 classifiers varying from general machine learning classifiers to advance deep learning classifiers
have been employed to train models for detecting web service anti-patterns. We computed the implications and
dependabilities of these classifiers using box plots, descriptive statistics, and statistical test analyses on different
anti-patterns.

Comparison of different classification techniques using descriptive statistics and box plots: Figure 8 shows the
AUC and accuracy box plots for the different categories of classifier techniques. According to Fig. 8, we can
conclude the following:

« Among the general classifiers category, KNN shows the best performance with a mean AUC value of 0.92. In
contrast, the Support Vector Machine with the linear kernel (SVC-LIN) offers the worst performance, with a
mean AUC value of 0.62.
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Accuracy AUC

BAG ‘RF ‘EXTR ‘AdaB ‘GraB ‘DLl ‘DL2 ‘DL3 ‘DIA BAG ‘RF ‘EXTR ‘AdaB ‘GraB ‘DLI ‘DL2 ‘DL3 ‘DIA
ORG-DATA
oD 90.71 |91.15 |92.48 |90.27 | 91.59 | 92.92 [ 92.04 |92.04 |92.92 [0.81 |0.82 [0.84 [085 [0.67 |0.88]0.87 |0.86 |0.88
SIGF 89.82 [89.82 |91.59 |91.59 | 90.71 | 91.59 |92.04 | 92.04 |92.04 [0.82 [0.80 |0.80 [0.78 [0.66 |0.88 |0.87 |0.86 |0.87
AGI1 91.59 |92.48 |91.59 |92.92 | 92.04 | 90.71 [90.71 [90.71 [90.71 [0.85 [0.84 |073 [0.82 [0.62 [0.89 [0.87 |0.86 |0.86
AG2 90.71 | 89.38 | 89.82 |88.94 |89.38 |90.71 | 90.71 | 90.71 | 90.71 | 0.76 |0.75 |0.75 |0.76 | 0.8 |0.69 |0.75 |0.76 | 0.76
AG3 90.71 [90.71 |91.15 |89.82 | 91.15 | 90.71 |90.71 |90.71 |90.71 [0.77 |0.82 |0.81 |0.82 |0.68 |0.81 |0.84 |0.83 |0.83
AG4 90.27 |89.82 |91.59 |89.82 |91.15 | 89.82 [90.71 |90.71 |90.71 [0.77 |0.85 |0.81 |082 |0.68 |0.83 |0.84 083 |0.83
AG5 90.71 | 88.05 | 89.38 |89.82 |90.71 |90.71 | 90.71 | 90.71 | 90.71 |0.70 |0.71 |0.68 |0.70 |0.64 |0.41 |0.44 |0.42 |0.40
AG6 90.71 | 88.94 | 86.73 |89.38 | 89.38 |90.71 | 90.71 | 90.71 | 90.71 | 0.74 |0.67 | 055 |0.73 |0.69 |0.44 |0.50 |0.63 |0.40
AG7 91.59 |91.59 |92.04 |90.27 |89.82 | 92.92 [ 89.38 |90.27 [90.71 [0.82 [0.83 |076 [0.85 [059 [0.87 |0.84 |0.84 |0.84
AGS 90.71 9027 |91.59 |91.59 | 9159 | 92.04 [ 9027 |90.71 |90.71 [0.86 [0.82 |081 [082 |0.60 |0.83 |0.86 |0.87 | 0.86
AGY 90.27 |89.82 |91.59 |91.59 | 89.38 | 90.71 | 90.71 |90.71 |90.71 [0.80 |0.71 |0.77 |0.85 |0.83 |0.68 | 0.60 | 0.61 | 0.59
AG10 90.71 |91.15 | 90.71 |91.15 | 87.61 | 90.71 |90.71 |90.71 |90.71 [0.81 |0.75 |0.74 |0.83 |075 [071 |0.75 |0.73 | 073
AGI11 88.50 |91.59 |90.71 |90.27 | 9027 | 90.71 |90.71 |90.71 |90.71 [0.83 |0.73 |079 |082 |0.83 [0.75 |0.81 |0.80 |0.79
AGI12 91.59 | 90.71 |90.71 |90.71 |88.94 |90.71 | 90.71 | 90.71 |90.71 |0.86 |0.77 |0.79 |0.84 |o0.61 |0.69 |0.87 |0.75 | 0.77
AG13 89.82 [91.59 |92.48 |89.82 | 9027 | 90.71 | 90.71 |90.71 [90.71 0.84 [0.79 |074 [0.82 [083 [0.75 |0.83 |0.81 |0.80
INFG 91.15 | 92.48 |91.59 |92.92 | 92.04 | 91.59 |91.59 |91.59 |91.15 [0.82 [0.85 |0.84 [085 |073 [0.88 |0.88 |0.87 |0.86
GNR 91.59 |92.04 |91.15 |92.92 | 8938 | 90.71 | 90.71 |90.71 |90.71 [0.91 |0.88 |0.83 |0.87 |052 |0.85 |0.80 |0.89 | 0.88
CORR 90.71 |92.48 |93.81 |92.92 |88.94 |91.15 | 90.71 |90.71 |90.71 |0.88 |0.80 |0.85 |0.87 |0.64 |0.86 |0.84 |0.84 |0.82
CFS 90.71 |92.48 |92.92 |92.48 |92.04 |91.15 [91.15 | 90.71 |90.71 [0.92 |0.86 |0.83 |084 |071 [0.94 091 089 |0.88
OneR 92.04 |91.59 |92.04 |92.92 |92.92 |91.15 [ 90.71 |90.71 |90.71 [0.9 |0.85 |0.83 |079 |o0.64 |0.79 |0.84 |0.86 |0.83
GA 92.04 [92.04 [91.15 |91.15 | 9159 |91.15 | 90.71 | 90.27 | 90.71 |0.91 |0.86 |0.84 |0.87 |0.65 |0.87 |0.84 |0.87 |0.81
PCA 90.71 | 90.27 [90.27 |90.27 | 88.94 |90.71 | 90.71 [ 90.71 | 90.71 [0.82 081 [078 [075 [0.75 [047 |0.53 052 |0.44
SMOTE-DATA
