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Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disorder of unknown etiology, 
characterized by interstitial fibrosis of the lungs. Bleomycin-induced pulmonary fibrosis mouse model 
(BLM model) is a widely used animal model to evaluate therapeutic targets for IPF. Histopathological 
analysis of lung fibrosis is an important method for evaluating BLM model. However, this method 
requires expertise in recognizing complex visual patterns and is time-consuming, making the workflow 
difficult and inefficient. Therefore, we developed a new workflow for BLM model that reduces inter- 
and intra-observer variations and improves the evaluation process. We generated deep learning 
models for grading lung fibrosis that were able to achieve accuracy comparable to that of pathologists. 
These models incorporate complex image patterns and qualitative factors, such as collagen texture 
and distribution, potentially identifying drug candidates overlooked in evaluations based solely 
on simple area extraction. This deep learning-based fibrosis grade assessment has the potential to 
streamline drug development for pulmonary fibrosis by offering higher granularity and reproducibility 
in evaluating BLM model.

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disorder of unknown etiology, 
characterized by interstitial fibrosis of the lungs1,2. Repetitive alveolar epithelial injury triggers the early 
development of fibrosis and leads to tissue remodeling and the fibrosis seen in end-stage pulmonary fibrosis. 
The Ashcroft fibrosis score is a metric used to assess fibrotic changes in clinical samples under microscopic 
evaluation3. This assessment is traditionally performed by pathologists with a 10x objective in multiple fields of 
view, with scores ranging from 0 (normal lung) to 8 (total fibrous obliteration). The final score averages those of 
individual microscope fields.

To develop therapeutics for IPF, a widely used non-clinical model for IPF is bleomycin-induced pulmonary 
fibrosis mouse model (BLM model) of lung injury. Unfortunately, while no animal model fully recapitulates 
the histologic pattern of IPF or exhibits features of progressive disease4, BLM model, unlike human IPF, has 
characteristics such as rapidity of its development, inflammation preceding fibrosis, and self-resolution nature5. 
However, the model is currently considered “the best-characterized animal model available for preclinical 
testing” at this moment. Ashcroft fibrosis score, originally designed for human evaluation, includes late-phase 
IPF features such as “honeycomb lung”. Honeycomb lung appears rare in mouse models, but has been forcibly 
induced for the evaluation of BLM model6,7. Furthermore, one intractable problem with Ashcroft fibrosis score 
is that it is time-consuming and requires highly trained pathologists who are nevertheless prone to intra- and 
inter-observer variations6,8. Therefore, a new high-throughput and reproducible scoring system for assessing 
lung fibrosis in BLM model would be greatly aid the development of therapeutics9–11.

Recently, several reports have been published on image analyses for quantifying fibrosis areas in lung8,12,13. 
However, IPF grading requires highly nuanced interpretation of pathological images, including the accumulation 
of myofibroblasts in clusters called fibroblastic foci, and extensive extracellular matrix (ECM) deposition within 
the interstitium that results in the destruction of alveolar architecture14. Moreover, several reports have shown 
that tissue density affects fibrosis development12,15. As such, simple measurements of the fibrosis area may not 
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be enough to capture the severity of IPF. Therefore, we developed a workflow in BLM model and generated 
deep learning models for grading lung fibrosis. The models function with minimal variability and, furthermore, 
provide a continuous score, offering opportunities for research with higher granularity.

Materials and methods
Dataset
We collected 173 whole slide images (WSI) (ndpi, x20) for C57BL6/J mouse lung fibrosis slides stained with 
Sirius red. Although the slides of left lung were prepared in two different facilities, the Sirius red staining was 
performed following a standard procedure. These slides were obtained from five independent archived animal 
studies with mice treated with bleomycin including control mice (Table 1). In all studies, animal procedures 
were conducted in accordance with the Institute’s Guide for the Care and Use of Laboratory Animals, and 
all experimental protocols were approved by the Institutional Animal Care and Use Committee at Chugai 
Pharmaceutical Co., Ltd. All C57BL/6J male mice were purchased from The Jackson Laboratory Japan, Inc. 
(Kanagawa, Japan) and were acclimated for 1 week before the start of treatments. Lung fibrosis was induced by the 
following three methods. Study 1 and 2 were established via intrathecal administration using 6-week-old mice. 
Bleomycin (Nihonkayaku, Tokyo, Japan) was administered intratracheally once at 0.75 mg/kg. Lung fibrosis was 
evaluated at day 21 from the administration of the bleomycin. Study 3 and 4 were established via osmotic pump 
using 8-week-old mice. 60 mg/kg Bleomycin was administered through subcutaneously by implanting osmotic 
infusion pump (ALTEZ 1007D) for 10 days. Lung fibrosis was evaluated at day 28 after pump implantation. 
Study 5 were established via subcutaneous administration using 8-week-old mice. Bleomycin was administered 
200 µg/100 µL subcutaneously in total 10 shots (5 days consecutively administration, 2 days of withdrawal, and 
following 5 days consecutively administration). Lung fibrosis was evaluated at day 28 from 1st administration of 
the bleomycin. Lung sampling was performed under isoflurane anesthesia after exsanguination euthanasia in all 
studies. The study is reported in accordance with ARRIVE guidelines.

