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Anti-patterns are explicit structures in the design that represents a significant violation of software 
design principles and negatively impacts the software design quality. The presence of these Anti-
patterns highly influences the maintainability and perception of software systems. Thus it becomes 
necessary to predict anti-patterns at the early stage and refactor them to improve the software 
quality in terms of execution cost, maintenance cost, and memory consumption. In the anti-pattern 
prediction domain, during research analysis, it was realized that there had been very little work 
instigated on addressing both class imbalance and feature redundancy problems jointly to enhance 
models’ performance and prediction accuracy. It has been perceived in the literature survey to study 
droughts with a comprehensive comparative analysis of different sampling and feature selection 
strategies. To achieve greater precision results and performance, this research constructs a web service 
anti-pattern prediction model over preprocessed software source code metrics using sampling and 
feature selection techniques to handle imbalanced data and feature redundancy to gain flawless web 
service anti-pattern prediction outcomes. Considering the above erudition, we have applied different 
variants of aggregation measures to find the metrics at the system level. These extracted metrics are 
used as input, so we have also applied different variants of feature selection techniques to remove 
irrelevant features and select the best combination of features. After finding important features, we 
have also applied different variants of data sampling techniques to overcome the problem of class 
imbalance. Finally, we have used thirty-three different classifiers to find import patterns that help 
identify anti-patterns. These all techniques are compared using Accuracy and Area Under the ROC 
(receiver operating characteristic curve) Curve (AUC). The experimental result of web service anti-
pattern prediction models validated on 226 WSDL files illustrates that the least square support vector 
machine (LSSVM) with RBF kernel attains the best performance among the other 33 competing 
classifiers employed with the lowest Friedman mean rank value of 1.18. During comparative analysis 
over different feature subset selection techniques, the outcome indicates the mean accuracy value of 
88.40% and mean AUC value of 0.88 for the models developed using significant features are higher 
in comparison to other techniques. The result shows the up-sampling methods (UPSAM) method 
secured the highest mean accuracy % and mean AUC with values of 86.14% and 0.87, respectively. The 
experimental result indicates the performance of the web service anti-pattern prediction models is 
adversely impacted by class imbalance and irrelevance of features. The outcome demonstrates that the 
performance of trained models improved with an AUC value between 0.805 to 0.99 post-application 
of sampling and feature selection strategies without using feature selection and sampling techniques. 
The outcome implies that USMAP achieves better performance. The result demonstrates that the 
models developed using significant features drive the desired effect compared to other implemented 
feature selection techniques.
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System autonomy, heterogeneity, and context adaptability are critical in the software business, leading to the 
development of web services based on service-oriented architecture (SOA). For successful businesses and 
contemporary governments, SOA is the progression of distributed computing toward integrating expert 
departments and IT. Services may be accessed via the internet using the web service implementation of SOA, 
which is agnostic of the platform and programming language. SOA is generally regarded in IT systems as the 
technology that can improve the receptivity of both business and IT organizations since it is self-adaptable to 
context. Web services may be built in various languages and on various platforms, allowing them to be used on 
a wide range of devices.

Modeling Service-Based Systems (SBSs) like Paytm, DropBox and Amazon are made feasible by SOA, and 
the growth of these systems causes many challenges. As new devices and technologies are introduced, SBSs must 
evolve to keep up with the demands of their users. Like any other big and complicated system, SBSs are prone 
to ongoing modification to accommodate new user needs and modify the execution circumstances. It’s also 
possible that all of these modifications may decrease SBS’ Quality of Service (QoS) and result in a retro design, 
which has been given the name of “Anti-patterns”1. Structures like these imply a breach of fundamental design 
principles and a decrease in design quality. Because they make it challenging to improve and maintain a software 
system, anti-patterns are helpful for spotting issues with its design, source code, or overall project management. 
Therefore, it has become compulsory to develop prediction models that help to detect anti-patterns present in 
web services. Software quality researchers have used simple models to predict different types of anti-patterns 
based on source code metrics that help improve the software quality in terms of execution cost, maintenance 
cost, and memory consumption. Empirical experiments have been carried out in the past related to web service 
anti-pattern predictions (Travassos et al.2, Marinescu et al.3, Munro et al.4, Ciupke et al.5 Simon et al.6, Rao et 
al.7, Khomh et al.8, Moha et al.9). Though these research works have raised the need to develop perdition models, 
it was realized that there had been very little work instigated on addressing both class imbalance and feature 
redundancy problems jointly to enhance models’ performance and prediction accuracy. It has been perceived in 
the above work to study droughts with a comprehensive comparative analysis of different sampling and feature 
selection strategies.

In this work, we investigate the predictive power of different aggregation measures which are used for finding 
file-level metrics, feature selection techniques that are used for selecting significant features, data sampling 
techniques that are used for handling the class imbalance nature of datasets, and different variants of machine 
learning for finding the pattern. Here, our focus is on how accurately these techniques help to predict anti-
patterns present in web services. Initially, we selected 226 different web-service as WSDL from various domains 
such as finance, tourism, health, education, etc. Then we applied the WSDL2Java tool to each WSDL file to 
extract the java files. After extracting the java files, we have used CKJM10 tool proposed by Chidamber and 
Kemerer to find metrics at the class level. Since our objective is to find the anti-pattern present in the WSDL 
file, so we have applied different variants of aggregation measures to find metrics at the system level. After 
computing metrics at the system level, we have also applied feature selection techniques to find the significant 
set of features, which are later used as input for the anti-pattern prediction models. We also observed that the 
considered data have imbalanced nature of classes. Henceforth, to handle the class imbalance problem and its 
impact on the prediction accuracy of the models, we have also used five data sampling techniques. We compare 
the performance of the models generated using this sampling technique with the model developed using the 
original data (ORGD).

Finally, we have applied different categories of machine learning techniques to find import patterns that 
help to identify anti-patterns present in unseen WSDL files. Initially, we have applied the most frequently used 
classifiers like different variants of Naive Bayes (Bernoulli, Gaussian, Multinomial), decision trees, logistic 
regression, support vector machines with different kernels, and artificial neural networks with different back-
propagation algorithms. Different researcher mainly uses these types of classifiers to predict software quality 
parameters. Then, advanced levels of classifiers like least square support vector machines with multiple kernels 
and extreme and weighted extreme learning machines with multiple kernels have been used to find better sets of 
patterns for anti-pattern predictions. Finally, we have used ensemble learning and deep-learning approaches to 
find the best patterns for anti-pattern predictions. The predictive power of these techniques is evaluated in terms 
of accuracy and AUC values and validated with 5-fold cross-validation approaches on 226 different web-service. 
In order to find the significant impact of the techniques, we have used Wilcoxon Signed Rank Test (WSRT) with 
Friedman mean rank (FMR).

The major contributions of this research work are:

•	 Proposed a framework to predict web service anti-patterns based on extracted java files of WSDL.
•	 Proposed a framework using the aggregation measures concept to extract file-level metrics from class-level 

metrics.
•	 Usage of different sampling approaches to counter the class imbalance problem.
•	 Usage of different feature selection techniques to remove irrelevant features and set the right sets of features.
•	 thirty-three different classifiers are considered to develop a model to identify the files with anti-patterns.
•	 Various statistical tests were conducted to determine the effectiveness of the proposed anti-pattern detection 

model.The paper is organized as follows: Section 2 provides the summary of related work in the field of soft-
ware fault prediction. Section 3 explains the used methodologies in our experimentation. The research frame-
work, result analysis, and model performance is presented in Sections 4 and 5. Section 6 covers the compar-
ative analysis. The final results discussion and conclusion work are depicted in Sections 7 and 8 respectively.
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Related work
There is a good number of existing methods proposed by various researchers to predict anti-patterns or code 
smells present in object-oriented software. A manual procedure to identify anti-pattern or design smells is 
proposed by Travassos et al.2. They have used manual reviews and reading techniques types of concepts to find 
the smells that do not meet the specification. A similar kind of work is also proposed by Marinescu et al.3 to 
predict the design smell present in software systems based on extracted metrics from the source code of the 
software system. They have executed their proposed work on the IPLASMA tool with the help of some detection 
techniques to find the pattern that helps to identify smells in a software system. They have applied ten detection 
techniques to predict anti-patterns or code smells. The major limitations of their approach are that extensive 
knowledge of metric-based rules is required to detect an anti-pattern successfully, and the varied threshold 
values lead to a varied outcome. Munro and his team4 also proposed one new method with the objective to 
overcome the limitations of text-based descriptions for predicting systematically characterized code smells. They 
have applied metric-based heuristics concepts to detect anti-patterns.

Ciupke et al.5 presented a method to study legacy code by specifying design problems as queries. Their 
approach is based on extracting the occurrences of the problems using models designed using extracted metrics 
from the source code of software systems. Simon and his team6 proposed methods based on visualization 
concepts to find the correlation between fully automated approaches, which are productive, systematic, and 
time-consuming. The major advantage of their strategies is there is no need for effective manual inspections.

Rao et al.7 introduced a method to propose anti-patterns based on the Design Propagation Probability 
concept to design the models that will treat like detection techniques. Based on the design Propagation 
Probability concept, they have focused on two anti-patterns, such as Divergent change and Shotgun surgery. 
Similarly, Khomh and his team8 presented the method with the help of anti-pattern definition, Goal Question 
Metric(GQM), and Bayesian Detection Expert(BDTEX) to develop Bayesian Belief Networks(BBN). The BBN 
method allows quality analysts to use their prior probability to predict anti-patterns.

Moha et al.9 proposed an automated method to predict different types of anti-patterns like Spaghetti Code, 
Functional Decomposition, Blob, and Swiss Army Knife. Their proposed methods also help to identify 15 
underlying code smells. They gave the DECOR name of their proposed methods containing all the necessary 
steps used to specify and detect code and design smells. Their team also proposed another detection method 
called DETEX9 which helped to provide a platform to convert the rules extracted from the DECOR method into 
detection algorithms. They have clearly explained the correlation between the metrics extracted from code with 
different categories of anti-patterns.

Hemanta Kumar Bhuyan and Vinayakumar Ravi presented the importance of feature selection techniques in 
data mining applications11. They have proposed the optimization model using a Lagrangian multiplier to find 
and analyze a new class. They have used several classifiers with searching and statistical methods to validate the 
proposed subfeatures. Their finding confirms that their proposed methods benefit novel classes based on selected 
subfeature data. Hemanta Kumar Bhuyan and Narendra Kumar Kamila also provide the content related to the 
importnace of the feature selection techniques in data mining applications12. The have used fuzzy probabilities 
to proposed privacy preservation of individual data for both feature and sub-feature selection. They conclused 
that the fuzzy random variable approach confined the expected range on which the selection of sub-feature from 
feature database is made easy. Similar work is also done by Hemanta Kumar Bhuyan et al. to find the importance 
of feature selection during model development13. They proposed methods to choose the optimal feature for 
classification by utilizing mutual information (MI) and linear correlation coefficients (LCC). Their proposed 
methods offers the best selection on the same data set as compared to others.

Motivation
Based on the above survey, profound research has been conducted in the area of web service anti-pattern 
prediction models using machine learning approaches. However, further analysis indicates there is very little 
investment seen in converting file-level metrics using class-level, handling class imbalance of datasets, removing 
irrelevant features, and comparing wide varieties of machine learning techniques. As a result, there is a need 
for in-depth research to evaluate the performance of anti-pattern prediction models by combining aggregation, 
feature selection, and sampling techniques. This point is our primary motivation for our present work. It 
leads us to endow our focus on implementing the proposed model to address the substantial gap identified to 
extemporize the performance and predictability of the anti-pattern prediction model by engaging aggregation, 
sampling, and feature selection techniques jointly with a wide variety of machine learning techniques. This 
research work exploits the implication of sixteen aggregation measures, seven feature selection techniques, five 
sampling strategies, and thirty-three different classifiers to develop the best web service anti-pattern prediction 
models. The performance of these developed models is analyzed using AUC and Accuracy metrics. This leads to 
the contextual following research questions (RQ): 

	RQ 1:	� Can web-service anti-patter prediction models be developed using source code metrics and machine learn-
ing?

	RQ 2:	� What is the significant impact of considering reduced sets of features as input on the performance of models?
	RQ 3:	� What is the significant impact of sampling techniques on the predictability of anti-pattern prediction mod-

els?
	RQ 4:	� What effect do different classifiers have on predicting anti-patterns using source code metrics?

