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The variability of East African short rains (October–December) has profound socioeconomic and 
environmental impacts on the region, making accurate seasonal rainfall predictions essential. We 
evaluated the predictability of East African short rains using model ensembles from the multi-system 
seasonal retrospective forecasts from the Copernicus Climate Change Service (C3S). We assess the 
prediction skill for 1- to 5-month lead times using forecasts initialized in September for each year from 
1993 to 2016. Although most models exhibit significant mean rainfall biases, they generally show skill 
in predicting OND (October–December) precipitation anomalies across much of East Africa. However, 
skill is low or absent in some northern and western parts of the focus area. Along the East African 
coasts near Somalia and over parts of the western Indian Ocean, models demonstrate skill throughout 
the late winter (up to December–February), likely due to the persistence of sea surface temperature 
anomalies in the western Indian Ocean. Years when models consistently outperform persistence 
forecasts typically align with the mature phases of El Niño Southern Oscillation (ENSO) and/or Indian 
Ocean Dipole (IOD). This latter mode, when tracked using the Dipole Mode Index, is generally able 
to predict the sign of the rainfall anomaly in all models. Despite East Africa’s proximity to the west 
pole of the IOD, the correlation between short rains and IOD maximizes when both east and west are 
considered. This finding confirms previous studies based on observational datasets, which indicate that 
broader-scale IOD variability associated with changes in the Walker Circulation, rather than local SST 
fluctuations, is the primary driver behind East African rainfall.
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East African region is exposed to climate variability such as recurrent drought and flood which cause to food 
insecurity. In recent years, intense droughts occurred in 1996, 1998, 2005, 2016, 2020 and 20211. For example, 
Click here to enter text. Confirmed the extended metrological drought from 2020 to 2021 caused much crop 
failure and livestock production in eastern Ethiopia, Kenya, and Somalia. Since the region highly relies on rain-
fed agriculture, the delayed onset or early cessation of the rainy seasons has a direct impact on crop pattern3. 
This region experiences two rather distinct wet seasons that are associated with the latitudinal migration of the 
intertropical convergence zone (ITCZ)4–6. The first wet season, known as the long rains, typically occurs during 
the boreal spring months of March to May (MAM), characterized by heavier and more prolonged rainfall. 
However, recent studies indicate that some countries, including Kenya and Uganda, have experienced rainfall 
in January and February, extending the wet season into these months7. The second wet season, or the short 
rains, generally takes place during the autumn months of October to December (OND), featuring shorter and 
less intense rainfall episodes5,8,9. Compared to the long rainy season, the short rains exhibit greater interannual 
variability, which has significant socioeconomic implications for the region10.

Previous studies11,12 assessed the predictability of the interannual variability of East African rains using both 
statistical and dynamical model outputs, as well as global observational datasets. For instance13, evaluate the 
predictability of East African short rains using operational seasonal forecasts of Greater Horn of Africa Climate 
Outlook Forum (GHACOF) model, which produced seasonal forecasts through a combination of dynamical 
and statistical climate models, expert judgment, and consensus-building, integrating global model outputs with 
regional climate knowledge and historical data. Their analysis revealed significant limitations, including low 
predictive skill and systematic errors, such as a pronounced dry bias in December over the southern parts of 
East Africa. In contrast14 identified a wet bias during the short rainy season across many parts of the region 
while evaluating ensemble climate forecasts from the European Centre for Medium-Range Weather Forecasts 
system-4 (ECMWF-4). Their analysis, employing metrics like the anomaly correlation coefficient (ACC), 
demonstrated that ECMWF-4 captured El Niño-Southern Osciallation (ENSO)-related anomalous years with 
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region-dependent skill. Additionally11, explored the predictability of September–October–November (SON) 
rainfall anomaly using the Asia–Pacific Climate Center Ocean–Atmosphere coupled multi-model ensemble 
hindcasts initialized on August 1. They reported that 5 out of 10 coupled models showed statistically significant 
skill in predicting short rains over equatorial East Africa. However, skill was limited over most land areas, with 
better performance along sections of the western Indian Ocean coastline. Their findings also revealed a strong 
correlation between observed and predicted rainfall anomalies during SON, driven by the phase of a dominant 
regional climate mode, the Indian Ocean Dipole (IOD)15.