oD 90.00 | 9512 [96.1 |91.71 |91.46 |93.17 |95.12 | 94.15 | 94.63 |0.97 |0.98 |0.98 |0.97 |097 |0.97 |0.98 |0.98 |0.98
SIGF 89.76 | 94.15 |96.34 |92.93 | 93.90 | 94.39 |94.88 | 9561 |95.12 [0.96 |0.98 |0.99 [097 |097 [097 [0.97 [0.97 |0.98
AGI1 89.27 [90.49 |92.93 |90.00 | 89.02 | 85.85 | 86.59 | 87.56 | 86.59 |0.96 |0.96 |0.97 |094 |096 |0.92 |0.90 |0.93 |0.93
AG2 86.34 | 92.68 |93.41 |87.80 | 88.05 | 76.83 | 81.71 | 81.46 | 82.68 |0.93 |0.97 |0.97 |094 |095 |0.83 |0.87 |0.86 | 0.86
AG3 89.27 [92.93 |96.1 |88.54 | 90.73 | 83.90 |86.34 |88.54 |87.56 |0.96 |0.98 |0.98 |095 |095 |0.90 |0.92 |0.92 |0.92
AG4 89.27 |95.61 |95.12 |91.71 | 90.98 | 8220 | 85.12 |88.78 |89.51 [0.95 [0.97 |0.98 [096 |0.95 [0.90 |0.92 |0.94 |0.94
AG5 80.00 | 84.88 |85.37 |74.15 | 78.05 | 72.44 | 70.00 | 67.32 | 54.63 |0.88 |0.92 |091 |0.83 |0.84 |0.77 |0.74 |0.71 | 053
AG6 8195 | 85.61 |87.32 |80.24 | 80.98 | 70.49 |54.39 |4829 |51.22 [0.87 [0.90 |0.92 [088 [0.87 [070 |0.56 049 | 057
AG7 91.71 9220 |94.63 |89.76 | 9122 | 86.34 | 89.51 |89.76 | 89.51 [0.97 [0.97 |0.97 [095 [094 [093 |0.94 094 |0.94
AGS 90.49 |93.90 |95.61 |87.56 | 87.80 | 87.80 | 90.24 | 90.49 |91.22 [0.96 |0.98 |0.98 |096 |0.95 [0.93 |0.94 |0.95 |0.94
AG9 85.37 | 93.66 |95.37 |90.73 | 90.00 | 77.80 | 78.05 | 77.80 | 64.63 [0.95 |0.98 |0.98 |096 |096 |0.82 |0.81 |0.81 |073
AG10 84.88 | 88.78 |92.93 |83.66 | 83.90 | 79.27 | 81.71 | 81.46 | 74.63 [0.92 |0.93 |0.96 |091 |0.89 |0.87 |0.87 |0.85 |0.82
AGI11 87.07 |89.02 |93.41 |85.85 | 8439 |82.93 |84.88 |86.10 |85.85 |0.94 |0.97 |0.97 |093 |0.93 |0.90 |0.90 |0.90 |0.89
AG12 87.07 |91.71 |93.66 |88.05 | 87.80 | 81.22 |83.17 |84.39 | 85.61 [0.95 |0.97 |0.97 [093 |093 [091 [0.91 |0.90 |0.89
AGI3 84.88 |91.71 |93.17 |86.34 | 83.90 | 82.44 |84.15 | 8561 |8537 (094 [096 |0.98 [092 [091 [0.90 [0.90 |0.90 |0.90
INFG 88.29 |91.71 |94.15 |91.46 | 90.73 | 90.00 | 93.17 |93.17 |94.39 [0.96 [0.97 |0.97 [0.97 [096 |0.96 |0.97 |0.97 |0.96
GNR 88.05 | 88.05 | 90.49 |85.85 | 86.10 | 86.83 | 87.56 | 88.78 |81.22 [0.95 |0.96 |0.96 |093 |094 [093 |0.92 |093 |0.86
CORR 89.27 [91.22 |91.46 |88.29 |88.05 | 8585 | 8585 |86.59 |86.10 [0.95 |0.96 |0.96 |094 |093 |0.91 |0.90 |0.88 |0.89
CFS 86.34 |89.51 |91.46 |89.76 | 89.02 | 83.90 |85.12 |86.10 | 78.54 |0.93 |0.95 |0.96 |093 |094 |0.91 |0.90 |0.91 |0.88
OneR 89.02 | 89.51 |92.44 | 90.00 | 90.00 | 86.83 | 87.07 | 78.54 | 78.78 | 0.96 | 0.96 | 0.96 |0.95 |0.95 |0.92 |0.93 |0.89 |0.89
GA 89.76 |92.44 | 9146 |90.49 | 89.27 |86.83 |86.59 |86.34 |79.76 [0.95 |0.96 |0.96 |094 |094 [092 |0.93 092 |0.90
PCA 88.05 | 91.95 | 91.71 |85.85 | 86.83 | 75.85 | 74.39 | 64.88 | 56.10 |0.94 |0.97 |0.97 [092 |093 [0.81 |0.88 |0.76 | 0.64
SMOTE-DATA
BLSMOTE-DATA
oD 89.27 | 94.63 |96.34 |93.17 | 91.46 | 92.93 [ 93.90 | 93.66 |95.12 [0.97 [0.98 |0.98 [096 [096 [0.97 [0.97 [097 |0.97
SIGF 89.51 |92.93 |95.85 |91.22 | 90.00 | 92.68 | 92.93 |93.17 | 93.66 |0.96 |0.98 |0.98 |0.97 |0.96 |097 |0.98 [0.97 |0.98
AG1 91.71 | 9341 |94.88 |91.22 | 9293 |88.78 |89.02 |91.22 [90.24 [0.97 [0.97 |0.98 [097 [097 [094 |0.94 |094 |0.94
AG2 90.24 |95.37 |96.34 | 9341 | 94.63 | 8585 | 88.78 |90.00 |92.44 [0.97 [0.97 |0.97 [0.97 [096 [0.90 |0.91 093 |0.94
AG3 91.22 |94.63 |96.1 |92.20 | 92.68 | 87.56 | 89.76 | 90.49 |91.22 [0.97 |0.97 |0.98 |096 |097 |0.94 |0.95 |0.95 |0.95
AG4 9195 | 9341 |96.1 |93.17 | 93.66 | 88.54 | 90.49 |90.73 |91.71 [0.97 |0.98 |0.98 [097 |097 [0.94 [0.95 095 |0.95
AG5 79.27 | 8537 | 84.63 |73.90 | 80.73 | 73.41 | 69.27 | 7024 |48.54 [0.90 |0.91 |090 [082 [085 [074 [073 [0.72 |0.49
Continued
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Accuracy AUC
BAG | RF EXTR | AdaB | GraB | DL1 |DL2 |DL3 |DL4 |BAG |RF |EXTR | AdaB | GraB | DL1 | DL2 | DL3 | DL4