Methodologies
This section enlightens on the components required for our study. We are providing information on datasets, 
feature selection techniques, sampling strategies, and classification approaches.
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Data collection
We have prepared the datasets in this experiment to validate our proposed anti-pattern prediction model 
framework. Figure 1 shows the working procedure to prepare datasets. Initially, we applied the WSDL2Java tool 
on the WSDL file to extract the java files. These extracted java files are used as an input of CKJM10 tool to find 
object-oriented metrics as mentioned in Table 1 at the class level. CKJM takes java files as an input and computes 
metrics at the class level, but we need metrics at the system level because, in the experiment, we predict the anti-
pattern at the WSDL level. To achieve this, we have applied aggregation measures to find metrics at the system 
level. Vasilescu et al.14 suggested using multiple aggregation measures to find metrics at the higher level without 
losing information. They have empirically proved that the use of a single aggregation measure creates a data 
loss problem. So, in this work, we have applied 16 aggregation measures as mentioned in Table 2 on class-level 
metrics to find metrics at the system level.

Experimental dataset
This experiment makes use of publicly available web-services datasets consisting of 226 WSDL files shared by 
Ouni et al. on GitHub https://github.com/ouniali/WSantipatterns. Table 3 shows the a detailed description of the 
considered datasets in terms of different types of anti-patterns. The first column of the table contains the name 
of anti-patterns like Fine-Grained anti-pattern (FGWS), Chatty anti-pattern (CSW), God Object anti-pattern 
(GOWS), Data ant-pattern (DWS), Ambiguous Anti-pattern (AWS). The second column contains the number 
web-service not having these patterns, the third column contains the number web-service having these patterns, 
and the last column contains the percentage of web-service having these patterns. From Table 3, we can say that 
the 13 web-service has FGWS anti-pattern with 5.75 %.

OO-metrics Metrics-explanation

Ca: Afferent coupling The number of classes using the features defined inside a given class

Avg-CC: Average cyclomatic complexity Mean complexity of methods defined inside class

AMC: Average method complexity Mean size of methods defined inside class

CAM: Cohesion among methods of class Ratio of the sum of parameters of methods and product of unique parameters of methods

CBM: Coupling between methods Total number of methods linked with inherited methods

CBO: Coupling between object classes The number of classes linked with a given class

DAM: Data access metric Ratio of protected or private attributes and the total number of attributes

DIT: Depth of inheritance tree Max depth of tree

Ce: Efferent coupling The number of classes that a specific class uses

IC: Inheritance coupling The number of parent classes with which a given class is associated.

LCOM: Lack of cohesion in methods The number of methods in a class that are unrelated despite the fact that some of the class’s fields are shared

LCOM3 Methods lack of cohesion. Henderson-Sellers version

LOC: Lines of code The number of lines in the source code’s text

MAx-CC: Max cyclomatic complexity Maximum cyclomatic complexity of a class’s methods

MOA: Measure of aggregation Number of data declarations (class fields) with user-defined class types

MFA: Measure of functional abstraction The ratio of the number of methods inherited by a class to the total number of methods accessible by the class’s member methods

NOC: Number of children Number of immediate descendants of the class

NPM: Number of public methods Number of methods defined as public inside class

RFC: Response for a Class Number of unique methods executed after receiving message

WMC: Weighted methods per class Summation of methods complexity defined inside class

Table 1.  Object-oriented software project datasets.

 

Fig. 1.  Pre-processing of dataset.
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Data balancing techniques
The information in Table 3 confirms that the considered datasets have no equal distribution of anti-patterns, 
i.e., only 9.29% of WSDL files have CSW type of anti-pattern. This information confirms that the considered 
datasets have a class imbalance problem. So, we have applied five data sampling techniques as Adaptive Synthetic 
Sampling Technique (ADASYN), Synthetic Minority Oversampling Technique (SMOTE), SVMSMOTE, 
Borderline SMOTE (BLSMOTE), and UP sampling Technique (UPSAM), to generate balanced data. The 
predictive ability of these techniques is also compared using the model trained on original data to find the 
impact of using sampling techniques.

•	 SMOTE15: The concept of SMOTE is based on nearest neighbors. It will generate minority class instances.
•	 Borderline smote (BLSMOTE)16: BLSMOTE creates new instances of the minority class utilizing the closest 

neighbors of these cases in the border region between classes.
•	 SVM-SMOTE (SVMSMOTE)17: SVMSMOTE generates new minority class samples over the border with 

SVM to establish a boundary line between the classes using SVM18.
•	 Adaptive synthetic sampling technique (ADASYN)19: ADASYN is built on the notion of adaptively producing 

minority data samples depending on their distributions. More synthetic data is created for minority-class 
samples that are more difficult to learn than for minority-class samples that are simpler to understand. This 
strategy helps to lessen the learning bias imposed by the initial unbalanced data distribution. Still, it may also 
adaptively move the decision boundary to concentrate on samples that are harder to learn, which is very use-
ful when dealing with large datasets. The most significant distinction between SMOTE and ADASYN is how 
synthetic sample points for minority data points are generated in each system20. In ADASYN, we consider a 

Anti-pattern NAP AP %AP

CWS 205 21 9.29

FGWS 213 13 5.75

AWS 202 24 10.62

GOWS 205 21 9.29

DWS 212 14 6.19

Table 3.  Datasets.

 

Aggregation measure Computation formula

Variance(ag1) var(p) = σp
µp

Arithmetic Mean(ag2) µp = 1
R

∑R

q=1
pq

Skewness(ag3) γ1 =

∑R

q=1
(p − p)3/R

(σ(p))3

Minimum –

Median(ag4) Mp =
{

pR+1/2 ifRisodd
1/2(pR/2 + pR+2/2) otherwise

Quartile1(25%)(ag5) –

Theli Index (ag6) IT heli(p) = 1
R

∑R

q=1
( pq

µs
∗ ln( pq

µs
))

Standard Deviation (ag7) σp =
√

1
R

∑R

q=1
(pq − µq)2

Quartile3(75%) (ag8) –

Generalized Entropy (ag9) GEp = − 1
Rα(1−α)

∑R

q=1
[( pq

µp
)α − 1], α = 0.5

Maximum (ag10) –

Gini Index(ag11) IGini(p) = 2
R

∑
p

[
∑R

q=1
(pq ∗ q) − (R + 1)

∑
p

]

kurtosis (ag12) γ2 =

∑R

q=1
(p − p)4/R

(σ(p))4

Hoover Index IHoover(p) = 1
2

∑R

q=1
| pq∑

p

− 1
R |

Atkinson Index(ag13) IAtkinson(p) = 1 − 1
µp

( 1
R

∑R

q=1
√

pq)2

Shannon Entropy Ep = − 1
R

∑R

p=1
[ freq(pq)

R ∗ ln freq(pq)
R ]

Table 2.  Aggregation measures.
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density distribution rx, which determines the number of synthetic samples to create for a given point, while 
in SMOTE, all minority points have the same weight.

•	 Upsampling (UPSAM) technique: Upsampling is the technique in which the instances from the minority class 
are randomly duplicated21.

Selection of relevant metrics
In the process of Knowledge Data Discovery (KDD), Feature Selection (FS) is a vital part of the pre-processing 
step. Some of the numerous names given to Feature Selection Algorithms include Attribute Selection, Instance 
Selection, Data Selection, Feature Construction, Variable Selection, and Feature Extraction, to mention just 
a few. They are primarily used to remove unnecessary and redundant material. Feature selection methods22 
enhance the quality of data and boost data mining algorithms’ accuracy by minimizing the data’s complexity 
in terms of space and time. Eliminating duplicate and irrelevant data is the primary goal of feature selection. 
Several feature selection methods have been released in the last decade; however, the vast majority of them do 
not perform well on high-dimensional datasets with a significant number of duplicated features. As a result, 
feature selection is more critical in eliminating irrelevant features2324. As a result, machine learning algorithms 
can concentrate on the features required to build a classification model. Two subclasses of feature selection 
techniques can be generally distinguished:

•	 Metrics selection using feature ranking techniques: In this technique, each feature is ranked according to a few 
key criteria before some features that are appropriate for a particular project are chosen.

•	 Metrics selection using feature subset selection techniques: In feature subset selection, our objective is to find a 
subset of features that have strong predictive power

Metrics selection using feature ranking techniques

•	 Selection of significant features(SIGF) Initially, we applied hypothesis testing to each metric to find “whether 
the metric can differentiate the WSDL file having anti-pattern or not”25. So, In this experiment, we have ap-
plied the Wilcoxon signed-rank test at a 0.05 level to find the difference between the metric values for a file 
having an anti-pattern and not having an anti-pattern. This test is mainly used to find whether two dependent 
samples are significantly the same or different.

•	 Features ranking using information gain (INFG) An attribute ranking approach that’s both simple and quick 
is widely employed in text classification applications when the sheer volume of data makes it impossible to 
utilize more complicated methods26. If P is an attribute and Q is a class, then eq. 1 and 2 provide the values for 
the entropy of the class before and after the attribute is observed: 

	
H(Q) = −

∑
qϵQ

p(q) log2 p(q) � (1)

	
H(Q|P ) = −

∑
pϵP

p(p)
∑
qϵQ

p(q|p) log2 p(q|p) � (2)

 When the entropy of a class lowers by a certain level, it indicates how much new information about that class 
has been supplied by the attribute, which is referred to as information gain.

Based on the information gain value between the class and each Pi, a score is awarded to each Pi: 

	

IGi = H(Q) − H(Q|Pi) = H(Pi) − H(Pi|Q)
= H(Pi) + H(Q) − H(Pi, Q)

� (3)

•	 Features ranking using gain ratio (GNR)  The gain ratio is a modification of the information gain that decreases 
the bias of the information gain. When picking an attribute, the gain ratio considers the number and size of 
branches27. When the intrinsic information is taken into account, it corrects the information gained. Intrinsic 
information is the entropy of instance distribution into branches, i.e., how much information is required to 
determine which branch an instance belongs to. The value of an attribute decreases as the number of intrinsic 
information increases. 

	
GNR = Gain of attribute

intrisinc information of attribute
� (4)

•	 Features ranking using OneR attribute evaluation (OneR)  OneR, short for “One Rule,” is a straightforward but 
accurate classification algorithm that generates one rule for each predictor in the data and then selects the 
rule; with the slightest total error as its “one rule.” A rule for a predictor is created by creating a frequency table 
for each predictor and comparing it to the objective (the target)28. Compared to state-of-the-art classification 
algorithms, it has been shown that OneR creates rules that are only marginally less accurate while also making 
straightforward rules for people to comprehend.
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•	 Features extraction using principal component analysis (PCA) Principle Component Analysis(PCA)29 is ap-
plied to find the new values of features with high variance. The concept is based on removing highly corre-
lated features and finding new sets of feature values. Here, we have applied PCA with the varimax rotation 
technique on extracted sets of file-level source code metrics. In this work, we have considered all the Principle 
Components whose eigenvalue is greater than 1.

Metrics selection using feature subset selection techniques

•	 Selection of features using correlation coefficient (CORR) Correlation Coefficient feature selection is used to 
remove the features having high co-relation with other features. In this paper, we have used the concept of 
Pearson’s correlation to find the pair of features having highly correlated or not, i.e., >=0.7 or <=-0.7 repre-
sent the high correlation30. After finding highly correlated features, we have to select one feature among the 
two based on certain conditions.

•	 Selection of Features using CFS subset Evaluator (CFS): This technique assesses the effectiveness of the subset 
of features by taking into consideration the predictive ability of each feature. This technique selects the subset 
of features with low inter-correlation but is highly correlated with the target class31.

•	 Selection of features using genetic algorithm (GA) Genetic algorithm32 helps to search for the best set of fea-
tures that can improve the performance of the models. The advantage of this technique is that it permits 
the best solution to rise out of the best of earlier solutions. The core idea of this technique is to combine the 
various solutions from generation to extract the best features(genes) from each one to create new and more 
fitted individuals. Figure 2 shows the flowchart for GA to find the best sets of metrics. Initially, we generated 
50 numbers of chromosomes with each gene of the chromosome containing the value 0 or 1, i.e., 0 for not 
considering features and 1 for considering features. Then, we computed the fitness value of each chromosome 
using Equation 5. Equation 5 is designed to maximize the accuracy and minimize the number of features. Af-
ter finding the fitness value of all chromosomes, we selected the chromosome with a higher fitness value. The 
higher fitness value chromosome compared with the stopping condition. If satisfied, stop; otherwise, we will 
proceed with the next step. The next step is to apply crossover and mutation to all chromosomes and get half 
the number of the chromosomes i.e., two chromosomes combined using crossover to get one chromosome. 
The remaining half of the chromosomes are generated randomly. The above process will continue until we 
meet the stopping conditions. 