ENSO and IOD mode have a strong influence on the interannual variability of east African short rains16,17, 
with their independent roles, as drivers of East African short rains, that have been studied using Scale Interaction 
Experiment-Frontier Research Center for Global Change, version 1 (SINTEX-F1) model10. The latter study 
found that the SON rainfall anomaly (RFa) exhibited significant correlation with the pure IOD (i.e., an IOD 
event occurring during neutral ENSO phases), while the correlation ENSO was found to be not statistically 
significant. When positive IOD coincided with strong El Nino in years like 1972 and 1997, East African short 
rains had experienced excess precipitation15. Yet, some studies18 suggest that positive ENSO phases, like the 2015 
El Niño event, may occasionally exhibit a stronger association with East African short rains than the positive 
phase of the IOD. Consequently, a comprehensive assessment of East African rainfall predictability should 
account for the combined effects of ENSO and IOD on rainfall variability19 as has been done for other regions20.

To date, no study has assessed the predictability of East African short rains using the multi-system seasonal 
retrospective forecasts provided by the Copernicus Climate Change Service (C3S), which employs state-of-the-
art seasonal prediction systems. This study aims to fill this gap by not only evaluating the predictive skill of these 
systems but also examining the models’ skill dependency on ENSO and IOD phases, considering both their 
independent and combined effects on the East African short rain patterns.

Model climatology and inter-annual variability
To characterize the mean bias in forecasting precipitation during East African short rain season, we compare 
rainfall climatology of each model (i.e., ensemble mean) with GPCP and ERA5 observational products (Fig. 1). 
Observational datasets and models present high precipitation over the southwest parts of the analyzed region. 
Specifically, the maximum rainfall pattern is observed over Congo Basin with secondary peaks over Lake Victoria 
and southern Ethiopia, all located inland and away from the coast. These high rainfall areas appear to be closely 
linked with orographic features, such as the Mitumba Mountains stretch along the Western Rift Valley in Eastern 
Congo and the East African highlands (e.g., Ethiopian, and Kenyan highlands). However, both GPCP and ERA5 
have little precipitation over Indian Ocean with a relative maximum located between the Equator and 5°S. While 
models represent this feature, all but NCEP overestimate the rainfall pattern. Overall, the climatology depicted 
by observations and all models except NCEP present main features associated with orographic precipitation. 
However, a small-scale local precipitation maximum in the westernmost part of Ethiopia (i.e., the Ethiopian 
highlands, approximately around 7° N–38° E) is captured by only 50% of the models (i.e., JMA, ECMWF, 
CMCC, and MeteoF). While this feature is absent in the GPCP dataset (Fig. 1i), it appears to be realistic as it is 
also evident in ERA5 (Fig. 1j), which provides precipitation estimates at a higher spatial resolution (0.25° for 
ERA5 vs. 0.5° for GPCP). As expected, compared to observational datasets, the models’ climatology generally 
exhibits smoother precipitation patterns.

We also examined the year-to-year variation of short rainy season (Fig. 1k) by averaging RFa over part of 
East Africa between 5° S and 10° N and 30°–50° E (blue box in Fig. 1ai). Subsequently, we derived an equatorial 
East African rainfall index (EEARi), following a methodology5. The index reveals that 1997 appears to represent 
the peak rainfall for both models and observation. However, it also indicates that some models such as DWD 
and NCEP significantly underestimate this event. GPCP and ERA5 generally presents more year-to-year 
variations than the models as the ensemble means smooth out most of the internal variability that grows from 
the perturbation in the initial conditions. Both models and observations generally exhibit consistency during 
years with relatively strong positive rainfall anomalies. This consistency also holds true for a few negative events 
presented in 1996 and 2010.

In addition to the evolution of the EEARi, we looked at the spatial pattern of rainfall variability during OND 
season as represented by the inter-annual standard deviation for both models and observational dataset (Fig. 
S1 in the Supporting Information). Over the ocean, GPCP and ERA5 present a double maximum variability at 
both side of the equator at +− 5°, while in the model this is true only for ECCC MeteoF and NCEP. Furthermore, 
several models but especially JMA and UKMO presents a significant bias in OND variability over Eastern Indian 
Ocean. This high rainfall variability also shown over East African highlands and near to Congo basin. Consistent 
with the GPCP and ERA5 climatology, some models, including JMA, CMCC, and NCEP, demonstrate high 
rainfall variability over the highlands (Fig. S1a, e and g), while all models show minimal variability over northern 
parts of East Africa.