AG6

82.93 | 86.10 | 87.8 80.98 | 78.05 | 72.68 | 60.49 | 63.17 | 54.63 | 0.88 |0.92 | 0.93 090 |0.87 |0.76 |0.67 |0.69 |0.55

AG7

89.76 | 91.71 | 94.63 | 88.54 |88.29 |88.05 |89.27 | 89.27 |90.49 |0.96 |0.96 | 0.97 094 093 092 {093 [093 |0.93

AGS8

89.02 | 93.90 | 95.12 | 88.05 |88.29 | 8537 |87.32 |87.56 |87.32 |0.96 |0.96 | 0.98 094 094 1089 [0.90 [0.90 |0.91

AGY

87.32 | 95.85 | 95.37 |91.22 |92.44 | 83.66 |83.90 | 76.34 | 76.59 |0.96 |0.98 | 0.98 097 1097 085 [0.85 [0.83 |0.83

AGI10

87.07 | 91.46 | 92.93 |88.29 |85.12 |81.46 |84.63 |85.12 |78.05 |0.94 |0.96 | 0.96 094 |0.89 |0.88 [0.88 |0.88 |0.86

AG11

88.29 | 92.93 | 94.39 | 86.10 |86.59 | 84.88 |87.07 | 88.05 |87.80 |0.95 |0.97 |0.98 094 094 092 (092 |0.93 |0.92

AGI2

89.76 | 92.68 | 92.68 | 89.76 |90.00 | 83.17 | 86.83 | 87.56 |87.32 | 0.95 |0.96 | 0.98 095 093 092 (092 092 |0.92

AGI13

87.32 | 90.73 | 93.66 |85.61 |86.83 |81.71 |83.66 | 84.39 |77.07 |0.93 |0.96 | 0.97 091 092 |0.89 {0.90 | 0.90 | 0.86

INFG

89.51 | 94.39 | 95.61 |93.41 |92.20 |92.20 |92.20 | 92.93 |92.68 | 0.97 |0.98 | 0.98 097 096 |0.96 |0.97 |0.98 |0.97

GNR

91.71 | 94.63 | 94.63 | 92.20 |92.68 | 91.95 |91.95 | 91.71 | 90.73 | 0.97 |0.98 | 0.98 096 |0.96 |095 095 094 |0.93

CORR

89.02 | 92.93 | 93.66 |92.68 |91.95 |86.34 |86.34 | 86.83 | 8537 |0.96 |0.97 | 0.97 096 |0.95 092 {093 (092 |091

CES

87.07 | 90.00 |92.2 87.07 | 88.78 |82.44 |84.15 | 84.63 | 75.61 [0.93 |0.94 |0.95 0.93 092 |0.89 | 0.89 |0.89 |0.86

OneR

91.95 | 92.20 | 92.68 |88.05 |91.71 |86.10 | 86.10 | 90.00 |77.32 |0.97 |0.96 | 0.97 095 096 [093 [094 |0.95 |0.87

GA

93.17 | 93.66 | 94.15 |92.20 |92.68 | 87.07 | 87.56 | 89.76 |90.24 | 0.97 |0.98 | 0.97 096 |0.96 |094 (094 |0.95 |0.94

PCA

88.05 | 91.71 | 94.39 |87.80 |87.07 |79.51 |80.98 | 59.02 |51.22 |0.94 |0.97 | 0.97 093 094 |0.88 [0.90 |0.69 |0.52

Table 13. Accuracy and AUC for Anti-pattern 1: ensemble Classifiers and Deep-Learning. Best performance
value in bold.