	
F itness = 0.8 ∗ Accuracy + 0.2 ∗ T otalF eatures − SelectedF eatures

T otalF eatures
� (5)

Classification techniques
The primary objective of this research is to find the pattern based on source code metrics extracted from the 
WSDL file’s Java file that help to predict anti-patterns present in unseen WSDL files. These patterns are identified 
using thirty different variants of machine learning techniques as shown in Table 4. These machine learning 
are validated using 5-fold cross-validation, and their ability to predict anti-patterns is computed in terms of 
accuracy and AUC values.

Proposed framework
Figure 3 shows our framework consisting of several steps. The dataset contemplated has a set of WSDL files 
considered as the input. The detailed steps of the proposed framework are given below:

•	 As shown in Fig. 3, we have calculated the Chidamber and Kemerer Java Metrics(CKJM) for each Java file 
generated from the WSDL file. Then, we applied different aggregation measures to the CKJM metrics com-
puted from each Java file to generate file-level metrics.

•	 After finding metrics at the system level using different aggregation measures, we have also applied feature 
selection techniques to find the relevant set of features and remove irrelevant features. This set of metrics is 
later used as input to generate models for detecting web service anti-patterns. The Min-max normalization 
approach is used for normalizing the values of all selected features in the range of 0 to 1.

Fig. 2.  Flow chart representing GA execution.
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•	 While reviewing and inspecting the datasets, we observed that the considered data have an imbalanced nature 
of classes. Henceforth, to handle the class imbalance problem and its impact on the prediction accuracy of the 
models, we have also used five data sampling techniques. We compare the performance of the models gener-
ated using this sampling technique with the model developed using the original data (ORGD).

•	 After finding the balanced data with relevant sets of features as shown in Fig. 3, we have used a wide variety of 
classifiers. These techniques comprise general ML classifiers (LOGR, DT, etc..), Advanced deep learning clas-
sifiers (ELM, WELM, etc..), DL with distinct hidden layers (DL1, DL2, etc..), and Ensemble classifiers (BAG, 
EXTRA, etc..) to train the anti-pattern models and find important patterns that help to identify anti-pattern 
on future data. These models are validated using a 5-fold cross-validation approach. Table 17 contains the 
hyper-parameters used for model development.

•	 Finally, the impact and dependability of these techniques are measured using different performance parame-
ters such as AUC and Accuracy. Table 5 shows the naming conventions used in this work.

Results and analysis
In this segment of the paper, we showcase the results & performance obtained from feature ranking and feature 
subset selection techniques over class-level metrics on the imbalanced and balanced dataset generated from 
sampling techniques. To get these balanced datasets, we first used the stated five different sampling techniques 
to overcome the class imbalance issue. Then we employed different variants of classifiers to detect the detect 
anti-patterns. The model’s effectiveness was computed using different performance parameters. Considering the 

Classifiers Description

Naive Bayes Algorithm (NB)33
Notable for multi-class prediction. Utilizing this algorithm, we can foresee the likelihood of different classes of target variables. In this work, 
we use three variants of naive Bayes algorithms to generate models for predicting web service anti-patterns i.e., Gaussian Naive Bayes(GNB), 
Multinomial Naive Bayes(MNB), Bernoulli Naive Bayes(BNB).

Decision Tree (DT)34 Represents the estimate of a target variable via the use of several independent variables in a decision model.

Logistic Regression Analysis 
(LOGR)35

A statistical approach used to analyze a dataset in which there are one or more independent variables that may be used to predict the 
outcomes of a dependent variable

Support Vector Classifier (SVC)36
It functions as a non-probabilistic binary linear classifier by classifying input data into one of two categories which makes it an excellent 
choice for developing a classification model. SVC with three different kernels i.e., linear (SVC-L), polynomial (SVC-P), and radial (SVC-R) are 
employed for training models in this work.

Least Square Support Vector 
Machine (LSSVM)37

this algorithm applies minimization of the sum of squared errors to the objective functions. This is a supervised learning method that analyzes 
data to recognize patterns. LSSVM with linear (LSSVM-Lin), Polynomial (LSSVM-Poly), and Radial Basis Functions (LSSVM-RBF) are used 
for training the models.

Extreme Learning Machine 
(ELM)38

This is a learning procedure for single hidden layer feed-forward neural networks. The key component of this approach is the random creation 
of hidden nodes, in which hidden node parameters are assigned at random, regardless of training samples. The anti-pattern detection models 
were trained with ELM using linear (ELM-Lin), polynomial (ELM-Poly), and radial basis functions (ELM-RBF).

Weighted Extreme Learning 
Machine (WELM)39

When dealing with imbalanced data, this approach gives more weight to the minority class and less weight to the majority class. WELM 
selects a weighting scheme based on the class distribution, and the weights created are inversely proportional to the number of samples in the 
training set. We implemented four different kernel functions (Sigmoid, Radbas, Tribes, and Sine) to WELM to boost its speed even further.

Multi-Layer Perceptron (MLP)40 MLP can train a non-linear function approximator for either classification or regression from a collection of features and a target. It is different 
from logistic regression because there can be one or more non-linear layers, called hidden layers, between the input and output layers.

MLP with Stochastic Gradient 
Descent (MLP-SGD)

It is necessary to update the weights to reduce output error while using MLP. SGD is employed for this purpose. The SGD technique finds the 
minima in error space by taking the 1st-order derivative of the total error function.

MLP with Quasi-Newton Method 
(MLP-LNF)

is a quick optimization approach that may be used as an alternative to conjugate gradient methods. Calculating the 2nd order derivatives of 
the total error function for each component of the gradient vector is required for this technique to be effective.

MLP with Stochastic Gradient with 
Adaptive Learning Rate Method 
(MLP-ADAM)

As the sample size is too small, the training procedure will take excessive time to converge. Although it is theoretically feasible to predict the 
best value of the learning rate (α) before training, it is practically impossible to predict the value of changes throughout the training process. 
Thus, ADAM is employed for training the prediction model in this study.

K-Nearest Neighbour (KNN)41

KNN is a non-parametric algorithm, which implies that it makes no assumptions about the data it is given as an input. It is sometimes referred 
to as a lazy learner algorithm since it does not learn from the training set immediately; instead, it stores the dataset and then acts on the 
dataset when it comes time to classify the data. During the training phase, the KNN algorithm saves the dataset and then classifies new data 
into a category that is very comparable to the latest data.

Bagging Classifier (BAG)42 is an ensemble meta-assessor that fits base classifiers each on subjective subsets of the underlying dataset and afterward aggregates their 
remote predictions performed either via voting or using averaging to form the concluding prediction.

Random Forest Classifier (RF)43 This algorithm makes decision trees on data samples and a while later receives the prediction from all of them and finally chooses the best 
arrangement using the method of voting.

Extra Trees Classifier (EXTR)44 This actualizes a meta-assessor that suits different randomized decision trees or extra-trees on different sub-samples of the dataset and utilizes 
averaging to enhance the predictive accuracy and supervises over-fitting.

AdaBoost Classifier (AdaB)45
is a meta-estimator that starts evolving by fitting a classifier on the first dataset and later on fits more duplicates of the classifier on the 
equivalent dataset; however, the weights of incorrectly classified instances are changed with the end goal ensuing classifiers revolve more 
around troublesome cases.

Gradient Boosting Classifier 
(GraB)46

The ideology of the GraB classifier is to restrict the loss or the differentiation between the actual class estimation of the training instance and 
the predicted class esteem. It facilitates constructing an additive model in a forward stage-wise style.

Deep Learning Technique (DL)47

Deep learning uses artificial neural networks, a kind of machine learning that works dependent on the structure and capacity of the human 
brain. This algorithm uses various instances from the dataset or relevant examples for training the machines. The primary benefit of an ANN 
over other types of algorithms is its novel information processing architecture. In this work, we have used Deep Learning(DL) technique with 
a distinct number of hidden layers, i.e., DL with one hidden layer(DL1), DL with two hidden layers (DL2), DL with three hidden layers (DL3), 
DL with four hidden layers (DL4), DL with five hidden layers (DL5) and DL with six hidden layers (DL6).

Table 4.  Classification technique.
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space constraint, we have included the results of the randomly selected one-feature ranking technique and one-
feature subset selection technique.

Feature selection results
Here, in this study, we would like to compare and contrast feature-subset selection and feature ranking techniques 
to examine if any of the techniques is superior to the others or if all the techniques perform equally well.

Relevant feature sets are generated after the application of the feature selection techniques, namely: 
Significant Features(SIGF) obtained by applying the Wilcoxon sign test, Information Gain(INFG), Gain 
Ratio(GNR), Correlation coefficient(CORR), Genetic Algorithm(GA), CFS subset evaluator(CFS), OneR, 
Principal Component Analysis(PCA) along with the 13 aggregation techniques namely: variance, arithmetic 
mean, skewness, median, quartile1, theli index, standard deviation, quartile3, generalized entropy, maximum, 
gini index, kurtosis and atkinson index are used as input for the generation of models for the detection of web 
service anti-patterns. Along with this, a model using the original dataset(OD) is also generated for detecting 
web service anti-patterns. The sets of features selected after applying each of the feature selection techniques 
considered are given in Tables 6, 7, 8, 9 and 10. Tables 6, 7, 8, 9 and 10 contains the results for anti-pattern 
type 1 to 5. The information present in Tables 6 suggested that the features like Q1(WMC), Mean(CBO), Gini 
index(CBO), Hoover index(CBO), Generalized entropy (RFC), skewness(LCOM), Q1(Ca), Max(MOA) are best 
set of features identified using information gain for AP1.

Accuracy and AUC values analysis
In this work, We used a wide range of classifier techniques to find the important pattern that helps identify 
different types of anti-patterns in web service. Initially, we have tried with most frequently used classifier 
techniques such as three variants of Naive Bayes, Support Vector Classifier with linear Kernel (SVC-LIN), SVC 
with the polynomial kernel (SVC-POLY), SVC with radial bias kernel (SVC-RBF), Logistic Regression Analysis 
(LOGR) to find an important pattern. After, we used the advanced level of machine learning like extreme 
learning machine(ELM), Least square SVM, weighted extreme learning machine (WELM) with different 
kernels, and Ensemble classifiers such as AdaBoost Classifier(AdaB), Random Forest Classifier(RF), Bagging 
Classifier(BAG), Extra Trees Classifier(EXTR), and Gradient Boosting Classifier(GraB). Further, the deep layer 
technique with a varying number of hidden layers has also been used to find the important pattern that helps 
to identify different types of anti-patterns present in web services. These techniques are validated using 5-fold 
cross-validation approaches and compared using Accuracy and AUC performance values on the testing data. 

Fig. 3.  Research framework for anti-pattern prediction.
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In this work, we have also examined the benefit of using different variants of sampling techniques like SMOTE, 
UPSAMPLING, BLSMOTE, etc., to handle the class-imbalanced nature of data sets. To deal with the feature 
redundancy problem, we have used different variants of aggregation techniques to find system-level metrics 
using class-level metrics without losing important information. Further, different variants of feature selection 
techniques have also been used to remove irrelevant metrics and find the best combination of reverent metrics. 
Tables 11, 12, and 13 show the accuracy and AUC values of the models trained using the most frequently used 
classifiers, advanced level of classifiers, and ensemble learning. The rows of the tables are used to represent the 
input metrics for the models, and columns are used to represent the classifiers used to train the models, i.e., the 
trained anti-pattern prediction model using MNB by taking all features as an input achieved 84.96% of Accuracy 
and 0.86 value of AUC. The AUC value greater than 0.7 confirms that the trained models have the ability to 
predict anti-patterns using source code metrics. The high-value AUC in the case of advanced level of machine 
learning confirms that the models trained using the advanced level of machine learning, like LSSVM with 
different kernels, and WELM with different kernels, have better ability for anti-pattern prediction as compared 

AP1 AP2 AP3 AP4 AP5

Q1(wmc) Gini index(cbo) Gini index(dit) Q1(wmc) skewness(rfc)

Mean(cbo) Hoover index(cbo) Atkinson index(dit) Q3(wmc) Hoover index(rfc)

Gini index(cbo) Q1(ce) Shannon entropy(dit) Median(noc) Atkinson index(rfc)

Hoover index(cbo) kurtosis(dam) Min(noc) Std(noc) Shannon entropy(rfc)

Generalized entropy(rfc) skewness(dam) Max(noc) Q1(noc) Generalized entropy(rfc)

skewness(lcom) Min(moa) Median(noc) Generalized entropy(ca) Theil index(rfc)

Q1(ca) Mean(moa) Std(noc) Theil index(ca) Min(lcom)

Max(moa) kurtosis(cam) Q1(noc) Std(cam) skewness(cam)

Table 6.  Features selected after applying information gain for all the anti-patterns.