Predictive skill
The predictive skills of coupled models for East African short rains are assessed using spatial (i.e., timeseries of 
pattern correlation) and temporal (i.e., pointwise-correlation map) anomaly correlation coefficient. The ACC 
analysis is a common statistical metric widely used to measure the spatial (or temporal) correlation between the 
simulated and the observed anomaly each computed relative to their respective climatology (see methods)21,22.

We perform the correlation analysis between ensemble means of each model and the observed East African 
rainfall anomalies at three lead seasons: Lead season 1 corresponds to the first forecast period (OND), lead 
season 2 to the second period (NDJ), and lead season 3 to the third period (DJF). All forecasts are initialized 
in September for each year from 1993 to 2016. At lead season 1, nearly all coupled models exhibit a significant 
correlation exceeding 0.6 across the western tropical Indian Ocean and the central to eastern African coastal 
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Fig. 1.  The upper panel shows the rainfall climatology during the short rains (October-December: OND) 
derived from GPCP (i), ERA5 (j), and the seasonal prediction systems from Copernicus Climate Change 
Service (C3S), which includes 8 ocean–atmosphere coupled model ensembles and cover the period 1993–2016 
(a–h). The lower panel shows area-averaged OND rainfall anomalies for part of Eastern Africa (30–50° E, 
5°S–10° N; blue dashed box in i) for models, ERA5, and GPCP dataset. Anomalies are computed relative to the 
climatology shown in the upper panel. All maps and time series plots were created using Python 3.12.3 (https://
www.​python.org/d​ownloads/rel​ease/python​-3123/), utilizing libraries such as NumPy, Matplotlib, Cmaps, and 
Cartopy.
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regions. Moreover, along the East African coasts, models such as JMA, ECMWF, ECCC, UKMO, and CMCC 
(shown in Fig. 2a–e) demonstrate robust predictive capabilities extending generally up to lead season 2. In some 
places, such as the Equatorial Indian Ocean region within the studied domain, this skill persists up to lead season 
3, probably associated with long persistence in SST, which present autocorrelation values often higher than 0.85 
up to lead season 3 (Fig. S2 in the Supporting Information). However, the DWD and NCEP models exhibited 
poor predictive skill, presenting correlations below 0.2 across several parts of the region in East Africa. Overall, 
the forecasts demonstrate weak correlation with both GPCP and ERA5, fail to predict rainfall patterns across 
Northern, Western, and many highland regions throughout all lead seasons.

Furthermore, we also looked at the dependency of the prediction skill on monthly lead-time computing from 
ACC for patterns of anomalous precipitation. To understand the predictive skills of each model at specific year, 
we highlighted the 3 most skillful years in which the models consistently outperform the persistence forecasts 
for lead time from 1 to 3 months (Fig. 3a–h). Specifically, when compared to persistence forecasts, all models 
except DWD model present skillful predictions for the year 1997 at 1–3 lead months. Similarly, the year 2010 was 
identified as the most successfully predicted year in models such as JMA (Fig. 3a) and ranked as the third most 
skillful year in models such as UKMO, NCEP, and MeteoF (Fig. 3d, f, and g), with ACC values greater than the 
persistence forecast up to the third lead month. Notably, DWD is the only model that successfully capture years 
such as 2015, 2009, and 1994, which are missed by other models (Fig. 3h). Generally, as lead time increases, the 
forecasting skill of models tends to decline with most years exhibiting significantly lower ACC values compared 
to the persistent skill level. Overall, precipitation anomalies in years 1997 and 2010 are more predictable, with 
most of the models presenting ACC values that outperform the persistence skill through November (Fig. 3a–h). 
To assess the interannual predictive skill of models for the East African short rainy season, we looked at the 
correlation between the observed and predicted RFa (computed over EEAR box) across the hindcast periods 
(Fig. 3i). The highest skill presented in all models for the year 1997. Moreover, the skills of most models are 
similar during years 1994, 2008 and 2010 (Fig. 3i). Particularly, 1994 is the second-most skillful year after 1997, 
with higher ACC values evident in models such as ECMWF, CMCC, UKMO, and DWD. Similarly, in the year 
2008, we observe high correlation values across most coupled models, except for the ECCC and MeteoF. Several 
years with improved predictive accuracy seem to align with ENSO and IOD events, highlighting the significant 
impact these climate patterns have on both the variability and predictability of East African rainfall.