Histopathological evaluation
Pathologists assessed fibrosis grade for each animal study using light microscopy or WSI to establish ground 
truth. Fibrosis grades were categorized into four levels: none; 0% (Grade0), weak; less than 10% (Grade1), 
moderate; between 10% and 20% (Grade2), severe; more than 20% (Grade3) (Fig. 1a; Table 1). The grade was 
defined based on the area of fibrosis spreading within the lung tissue in each WSI. These pathologists provided 
the label for generating our deep learning models; however, to fully evaluate the performance of our models 
in comparison to pathologists, two additional pathologists (P#3 and P#4) also graded fibrosis using WSIs 
independently (Study 1 and 2 in Table 1).

Workflow
First, WSIs were preprocessed with HALO AI image analysis software (Indica Labs, NM, USA, v3.3 or v3.4) 
to distinguish the alveolar area for analysis. Using the “classifier” function, a pathologist annotated “alveolar” 
and “bronchus”. The software then iteratively trained and output the classified results, and the “alveolar” area 
was defined as the object of analysis. Next, the fibrosis area within “alveolar” area was extracted using the “Area 
quantification v2.1.11” module. These results, including images of the detected fibrosis area, annotation data, 
and the original WSI file, were exported.

The resolution of unmodified WSIs was too high for use as inputs for our models; however, reducing image 
size could result in the loss of information needed for fibrosis analysis. Therefore, we used a pre-processing 
strategy to preserve necessary information while focusing on areas critical for determining the fibrosis grade. 
The WSIs were cropped into rectangular images of the alveolar areas and were partitioned into 1024 × 1024-pixel 
patches. The background regions within these patches were then removed. Each patch was scored according 
to the area of fibrosis region detected by HALO AI. Next, we generated 5 × 5 tiled images using the top 25 
scored patches from each WSI as input images to test and evaluate our models. For training the models, we also 
generated tiled images using 25 patches randomly selected from the top 50 scored patches, and each patch was 
randomly rotated and flipped. (Fig. 1b). We generated 50 tiled images corresponding to a single WSI, and during 
each training epoch, a random tiled image was selected.

Study No. 1 2 3 4 5

Evaluation G, P#3, P#4 G, P#3, P#4 G G G

Center A A A A B

Grade0 4 4 8 10 3

Grade1 18 28 16 16 30

Grade2 8 9 6 7 0

Grade3 5 1 0 0 0

Total number 35 42 30 33 33

Table 1.  Summary of the dataset. G, P#3, and P#4 indicate ground truth, pathologist #3, and pathologist 
#4. The ground truth was established by two pathologists. Pathologist #1 conducted Study 1 and 2, while 
Pathologist #2 conducted Study 3, 4 and 5. Image dataset was prepared at two sites (A and B).
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To evaluate the effectiveness of patch pre-selection, we trained and evaluated another model without using 
patch pre-selection. As with the patch pre-selection approach, the WSIs were divided into 1024 × 1024-pixel 
patches. Instead of selecting top-scored patches, all patches were used to generate 5 × 5 tiled images. Consequently, 
multiple tiled images were generated from a single WSI. For evaluation, the outputs from multiple tiled images 
of a single WSI were averaged to determine the predicted class.

Our models are convolutional neural networks (CNNs) with an EfficientNet-B2 backbone, pre-trained on 
ImageNet-1 K, and two fully connected layers as the classifier. We trained the model using a stochastic gradient 
descent (SGD) optimizer with 300 epochs, learning rate of 10− 3, and batch size of 64. We evaluated the models 
using 5-fold cross-validation. Each fold comprised 143 training data samples and 30 validation data samples. 
Given the limited number of data samples in this study, particularly with only six samples for Grade3, we did 
not simply divide the dataset into five parts and assign them to training and validation. Instead, we chose the 
validation data to ensure sufficient samples for each class per fold. The model training and validation were 
performed using Python v3.8.10 with Pytorch v1.10.2, Torchvision v0.11.3, Numpy v1.22.2 and Albumentations 
v1.3.0.

Fig. 1.  Prediction of the grade of lung fibrosis. (a) Lung fibrosis was defined as having four grades: none, 
Grade0; weak, Grade1; moderate, Grade2; severe, Grade3. The grade was defined based on the area of fibrosis 
spreading. The squares in the top figures indicate the areas of high magnification in the lower section. Bar, 
2.5 mm. (b) Overview of workflow for predicting the lung fibrosis grade. Whole slide images (WSIs) were 
cropped into rectangular images encapsulating the alveolar area and were divided into 1024 × 1024-pixel 
patches. Each patch was scored according to the area of fibrosis region detected by HALO AI. Next, we 
generated 5 × 5 tiled images using top 25 scored patches from each WSI. Tiled images were used as inputs for 
our models to test and evaluate.
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Statistical analysis and evaluation metrics
Statistical analysis and evaluation metrics were performed using Python v3.9.16 with Numpy v1.23.5 and Scipy 
v1.12.0. The effectiveness of each model compared to the pathologist evaluations was verified based on accuracy. 
The level of agreement between pathologist-pathologist pairs and machine-pathologist pairs was determined 
using both agreement coefficient and Cohen’s kappa coefficient16 (Kcoef). The means of the two groups was 
compared using Welch’s t-test.