 

Abbreviation Corresponding name Abbreviation Corresponding name

AG1 Variance SIGF Significant Features

AG2 Arithmetic Mean INFG Information Gain Attribute Ranking

AG3 Skewness GNR Gain Ratio Ranking

AG4 Minimum OneR OneR attribute evaluation

AG5 Median PCA Principal Component Analysis

AG6 Quartile1(25%) CORR Correlation Coefficient Analysis

AG7 Theli Index CFS Classifier subset Evaluator

AG8 Standard Deviation GA Genetic Algorithm

AG9 Quartile3(75%) ELM Extreme learning machine

AG10 Generalized Entropy WELM Weighted extreme learning machine

AG11 Maximum SVC-LIN Support Vector Classifier with linear Kernel

AG12 Gini Index DL Deep Learning

AG13 kurtosis MLP-ADA MLP with stochastic gradient-based optimizer proposed by Kingma

AG14 Hoover Index DL-1 Deep Learning with 1 hidden Layer

AG15 Atkinson Index GraB Gradient Boosting Classifier

AG16 Shannon Entropy EXTR Extra Trees Classifier

AdaB AdaBoost Classifier FGWS Fine-Grained anti-pattern

CSW Chatty anti-pattern RF Random Forest Classifier

GOWS God Object anti-pattern BAG Bagging Classifier

DWS Data anti-pattern MLP-SG MLP with stochastic gradient descent.

AWS Ambiguous Anti-pattern LSSVM Least square SVM

GNB Gaussian Naive Bayes ADASYN Adaptive Synthetic Sampling Technique

BNB Bernoulli Naive Bayes SMOTE Synthetic Minority Oversampling Technique

MNB Multinomial Naive Bayes SVMSMOTE Support Vector Machine SMOTE

BLSMOTE Borderline SMOTE SVC-POLY SVC with the polynomial kernel

UPSAM UP sampling Technique SVC-RBF SVC with radial bias kernel

KDD Knowledge Data Discovery LOGR Logistic Regression Analysis

FS Feature Selection MLP Multi-layer Perceptron classifier

DT Decision Tree MLP-LNF MLP with quasi-Newton methods

Table 5.  Naming conventions.
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to other techniques. Similarly, the models trained on sampled data have a better ability to predict as compared 
to the original data. Finally, the models developed by taking selected sets of features as input have a higher value 
of AUC. Accuracy confirms that the models trained on reduced sets of features have a better capability of anti-
pattern prediction than all features. 

AP1 AP2 AP3 AP4 AP5

Shannon entropy(noc) Gini index(rfc) Q3(wmc) Q1(wmc) Median(lcom)

Generalized entropy(rfc) Hoover index(rfc) Median(noc) Median(noc) Var(lcom)

Min(lcom) Atkinson index(rfc) Std(noc) Q3(noc) Q1(lcom)

Max(lcom) Shannon entropy(rfc) Q1(noc) Std(cbo) Q3(lcom)

Std(lcom) Generalized entropy(rfc) skewness(noc) Q3(rfc) skewness(lcom)

Median(ce) Theil index(rfc) Gini index(noc) kurtosis(rfc) Hoover index(lcom)

Max(moa) Q1(lcom) Theil index(ca) Hoover index(lcom) Atkinson index(lcom)

Median(cam) skewness(cam) Shannon entropy(mfa) Theil index(lcom) skewness(cam)

Table 10.  Features selected after applying OneR for all the anti-patterns.

 

AP1 AP2 AP3 AP4 AP5

Var(noc) Var(cbo) Std(noc) Q3(wmc) Min(wmc)

Q3(noc) Std(lcom) Var(noc) Atkinson index(dit) Std(wmc)

Gini index(cbo) Gini index(ca) Q3(rfc) Median(noc) Var(wmc)

Generalized entropy(rfc) Hoover index(ca) skewness(rfc) Std(noc)

Min(lcom) Q1(ce) Q3(lcom) Q1(noc)

Std(lcom) kurtosis(dam) Atkinson index(lcom) kurtosis(noc)

Std(cam) Q1(ce) Min(lcom)

Min(loc) Q3(lcom)

Shannon entropy(dam) Atkinson index(lcom)

Mean(cam) Theil index(lcom)

Table 9.  Features selected after applying CFS subset evaluator for all the anti-patterns.

 

AP1 AP2 AP3 AP4 AP5

Hoover index(cbo) Atkinson index(lcom) Gini index(dit) Gini index(dit) Std(wmc)

kurtosis(rfc) Q1(ce) Atkinson index(dit) Atkinson index(dit) kurtosis(cbo)

Generalized entropy(rfc) kurtosis(ce) Shannon entropy(dit) Min(noc) Generalized entropy(cbo)

Min(lcom) Gini index(ce) Max(noc) Max(noc) Var(rfc)

Max(lcom) Hoover index(lcom3) Min(lcom) Min(lcom) Atkinson index(ca)

Std(lcom) kurtosis(dam) Median(cam) Max(lcom) Q1(npm)

Var(lcom) skewness(dam) Std(cam) Theil index(lcom) Q3(loc)

Mean(ca) Generalized entropy(dam) Std(cam) Theil index(dam)

Table 8.  Features selected after applying correlation coefficient for all the anti-patterns.

 

AP1 AP2 AP3 AP4 AP5

Var(noc) kurtosis(noc) Atkinson index(dit) Min(noc) skewness(rfc)

Theil index(cbo) Var(cbo) Min(noc) Median(noc) Hoover index(rfc)

Generalized entropy(rfc) Theil index(rfc) Max(noc) Std(noc) Atkinson index(rfc)

Min(lcom) Std(lcom) Median(noc) Q1(noc) Shannon entropy(rfc)

Max(lcom) Atkinson index(lcom) Std(noc) kurtosis(noc) Generalized entropy(rfc)

Std(lcom) Gini index(ca) Var(noc) Atkinson index(lcom) Theil index(rfc)

skewness(lcom) Hoover index(ca) Q1(noc) Theil index(lcom) Min(lcom)

Median(cam) Shannon entropy(npm) Min(loc) Min(loc) skewness(cam)

Table 7.  Features selected after applying gain ratio for all the anti-patterns.
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Accuracy AUC

MNB BNB GNB DT LOGR KNN SVL SVP SVR MNB BNB GNB DT LOGR KNN SVL SVP SVR

ORG-DATA

OD 84.96 69.03 68.58 90.27 92.92 91.59 88.94 90.27 89.82 0.86 0.71 0.76 0.70 0.88 0.80 0.83 0.85 0.85

SIGF 86.28 69.91 84.07 88.05 92.48 92.04 89.82 89.82 88.94 0.86 0.72 0.82 0.67 0.89 0.80 0.88 0.87 0.88

AG1 90.27 76.99 87.61 91.15 91.15 92.04 88.94 89.38 88.05 0.51 0.72 0.89 0.72 0.84 0.75 0.86 0.71 0.77

AG2 90.71 87.61 68.58 86.28 90.71 89.38 66.81 80.09 71.24 0.71 0.68 0.80 0.57 0.77 0.71 0.73 0.78 0.78

AG3 89.82 86.28 85.40 88.05 90.71 90.27 86.73 88.50 87.17 0.85 0.67 0.89 0.65 0.87 0.75 0.89 0.74 0.82

AG4 89.82 86.28 73.45 89.82 90.27 91.15 87.17 90.27 88.05 0.85 0.67 0.84 0.66 0.84 0.70 0.89 0.82 0.84

AG5 90.71 90.27 57.96 89.38 90.71 89.38 55.75 58.41 56.19 0.56 0.57 0.69 0.63 0.71 0.70 0.73 0.72 0.71

AG6 90.71 90.71 71.68 85.40 90.71 88.05 47.79 51.77 59.73 0.60 0.62 0.70 0.49 0.63 0.60 0.62 0.61 0.67

AG7 90.27 87.17 91.15 90.27 90.71 92.04 90.71 89.82 89.82 0.82 0.67 0.88 0.68 0.87 0.78 0.84 0.51 0.84

AG8 90.27 87.17 90.27 89.38 90.71 91.15 88.05 88.50 89.38 0.87 0.67 0.86 0.70 0.88 0.75 0.87 0.77 0.86

AG9 90.71 89.82 80.09 88.05 90.71 87.61 69.47 74.78 73.45 0.70 0.35 0.84 0.61 0.74 0.73 0.72 0.63 0.72

AG10 90.71 83.19 78.32 86.28 90.71 88.94 71.24 82.74 79.65 0.74 0.68 0.83 0.61 0.80 0.76 0.81 0.77 0.81

AG11 90.71 82.74 83.63 85.40 90.71 88.94 76.99 86.28 80.53 0.78 0.68 0.84 0.57 0.85 0.81 0.84 0.76 0.82

AG12 90.71 90.27 89.38 90.27 91.15 92.48 91.15 88.05 89.82 0.85 0.65 0.82 0.73 0.84 0.75 0.83 0.83 0.87

AG13 90.71 82.74 84.07 87.17 90.71 88.50 76.99 86.73 81.86 0.79 0.68 0.85 0.60 0.85 0.80 0.83 0.68 0.82

INFG 89.82 72.57 76.11 90.71 92.04 90.27 88.05 89.82 88.50 0.87 0.72 0.83 0.71 0.88 0.76 0.86 0.88 0.87

GNR 91.15 89.82 92.48 91.59 91.15 93.81 89.38 89.38 88.94 0.91 0.39 0.92 0.71 0.91 0.86 0.90 0.90 0.91

CORR 91.15 89.82 91.59 91.59 91.59 91.15 92.04 90.71 92.04 0.86 0.42 0.86 0.71 0.85 0.86 0.86 0.86 0.87

CFS 90.71 90.27 90.27 92.04 92.48 93.81 87.17 91.15 88.94 0.74 0.38 0.92 0.74 0.88 0.86 0.89 0.65 0.86

OneR 90.71 90.71 92.48 92.04 91.59 90.27 88.94 89.82 88.50 0.90 0.42 0.90 0.76 0.87 0.81 0.88 0.87 0.89

GA 91.15 89.82 91.59 92.48 90.71 91.15 90.27 90.27 89.82 0.90 0.38 0.89 0.74 0.86 0.86 0.86 0.85 0.90

PCA 90.71 90.27 88.94 89.38 90.71 89.38 92.04 90.27 89.82 0.48 0.51 0.76 0.68 0.67 0.81 0.90 0.87 0.82

SMOTE-DATA

OD 80.98 82.93 82.44 93.17 91.22 90.24 75.61 76.83 76.34 0.89 0.84 0.85 0.93 0.96 0.96 0.65 0.65 0.65

SIGF 79.76 82.93 87.07 93.41 90.24 91.95 76.83 78.05 77.56 0.89 0.84 0.88 0.93 0.96 0.97 0.64 0.65 0.65

AG1 57.56 83.17 82.68 91.95 85.37 88.78 63.90 62.20 67.80 0.71 0.85 0.91 0.92 0.92 0.95 0.53 0.53 0.53

AG2 73.66 82.93 77.32 90.73 76.10 86.34 68.05 73.41 72.44 0.78 0.84 0.88 0.91 0.81 0.93 0.55 0.59 0.58

AG3 80.00 83.41 83.90 89.02 86.34 91.95 81.22 84.63 83.90 0.88 0.84 0.91 0.89 0.92 0.96 0.76 0.77 0.77

AG4 76.83 83.17 77.32 91.95 81.46 90.98 71.46 71.46 74.63 0.87 0.85 0.89 0.92 0.89 0.96 0.60 0.62 0.62

AG5 67.80 66.34 72.93 84.88 73.17 83.41 67.32 67.80 68.05 0.72 0.62 0.79 0.89 0.76 0.91 0.53 0.55 0.55

AG6 65.12 71.71 71.22 86.59 68.54 83.41 60.98 62.93 63.66 0.67 0.68 0.77 0.86 0.68 0.87 0.49 0.50 0.51

AG7 83.90 82.20 80.73 91.95 84.15 91.95 72.68 71.71 76.10 0.89 0.84 0.90 0.92 0.93 0.97 0.64 0.64 0.65

AG8 81.46 82.44 84.39 91.71 86.10 91.95 66.59 69.02 68.29 0.91 0.83 0.92 0.92 0.93 0.96 0.53 0.54 0.53

AG9 78.29 48.05 82.68 93.17 78.29 83.90 61.46 66.10 64.63 0.81 0.47 0.92 0.93 0.83 0.93 0.51 0.53 0.53

AG10 78.29 79.02 82.93 85.37 81.46 87.07 72.20 73.17 74.15 0.82 0.78 0.89 0.85 0.87 0.93 0.60 0.62 0.62

AG11 78.78 79.02 82.93 87.80 84.63 89.02 74.15 76.34 76.10 0.85 0.79 0.90 0.88 0.90 0.94 0.58 0.59 0.60

AG12 75.85 82.20 81.46 91.22 79.51 86.83 68.54 73.41 71.22 0.89 0.80 0.87 0.91 0.92 0.94 0.61 0.61 0.61

AG13 79.02 79.02 83.17 88.78 84.63 88.05 65.61 67.07 66.83 0.86 0.80 0.90 0.89 0.91 0.94 0.53 0.54 0.54

INFG 81.22 82.20 83.41 91.71 89.27 89.76 70.49 70.98 70.98 0.89 0.87 0.87 0.92 0.94 0.96 0.52 0.52 0.52

GNR 85.37 56.59 84.63 87.8 86.10 87.07 73.17 73.90 73.41 0.92 0.52 0.92 0.88 0.94 0.93 0.62 0.61 0.61

CORR 85.37 56.34 82.93 89.27 84.15 91.22 65.12 65.61 65.37 0.92 0.49 0.90 0.90 0.91 0.95 0.50 0.51 0.50

CFS 67.32 57.07 83.41 88.54 83.90 86.59 78.29 80.00 81.71 0.78 0.48 0.91 0.88 0.91 0.93 0.69 0.68 0.69

OneR 85.61 56.34 84.63 89.27 86.83 91.46 67.80 67.80 67.56 0.93 0.53 0.92 0.90 0.93 0.96 0.52 0.54 0.52