Fig. 2.  Pointwise-correlation maps between GPCP and C3S model predictions for lead season 1 (October–
December: OND), lead season 2 (November–January: NDJ), and lead season 3 (December–February: DJF) of 
rainfall anomalies (ensemble mean) during 1993–2016. Stippling indicates area where the correlation between 
the hindcast and observation are statistically significant at 90% confidence level, as calculated by a two-side 
Student t-test for 22(N-2) degrees of freedom. The maps were created using Python 3.12.3 ​(​​​h​​​​t​t​​p​s​:​​/​​/​w​w​w​.​​p​y​t​​h​o​n​​
.​​o​r​g​/​d​o​w​n​l​o​a​d​s​/​r​e​l​e​a​s​e​/​p​y​t​h​o​n​-​3​1​2​3​/​​​​​)​, utilizing libraries such as NumPy, Matplotlib, Cmaps, and Cartopy.
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Predictability conditional on ENSO and IOD phases
Several studies have shown how modes of interannual variability in the Indian and Pacific tropical oceans 
represent a main source of predictability for seasonal rainfall patterns23,24. These studies indicate a clear 
association between mature phases of IOD and ENSO events10,15. Thus, we investigate the role of tropical 
SST in influencing variability in East African short rains, utilizing indices that monitor rainfall (i.e., EEARi), 
ENSO and IOD. Specifically, the Niño 3.4 index (N3.4; SST anomalies averaged over 120° W–170° W, 5°S–5° 
N) tracks ENSO, while the Dipole Mode Index (DMI; SST anomalies difference between the western Indian 
Ocean (DMIw), 50° E–70° E, 10°S–10° N, and eastern Indian Ocean (DMIe), 90–110° E, 10°S -0) monitors IOD 
variability15,20. The relationship between EEARi, N3.4, and DMI across models (Fig. 4a–h) and ERA5 (Fig. 4i) 
indicate that negative (positive) RFa are consistently linked to the concurrent negative (positive) phases of IOD 
and ENSO, with the magnitude of the anomaly that depends on the intensity of these two drivers in various 
years. ENSO and IOD a present an important co-variability that result in a significant N3.4-DMI correlation 

Fig. 3.  The upper panel shows the anomaly correlation coefficient (ACC) between GPCP and each C3S model 
(a–h) for monthly rainfall anomaly over part of Eastern Africa (blue dashed box of Fig. 1i) for each year (grey 
lines) from lead month 0 (September) to lead month 5 (February). In each subfigure, the top three forecasts 
stand out with distinct colours: the most accurate year is highlighted in red, the second-best in blue, and the 
third best in magenta. These forecasts are determined by sorting all predicted years based on their average 
ACC values across September and October. The black dashed line indicates the persistence forecast. The lower 
panel (i) illustrates the spatial correlation between each model and GPCP rainfall anomaly patterns for the 
OND seasonal mean, calculated over Equatorial Eastern Africa (30–50° E, 5°S–10° N).
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Fig. 4.  Scatterplot of Niño3.4 index (N34; x-axis) versus Dipole Mode Index (DMI; y-axis) during OND 
season for each of the 24 years analyzed in both model predictions (a–h) and GPCP dataset (i). The area of the 
circle is proportional to the absolute value of OND rainfall anomaly averaged over part of the Eastern Africa 
(blue dashed box of Fig. 1i), with positive (negative) anomaly coloured in green (orange). As in Fig. 3 the best 
forecasted year is highlighted in red, the second-best in blue, and the third best in magenta. Additionally, the 
correlation coefficient between N3.4 and DMI is provided a top each subfigure for reference. (j–r) shows a 
similar analysis but with the western pole of the DMI index (DMIw).
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during the OND season in both observations and models (0.74 for the observation and between 0.65 and 0.78 
for the models; Fig. 4).

When both IOD and ENSO are in the positive phase, all coupled models and GPCP present above-normal 
OND rainfall (green colors on Fig. 4) across the East African region. The best predicted year (Fig. 3) is associated 
with the strongest El Niño event on record (1997/1998), which co-occurred with strong positive IOD phase. 
During the short rainy season of 1997, East Africa experienced the largest positive RFa, reaching up to 3 mm/day 
(Figs. 1k and 4). While all models represent a high correlation between ENSO and IOD, the observed extreme 
1997 precipitation event is particularly evident only in six out of eight models (i.e., JMA, ECMWF, ECCC, 
UKMO, CMCC and NCEP). In this year, however only DWD model fail to simulate this RFa event, despite the 
high correlation between DMI and N34 is presented (Fig. 4h).