Result
Validation of the models for grading fibrosis
To validate the quality of our models, we compared the fibrosis grades assigned by pathologists with the scores 
predicted by our deep learning models using 5-fold cross-validation (Fig. 2). The accuracy of all analyses was 
high, with the confusion matrix showing no estimation errors more than two classes apart. The models’ scores 
were calculated by multiplying SoftMax values with the grade numbers. The figure shows a correlation between 
the pathologists’ grades and the scores predicted by our models. The average accuracy of the five analyses for 
the model with patch pre-selection was 83%. In contrast, the average accuracy without patch pre-selection was 
75%, demonstrating higher overall accuracy for the former. The model without pre-selection was more likely 

Fig. 2.  Validation of the model for grading fibrosis. (a) (top) We calculated the accuracy by comparing the 
scores of the actual pathologists and those of predicted by our models using 5-fold cross-validation. (a) 
(bottom) The comparison of the pathologist evaluation and the grade score estimated by the models. The 
models’ grade score was calculated by multiplying SoftMax values and grade numbers. The dashed line was 
fitted by the least-squares method and r value represents the correlation coefficient between the pathologist 
evaluation and the calculated grade score. (b) (top) To compare with (a), we calculated the accuracy of the 
models without patch pre-selection. (bottom) Similarly, we compared the pathologist evaluation and the grade 
score estimated by the models without patch pre-selection.
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to underestimate grade, particularly predicting Grade 2 for data that pathologists evaluated as Grade 3 than 
the model with pre-selection. The model with patch pre-selection requires one input image for a single WSI, 
reducing computational cost.

Correlation prediction from the models and pathologists
To evaluate the performance of our models in comparison to pathologists, we examined the level of agreement 
coefficient and Kcoef (Fig. 3a and b). We further compared the variations in both agreement coefficient and 
Kcoef between pathologist–pathologist pairs and machine–pathologist pairs (Fig.  3c and d). No significant 

Fig. 3.  Model predictions compared with pathologist evaluations. (a) Agreement coefficient and (b) Cohen’s 
kappa coefficient (Kcoef) for every pair. (c) Variations in agreement coefficient and (d) variations in Kcoef 
between pathologist–pathologist pairs (P-P) and machine–pathologist pairs (M-P) are shown. The Kcoef 
is based on the difference between the observed agreement (po) and the probability of chance (pe) and is 
calculated as po − pe / 1 − pe. P values were calculated using Welch’s t-test (n = 3). G, P#3, P#4 and M indicate 
ground truth, pathologist #3, pathologist #4 and machine.
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difference was observed, indicating that our models’ performance in grading lung fibrosis is on par with that of 
pathologists.

Discussion
BLM model is a widely used animal model to evaluate therapeutic targets for IPF5,17–19. Histopathological 
analysis of lung fibrosis is an important method for evaluating BLM model. However, challenges such as inter- 
and intra-observer variations and disappointing throughput complicate this approach6,8. We believe that digital 
technologies will be able to streamline and improve the evaluation process.

In this study, we successfully developed deep learning models that mimic evaluation by a pathologist. These 
models achieved an accuracy comparable to the variations among pathologists. For this dataset, WSIs from Sirius 
Red stained specimens prepared at multiple centers (Table 1) were used. Although there was a concern that this 
might affect the accuracy of the models, the verification results showed that the data from the facilities used in 
this study was consistent and acceptable for this study. However, our workflow should be validated further in 
order to be applied automatically to any stain of any center due to the limitation of n = 2 centers in this study.

We carried out patch pre-selection before delving into deep learning. The process of human annotation 
presents several challenges, as it can be time-consuming and subject to variability20. Meanwhile, self-supervised 
learning approaches, capable of capturing image features without the necessity for annotation, demand 
substantial data and computational resources21. To surmount these hurdles, we developed models capable of 
interpreting complex image patterns, akin to the abilities of pathologists. This was accomplished beyond the 
simple area extraction that the HALO AI image analysis software usually performs. This was motivated by our 
preliminary study showing that simple area extraction and pathologist evaluations did not sufficiently match. 
This discrepancy was attributed to the fact that pathologists did not grade solely based on the simple Sirius red-
positive area. They also considered qualitative factors such as collagen texture and distribution. The pathologist’ 
perspective has the potential to recognize drug possibilities that might be overlooked in efficacy evaluations 
based only on the size of the area. We think this qualitative capacity is more important than the operational 
efficiency and reproducibility provided by our simpler deep learning models.

In conclusion, we developed a deep learning workflow for assessing fibrosis grades in BLM model. This 
workflow emulates the pathologist’s grading process, including qualitative assessment. The use of this workflow 
is expected to facilitate the development of drugs for pulmonary fibrosis.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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