« Among the ensemble classifiers employed for training the models for detection of anti-patterns, the extra tree
classifier (EXTR) and Random Forest (RF) classifiers are showing the best performance with a mean AUC
value of 0.94, and the Gradient Boosting classifier (GraB) is delivering the worst performance with a mean
AUC of 0.88.

« Ofall the deep learning algorithms with varying hidden layers, DL2 shows the best performance with a mean
AUC value of 0.84, and D14 offers the worst performance with a mean AUC value of 0.81. DL3 performance
is similar to that of the model developed using DL2.

o Over the advanced ML classifiers used for developing models for detecting web service anti-patterns, LSSVM-
RBF shows the best performance with a mean AUC value of 0.99. In contrast, the models trained using ELM-
LIN show the worst performance, with a mean AUC value of 0.70.Figure 9 shows the AUC and accuracy
values for all the classifier techniques combinedly. The descriptive statistics for all the classifier techniques
are depicted in Table 16. From Figs. 9 and Table 16, we infer that the models trained using LSSVM-RBF are
showing the best performance with a mean AUC value of 0.99. LSSVM-Poly, RE, and EXTR perform better
after LSSVM-RBF with a mean AUC value of 0.95, 0.94, and 0.94, respectively. SVC-LIN is delivering the
worst performance with a mean AUC value of 0.63.

Comparison of different classification techniques: Wilcoxon Signed Rank Test (WSRT) with Friedman mean rank
(FMR): Similar to the previous subsections, we also have the Wilcoxon Test and the Friedman test to compute
statistically significant differences among various pairs of classifier techniques. Initially, we applied WSRT to
verify the impact of different classifiers on the performance of anti-pattern prediction models. This test is used
to test our considered null hypothesis “There is no significant impact on the performance of anti-patter models
after changing classifiers”. Figure 10 shows the result of WSRT on different pairs of sampling techniques, i.e., X
symbol indicates that the p-value<0.05, and [] symbol indicates that the p-value>0.05. According to Fig. 10, the
predictive ability of the models trained using different classifiers is not significantly the same. Table 16 shows
the Friedman test results for various classifier techniques considered in this work. From Table 16, we infer that
LSSVM-RBF has the best performance with a mean rank of 1.18, whereas the SVC-LIN classifier technique has
the worst performance with a mean rank of 27.60.

RQ What effect do different classifiers have on predicting anti-patterns using
4: source code metrics?

The experimental findings based on Figs. 9, 10, and Table 16 confirmed
that the predictive ability of the models trained using different

ANS: | classification techniques is significantly different. The performance

of the models significantly improves after changing the classification
techniques.

Discussion of results

In this work, extensive experimentation by using different variants of aggregation measures, feature selections,
data sampling, and classifiers has been made, and a solution for developing such models to predict the anti-
pattern using object-oriented metrics with improved performance and predictability power is proposed. In
general, it was observed that the prediction models with 0.7 AUC value have the ability to predict class on unseen
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(b) AUC

patterns i.e., the models with 0.7 AUC are acceptably by the community. The experimental results obtained
| https://doi.org/10.1038/s41598-025-86454-5

using the proposed framework confirm that the trained models delivered a greater than 0.7 AUC and have
the ability to predict anti-patterns on an unseen WSDL file. We have already presented the AUC values of the
models trained for anti-pattern 1 using sets of features with different classifiers on both original and balanced

data. The highest possible AUC value for all classifiers with the application of different combinations of sampling
and feature selection techniques attained greater than 0.9; this proves the greater predictability of developed
anti-pattern prediction models. The classifier post-application of feature selection and sampling techniques has

Fig. 4. Accuracy and AUC boxplots of feature selection techniques.
outperformed with an AUC value of 1.

