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Load frequency control (LFC) is critical for maintaining stability in interconnected power systems, 
addressing frequency deviations and tie-line power fluctuations due to system disturbances. Existing 
methods often face challenges, including limited robustness, poor adaptability to dynamic conditions, 
and early convergence in optimization. This paper introduces a novel application of the sinh cosh 
optimizer (SCHO) to design proportional–integral (PI) controllers for a hybrid photovoltaic (PV) and 
thermal generator-based two-area power system. The SCHO algorithm’s balanced exploration and 
exploitation mechanisms enable effective tuning of PI controllers, overcoming challenges such as 
local minima entrapment and limited convergence speeds observed in conventional metaheuristics. 
Comprehensive simulations validate the proposed approach, demonstrating superior performance 
across various metrics. The SCHO-based PI controller achieves faster settling times (e.g., 1.6231 s and 
2.4615 s for frequency deviations in Area 1 and Area 2, respectively) and enhanced robustness under 
parameter variations and solar radiation fluctuations. Additionally, comparisons with the controllers 
based on the salp swarm algorithm, whale optimization algorithm, and firefly algorithm confirm its 
significant advantages, including a 25–50% improvement in integral error indices (IAE, ITAE, ISE, 
ITSE). These results highlight the SCHO-based PI controller’s effectiveness and reliability in modern 
power systems with hybrid and renewable energy sources.
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The main function of load frequency control (LFC) in interconnected power systems is to quickly minimize 
frequencies and tie-line power deviations after failures and load changes, and to maintain a stable and reliable 
working point1. Classical production power plants (thermal generators and gas units) use primary and secondary 
control cycles for LFCs. However, renewable energy alternatives are widely preferred in power systems today 
in order to prevent ever-increasing environmental pollution and solve increasing economic problems due to 
fuel consumption. Photovoltaic (PV) systems are more attractive in terms of renewable energy alternatives and 
require an effective way to address the LFC problem2.

The integration of renewable energy sources, particularly PV systems, into traditional power grids poses 
challenges related to frequency and voltage control due to their zero or low inertia characteristics. Addressing 
these challenges requires advanced control strategies, optimization algorithms, and hybrid techniques to enhance 
the performance of PV-integrated microgrids. In this regard, various control structures and techniques to solve 
the LFC problem have been studied by researchers. The early proposed methods in the literature can be listed 
as robust control3, pole placemen4, decentralized control5, and variable structure6. Although these techniques 
provide the desired performance in the power system, there are some disadvantages that make it difficult to 
implement them. To overcome these obstacles, alternative techniques such as artificial intelligence-based neural 
network, sliding mode controller, and fuzzy logic have been proposed7,8. While these techniques are effective 
against nonlinear factors in power systems, their complex structures and intensive calculation processes are the 
biggest disadvantages.
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Another proposed alternative to the LFC design problem is the use of metaheuristic algorithms. The biggest 
advantages of these algorithms are their ability to handle nonlinear functions, their easy integration into the 
system, and their lack of complex structure9–13. Therefore, recent advancements in metaheuristic algorithms have 
demonstrated their effectiveness in tackling complex optimization problems in power systems. For instance, an 
optimized fuzzy logic controller with adaptive membership functions tuned using the sorted position-based grey 
wolf optimization algorithm was proposed in one of the reported studies14. The method minimizes discrepancies 
between reference and control signals, demonstrating improved frequency stability and efficiency in PV-
based microgrids. In another study, an adaptive neuro-fuzzy inference system and deep neural network-based 
controller, optimized using the hybrid honey badger-based grey wolf optimization algorithm was proposed15. 
This approach regulates output waveforms, significantly reducing errors and enhancing performance metrics 
such as switching time and frequency stability in microgrids. The lion algorithm was proposed in a different 
study16 for fractional-order proportional-integral controller which was used to design LFC in interconnected 
power systems. The proposed controller demonstrated superior performance in terms of convergence, gain 
optimization, and transient stability compared to traditional methods.