GA 86.34 56.59 83.66 89.27 85.85 91.46 66.59 66.83 67.07 0.94 0.52 0.92 0.89 0.93 0.95 0.53 0.54 0.53

PCA 66.59 61.71 81.95 91.95 75.37 89.27 64.15 72.93 70.24 0.65 0.59 0.85 0.92 0.87 0.95 0.61 0.62 0.61

BLSMOTE-DATA

OD 83.41 83.41 84.15 94.88 92.44 88.78 69.51 69.51 68.54 0.90 0.86 0.86 0.95 0.96 0.95 0.53 0.53 0.53

SIGF 82.20 83.41 90.73 91.71 92.44 88.78 77.32 77.32 78.05 0.89 0.86 0.91 0.92 0.95 0.96 0.64 0.65 0.65

AG1 59.76 83.41 84.88 93.66 86.59 91.71 77.80 72.44 78.54 0.61 0.87 0.93 0.94 0.93 0.97 0.58 0.57 0.58

AG2 77.32 82.93 88.29 94.63 84.39 91.22 72.93 78.54 77.07 0.81 0.82 0.95 0.94 0.85 0.96 0.56 0.61 0.60

AG3 83.17 83.66 89.27 92.20 90.00 91.46 69.76 68.05 69.27 0.92 0.84 0.96 0.92 0.95 0.97 0.53 0.53 0.53

AG4 84.63 83.66 87.56 92.20 88.78 92.68 69.76 69.76 70.73 0.93 0.85 0.95 0.93 0.94 0.96 0.51 0.52 0.51

AG5 67.07 66.34 74.88 84.63 75.85 84.88 72.44 73.17 72.68 0.67 0.58 0.78 0.88 0.77 0.90 0.52 0.54 0.53

AG6 70.73 73.41 73.90 84.88 72.93 81.22 65.37 68.05 67.80 0.73 0.72 0.82 0.84 0.74 0.89 0.55 0.58 0.59

Continued
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RQ 
1:

Can web-service anti-patter prediction models be developed using source code metrics and machine 
learning?

ANS:
The high value of AUC, i.e., greater than 0.7, as shown in Table 11, 12, and 13 confirms that the 
developed models have the ability to predict anti-patterns based on source code metrics. The 
experimental findings confirmed that the models performed better after applying sampling and FS 
techniques.

 

Comparative analysis
This research aims to evaluate the impact of feature selection techniques, data-sampling techniques, and a wide 
variety of machine learning on the performance of the web-service anti-pattern prediction models. Considering 
this, we have applied twenty-two different sets of features, five different data-sampling, and thirty-two different 
classifiers for anti-pattern prediction models. The predictive power of these techniques is computed using 
Accuracy & AUC and compared with the help of box-plot diagrams and hypothesis rank-sum techniques. 
The final intensive assessment and performance of these techniques individually are presented in subsequent 
subsections.

Aggregation measures and feature selection techniques
In our experiment, different aggregation measures were used to find the source code metrics at the system 
level from the class level without losing information. Further, eight feature selection techniques have also been 
used to remove irrelevant and redundant features. After applying aggregation measures and feature selection 
techniques along with the original features, all these feature sets are used as input for developing the models for 
detecting web service anti-patterns. Finally, Statistical and AUC studies were used to determine the significance 
and reliability of various feature selection strategies on five different types of anti-patterns.

Comparison of different aggregation measures and sets of features: Descriptive statistics and box-plot The Fig. 
4a, b of Fig. 4 depict the box-plot for the Accuracy and AUC of different aggregation measures and sets of 
features. The descriptive statistics of all employed feature selection techniques are presented in Table 14. The 
following conclusions can be drawn from Fig. 4 and Table 14:

•	 All the models give reasonable accuracies ranging between 75-95 % and AUC values between 0.8-0.95.
•	 The models trained on all features achieves 83.35 mean accuracy and 0.80 as mean AUC.
•	 Among the aggregation measures, AG3 shows the best performance, with a mean AUC value of 0.86. At the 

same time, the model developed using the feature set computed by using AG6 as input shows the worst per-
formance, with a mean AUC value of 0.76.

•	 Among all the feature sets which are considered as input for developing the models to detect web service 
anti-patterns, SIGF is the best model, with a mean AUC value of 0.88. In contrast, the model developed with 
features selected by PCA as input is the worst model, with a mean AUC value of 0.71. The model developed 
by AG3 has the second-best performance, with a mean accuracy of 0.86.

Comparison of different aggregation measures and sets of features: Wilcoxon Signed Rank Test (WSRT) with 
Friedman mean rank (FMR): In this experiment, we have also employed two statistical tests for hypothesis 
analysis: Wilcoxon Signed Rank Test and Friedman Test. Initially, we applied WSRT to find pair-wise significant 
differences between the predictive capability of the models trained by taking different sets of features as input. 

Accuracy AUC

MNB BNB GNB DT LOGR KNN SVL SVP SVR MNB BNB GNB DT LOGR KNN SVL SVP SVR

AG7 80.98 78.78 81.46 90.49 85.85 91.46 73.66 71.95 76.34 0.88 0.80 0.90 0.91 0.91 0.96 0.63 0.63 0.64

AG8 81.95 81.71 86.59 92.68 86.34 92.20 67.07 67.80 68.05 0.86 0.81 0.89 0.93 0.90 0.96 0.54 0.55 0.55

AG9 83.41 50.49 89.76 95.37 83.41 88.54 72.20 76.10 76.10 0.84 0.46 0.94 0.95 0.86 0.95 0.59 0.62 0.62

AG10 80.49 80.98 85.37 89.02 84.63 86.59 59.51 59.76 60.00 0.81 0.79 0.91 0.89 0.89 0.95 0.50 0.50 0.50

AG11 80.98 81.22 85.85 89.27 86.10 89.02 81.46 83.90 83.17 0.87 0.81 0.92 0.89 0.93 0.94 0.76 0.77 0.77

AG12 79.76 82.44 84.39 91.22 82.68 88.54 72.68 74.63 72.44 0.91 0.80 0.90 0.91 0.92 0.95 0.62 0.62 0.63

AG13 79.27 79.27 82.68 88.05 84.39 86.34 66.83 67.07 67.32 0.84 0.77 0.90 0.88 0.91 0.94 0.52 0.52 0.52

INFG 83.17 82.68 85.37 93.17 90.49 89.02 78.54 79.27 78.29 0.90 0.88 0.89 0.94 0.96 0.96 0.60 0.61 0.61

GNR 90.24 56.59 86.34 91.95 87.80 92.68 67.32 68.29 68.29 0.94 0.53 0.94 0.92 0.95 0.97 0.54 0.54 0.54

CORR 86.59 56.34 84.63 92.93 86.34 91.95 66.59 68.05 66.34 0.93 0.50 0.91 0.93 0.92 0.96 0.52 0.52 0.52

CFS 73.41 57.07 79.02 90.73 80.73 87.80 65.61 65.85 67.80 0.77 0.51 0.90 0.91 0.89 0.93 0.51 0.50 0.51

OneR 84.63 56.34 84.15 91.71 85.85 92.20 74.63 76.59 75.37 0.94 0.51 0.93 0.92 0.94 0.97 0.62 0.62 0.62

GA 88.05 56.59 86.34 94.63 87.07 94.15 74.39 77.56 76.10 0.94 0.53 0.94 0.94 0.93 0.96 0.64 0.66 0.64

PCA 66.59 61.71 56.83 90.49 80.98 88.54 67.56 72.44 70.24 0.65 0.57 0.78 0.91 0.90 0.95 0.61 0.62 0.61

Table 11.  Accuracy and AUC for Anti-pattern 1: Most Frequently Used Classifiers. Best performance value in 
bold.
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This test is used to test our considered null hypothesis “There is no significant impact on the performance of 
anti-patter models after applying feature selection techniques”. The considered hypothesis is only accepted if the 
calculated p-value using WSRT is less than 0.05. Figure 5 shows the result of WSRT on different pairs of feature 
sets, i.e., × symbol indicates that the p-value≤0.05, and  symbol indicates that the p-value>0.05. According 
to Fig. 5, the predictive ability of the models is significantly impacted by using different sets of features. After 
finding the impact of feature selection techniques, we have also applied Friedman’s mean rank (FMR) to find the 
best sets of features for anti-pattern prediction. The last column of Table 14 shows the FMR for the aggregation 
measures and the various applied feature selection techniques. According to FRM, the SIGF has the lowest 
mean rank of 5.97. Hence, we conclude that the models trained by taking selected sets of features using SIGF 
have a significantly better ability of prediction as compared to other techniques. Similarly, PCA has the highest 
mean AUC rank, 17.90, indicating that the model developed with features selected by PCA will have the worst 
performance. 

RQ 
2:

What is the significant impact of considering reduced sets of features as input on the performance of 
models?

ANS: The experimental findings based on Figs. 4a, b, 5 and Table 14 confirmed that the models trained by taking 
selected sets of features can predict significantly better than all features.

 

Sampling techniques
In this experiment, we have also considered five types of data imbalance techniques such as SMOTE, BLSMOTE, 
SVMSOMTE, ADASYN, and UPSAM to tackle the class imbalance problem, and the resulting balanced datasets 
are used as training data for anti-pattern prediction models. The significance and reliability of these employed 
sampling strategies were determined using statistical and AUC analyses.

Comparison of sampling techniques using descriptive statistics and box-plots: Figure 6 shows the box-plot 
diagram for accuracy and the AUC of the models trained on sampled datasets. These sample datasets are 
generated using five different sampling techniques. The descriptive statistics for AUC and accuracy for sampling 
techniques considered are summarized in Table 15. According to Fig. 6 and Table 15, the models trained on 
sampled data using upsampling (UPSAM) with a mean AUC of 0.87 achieved better results. In contrast, the 
model developed with the original data with a mean AUC of 0.70 has the worst performance. ADASYN and 
SMOTE showed the worst performance among the data sampling techniques applied, with mean AUC values of 
0.83 and 0.83, respectively.

Comparison of different sampling technique: Wilcoxon Signed Rank Test (WSRT) with Friedman mean rank 
(FMR):

In this experiment, we have also employed two statistical tests for hypothesis analysis: Wilcoxon Signed 
Rank Test and Friedman Test. Initially, we applied WSRT to verify the impact of sampling techniques on the 
performance of anti-pattern prediction models. This test is used to test our considered null hypothesis “There is 
no significant impact on the performance of anti-patter models after training on balanced data”. Figure 7 shows 
the result of WSRT on different pairs of sampling techniques, i.e., × symbol indicates that the p-value≤0.05, and 

 symbol indicates that the p-value>0.05. The information present in Fig. 7 suggested that the null hypothesis 
was rejected for all comparable sampling technique pairs. Hence, we concluded that the predictive ability of 
the models is significantly impacted by using sampling techniques. After verifying the conclusion like “the 
performance of the models significantly improves after training on sampled data”, we have used the Friedman 
test to find the best sampling techniques. The lower rank of the Friedman test represents the best results. Table 
15 shows the Friedman test results for various data sampling techniques. From Table 15, we infer that UPSAM 
has the best performance with a mean AUC rank of 2.13, whereas the model developed with the original dataset 
has the worst performance with a mean rank of 5.41.

RQ 
3:

What is the significant impact of sampling techniques on the predictability of anti-
pattern prediction models?