On the other hand, during negative ENSO and IOD phases, all models and GPCP tend to exhibit negative 
OND RFa (as shown by the yellow-filled circles in Fig. 4). For instance, during the 1998 negative ENSO and 
IOD phase (Fall 1998) that immediately followed the record-breaking 1997/1998 El Niño event, the observed 
negative RFa were successfully forecasted at lead months in only three models such as UKMO, MeteoF and 
NCEP (Fig. 3d, f, and g). However, when lead season considered only MeteoF, ECMWF, and JMA can predicted 
an amplitude of the OND anomaly comparable to the observation (Fig. 3i). Additionally, 2010 is identified as 
the second most skillfully year by JMA (Fig. 3a), and as third most skillfully year by UKMO, MeteoF, and NCEP 
models (Fig. 3d, f, and g), showing negative OND seasonal anomalies during negative phases of DMI and N34 
(Fig. 4a, f, and g).

Given the vicinity of East Africa to the Western pole of the IOD (i.e., DMIw region), we wanted to explore if 
the interannual variability of East African short rain was more strongly connected to fluctuations in the DMIw 
index, which has been shown to exhibit slightly higher predictability11. However, despite this geographical 
closeness, the correlation between OND RFa in the EEAR region (i.e., EEARi) and DMIw is slightly lower than 
the correlation between EEARi and the overall DMI (see Table S1 in the Supporting Information). This finding 
is remarkable considering that ENSO present a stronger connection with the DMIw compared to the DMI, as 
evidenced in both observational data and climate models (Fig. 4j–r). The stronger correlation between EEARi 
and the DMI, despite the expectation that local SST variations would play a more significant role, emphasizes the 
importance of broader-scale IOD variability. This suggests that the key factor influencing East African rainfall 
is the IOD-driven disruption of the zonal atmospheric circulation associated with the Indian Ocean branch of 
the Walker Circulation.

Discussion
We assessed the predictability of East African short rains in all eight seasonal retrospective forecast systems from 
the Copernicus Climate Change Service (C3S). Given our aim, we only consider the forecast initialized at the 
beginning of the short rainy season, namely in September.

Despite sizable local biases (Fig.  1), most models appear to have skill in predicting OND precipitation 
anomalies over most parts of East Africa, and present low or no skill in some areas of northern and western 
Africa. Along the East African coasts (near Somalia) and some portions of western Indian ocean, models have 
skill up to DJF seasons, as shown by the stippling indicating significant correlations (Fig. 2). This is probably 
associated with the SST persistence in western Indian Ocean (Fig. S2 in the Supporting Information) which tend 
to be significant up to winter season in most models. These results are in line with previous studies that have 
analyzed the SINTEX-F1 model10 and the APCC Ocean–Atmosphere coupled multi-model ensemble11.

It is noteworthy that these results (referring to Fig. 2) are rather robust and do not change significantly using 
a different verification dataset such as ERA5 reanalysis (Fig. S3 in the Supplementary Information). In all models 
the skill has a strong inter-annual dependency that is evident when looking at the monthly ACC for the first 
6-month lead-time (Fig. 3). However, differently from the pointwise correlation maps, this ACC skill might vary 
if one considers a different verification dataset. Specifically, 2010 is identified as the second most skillful year 
only when we evaluate against ERA5 reanalysis (Fig. S4 in the Supplementary Information).

Given then strong influence that major tropical modes have in the region25–27, it does not surprise that skillful 
years are usually associated with ENSO and IOD mature phases, with the largest anomaly occurring during years 
of contemporary ENSO and IOD extremes. Moreover, recent studies by28,29 have shown, using observational 
and reanalysis products—including GPCP and ERA5, as used in this study—that knowledge of ENSO and IOD 
phases alone can be exploited to provide skillful outlook for the OND rainy season up to a full season in advance, 
specifically starting from July–August–September (JAS). Given simplicity and effectiveness of the compositing 
approach used by28,29, future evaluations of advanced statistical and dynamical model predictions could consider 
this approach as an alternative to the persistence forecast generally used as a reference.