It is feasible to encounter a variety of other options that have been reported for LFC. In this context, some of 
the important algorithms used in literature for the LFC problem can be listed as Lyrebird optimization17, walrus 
optimization18, particle swarm optimization19, artificial rabbits optimization20, salp swarm algorithm21, marine 
predators algorithm22, modified whale optimization23, firefly24, teaching–learning based optimization25,26, and 
its hybrid version with local unimodal sampling27, hybrid simulated annealing based quadratic interpolation 
optimizer28, hybrid harmony search and cuckoo optimization29, symbiotic organism search30, Harris 
hawks optimizer and its enhanced version31,32, multi-verse optimizer33, imperialist competitive34, grey wolf 
optimization35, bees algorithm36, enhanced coyote optimizer37, honey badger38, hybrid whale optimalization 
algorithm with simulated annealing39, rime algorithm40, gorilla troops optimization41 and wild horse optimizer42.

Through these metaheuristic algorithms, different controller structures were designed to solve the LFC 
problem. Nevertheless, in most of these metaheuristic algorithms some difficulties, such as local minima trap, 
early convergence, and inadequate ability to search the entire scale of the problem in the higher dimensions, are 
encountered. Therefore, despite the advancements, limitations in robustness, convergence speed, and adaptability 
persist, necessitating new solutions. In this regard, this study proposes the sinh cosh optimizer (SCHO)43 as a 
novel solution to tune a proportional-integral (PI)44 controller for the LFC design problem.

The SCHO is one of the latest mathematical based metaheuristic optimization techniques and has been 
successfully applied to some engineering optimization problems. The biggest advantages of this algorithm can 
be listed as having a balanced exploration–exploitation, and not being affected by the nature of the problem, 
along with being simple and flexible. Some applications of the SCHO include automatic voltage regulator 
design45, prediction of biological activities46, aircraft pitch angle control47 and Parkinson’s disease detection48. 
Considering the success and superiority of the SCHO in engineering problems in the reported studies, this paper 
proposes the solution to the LFC design problem in a two-area power system consisting of PV and thermal 
units. The hybrid power system is modeled with Area 1 consisting of a PV-based power system, including a 
maximum power point tracker (MPPT), and Area 2 comprising a thermal power system with governor, turbine, 
reheater, and generator dynamics. The optimization objective is to minimize the integral of time-weighted 
absolute error (ITAE) to achieve rapid stabilization and minimal steady-state errors. Proportional (kp1 and kp2
) and integral (ki1 and ki2) parameters of the controllers are optimized considering the boundaries adopted in 
the previous studies. The SCHO is initialized and its unique exploration and exploitation phases ensure efficient 
global optimization of the PI controller parameters. The proposed SCHO-based PI controller is tested against 
step load changes, parameter variations, and solar radiation fluctuations. Its performance is compared with 
(salp swarm algorithm-based PI21, whale optimization algorithm-based PI23 and firefly-based PI24 controllers 
using metrics such as settling time, overshoot, undershoot, and different error-based performance indices (IAE, 
ITAE, ISE, ITSE)49–51. Therefore, the proposed SCHO-based PI controller addresses the above-mentioned gaps, 
achieving faster stabilization and superior error minimization metrics compared to existing methods. The main 
contributions of this work include:

	1.	� The first application of the SCHO algorithm for LFC in hybrid PV-thermal systems.
	2.	� Superior performance in minimizing error-based metrics and achieving faster stabilization.
	3.	� Enhanced robustness under parameter variations and dynamic conditions, such as solar radiation fluctua-

tions.
	4.	� Comprehensive comparison with state-of-the-art methods, demonstrating the proposed approach’s effec-

tiveness and reliability.

Mathematical model of SCHO algorithm
SCHO consists of five important components. These can be listed as initialization phase, exploration phase, 
exploitation phase, bounded search strategy and switching mechanism, respectively43.

Initialization phase
Like other metaheuristic methods, SCHO starts from randomly selected candidate solutions (X), given in 
Eq. (1), and candidate solutions are updated in each iteration43.
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.� (1)

Here N  is the number of candidate solutions (population size), d is the number of variables in the optimization 
problem, and xij  is ith solution’s jth position. It is obtained as X = LB + rand(N, d) × (UB − LB), where 
LB and UB represent the lower and upper bounds of the variables, respectively, and rand represents the 
random value between 0 and 1.

Exploration phase
In order to avoid local minima in subsequent iterations, two-stage exploration is used in SCHO and the switch 
value (T ) is given in Eq. (2)43.

	 T = floor(tmax/3.6).� (2)

Here, floor is the rounding down function in the MATLAB program and tmax is the maximum number of 
iterations. In the first exploration phase, position updating is done using the following definition43.