(2025) 15:5183
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Accuracy AUC Friedman
Mean | Min | Median | Max Q3 Q1 Mean | Min | Median | Max | Q3 | Q1 | Rank
OD 83.35 | 30.53 | 91.64 100.00 | 96.01 | 74.75 | 0.80 0.18 | 0.94 1.00 | 0.98 | 0.50 | 8.48
SIGF 88.40 | 43.56 | 92.92 100.00 | 96.10 | 83.66 | 0.88 0.18 | 0.96 1.00 | 0.98 | 0.82 | 5.97
AGI1 82.73 | 33.19 | 87.56 100.00 | 93.56 | 74.63 | 0.83 0.14 | 0.90 1.00 | 0.96 | 0.73 | 12.27
AG2 83.86 | 44.25 | 87.53 100.00 | 92.92 | 76.10 | 0.84 0.08 | 0.89 1.00 | 0.96 | 0.77 | 12.40
AG3 86.20 | 49.00 | 89.38 100.00 | 94.25 | 80.49 | 0.86 0.17 | 0.92 1.00 | 0.97 [ 0.79 | 8.88
AG4 85.36 | 37.17 | 89.08 100.00 | 93.49 | 78.40 | 0.85 0.17 | 091 1.00 | 0.97 | 0.78 | 10.31
AG5 80.17 | 13.27 | 81.39 97.89 | 89.39 | 72.02 | 0.80 0.14 | 0.81 1.00 | 0.92 | 0.71 | 14.30
AG6 78.25 | 41.09 | 79.14 99.51 | 89.65 | 69.18 | 0.76 0.18 | 0.79 1.00 | 0.89 | 0.66 | 15.16
AG7 84.56 | 30.53 | 88.93 100.00 | 93.90 |77.70 | 0.84 0.18 | 0.90 1.00 | 0.96 | 0.76 | 10.53
AGS8 85.33 | 45.50 | 89.38 100.00 | 94.15 | 78.78 | 0.84 0.18 | 091 1.00 | 0.96 | 0.76 | 9.74
AG9 82.49 | 42.04 | 86.84 100.00 | 92.57 | 76.42 | 0.81 0.12 | 0.87 1.00 | 0.95 | 0.70 | 12.51
AGI0 |85.43 |43.32 |87.53 100.00 | 93.41 | 79.94 | 0.85 0.05 | 0.89 1.00 | 0.97 | 0.80 |9.77
AGI11 |85.34 |44.69 | 88.50 100.00 | 93.40 | 78.87 | 0.85 0.29 | 0.90 1.00 | 0.97 | 0.80 | 9.77
AGI12 |79.29 |18.14 | 84.20 100.00 | 92.20 | 66.67 | 0.78 0.32 | 0.84 1.00 | 0.94 | 0.62 | 15.06
AGI3 |85.09 |49.51 | 88.21 100.00 | 93.36 | 78.17 | 0.85 0.29 | 0.90 1.00 | 0.97 | 0.80 | 9.97
INFG |82.48 | 33.63 | 90.83 100.00 | 95.61 |70.49 | 0.80 0.25 | 0.92 1.00 | 0.98 | 0.50 | 9.35
GNR | 81.24 |29.20 | 85.61 100.00 | 92.92 | 70.98 | 0.80 0.19 | 0.85 1.00 | 0.96 | 0.66 | 12.75
CORR | 82.37 |29.20 | 85.85 99.76 | 93.36 | 73.00 | 0.82 0.22 | 0.88 1.00 | 0.96 | 0.73 | 12.38
CFS 83.18 | 44.24 | 86.34 100.00 | 93.41 | 74.65 | 0.83 0.25 | 0.88 1.00 | 0.96 | 0.73 | 12.06
OneR | 82.10 | 44.80 | 87.30 100.00 | 93.43 | 73.21 | 0.81 0.29 | 0.89 1.00 | 0.97 | 0.66 | 11.50
GA 82.49 | 46.24 | 85.37 100.00 | 92.92 | 73.41 | 0.82 0.15 | 0.87 1.00 | 0.96 | 0.71 | 11.95
PCA 72.86 | 14.16 | 72.44 99.53 | 90.18 | 59.95 | 0.71 0.17 | 0.69 1.00 | 0.90 | 0.56 | 17.90
Table 14. Employed feature selection techniques’ descriptive statistics.
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Fig. 5. Statistical test results of feature selection techniques: accuracy and AUC.

Conclusion
The developed web service anti-pattern prediction models using object-oriented metrics help in building quality
web-based applications by identifying anti-patterns at the initial stage of Software Development. This research
represents a significant step forward in the development of effective anti-pattern prediction models by dealing
with feature selection, aggregation measures, and the class imbalance problem efficiently. The developed anti-
pattern prediction models use different variants of classifiers, and their performance has been measured against
five different variants of anti-patterns. The proposed framework was validated using 226 WSDL files collected
from various domains such as finance, tourism, health, education, etc. The focused insights of this research are:
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Fig. 6. Accuracy and AUC boxplots of sampling techniques.
Accuracy AUC Friedman
Mean | Min | Median | Max Q3 Q1 Mean | Min | Median | Max | Q3 | Q1 | Rank
ORGD 87.58 |13.27 |90.71 | 100.00 | 93.81 |88.50 [0.70 | 0.05 | 0.75 1.00 | 0.86 | 0.50 | 5.41
SMOTE 80.33 |41.09 | 82.93 | 100.00 |91.71 | 71.53 [0.83 |0.38 | 0.89 1.00 | 0.96 | 0.72 | 3.41
BLSMOTE | 81.14 |42.08 |84.63 |100.00 |92.44 |71.13 | 0.84 |0.38 | 0.90 1.00 | 0.97 | 0.74 | 3.08
SVMSMOTE | 82.07 | 40.60 | 8534  |100.00 |92.44 |72.22 | 0.85 |0.34 | 0.91 1.00 |0.97 | 0.77 | 3.23
ADSYN 79.80 | 42.68 | 82.03 | 100.00 | 91.25 | 70.59 |0.83 | 0.41 | 0.88 1.00 | 0.96 | 0.73 | 3.74
UPSAM 86.14 4233 |91.71 | 100.00 | 95.37 | 80.05 [ 0.87 |0.40 | 0.95 1.00 | 0.98 | 0.82 | 2.13

Table 15. All Sampling Techniques’ Descriptive Statistics.

UPSAM | X X X X X o UPSAM | X X X X X o
ADSYN X X X X o X ADSYN | X X X X u] X
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Fig. 7. Statistical test results: Accuracy and AUC: Sampling Techniques.