ANS:
The experimental findings based on Figs. 6, 7 and Table 15 confirmed that the 
predictive ability of the models is significantly impacted by using sampling 
techniques. The performance of the models significantly improves after training on 
sampled data.

 

Classification techniques
In this work, 33 classifiers varying from general machine learning classifiers to advance deep learning classifiers 
have been employed to train models for detecting web service anti-patterns. We computed the implications and 
dependabilities of these classifiers using box plots, descriptive statistics, and statistical test analyses on different 
anti-patterns.

Comparison of different classification techniques using descriptive statistics and box plots: Figure 8 shows the 
AUC and accuracy box plots for the different categories of classifier techniques. According to Fig. 8, we can 
conclude the following:

•	 Among the general classifiers category, KNN shows the best performance with a mean AUC value of 0.92. In 
contrast, the Support Vector Machine with the linear kernel (SVC-LIN) offers the worst performance, with a 
mean AUC value of 0.62.
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Accuracy AUC

BAG RF EXTR AdaB GraB DL1 DL2 DL3 DL4 BAG RF EXTR AdaB GraB DL1 DL2 DL3 DL4

ORG-DATA

OD 90.71 91.15 92.48 90.27 91.59 92.92 92.04 92.04 92.92 0.81 0.82 0.84 0.85 0.67 0.88 0.87 0.86 0.88

SIGF 89.82 89.82 91.59 91.59 90.71 91.59 92.04 92.04 92.04 0.82 0.80 0.80 0.78 0.66 0.88 0.87 0.86 0.87

AG1 91.59 92.48 91.59 92.92 92.04 90.71 90.71 90.71 90.71 0.85 0.84 0.73 0.82 0.62 0.89 0.87 0.86 0.86

AG2 90.71 89.38 89.82 88.94 89.38 90.71 90.71 90.71 90.71 0.76 0.75 0.75 0.76 0.8 0.69 0.75 0.76 0.76

AG3 90.71 90.71 91.15 89.82 91.15 90.71 90.71 90.71 90.71 0.77 0.82 0.81 0.82 0.68 0.81 0.84 0.83 0.83

AG4 90.27 89.82 91.59 89.82 91.15 89.82 90.71 90.71 90.71 0.77 0.85 0.81 0.82 0.68 0.83 0.84 0.83 0.83

AG5 90.71 88.05 89.38 89.82 90.71 90.71 90.71 90.71 90.71 0.70 0.71 0.68 0.70 0.64 0.41 0.44 0.42 0.40

AG6 90.71 88.94 86.73 89.38 89.38 90.71 90.71 90.71 90.71 0.74 0.67 0.55 0.73 0.69 0.44 0.50 0.63 0.40

AG7 91.59 91.59 92.04 90.27 89.82 92.92 89.38 90.27 90.71 0.82 0.83 0.76 0.85 0.59 0.87 0.84 0.84 0.84

AG8 90.71 90.27 91.59 91.59 91.59 92.04 90.27 90.71 90.71 0.86 0.82 0.81 0.82 0.60 0.83 0.86 0.87 0.86

AG9 90.27 89.82 91.59 91.59 89.38 90.71 90.71 90.71 90.71 0.80 0.71 0.77 0.85 0.83 0.68 0.60 0.61 0.59

AG10 90.71 91.15 90.71 91.15 87.61 90.71 90.71 90.71 90.71 0.81 0.75 0.74 0.83 0.75 0.71 0.75 0.73 0.73

AG11 88.50 91.59 90.71 90.27 90.27 90.71 90.71 90.71 90.71 0.83 0.73 0.79 0.82 0.83 0.75 0.81 0.80 0.79

AG12 91.59 90.71 90.71 90.71 88.94 90.71 90.71 90.71 90.71 0.86 0.77 0.79 0.84 0.61 0.69 0.87 0.75 0.77

AG13 89.82 91.59 92.48 89.82 90.27 90.71 90.71 90.71 90.71 0.84 0.79 0.74 0.82 0.83 0.75 0.83 0.81 0.80

INFG 91.15 92.48 91.59 92.92 92.04 91.59 91.59 91.59 91.15 0.82 0.85 0.84 0.85 0.73 0.88 0.88 0.87 0.86

GNR 91.59 92.04 91.15 92.92 89.38 90.71 90.71 90.71 90.71 0.91 0.88 0.83 0.87 0.52 0.85 0.80 0.89 0.88

CORR 90.71 92.48 93.81 92.92 88.94 91.15 90.71 90.71 90.71 0.88 0.80 0.85 0.87 0.64 0.86 0.84 0.84 0.82

CFS 90.71 92.48 92.92 92.48 92.04 91.15 91.15 90.71 90.71 0.92 0.86 0.83 0.84 0.71 0.94 0.91 0.89 0.88

OneR 92.04 91.59 92.04 92.92 92.92 91.15 90.71 90.71 90.71 0.9 0.85 0.83 0.79 0.64 0.79 0.84 0.86 0.83

GA 92.04 92.04 91.15 91.15 91.59 91.15 90.71 90.27 90.71 0.91 0.86 0.84 0.87 0.65 0.87 0.84 0.87 0.81

PCA 90.71 90.27 90.27 90.27 88.94 90.71 90.71 90.71 90.71 0.82 0.81 0.78 0.75 0.75 0.47 0.53 0.52 0.44

SMOTE-DATA

OD 90.00 95.12 96.1 91.71 91.46 93.17 95.12 94.15 94.63 0.97 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.98

SIGF 89.76 94.15 96.34 92.93 93.90 94.39 94.88 95.61 95.12 0.96 0.98 0.99 0.97 0.97 0.97 0.97 0.97 0.98

AG1 89.27 90.49 92.93 90.00 89.02 85.85 86.59 87.56 86.59 0.96 0.96 0.97 0.94 0.96 0.92 0.90 0.93 0.93

AG2 86.34 92.68 93.41 87.80 88.05 76.83 81.71 81.46 82.68 0.93 0.97 0.97 0.94 0.95 0.83 0.87 0.86 0.86

AG3 89.27 92.93 96.1 88.54 90.73 83.90 86.34 88.54 87.56 0.96 0.98 0.98 0.95 0.95 0.90 0.92 0.92 0.92

AG4 89.27 95.61 95.12 91.71 90.98 82.20 85.12 88.78 89.51 0.95 0.97 0.98 0.96 0.95 0.90 0.92 0.94 0.94

AG5 80.00 84.88 85.37 74.15 78.05 72.44 70.00 67.32 54.63 0.88 0.92 0.91 0.83 0.84 0.77 0.74 0.71 0.53

AG6 81.95 85.61 87.32 80.24 80.98 70.49 54.39 48.29 51.22 0.87 0.90 0.92 0.88 0.87 0.70 0.56 0.49 0.57

AG7 91.71 92.20 94.63 89.76 91.22 86.34 89.51 89.76 89.51 0.97 0.97 0.97 0.95 0.94 0.93 0.94 0.94 0.94

AG8 90.49 93.90 95.61 87.56 87.80 87.80 90.24 90.49 91.22 0.96 0.98 0.98 0.96 0.95 0.93 0.94 0.95 0.94

AG9 85.37 93.66 95.37 90.73 90.00 77.80 78.05 77.80 64.63 0.95 0.98 0.98 0.96 0.96 0.82 0.81 0.81 0.73

AG10 84.88 88.78 92.93 83.66 83.90 79.27 81.71 81.46 74.63 0.92 0.93 0.96 0.91 0.89 0.87 0.87 0.85 0.82

AG11 87.07 89.02 93.41 85.85 84.39 82.93 84.88 86.10 85.85 0.94 0.97 0.97 0.93 0.93 0.90 0.90 0.90 0.89

AG12 87.07 91.71 93.66 88.05 87.80 81.22 83.17 84.39 85.61 0.95 0.97 0.97 0.93 0.93 0.91 0.91 0.90 0.89

AG13 84.88 91.71 93.17 86.34 83.90 82.44 84.15 85.61 85.37 0.94 0.96 0.98 0.92 0.91 0.90 0.90 0.90 0.90

INFG 88.29 91.71 94.15 91.46 90.73 90.00 93.17 93.17 94.39 0.96 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.96

GNR 88.05 88.05 90.49 85.85 86.10 86.83 87.56 88.78 81.22 0.95 0.96 0.96 0.93 0.94 0.93 0.92 0.93 0.86

CORR 89.27 91.22 91.46 88.29 88.05 85.85 85.85 86.59 86.10 0.95 0.96 0.96 0.94 0.93 0.91 0.90 0.88 0.89

CFS 86.34 89.51 91.46 89.76 89.02 83.90 85.12 86.10 78.54 0.93 0.95 0.96 0.93 0.94 0.91 0.90 0.91 0.88

OneR 89.02 89.51 92.44 90.00 90.00 86.83 87.07 78.54 78.78 0.96 0.96 0.96 0.95 0.95 0.92 0.93 0.89 0.89

GA 89.76 92.44 91.46 90.49 89.27 86.83 86.59 86.34 79.76 0.95 0.96 0.96 0.94 0.94 0.92 0.93 0.92 0.90

PCA 88.05 91.95 91.71 85.85 86.83 75.85 74.39 64.88 56.10 0.94 0.97 0.97 0.92 0.93 0.81 0.88 0.76 0.64

SMOTE-DATA

BLSMOTE-DATA

OD 89.27 94.63 96.34 93.17 91.46 92.93 93.90 93.66 95.12 0.97 0.98 0.98 0.96 0.96 0.97 0.97 0.97 0.97

SIGF 89.51 92.93 95.85 91.22 90.00 92.68 92.93 93.17 93.66 0.96 0.98 0.98 0.97 0.96 0.97 0.98 0.97 0.98

AG1 91.71 93.41 94.88 91.22 92.93 88.78 89.02 91.22 90.24 0.97 0.97 0.98 0.97 0.97 0.94 0.94 0.94 0.94

AG2 90.24 95.37 96.34 93.41 94.63 85.85 88.78 90.00 92.44 0.97 0.97 0.97 0.97 0.96 0.90 0.91 0.93 0.94

AG3 91.22 94.63 96.1 92.20 92.68 87.56 89.76 90.49 91.22 0.97 0.97 0.98 0.96 0.97 0.94 0.95 0.95 0.95

AG4 91.95 93.41 96.1 93.17 93.66 88.54 90.49 90.73 91.71 0.97 0.98 0.98 0.97 0.97 0.94 0.95 0.95 0.95

AG5 79.27 85.37 84.63 73.90 80.73 73.41 69.27 70.24 48.54 0.90 0.91 0.90 0.82 0.85 0.74 0.73 0.72 0.49

Continued
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•	 Among the ensemble classifiers employed for training the models for detection of anti-patterns, the extra tree 
classifier (EXTR) and Random Forest (RF) classifiers are showing the best performance with a mean AUC 
value of 0.94, and the Gradient Boosting classifier (GraB) is delivering the worst performance with a mean 
AUC of 0.88.

•	 Of all the deep learning algorithms with varying hidden layers, DL2 shows the best performance with a mean 
AUC value of 0.84, and DL4 offers the worst performance with a mean AUC value of 0.81. DL3 performance 
is similar to that of the model developed using DL2.

•	 Over the advanced ML classifiers used for developing models for detecting web service anti-patterns, LSSVM-
RBF shows the best performance with a mean AUC value of 0.99. In contrast, the models trained using ELM-
LIN show the worst performance, with a mean AUC value of 0.70.Figure 9 shows the AUC and accuracy 
values for all the classifier techniques combinedly. The descriptive statistics for all the classifier techniques 
are depicted in Table 16. From Figs. 9 and Table 16, we infer that the models trained using LSSVM-RBF are 
showing the best performance with a mean AUC value of 0.99. LSSVM-Poly, RF, and EXTR perform better 
after LSSVM-RBF with a mean AUC value of 0.95, 0.94, and 0.94, respectively. SVC-LIN is delivering the 
worst performance with a mean AUC value of 0.63.

Comparison of different classification techniques: Wilcoxon Signed Rank Test (WSRT) with Friedman mean rank 
(FMR): Similar to the previous subsections, we also have the Wilcoxon Test and the Friedman test to compute 
statistically significant differences among various pairs of classifier techniques. Initially, we applied WSRT to 
verify the impact of different classifiers on the performance of anti-pattern prediction models. This test is used 
to test our considered null hypothesis “There is no significant impact on the performance of anti-patter models 
after changing classifiers”. Figure 10 shows the result of WSRT on different pairs of sampling techniques, i.e., × 
symbol indicates that the p-value≤0.05, and  symbol indicates that the p-value>0.05. According to Fig. 10, the 
predictive ability of the models trained using different classifiers is not significantly the same. Table 16 shows 
the Friedman test results for various classifier techniques considered in this work. From Table 16, we infer that 
LSSVM-RBF has the best performance with a mean rank of 1.18, whereas the SVC-LIN classifier technique has 
the worst performance with a mean rank of 27.60.