	
Xt+1

ij =
{

Xbest
j + r1W1Xt

ij , 0.5 < r2
Xbest

j − r1W1Xt
ij , 0.5 > r2

.� (3)

Here r1 and r2 are random numbers ranging from 0 to 1, t is the current iteration, Xt
ij  and Xt+1

ij  are the ith 
solution in the jth position for the current iteration and the next iteration, respectively. Solution Xbest

j  is the 
best solution of the jth position. The weight factor W1 is given in Eq. (4)43.

	 W1 = r3a1 [cosh (r4) + 0.388 · sinh (r4) − 1] .� (4)

Here, r3 and r4 are random numbers varying between 0 and 1, and a1 is a parameter that decreases according 
to the number of iterations and is calculated with the following definition43.

	
a1 = 3 ·

(
0.45 − 1.3t

tmax

)
.� (5)

The position update of the second exploration phase of the SCHO is performed using the following definition43.

	
Xt+1

ij =
{

Xt
ij +

∣∣0.003 · W2Xbest
j − Xt

ij

∣∣ , 0.5 < r5

Xt
ij −

∣∣0.003 · W2Xbest
j − Xt

ij

∣∣ , 0.5 > r5
.� (6)

Here W2 = r6a2 is the weight factor, a2 = 2 ·
(
0.5 − t

tmax

)
 and r5 and r6 are random numbers varying 

between 0 and 1.

Exploitation phase
In SCHO the exploitation is performed within two stages and in the first stage, the positions are being updated 
via Eq. (7)43.

	
Xt+1

ij =
{

Xbest
j + r7W3Xt

ij , 0.5 < r8
Xbest

j − r7W3Xt
ij , 0.5 > r8

.� (7)

Here, r7 and r8 are random numbers that are produced within [0, 1] and W3 is a weighting factor represented 
by Eq. (8)43.

	 W3 = r9a1 [cosh (r10) + 0.388 · sinh (r10)] .� (8)

Here, r9 and r10 are random numbers changing from 0 to 1. r11 and r12 are randomly produced numbers within 
[0, 1]. The second phase of the exploitation is performed with the following definition43.

	
Xt+1

ij = Xt
ij + r11

sinh (r12)
cosh (r12)

∣∣W2Xbest
j − Xt

ij

∣∣ .� (9)

Bounded search strategy
In SCHO, the potential search areas are fully discovered with the bounded search strategy. The rule for this 
strategy is given in Eq. (10)43.

	
BSm+1 = BSm + floor

(
tmax − BSm

4.6

)
.� (10)
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Here, m denotes the positive integers starting from 1 and BS1 = floor
(

tmax
1.55

)
.

Switching mechanism
With this mechanism, the SCHO ensures the balance and transition between exploration and exploitation. The 
sinh and cosh based switching mechanism (A) used in SCHO is calculated as follows43.

	
A = r13

[
10 − 9

(
t

tmax

) cosh(t/tmax)
sinh(t/tmax)

]
.� (11)

Here, r13 is a randomly produced number within [0, 1]. In the SCHO algorithm, the exploration phase is 
executed when A > 1 and the exploitation phase is executed when A < 1. The explanatory flow diagram of 
SCHO is shown in Fig. 1.

Modeling of photovoltaic and thermal power systems
A two-zone power system model is considered to verify the effectiveness of the proposed SCHO-based controller. 
Area 1 consists of a PV-based system and Area 2 is a thermal power system. The transfer function of the solar 
PV system, which includes a PV panel, converter, filter and maximum power point tracker (MPPT), is given in 
Eq. (12)21,23,24.

	
GP V (s) = −As + B

s2 + Cs + D
.� (12)

The thermal power system in Area 2 consists of a generator, turbine, reheater and governor components. The 
transfer functions of these four components are defined in Eqs. (13)–(16), respectively21,23,24.

	
Ggen (s) = Kg

sTg + 1 ,� (13)

	
Gtur (s) = Kt

sTt + 1 ,� (14)

	
Grh (s) = sTrKr + 1

sTr + 1 ,� (15)

Fig. 1.  Flowchart for SCHO.
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Ggov (s) = Kps

sTps + 1 .� (16)

In order to make appropriate comparisons with the SSA-based PI21, WOA-based PI23 and FA-based PI24 control 
methods in the literature, the values of the parameters of the hybrid PV-thermal power system were chosen 
as A = 18, B = 900, C = 100, D = 50, Kg = 1, Tg = 0.08 s, Kt = 1, Tt = 0.3 s, Tr = 10 s, Kr = 0.33
, Kps = 120 Hz/puMW, Tps = 20 s, R = 2.5 Hz/pu, B = 0.8 pu and T12 = 0.545 puMW/Hz52. The block 
diagram of the entire system is shown in Fig. 2.