For most anti-patterns, adopting sampling methods such as SMOTE, BLSMOTE, SVMSMOTE, and USAM
improves the predictability of developed models.

Employing the different variants of aggregation measures with feature selection strategies over balanced da-
tasets reduces computational effort and improves the overall performance of anti-pattern prediction models.
In comparison to other employed sampling techniques to handle the data imbalance, the UPSAM technique
outperformed by gaining the highest mean Accuracy & AUC of 86.14% & 0.87, respectively

Experimental results suggested that the models trained by selected sets of features using SIGF performance
best compared to other employed feature selection techniques by attaining 88.40% Accuracy & 0.88 AUC.
This finding confirmed that there exist irrelevant features.

The LSSVM with RBF kernel classifier stands first among all other classifiers.

Post implication of feature selection techniques study indicates a reduction of 97% irrelevant features from the
original dataset while pertaining improved performance of anti-pattern models trained against all metrics.
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Accuracy AUC Friedman

Mean | Min | Median | Max Q3 Q1 Mean | Min | Median | Max | Q3 | Q1 | Rank
MNB 76.42 |42.33 | 79.76 | 94.88 |87.80 |65.48 | 0.76 | 0.15 | 0.81 0.99 | 0.90 |0.62 | 24.71
BNB 7462 |43.56 | 7920 | 96.46 |85.12 |62.20 |0.70 |0.17 | 0.74 0.97 |0.85 | 0.57 | 27.34
GNB 78.29 [13.27 | 81.55 |99.53 |91.03 |68.54 | 0.84 |0.35 | 0.89 1.00 |0.95 | 0.77 | 16.19
DT 91.78 |76.85 | 92.48 | 100.00 | 95.12 |89.27 | 0.88 |0.43 | 0.92 1.00 |0.95 | 0.85 | 15.08
LOGR 83.02 |48.40 | 8636 | 9821 |92.22 |75.00 | 0.84 |0.33 |0.88 1.00 |0.95 | 0.77 | 17.55
KNN 90.22 |70.68 | 91.15 | 99.06 |94.20 |87.76 | 0.92 |0.39 | 0.96 1.00 |0.97 | 0.91 | 9.89
SVC-LIN 7121 |14.16 | 70.49 | 9851 |78.54 |63.85 | 0.63 |0.38 | 0.60 1.00 |0.69 |0.52 | 27.60
SVC-POLY | 74.08 |34.51 |73.41 |98.81 |80.00 | 67.31 |0.64 |0.17 | 0.62 1.00 |0.70 | 0.54 | 26.18
SVC-RBF 73.68 [19.47 | 73.41 | 97.91 |79.50 |67.32 | 0.65 |0.22 | 0.62 1.00 |0.73 | 0.54 | 2538
MLP-LNF | 85.16 |42.72 |91.15 |99.40 |94.97 8277 |0.82 |0.18 | 0.93 1.00 |0.96 | 0.76 | 15.93
MLP-SG 78.57 |41.09 | 8537 |98.58 |92.49 |63.39 |0.74 |0.08 | 0.82 1.00 |0.95 | 0.51 | 22.33
MLP-ADAM | 86.90 |45.77 | 91.15 | 99.30 |94.63 | 84.64 | 0.85 |0.18 | 0.94 1.00 |0.98 |0.79 | 12.73
BAG 89.46 |73.37 |90.25 |98.58 |93.83 [86.87 [0.92 |0.29 | 0.96 1.00 |0.98 | 0.90 | 7.78
RF 93.49 [81.79 | 9439 | 100.00 | 96.43 | 90.98 | 0.94 |0.31 | 0.97 1.00 |0.99 | 0.94 | 5.78
EXTR 94.28 [81.68 | 95.07 |99.76 |96.90 |92.10 | 0.94 |0.35 | 0.98 1.00 |0.99 | 0.95 | 5.35
AdaB 90.16 |68.32 |91.46 |99.76 |94.69 |87.17 | 0.91 |0.37 | 0.95 1.00 |0.98 | 0.88 | 9.81
GraB 89.95 [67.50 | 91.34 | 99.53 |94.39 |87.12 [ 0.88 |0.05 | 0.95 1.00 |0.98 | 0.85 | 11.29
DLI 83.23 |44.44 | 86,59 |99.06 |92.92 |75.26 | 0.83 |0.20 | 0.88 1.00 |0.96 | 0.75 | 18.40
DL2 84.74 |43.46 | 88.96 |99.10 |93.90 |77.65 | 0.84 |0.19 | 0.89 1.00 |0.96 | 0.78 | 16.46
DL3 84.51 [43.21 [89.38 |99.06 |93.88 |77.59 | 0.84 |0.19 | 0.89 1.00 |0.96 | 0.77 | 17.22
DL4 82.19 [43.21 [ 8852 |99.10 |93.81 |73.44 |0.81 |0.19 |0.87 1.00 |0.95 | 0.74 | 19.87
DL5 81.18 |42.96 | 86.30 | 99.53 |93.34 [70.83 | 0.82 |0.27 | 0.87 1.00 |0.96 | 0.74 | 18.12
DL6 80.98 |43.66 | 85.12 |99.29 |93.41 [71.31 [0.82 |0.21 |0.86 1.00 |0.96 | 0.74 | 18.45
WELM-SIG | 7357 |31.86 | 7555 |96.23 |84.15 |64.54 |0.78 |0.31 |0.82 1.00 |0.91 | 0.67 | 22.43
WELM-SIN | 7551 |30.97 | 77.80 |98.11 |86.01 |66.05 |0.80 |0.33 | 0.84 1.00 |0.93 |0.72 | 19.25
WELM-RBS | 75.04 |20.35 | 77.76 |97.88 |85.84 | 65.59 | 0.80 |0.32 | 0.84 1.00 |0.93 |0.71 | 19.47
ﬁLSM' 75.56 |20.35 | 77.84 | 98.11 |86.34 |66.09 | 0.81 |0.34 | 0.85 1.00 |0.94 | 0.71 | 18.09
LSSVM-LIN | 86.51 |55.20 |89.38 | 100.00 | 94.25 [ 79.78 | 0.89 |0.54 | 0.93 1.00 |0.98 | 0.82 | 9.85
LSSVM-Poly | 92.21 |58.91 |93.89 |100.00 | 97.78 | 89.36 | 0.95 |0.63 | 0.98 1.00 | 1.00 | 0.93 | 3.87
LSSVM-RBF | 98.23 |85.15 |99.06 | 100.00 | 99.51 | 97.80 | 0.99 |0.74 | 1.00 1.00 |1.00 | 1.00 | 1.18
ELM-LIN 77.30 |49.12 | 80.76 | 98.35 |89.38 |66.34 | 0.70 | 0.33 | 0.71 0.98 | 0.84 |0.50 | 27.26
ELM-RBF | 79.91 |49.27 | 8349 |98.11 |90.71 |71.32 |0.72 |0.49 |0.75 0.98 | 0.86 |0.53 | 26.08
ELM-Poly | 81.89 |49.27 | 8629 |98.82 |92.48 |73.79 | 0.75 |0.48 |0.78 0.99 | 0.89 |0.62 | 24.08