While the largest precipitation events seem to occur during El Niño years, the correlation between the RFa 
and DMI, in both models and observations, is substantially larger than the correlation between RFa and N3.4, 
indicating that the Indian Ocean SST response to ENSO plays a more important role than the direct ENSO-
driver remote impact (e.g., atmospheric bridge) on the regional rainfall. Consistent with this, the sign of DMI 
can almost always predict the sign of the short rain seasonal anomaly, which is not always the case for the sign 
of the N3.4. As observed in previous studies, the east–west dipole in SST anomalies, combined with an unusual 
atmospheric zonal circulation pattern, serves as a reliable driver for the variability of short rains in East Africa1,30.

Considering that the predictability of East African short rains is often linked to the co-variability of ENSO 
and IOD (Table. S1), it is surprising that during the 2015/2016 period—one of the strongest El Niño events on 
record—almost all models failed to replicate the OND rainfall patterns, except for the DWD model (see Fig. 3h). 
This can be attributed to a relatively weak positive phase of the IOD in 2015/2016 compared to the 1997/1998 
El Niño events, which in turn led to a reduction in the intensity of the Indian Ocean Walker-type circulations18.
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This study provides a comprehensive evaluation of East African short rains predictability using state-of-
the-art seasonal forecast systems, focusing on the interplay between ENSO and IOD phases. By demonstrating 
the critical role of large-scale climate modes and their combined influence on rainfall variability, our findings 
contribute to advancing the understanding of seasonal climate predictability in the region crucial for improving 
forecast systems.

Datasets, model, and methods
Observational datasets
We utilize observed rainfall data from the Global Precipitation Climatology Project (GPCP) version 3.2 and 
the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis (ERA5). The 
GPCP version 3.2 provide estimates with a resolution of 0.5° × 0.5° from 1979 to the present31,32. The dataset 
contains monthly analyses of global precipitation, merging observations from rain gauges with precipitation 
estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, sounder-based 
estimates. The ERA5 dataset, provides global climate reanalysis data with a spatial resolution of 0.25° × 0.25°. 
It integrates observational data from various sources, including surface stations, upper-air observations, 
and satellite data, using data assimilation. ERA5 offers monthly mean fields for multiple variables, including 
precipitation and sea surface temperature, spanning from 1979 to the present study33.

Each datasets offers distinct advantages: GPCP assimilate precipitation data from multiple sources, and ERA5 
provides a higher-resolution precipitation field that is physically consistent with the SST field used in this study.

Seasonal retrospective forecasts from C3S
To assess the predictability of the East African short rain, we conducted an evaluation of eight coupled ocean–
atmosphere model seasonal prediction systems available from Copernicus Climate Change Service (C3S) offers 
a comprehensive multi-system seasonal forecast service, presenting data from various state-of-the-art seasonal 
prediction systems. These systems offer insights into future climate patterns up to 6 months in advance. The 
service includes aggregated forecasts from multiple systems, as well as detailed information from individual 
participating centers, such as ECMWF, Met Office, Météo-France, Deutscher Wetterdienst (DWD), Euro-
Mediterranean Centre on Climate Change (CMCC), National Centers for Environmental Prediction (NCEP), 
Japan Meteorological Agency (JMA), and Environment and Climate Change Canada (ECCC). Table 1 provides 
a detailed summary of all models, highlighting differences in resolution, ensemble sizes. Climate variables, 
including precipitation and SST were retrieved for a common hindcast period spanning from 1993 to 2016, at a 
monthly time scale.

Spatial and temporal anomaly correlation coefficient (ACC)
To evaluate the models’ skill in forecasting East African precipitation across both spatial and temporal 
dimensions, we conducted an ACC analysis. ACC is not only a powerful yet simple metric but also a standard 
tool in climate predictability studies. Its well-established and widely recognized use ensures comparability with 
previous research while facilitating interpretation by the broader scientific community. We use ACC as a statistical 
measure to assess the spatial or temporal correlation between the simulated and observed anomalies, relative to 
their individual climatological references. Mathematically, it can be expressed by the following equation:

	

ACC(F c,Ob) =
∑n

i=1

((
F ci − F c

) (
Obi − Ob

))
√∑n

i=1

(
F ci − F c

)2
√∑n

i=1

(
Obi − Ob

)2

where, in the case of temporal ACC, Obi is observational data for each year, Fci is ensemble mean forecast 
anomaly at initialized time for each year, n is numbers of years, F c and  Ob are the time mean of models’ 
ensembles and observation, respectively. Before performing the spatial correlation, both SST and precipitation 
datasets are bilinearly interpolated to a common grid of resolution of 1° × 1°.