Definition of optimization problem
The traditional PI controller consists of proportional (kp) and integral (ki) parameters53. In the PV-thermal 
power system, one PI controller is recommended for each of the two areas. The transfer function of the PI 
controller in the PV system region is given in Eq. (17).

	
Carea1 (s) = kp1 + ki1

s
.� (17)

The transfer function of the PI controller in the thermal power system region is given in Eq. (18).

	
Carea2 (s) = kp2 + ki2

s
.� (18)

It is aimed to minimize frequency deviations ((∆f1 and ∆f2) and tie-line power variations (∆Ptie) in the 
hybrid PV-thermal power system by using PI controllers. In this paper, integral of time weighted absolute error 
(ITAE) was preferred as the objective function54 and its definition is provided as the minimization of Eq. (19).

	

IT AE =

tsim∫

0

t · (|∆f1| + |∆f2| + |∆Ptie|) · dt.� (19)

Here, tsim represents the simulation time, and it was found sufficient to take it as 30 s in this study. The limits 
of the parameters of the PI controllers, given in Eq. (20), were considered during the minimization of the ITAE 
performance metric through the SCHO algorithm.

	 −2 ≤ kp1, ki1, kp2, ki2 ≤ 2.� (20)

The interval [−2, +2] was selected to ensure a fair comparison with the other approaches-based controllers, 
as these bounds are consistent with those used in the cited literature. This uniformity in parameter limits 

Fig. 2.  Complete model of the system.
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ensures that the results accurately reflect the optimization potential of the SCHO relative to other approaches, 
providing a meaningful and unbiased evaluation of its performance. The parameter bounds defined in Eq. (20) 
serve as constraints to ensure meaningful optimization and allow a fair comparison with other controller 
design methods. Additionally, the ITAE objective function minimizes frequency and tie-line power deviations, 
effectively constraining the system to maintain stability and desired performance metrics.

In order to find the optimal control parameters (kp1, ki1, kp2 ve ki2) in the optimization problem and to 
adjust the control of the relevant system, the proposed SCHO algorithm was run 30 times, using a population 
size (N ) of 40 and the maximum number of iterations of 50. The population size of 40 was chosen to ensure 
consistency with reported works in the literature, facilitating fair comparisons. Additionally, this value provides 
an optimal balance between performance and computational efficiency. While reducing the population size 
would decrease the algorithm’s effectiveness, increasing it would lead to minimal performance gains while 
introducing additional computational overhead. In the best run, the minimum ITAE objective function value 
was reached.

Figure 3 illustrates the application of the SCHO to the LFC problem in a two-area hybrid power system. The 
algorithm initializes with a predefined population size and maximum iterations, then iteratively minimizes the 
ITAE objective function by assigning optimized PI controller parameters to Area 1 and Area 2. The PI controllers 
regulate the system to minimize frequency deviations (∆f1, ∆f2) and tie-line power deviations (∆Ptie) under 
varying operational conditions, such as parameter variations and load changes. This block diagram provides 
a holistic view of the SCHO-based controller’s integration and operational workflow within the hybrid power 
system.

Figure 4 shows the change curve of ITAE according to the number of iterations. As can be seen from the figure, 
with few iterations (11th iteration), the SCHO algorithm converged to the global value (min (IT AE) = 2.9119
) without getting stuck in the local minimum. These results confirm the effectiveness and potential of the 
balanced exploration–exploitation mechanisms of the SCHO algorithm.

Simulation results
Compared methods
In order to demonstrate the stability and superiority of the proposed SCHO-based PI controller over the PV-
thermal power system, comparisons were performed using three basic control methods which adopted the same 
system parameters and the same controller limits. The optimal values of the parameters of the proposed SCHO 
and the PI controllers based on SSA21, WOA23 and FA24 reported in the literature are listed in Table 1.