RQ 
4:

What effect do different classifiers have on predicting anti-patterns using 
source code metrics?

ANS:

The experimental findings based on Figs. 9, 10, and Table 16 confirmed 
that the predictive ability of the models trained using different 
classification techniques is significantly different. The performance 
of the models significantly improves after changing the classification 
techniques.

 

Discussion of results
In this work, extensive experimentation by using different variants of aggregation measures, feature selections, 
data sampling, and classifiers has been made, and a solution for developing such models to predict the anti-
pattern using object-oriented metrics with improved performance and predictability power is proposed. In 
general, it was observed that the prediction models with 0.7 AUC value have the ability to predict class on unseen 

Accuracy AUC

BAG RF EXTR AdaB GraB DL1 DL2 DL3 DL4 BAG RF EXTR AdaB GraB DL1 DL2 DL3 DL4

AG6 82.93 86.10 87.8 80.98 78.05 72.68 60.49 63.17 54.63 0.88 0.92 0.93 0.90 0.87 0.76 0.67 0.69 0.55

AG7 89.76 91.71 94.63 88.54 88.29 88.05 89.27 89.27 90.49 0.96 0.96 0.97 0.94 0.93 0.92 0.93 0.93 0.93

AG8 89.02 93.90 95.12 88.05 88.29 85.37 87.32 87.56 87.32 0.96 0.96 0.98 0.94 0.94 0.89 0.90 0.90 0.91

AG9 87.32 95.85 95.37 91.22 92.44 83.66 83.90 76.34 76.59 0.96 0.98 0.98 0.97 0.97 0.85 0.85 0.83 0.83

AG10 87.07 91.46 92.93 88.29 85.12 81.46 84.63 85.12 78.05 0.94 0.96 0.96 0.94 0.89 0.88 0.88 0.88 0.86

AG11 88.29 92.93 94.39 86.10 86.59 84.88 87.07 88.05 87.80 0.95 0.97 0.98 0.94 0.94 0.92 0.92 0.93 0.92

AG12 89.76 92.68 92.68 89.76 90.00 83.17 86.83 87.56 87.32 0.95 0.96 0.98 0.95 0.93 0.92 0.92 0.92 0.92

AG13 87.32 90.73 93.66 85.61 86.83 81.71 83.66 84.39 77.07 0.93 0.96 0.97 0.91 0.92 0.89 0.90 0.90 0.86

INFG 89.51 94.39 95.61 93.41 92.20 92.20 92.20 92.93 92.68 0.97 0.98 0.98 0.97 0.96 0.96 0.97 0.98 0.97

GNR 91.71 94.63 94.63 92.20 92.68 91.95 91.95 91.71 90.73 0.97 0.98 0.98 0.96 0.96 0.95 0.95 0.94 0.93

CORR 89.02 92.93 93.66 92.68 91.95 86.34 86.34 86.83 85.37 0.96 0.97 0.97 0.96 0.95 0.92 0.93 0.92 0.91

CFS 87.07 90.00 92.2 87.07 88.78 82.44 84.15 84.63 75.61 0.93 0.94 0.95 0.93 0.92 0.89 0.89 0.89 0.86

OneR 91.95 92.20 92.68 88.05 91.71 86.10 86.10 90.00 77.32 0.97 0.96 0.97 0.95 0.96 0.93 0.94 0.95 0.87

GA 93.17 93.66 94.15 92.20 92.68 87.07 87.56 89.76 90.24 0.97 0.98 0.97 0.96 0.96 0.94 0.94 0.95 0.94

PCA 88.05 91.71 94.39 87.80 87.07 79.51 80.98 59.02 51.22 0.94 0.97 0.97 0.93 0.94 0.88 0.90 0.69 0.52

Table 13.  Accuracy and AUC for Anti-pattern 1: ensemble Classifiers and Deep-Learning. Best performance 
value in bold.
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patterns i.e., the models with 0.7 AUC are acceptably by the community. The experimental results obtained 
using the proposed framework confirm that the trained models delivered a greater than 0.7 AUC and have 
the ability to predict anti-patterns on an unseen WSDL file. We have already presented the AUC values of the 
models trained for anti-pattern 1 using sets of features with different classifiers on both original and balanced 
data. The highest possible AUC value for all classifiers with the application of different combinations of sampling 
and feature selection techniques attained greater than 0.9; this proves the greater predictability of developed 
anti-pattern prediction models. The classifier post-application of feature selection and sampling techniques has 
outperformed with an AUC value of 1.

Fig. 4.  Accuracy and AUC boxplots of feature selection techniques.
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Conclusion
The developed web service anti-pattern prediction models using object-oriented metrics help in building quality 
web-based applications by identifying anti-patterns at the initial stage of Software Development. This research 
represents a significant step forward in the development of effective anti-pattern prediction models by dealing 
with feature selection, aggregation measures, and the class imbalance problem efficiently. The developed anti-
pattern prediction models use different variants of classifiers, and their performance has been measured against 
five different variants of anti-patterns. The proposed framework was validated using 226 WSDL files collected 
from various domains such as finance, tourism, health, education, etc. The focused insights of this research are:

Fig. 5.  Statistical test results of feature selection techniques: accuracy and AUC.

 

Accuracy AUC Friedman

Mean Min Median Max Q3 Q1 Mean Min Median Max Q3 Q1 Rank

OD 83.35 30.53 91.64 100.00 96.01 74.75 0.80 0.18 0.94 1.00 0.98 0.50 8.48

SIGF 88.40 43.56 92.92 100.00 96.10 83.66 0.88 0.18 0.96 1.00 0.98 0.82 5.97

AG1 82.73 33.19 87.56 100.00 93.56 74.63 0.83 0.14 0.90 1.00 0.96 0.73 12.27

AG2 83.86 44.25 87.53 100.00 92.92 76.10 0.84 0.08 0.89 1.00 0.96 0.77 12.40

AG3 86.20 49.00 89.38 100.00 94.25 80.49 0.86 0.17 0.92 1.00 0.97 0.79 8.88

AG4 85.36 37.17 89.08 100.00 93.49 78.40 0.85 0.17 0.91 1.00 0.97 0.78 10.31

AG5 80.17 13.27 81.39 97.89 89.39 72.02 0.80 0.14 0.81 1.00 0.92 0.71 14.30

AG6 78.25 41.09 79.14 99.51 89.65 69.18 0.76 0.18 0.79 1.00 0.89 0.66 15.16

AG7 84.56 30.53 88.93 100.00 93.90 77.70 0.84 0.18 0.90 1.00 0.96 0.76 10.53

AG8 85.33 45.50 89.38 100.00 94.15 78.78 0.84 0.18 0.91 1.00 0.96 0.76 9.74

AG9 82.49 42.04 86.84 100.00 92.57 76.42 0.81 0.12 0.87 1.00 0.95 0.70 12.51

AG10 85.43 43.32 87.53 100.00 93.41 79.94 0.85 0.05 0.89 1.00 0.97 0.80 9.77

AG11 85.34 44.69 88.50 100.00 93.40 78.87 0.85 0.29 0.90 1.00 0.97 0.80 9.77

AG12 79.29 18.14 84.20 100.00 92.20 66.67 0.78 0.32 0.84 1.00 0.94 0.62 15.06

AG13 85.09 49.51 88.21 100.00 93.36 78.17 0.85 0.29 0.90 1.00 0.97 0.80 9.97

INFG 82.48 33.63 90.83 100.00 95.61 70.49 0.80 0.25 0.92 1.00 0.98 0.50 9.35

GNR 81.24 29.20 85.61 100.00 92.92 70.98 0.80 0.19 0.85 1.00 0.96 0.66 12.75

CORR 82.37 29.20 85.85 99.76 93.36 73.00 0.82 0.22 0.88 1.00 0.96 0.73 12.38

CFS 83.18 44.24 86.34 100.00 93.41 74.65 0.83 0.25 0.88 1.00 0.96 0.73 12.06

OneR 82.10 44.80 87.30 100.00 93.43 73.21 0.81 0.29 0.89 1.00 0.97 0.66 11.50

GA 82.49 46.24 85.37 100.00 92.92 73.41 0.82 0.15 0.87 1.00 0.96 0.71 11.95

PCA 72.86 14.16 72.44 99.53 90.18 59.95 0.71 0.17 0.69 1.00 0.90 0.56 17.90

Table 14.  Employed feature selection techniques’ descriptive statistics.
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•	 For most anti-patterns, adopting sampling methods such as SMOTE, BLSMOTE, SVMSMOTE, and USAM 
improves the predictability of developed models.

•	 Employing the different variants of aggregation measures with feature selection strategies over balanced da-
tasets reduces computational effort and improves the overall performance of anti-pattern prediction models.

•	 In comparison to other employed sampling techniques to handle the data imbalance, the UPSAM technique 
outperformed by gaining the highest mean Accuracy & AUC of 86.14% & 0.87, respectively

•	 Experimental results suggested that the models trained by selected sets of features using SIGF performance 
best compared to other employed feature selection techniques by attaining 88.40% Accuracy & 0.88 AUC. 
This finding confirmed that there exist irrelevant features.

•	 The LSSVM with RBF kernel classifier stands first among all other classifiers.
•	 Post implication of feature selection techniques study indicates a reduction of 97% irrelevant features from the 

original dataset while pertaining improved performance of anti-pattern models trained against all metrics.

Fig. 7.  Statistical test results: Accuracy and AUC: Sampling Techniques.

 

Accuracy AUC Friedman

Mean Min Median Max Q3 Q1 Mean Min Median Max Q3 Q1 Rank

ORGD 87.58 13.27 90.71 100.00 93.81 88.50 0.70 0.05 0.75 1.00 0.86 0.50 5.41

SMOTE 80.33 41.09 82.93 100.00 91.71 71.53 0.83 0.38 0.89 1.00 0.96 0.72 3.41

BLSMOTE 81.14 42.08 84.63 100.00 92.44 71.13 0.84 0.38 0.90 1.00 0.97 0.74 3.08

SVMSMOTE 82.07 40.60 85.34 100.00 92.44 72.22 0.85 0.34 0.91 1.00 0.97 0.77 3.23

ADSYN 79.80 42.68 82.03 100.00 91.25 70.59 0.83 0.41 0.88 1.00 0.96 0.73 3.74

UPSAM 86.14 42.33 91.71 100.00 95.37 80.05 0.87 0.40 0.95 1.00 0.98 0.82 2.13

Table 15.  All Sampling Techniques’ Descriptive Statistics.

 

Fig. 6.  Accuracy and AUC boxplots of sampling techniques.
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Fig. 8.  Accuracy and AUC Boxplots of different classifiers.
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Fig. 9.  Full comparison accuracy and AUC boxplots of different classifiers.