Table 16. Descriptive Statistics of employed eight classifiers.
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Fig. 10. Statistical test results: AUC: Classification Techniques.
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MultinomialNB():{'alpha’ : 1.0,’ classprior’ : None,” fitprior’ : True,” forceqlpha’ : True}

BernoulliNB():{’ alpha’ : 1.0," binarize’ : 0.0, classpm’or' : None,’ fitprior/ : True,’ forceqlpha’ : True}

GaussianNB():{'priors’ : None,’ varsmoothing’ : le — 09}

DecisionTreeClassifier():{'ccpalpha’ : 0.0, criterion’ :" gini’,’ minsamples,eaf’ : 1,/ minsamplessplit’ : 2,/ min, eight sractioneaf’ : 0.0," splitter’ .’ best'}

LogisticRegression():{'C’ : 1.0, fit;ntercept’ : True,’ interceptscaling’ : 1,' maz;ter’ : 100,' njobs’ : None, penalty’ ' 12",/ solver’ ' Ibfgs’,’ tol’ : 0.0001}

KNeighborsClassifier():{’algorithm’ " auto’,’ leafsize’ : 30," metric’ ;" minkowski’,' njobs’ : None, npeighbors’ : 5, p’ : 2,/ weights’ " uniform’}

SVC(kernel="linear’):{’C’ : 1.0,/ cachesize’ : 200, decision junctionshape’ ;' ovr’,' degree’ : 3, gamma’ ’ scale’, kernel’ ' linear’,’ probability’ : True,’ tol’ : 0.001}

.

SVC(kernel:’poly’):{’C’ 1 1.0," cachegize’ : 200, decisionfunction_;hape' Y ovr’, degree’ : 3, gamma’ ' scale’,’ kernel’ :' poly’,’ probability’ : True,’ tol’ : 0.001}

SVC(kernel="rbf’):{'C’ : 1.0,/ cachesize’ : 200, decision sunctionshape’ ;' ovr’,/ degree’ : 3, gamma’ :" scale’,’ kernel’ " rbf’, probability’ : True,’ tol’ : 0.001}

LSSVC(kernel="linear’):{’C’ : 1.0, cacheize’ : 200, decision junctionshape’ ;' ovr’,' degree’ : 3, gamma’ ' scale’, kernel’ ' linear’,’ probability’ : True, tol’ : 0.001}

LSSVC(kernel:’poly’):{'C’ : 1.0," cachegize’ : 200, decision gunction hape’ :" ovr’, degree’ J gamma’ " scale’, kernel’ i’ poly’,’ probability’ : True,” tol’ : 0.001}

LSSVC(kernel="rbf’):{'C’ : 1.0,/ cachesize’ : 200, decision functionshape’ ' ovr’,/ degree’ : 3, gamma’ i’ scale’,’ kernel’ ' rbf’, probability’ : True,’ tol’ : 0.001}

MLPClassifier(solver="Ibfgs’):{' activation’ :’ relu’,” alpha’ : 0.0001,” batchsize’ ;' auto’,’ beta'1 1 0.9, beta’2 1 0.999, earlystopping’ :

False,' epsilon’ : 1e — 08,” hiddenjayersizes’ : (320,2),’ learning,ate;nit’ : 0.001, maxgun’ : 15000," maz;ter’ : 1500, momentum’ : 0.9}

MLPClassifier(solver="sgd’):{’ activation’ :’ relu’,” alpha’ : 0.0001,” batchsize’ :" auto’,’ beta'1 1 0.9, betafz 1 0.999, earlystopping’ :