Case studies
A 10% step change (∆Pd1 = 0 .1  pu and ∆Pd2 = 0 .1  pu) in both areas
In this case study, 10% load variations were assumed in the two areas. Comparative system responses of the 
power system are shown in Figs. 5, 6 and 7. The most important time performance metrics of the system are 

Fig. 3.  The application of SCHO to the LFC problem.
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settling time (tset), undershoot (Ushoot) and overshoot (Oshoot). When calculating settling times, a tolerance 
band of ± 0.1 Hz for ∆f1 and ∆f2 and a tolerance band of ± 0.025 MW for ∆Ptie were considered. Besides, the 
overshoot and undershoot are calculated as the maximum positive and negative deviations from the steady-
state value observed during the transient response, respectively. These metrics provide insights into the system’s 
dynamic behavior and stability following disturbances.

In Fig. 5, frequency changes for Area 1 are plotted over time, and in Table 2, the values of comparative system 
metrics are provided. Compared to SSA21, WOA23 and FA24 based PI controllers in the literature, the frequency 
change in Area 1 (∆f1) was suppressed most effectively with the proposed SCHO based PI controller at 1.6231 s. 
With the proposed control approach, the Ushoot and Oshoot values of the oscillations for the ∆f1 signal were 
found to be − 0.1569 Hz and 0.0209 Hz, respectively, and these values are much lower than the values obtained 
with the three control approaches in the literature.

Fig. 5.  Variation of frequency in Area 1.

 

Method kp1 ki1 kp2 ki2

SCHO-based PI (proposed)  − 0.4758  − 0.0931  − 2  − 0.9339

SSA-based PI  − 0.7715  − 0.0483  − 1.0837  − 0.8929

WOA-based PI  − 0.4563  − 0.2254  − 0.8967  − 0.9865

FA-based PI  − 0.8811  − 0.5765  − 0.7626  − 0.8307

Table 1.  Optimized PI controller parameters tuned by SCHO, SSA, WOA and FA.

 

Fig. 4.  Evolution curve of SCHO.
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Response Control approach Ushoot Oshoot tset

∆f1

SCHO-based PI (proposed)  − 0.1569 0.0209 1.6231

SSA-based PI  − 0.2327 0.0611 1.9059

WOA-based PI  − 0.2196 0.0974 2.1045

FA-based PI  − 0.3063 0.1565 4.8609

∆f2

SCHO-based PI (proposed)  − 0.2217 0.0459 2.4615

SSA-based PI  − 0.2576 0.0699 2.6428

WOA-based PI  − 0.2670 0.1017 5.7759

FA-based PI  − 0.2757 0.1376 5.6082

∆Ptie

SCHO-based PI (proposed)  − 0.0296 0.0228 1.9986

SSA-based PI  − 0.0379 0.0325 2.3188

WOA-based PI  − 0.0479 0.0377 4.3108

FA-based PI  − 0.0505 0.0364 2.5018

Table 2.  Numerical results of Ushoot, Oshoot and tset for ∆f1, ∆f2 and ∆Ptie.

 

Fig. 7.  Variation of tie-line power.

 

Fig. 6.  Variation of frequency in Area 2.
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The comparative time response to the ∆f2 change for Area 2 is given in Fig. 6 and the numerical values of the 
system performance metrics are given in Table 2. Looking at the relevant figure and table, the best system response 
belongs to the system optimized with SCHO, and the frequency change in Area 2 (∆f2) is between − 0.2217 Hz 
and 0.0459 Hz, and the oscillations were quickly settled into the desired tolerance band in 2.4615 s.

The plots of tie-line power changes (∆Ptie) obtained from all control approaches over time are shown in 
Fig. 7. Numerical values of comparative performance metrics are listed in Table 2. Looking at the table, it is 
clear that the lowest values of tset, Ushoot and Oshoot metrics are found with the proposed SCHO-based PI 
control approach. All graphical time responses and numerical findings obtained in this case study show that 
the dynamics of the system after the fault of the first recommended SCHO tuned PI controller compared to its 
effective competitors in the literature (PI control methods based on SSA21, WOA23 and FA24) and confirmed its 
superiority and potential in improving determination.

Influence of solar radiation variation
In this case study, the effectiveness and robustness of the SCHO-based controller in suppressing oscillations 
was tested by considering random solar radiation changes in Area 1. Figure 8 illustrates the random variations 
in solar radiation considered during the test period (0–80 s). These variations mimic dynamic changes in PV 
output, which are common due to environmental factors such as cloud cover and atmospheric conditions.

