

OPEN

Retraction Note: Multivariate optimization of removing of cobalt(II) with an efficient aminated-GMA polypropylene adsorbent by induced-grafted polymerization under simultaneous gamma-ray irradiation

Published online: 21 January 2025

Fatemeh Maleki, Mobina Gholami, Rezvan Torkaman, Meisam Torab-Mostaedi & Mehdi Asadollahzadeh

Retraction of: *Scientific Reports* <https://doi.org/https://doi.org/10.1038/s41598-021-97826-y>, published online 15 September 2021

The Editors have retracted this article.

After publication, concerns about this article were brought to the attention of the Editors. The Article contains passages of text that are similar to text in previous publications with no common authors^{1,2}. It also features examples of non-standard phrasing, such as 'examining electron magnifying lens' rather than 'scanning electron microscope', and the discussion of Figure 3 within the body of the article does not appear to correspond to the data presented in the figure itself. The Editors requested that the Authors provide full experimental data for review, but the Editors were not able to verify the data files provided as original raw data. The Editors no longer have confidence in the reliability of the results and findings presented in this Article.

Mehdi Asadollahzadeh did not explicitly state whether they agree or disagree with retraction. The remaining Authors did not respond to correspondence from the Editors regarding this retraction.

References

1. Abbasi, A. et al. Carbon dioxide adsorption on grafted nanobrous adsorbents functionalized using different amines. *Front. Energy Res.* <https://doi.org/10.3389/fenrg.2019.00145> (2019).
2. Ghosh, J. Development of UV protective finished fabric using herbal synthesized colloidal solution of silver nanoparticles. *J. Inst. Eng. India Ser. E* <https://doi.org/10.1007/s40034-021-00228-y> (2021).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Publisher 2025