False, epsilon’ : 1e — 08,” hiddenjayersizes’ : (320,2),’ learning,ate;nit’ : 0.001, maxgun’ : 15000," maz;ter’ : 1500, momentum’ : 0.9}

MLPClassifier(solver="adamr’):{’ activation’ :’ relu’,” alpha’ : 0.0001," batchsize’ " auto’,’ beta'1 : 0.9, beta'2 : 0.999, earlystopping’ :
False,’ epsilon’ : 1le — 08,” hiddenayergizes’ : (320,2), learning,ate;nit’ : 0.001," maz gun’ : 15000, maz;ter’ : 1500," momentum’ : 0.9}

BaggingClassiﬁer():{/bootstrap’ : True,’ bootstrapfeatures’ : False,’ estimatorglpha’ : 1.0, estimatorfitprior/ :
True,’ estimator forceqlpha’ : True,’ estimator’ : Multinomial NB(),' maxseatures’ : 0.5, mazsamples’ : 0.5, nestimators’ : 10}

RandomForestClassifier(n_estimators=10):{’bootstrap’ : True,’ ccpalpha’ : 0.0, criterion’ :' gini’,' mazseatures’ ' sqrt’,’ min;mpurityqecrease’ :
0.0,/ minsamplesieaf’ : 1, minsamplessplit’ : 2, minyeightsractionieaf’ : 0.0,’ nestimators’ : 10}

ExtraTreesClassifier(n_estimators=10, random_
state=0){’bootstrap’ : False,’ ccpalpha’ : 0.0, criterion’ .’ gini’,’ maxfeatures' ' sqrt’, min;mpuritygecrease’ :
0.0, 'm,z"n,sa,m,plas;e{l,f’ 1 1, minsamplesgplit’ : 2,/ 'm,z"n,weigh,tf'r'u,(:t'i,()’nlea.f/ : 0.0," monotonic.st’ : None,’ nestimators’ : 10}

GradientBoostingClassifier(learning_rate=1.0,max_depth=1,n_estimators=10, random_

state=0){’ccpalpha’ : 0.0, criterion’ ' friedman,,se’, learning,ate’ : 1.0,/ loss' ' logjoss’, mazqepth’ : 1,/ min;mpuritysecrease’ : 0.0,/ minsamplesjeaf’ :
1, mingamplessplit’ : 2, minweightfractionleaf' : 0.0, nestimators’ :

10," n;terpochange’ : None, randomgtate’ : 0, subsample’ : 1.0, tol’ : 0.0001,’ validationfraction/ : 0.1,/ verbose’ : 0}

ELM(kernel="linear’):{'C’ : 1.0," Kernelpara’ : 2,/ Numberof HiddenNeurons’ : 320, degree’ : 3," Regularization.oef ficient’ : 1,/ kernel’ :" linear’}

ELM(kernel:’poly’):{'C’ 1 1.0,/ Kernelyara’ : 2,/ Numberof HiddenNeurons’ : 320," degree’ : 3,/ Regularization.oef ficient’ : 1," kernel’ . poly’}

ELM(kernel="rbf’):{'C’ : 1.0," Kernely,ara’' : 2,/ NumberofHiddenNeurons’' : 320," degree’ : 3, Regularization.oef ficient’ : 1, kernel” :" rbf’}

AdaBoostClassifier(n_estimators=10){"algorithm’ ;" SAMME.R', estimator’ : None,’ learning,rate’ : 1.0," nestimators’ : 10, randomstate’ : None}

DL1 < Sequentialname=sequential 22, built=True >

{'name’ " adam’, learning,ate’ : 0.0010000000474974513," weightqecay’ : None,’ clipnorm’ : None, global.lipnorm’ : None,’ clipvalue’ : None, use.ma’ :
False,’ ema,, omentum’ : 0.99, emaoverwritEfrequency' : None,’ lossscaZEfactor' :

None,’ gradient,ccumulationsteps’ : None,’ beta'1 : 0.9, betafz 1 0.999, epsilon’ : le — 07, amsgrad’ : False}

DL2 < Sequential name=sequential 23, built=True >

{'name’ " adam’,’ learning,ate’ : 0.0010000000474974513," weightgecay’ : None,' clipnorm’ : None,” global lipnorm’ : None,' clipvalue’ :
None,’ usecma’ : False,’ emamomentum’ : 0.99,” emao,verwrite srequency’ : None,' lossscalesactor’ :

None,’ gradient,ccumulationsteps’ : None,’ beta'1 : 0.9, beta'2 :0.999, epsilon’ : le — 07, amsgrad’ : False}

DL3 < Sequential name=sequential 24, built=True >

{!name’ " adam’,’ learning,ate’ : 0.0010000000474974513," weightqecay’ : None,’ clipnorm’ : None,’ global lipnorm’ :
None,’ clipvalue’ : None, use,ma’ : False,’ ema,,omentum’ : 0.99, emaoverwritefrequency/ :

None,’ loss_,.calefacto'r' : None,’ gradient,ccumulationsteps’ : None,’ l)eta’1 1 0.9, betcz’2 :0.999," epsilon’ : 1le — 07," amsgrad’ : False}

Table 17. Hyper-parameter values for the ML models.

Data availability
The data used in this paper is available at https://github.com/ouniali/WSantipatterns. The processed data will be
made available on request.

Appendix
See Table 17.
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