 

Scientific Reports |         (2025) 15:5183 23| https://doi.org/10.1038/s41598-025-86454-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Accuracy AUC Friedman

Mean Min Median Max Q3 Q1 Mean Min Median Max Q3 Q1 Rank

MNB 76.42 42.33 79.76 94.88 87.80 65.48 0.76 0.15 0.81 0.99 0.90 0.62 24.71

BNB 74.62 43.56 79.20 96.46 85.12 62.20 0.70 0.17 0.74 0.97 0.85 0.57 27.34

GNB 78.29 13.27 81.55 99.53 91.03 68.54 0.84 0.35 0.89 1.00 0.95 0.77 16.19

DT 91.78 76.85 92.48 100.00 95.12 89.27 0.88 0.43 0.92 1.00 0.95 0.85 15.08

LOGR 83.02 48.40 86.36 98.21 92.22 75.00 0.84 0.33 0.88 1.00 0.95 0.77 17.55

KNN 90.22 70.68 91.15 99.06 94.20 87.76 0.92 0.39 0.96 1.00 0.97 0.91 9.89

SVC-LIN 71.21 14.16 70.49 98.51 78.54 63.85 0.63 0.38 0.60 1.00 0.69 0.52 27.60

SVC-POLY 74.08 34.51 73.41 98.81 80.00 67.31 0.64 0.17 0.62 1.00 0.70 0.54 26.18

SVC-RBF 73.68 19.47 73.41 97.91 79.50 67.32 0.65 0.22 0.62 1.00 0.73 0.54 25.38

MLP-LNF 85.16 42.72 91.15 99.40 94.97 82.77 0.82 0.18 0.93 1.00 0.96 0.76 15.93

MLP-SG 78.57 41.09 85.37 98.58 92.49 63.39 0.74 0.08 0.82 1.00 0.95 0.51 22.33

MLP-ADAM 86.90 45.77 91.15 99.30 94.63 84.64 0.85 0.18 0.94 1.00 0.98 0.79 12.73

BAG 89.46 73.37 90.25 98.58 93.83 86.87 0.92 0.29 0.96 1.00 0.98 0.90 7.78

RF 93.49 81.79 94.39 100.00 96.43 90.98 0.94 0.31 0.97 1.00 0.99 0.94 5.78

EXTR 94.28 81.68 95.07 99.76 96.90 92.10 0.94 0.35 0.98 1.00 0.99 0.95 5.35

AdaB 90.16 68.32 91.46 99.76 94.69 87.17 0.91 0.37 0.95 1.00 0.98 0.88 9.81

GraB 89.95 67.50 91.34 99.53 94.39 87.12 0.88 0.05 0.95 1.00 0.98 0.85 11.29

DL1 83.23 44.44 86.59 99.06 92.92 75.26 0.83 0.20 0.88 1.00 0.96 0.75 18.40

DL2 84.74 43.46 88.96 99.10 93.90 77.65 0.84 0.19 0.89 1.00 0.96 0.78 16.46

DL3 84.51 43.21 89.38 99.06 93.88 77.59 0.84 0.19 0.89 1.00 0.96 0.77 17.22

DL4 82.19 43.21 88.52 99.10 93.81 73.44 0.81 0.19 0.87 1.00 0.95 0.74 19.87

DL5 81.18 42.96 86.30 99.53 93.34 70.83 0.82 0.27 0.87 1.00 0.96 0.74 18.12

DL6 80.98 43.66 85.12 99.29 93.41 71.31 0.82 0.21 0.86 1.00 0.96 0.74 18.45

WELM-SIG 73.57 31.86 75.55 96.23 84.15 64.54 0.78 0.31 0.82 1.00 0.91 0.67 22.43

WELM-SIN 75.51 30.97 77.80 98.11 86.01 66.05 0.80 0.33 0.84 1.00 0.93 0.72 19.25

WELM-RBS 75.04 20.35 77.76 97.88 85.84 65.59 0.80 0.32 0.84 1.00 0.93 0.71 19.47

WELM-
TRBS 75.56 20.35 77.84 98.11 86.34 66.09 0.81 0.34 0.85 1.00 0.94 0.71 18.09

LSSVM-LIN 86.51 55.20 89.38 100.00 94.25 79.78 0.89 0.54 0.93 1.00 0.98 0.82 9.85

LSSVM-Poly 92.21 58.91 93.89 100.00 97.78 89.36 0.95 0.63 0.98 1.00 1.00 0.93 3.87

LSSVM-RBF 98.23 85.15 99.06 100.00 99.51 97.80 0.99 0.74 1.00 1.00 1.00 1.00 1.18

ELM-LIN 77.30 49.12 80.76 98.35 89.38 66.34 0.70 0.33 0.71 0.98 0.84 0.50 27.26

ELM-RBF 79.91 49.27 83.49 98.11 90.71 71.32 0.72 0.49 0.75 0.98 0.86 0.53 26.08

ELM-Poly 81.89 49.27 86.29 98.82 92.48 73.79 0.75 0.48 0.78 0.99 0.89 0.62 24.08

Table 16.  Descriptive Statistics of employed eight classifiers.
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Fig. 10.  Statistical test results: AUC: Classification Techniques.
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Data availability
The data used in this paper is available at https://github.com/ouniali/WSantipatterns. The processed data will be 
made available on request.

Appendix
See Table 17.
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MultinomialNB():{′alpha′ : 1.0,′ classprior′ : None,′ fitprior′ : T rue,′ forcealpha′ : T rue}

BernoulliNB():{′alpha′ : 1.0,′ binarize′ : 0.0,′ classprior′ : None,′ fitprior′ : T rue,′ forcealpha′ : T rue}

GaussianNB():{′priors′ : None,′ varsmoothing′ : 1e − 09}

DecisionTreeClassifier():{′ccpalpha′ : 0.0,′ criterion′ :′ gini′,′ minsamplesleaf ′ : 1,′ minsamplessplit′ : 2,′ minweightf ractionleaf ′ : 0.0,′ splitter′ :′ best′}

LogisticRegression():{′C′ : 1.0,′ fitintercept′ : T rue,′ interceptscaling′ : 1,′ maxiter′ : 100,′ njobs′ : None,′ penalty′ :′ l2′,′ solver′ :′ lbfgs′,′ tol′ : 0.0001}

KNeighborsClassifier():{′algorithm′ :′ auto′,′ leafsize′ : 30,′ metric′ :′ minkowski′,′ njobs′ : None,′ nneighbors′ : 5,′ p′ : 2,′ weights′ :′ uniform′}

SVC(kernel=’linear’):{′C′ : 1.0,′ cachesize′ : 200,′ decisionf unctionshape′ :′ ovr′,′ degree′ : 3,′ gamma′ :′ scale′,′ kernel′ :′ linear′,′ probability′ : T rue,′ tol′ : 0.001}

SVC(kernel=’poly’):{′C′ : 1.0,′ cachesize′ : 200,′ decisionf unctionshape′ :′ ovr′,′ degree′ : 3,′ gamma′ :′ scale′,′ kernel′ :′ poly′,′ probability′ : T rue,′ tol′ : 0.001}

SVC(kernel=’rbf ’):{′C′ : 1.0,′ cachesize′ : 200,′ decisionf unctionshape′ :′ ovr′,′ degree′ : 3,′ gamma′ :′ scale′,′ kernel′ :′ rbf ′,′ probability′ : T rue,′ tol′ : 0.001}

LSSVC(kernel=’linear’):{′C′ : 1.0,′ cachesize′ : 200,′ decisionf unctionshape′ :′ ovr′,′ degree′ : 3,′ gamma′ :′ scale′,′ kernel′ :′ linear′,′ probability′ : T rue,′ tol′ : 0.001}

LSSVC(kernel=’poly’):{′C′ : 1.0,′ cachesize′ : 200,′ decisionf unctionshape′ :′ ovr′,′ degree′ : 3,′ gamma′ :′ scale′,′ kernel′ :′ poly′,′ probability′ : T rue,′ tol′ : 0.001}

LSSVC(kernel=’rbf ’):{′C′ : 1.0,′ cachesize′ : 200,′ decisionf unctionshape′ :′ ovr′,′ degree′ : 3,′ gamma′ :′ scale′,′ kernel′ :′ rbf ′,′ probability′ : T rue,′ tol′ : 0.001}

MLPClassifier(solver=’lbfgs’):{′activation′ :′ relu′,′ alpha′ : 0.0001,′ batchsize′ :′ auto′,′ beta′
1 : 0.9,′ beta′

2 : 0.999,′ earlystopping′ :
F alse,′ epsilon′ : 1e − 08,′ hiddenlayersizes′ : (320, 2),′ learningrateinit′ : 0.001,′ maxf un′ : 15000,′ maxiter′ : 1500,′ momentum′ : 0.9}

MLPClassifier(solver=’sgd’):{′activation′ :′ relu′,′ alpha′ : 0.0001,′ batchsize′ :′ auto′,′ beta′
1 : 0.9,′ beta′

2 : 0.999,′ earlystopping′ :
F alse,′ epsilon′ : 1e − 08,′ hiddenlayersizes′ : (320, 2),′ learningrateinit′ : 0.001,′ maxf un′ : 15000,′ maxiter′ : 1500,′ momentum′ : 0.9}

MLPClassifier(solver=’adam’):{′activation′ :′ relu′,′ alpha′ : 0.0001,′ batchsize′ :′ auto′,′ beta′
1 : 0.9,′ beta′

2 : 0.999,′ earlystopping′ :
F alse,′ epsilon′ : 1e − 08,′ hiddenlayersizes′ : (320, 2),′ learningrateinit′ : 0.001,′ maxf un′ : 15000,′ maxiter′ : 1500,′ momentum′ : 0.9}

BaggingClassifier():{′bootstrap′ : T rue,′ bootstrapf eatures′ : F alse,′ estimatoralpha′ : 1.0,′ estimatorf itprior′ :
T rue,′ estimatorf orcealpha′ : T rue,′ estimator′ : MultinomialNB(),′ maxf eatures′ : 0.5,′ maxsamples′ : 0.5,′ nestimators′ : 10}

RandomForestClassifier(n_estimators=10):{′bootstrap′ : T rue,′ ccpalpha′ : 0.0,′ criterion′ :′ gini′,′ maxf eatures′ :′ sqrt′,′ minimpuritydecrease′ :
0.0,′ minsamplesleaf ′ : 1,′ minsamplessplit′ : 2,′ minweightf ractionleaf ′ : 0.0,′ nestimators′ : 10}

ExtraTreesClassifier(n_estimators=10, random_
state=0){′bootstrap′ : F alse,′ ccpalpha′ : 0.0,′ criterion′ :′ gini′,′ maxf eatures′ :′ sqrt′,′ minimpuritydecrease′ :
0.0,′ minsamplesleaf ′ : 1,′ minsamplessplit′ : 2,′ minweightf ractionleaf ′ : 0.0,′ monotoniccst′ : None,′ nestimators′ : 10}

GradientBoostingClassifier(learning_rate=1.0,max_depth=1,n_estimators=10, random_
state=0){′ccpalpha′ : 0.0,′ criterion′ :′ friedmanmse′,′ learningrate′ : 1.0,′ loss′ :′ logloss′,′ maxdepth′ : 1,′ minimpuritydecrease′ : 0.0,′ minsamplesleaf ′ :
1,′ minsamplessplit′ : 2,′ minweightf ractionleaf ′ : 0.0,′ nestimators′ :
10,′ niternochange′ : None,′ randomstate′ : 0,′ subsample′ : 1.0,′ tol′ : 0.0001,′ validationf raction′ : 0.1,′ verbose′ : 0}

ELM(kernel=’linear’):{′C′ : 1.0,′ Kernelpara′ : 2,′ NumberofHiddenNeurons′ : 320,′ degree′ : 3,′ Regularizationcoefficient′ : 1,′ kernel′ :′ linear′}

ELM(kernel=’poly’):{′C′ : 1.0,′ Kernelpara′ : 2,′ NumberofHiddenNeurons′ : 320,′ degree′ : 3,′ Regularizationcoefficient′ : 1,′ kernel′ :′ poly′}

ELM(kernel=’rbf ’):{′C′ : 1.0,′ Kernelpara′ : 2,′ NumberofHiddenNeurons′ : 320,′ degree′ : 3,′ Regularizationcoefficient′ : 1,′ kernel′ :′ rbf ′}

AdaBoostClassifier(n_estimators=10){′algorithm′ :′ SAMME.R′,′ estimator′ : None,′ learningrate′ : 1.0,′ nestimators′ : 10,′ randomstate′ : None}

DL1 < Sequentialname=sequential_22, built=True >
{′name′ :′ adam′,′ learningrate′ : 0.0010000000474974513,′ weightdecay′ : None,′ clipnorm′ : None,′ globalclipnorm′ : None,′ clipvalue′ : None,′ useema′ :
F alse,′ emamomentum′ : 0.99,′ emaoverwritef requency′ : None,′ lossscalef actor′ :
None,′ gradientaccumulationsteps′ : None,′ beta′

1 : 0.9,′ beta′
2 : 0.999,′ epsilon′ : 1e − 07,′ amsgrad′ : F alse}

DL2 < Sequential name=sequential_23, built=True >
{′name′ :′ adam′,′ learningrate′ : 0.0010000000474974513,′ weightdecay′ : None,′ clipnorm′ : None,′ globalclipnorm′ : None,′ clipvalue′ :
None,′ useema′ : F alse,′ emamomentum′ : 0.99,′ emaoverwritef requency′ : None,′ lossscalef actor′ :
None,′ gradientaccumulationsteps′ : None,′ beta′

1 : 0.9,′ beta′
2 : 0.999,′ epsilon′ : 1e − 07,′ amsgrad′ : F alse}

DL3 < Sequential name=sequential_24, built=True >
{′name′ :′ adam′,′ learningrate′ : 0.0010000000474974513,′ weightdecay′ : None,′ clipnorm′ : None,′ globalclipnorm′ :
None,′ clipvalue′ : None,′ useema′ : F alse,′ emamomentum′ : 0.99,′ emaoverwritef requency′ :
None,′ lossscalef actor′ : None,′ gradientaccumulationsteps′ : None,′ beta′

1 : 0.9,′ beta′
2 : 0.999,′ epsilon′ : 1e − 07,′ amsgrad′ : F alse}

Table 17.  Hyper-parameter values for the ML models.
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