Organization name AGCM

Atm. Resolution

OGCM

Oce. Resolution

Ensemble size References(or equivalent) (or equivalent)

CMCC CAM5.3   ~ 0.5°lat-lon/46 levels NEMO 3.4 0.25°/50 levels 40 34

DWD ECHAM 6.3.05 T127(~ 100 km)/95 levels MPIOM 1.6.3 TP04/40 levels 30 35

ECCC CanAM4 T63 (~ 2.8° lat-lon)/35 levels CanOM4 (~ 1.4°lon, ~ 0.94°lat)/40 levels 10 36

ECWMF IFS 43r1 TCO319g/91 levels NEMO v3.4 0.25° ORCA/75 levels 25 37

JMA JMA-GSM TL319 (~ 55 km)/100 levels MRI.COM 
v4.6 0.25º tripolar grid/60 levels 10 38

MeteoF ARPEGE v6.4 TL35 (~ 0.5°)/137 levels NEMO v3.6 0.25° ORCA/75 levels 25 39

NCEP GFS T128 (~ 1°)/64 levels GFDL 
MOM4 0.25° (equator) to 0.5° /40 levels 24 40

UKMO GC3.2 N216 (~ 0.83°lon, 0.56°lat)/85 levels NEMO v3.6 0.25° ORCA/75 levels 28 41

Table 1.  Descriptions of coupled models multi-seasonal prediction systems from Copernicus climate change 
service (C3S) accessible at (https://cds.climate.copernicus.eu/cdsapp).
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Data availability
The seasonal forecasts analyzed in this study are available on the Copernicus Climate Change Service (C3S) Cli-
mate Data Store portal at https://climate.copernicus.eu/seasonal-forecasts. To access the data, please consult the 
"Seasonal forecast monthly statistics on single levels" catalog.  Global Precipitation Climatology Project (GPCP) 
rainfall data at monthly mean frequency was obtained from the US National Oceanic and Atmospheric Admin-
istration (NOAA), National Centers for Environmental Information (NCEI) at ​h​t​t​p​s​:​​/​/​w​w​w​.​​n​c​e​i​.​n​​o​a​a​.​g​​o​v​/​p​r​o​
d​u​c​t​s​/​g​l​o​b​a​l​-​p​r​e​c​i​p​i​t​a​t​i​o​n​-​c​l​i​m​a​t​o​l​o​g​y​-​p​r​o​j​e​c​t​​​​​. ERA5 monthly mean rainfall and sea surface temperature was 
downloaded from the European Centre for Medium-Range Weather Forecasts (ECMWF), Copernicus Climate 
Change Service (C3S) at Climate Data Store at ​h​t​t​p​s​:​/​/​c​d​s​.​c​l​i​m​a​t​e​.​c​o​p​e​r​n​i​c​u​s​.​e​u​/​c​d​s​a​p​p​#​!​/​d​a​t​a​s​e​t​/​r​e​a​n​a​l​y​s​i​s​-​e​r​
a​5​-​s​i​n​g​l​e​-​l​e​v​e​l​s​-​m​o​n​t​h​l​y​-​m​e​a​n​s​?​t​a​b​=​f​o​r​m​​​​​. The code used for the analyses is publicly accessible on Zenodo.org: 
https://doi.​org/ht​tps://doi.or​g/10.5281/z​enodo.14616478.

Code availability
All analyses and figures were performed and displayed using Python 3.12.3 ​(​​​h​t​t​p​​s​:​/​/​w​w​​w​.​p​y​t​h​​o​n​.​o​r​g​​/​d​o​w​n​l​o​a​d​
s​/​r​e​l​e​a​s​e​/​p​y​t​h​o​n​-​3​1​2​3​/​​​​​)​, utilizing libraries such as NumPy, Matplotlib, Cmaps, and Cartopy. The code used for 
these analyses is publicly accessible on Zenodo.org: ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​​​​​​​​h​​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​4​6​1​6​4​7​8​​​​​.​​
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