Figure 9 presents the system’s frequency deviations (∆f1, ∆f2) and tie-line power deviation (∆Ptie) under 
solar radiation fluctuations. The SCHO-based PI controller effectively suppresses oscillations, demonstrating its 
capability to stabilize the system within minimal settling times and low overshoot values. Therefore, the SCHO-
based PI controller confirms that it has a robust control structure by successfully and quickly dampening the 
oscillations in the system during fluctuations in PV power production.

Fig. 9.  Time response of load frequency control in solar radiation.

 

Fig. 8.  Variation of solar radiation.
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Comparison of well-known integral of error-based performance indices
This section evaluates the effectiveness of different optimization methods for the PI controller design in the load 
frequency control of a hybrid PV and thermal power system. By leveraging integral error-based performance 
indices (integral of absolute error (IAE), integral of time-weighted absolute error (ITAE), integral of squared 
error (ISE), and integral of time-weighted squared error (ITSE)) a comprehensive analysis of the controllers is 
performed. These indices are mathematically expressed as given in Eqs. (21), (22) and (23).

	

IAE =

tsim∫

0

(|∆f1| + |∆f2| + |∆Ptie|) · dt,� (21)

	

ISE =

tsim∫

0

[
(∆f1)2 + (∆f2)2 + (∆Ptie)2]

· dt,� (22)

	

IT SE =

tsim∫

0

t ·
[
(∆f1)2 + (∆f2)2 + (∆Ptie)2]

· dt.� (23)

These metrics assess not only the magnitude of the error but also its impact over time, making them critical in 
judging controller performance in dynamic systems.

Table 3 provides a numerical comparison of the performance indices for the proposed SCHO-based PI 
controller against other optimization-based controllers. The results indicate that the SCHO-based PI controller 
outperforms the competing methods in all indices. The SCHO-based controller achieves the lowest values for 
both IAE and ITAE indices, reflecting minimal accumulated error and a significant reduction in time-weighted 
errors. This indicates a rapid and efficient suppression of system oscillations. The squared error indices of ISE 
and ITSE further emphasize the superiority of the SCHO-based approach. The reduced error magnitude and 
its time-weighted impact signify a more precise and reliable control action over the entire simulation period. 
The results validate the SCHO algorithm’s balanced exploration and exploitation capabilities, ensuring robust 
and efficient tuning of the PI controllers. By achieving superior performance in all four indices, the SCHO-
based PI controller demonstrates its potential as a reliable solution for LFC challenges in hybrid power systems. 
The proposed method also illustrates better adaptability and robustness compared to traditional optimization 
techniques.

Robustness analysis under parameter variations
This section investigates the robustness of the proposed SCHO-based PI controller by examining the system’s 
response to parameter variations. Robustness is a critical criterion for control systems operating under diverse 
and unpredictable real-world conditions, as it ensures stability and performance despite variations in system 
parameters. The test for this section considers the fault scenario with simultaneous ±25% variations in the 
time constants of key power system components, including the governor, turbine, reheater, and generator. These 
variations simulate real-world conditions where system parameters may fluctuate due to aging, maintenance, or 
environmental factors. Figures 10, 11, and 12 illustrate the dynamic responses of the system when subjected to 
parameter changes in the LFC framework.

The response of frequency deviation in Area 1 (∆f1), given in Fig.  10, demonstrates the stability and 
adaptability of the SCHO-based controller. Despite parameter variations, the oscillations are effectively 
dampened, and the system quickly converges to a stable state. This indicates the controller’s ability to maintain 
performance, particularly in renewable energy integrated systems like PV power plants where variability is 
inherent.

The response for frequency deviation in Area 2 (∆f2), given in Fig. 11, associated with the thermal power 
system, confirms the robustness of the controller in handling variations typical in thermal generation processes, 
such as fuel supply inconsistencies and mechanical delays. The SCHO-based controller exhibits minimal 
overshoot and ensures rapid stabilization, showcasing its balanced approach to parameter adaptation.

The tie-line power deviation (∆Ptie) response, given in Fig.  12, illustrates the controller’s capacity to 
stabilize inter-area power flows under parameter uncertainties. The SCHO-based controller minimizes 
fluctuations and achieves rapid convergence, which is critical for preventing cascading failures and ensuring 
reliable power exchange between areas. The robustness analysis confirms that the SCHO-based PI controller 
maintains superior performance under parameter variations. Key performance metrics such as settling time, 

Method IAE IT AE ISE IT SE

SCHO based PI (proposed) 0.9022 2.9119 0.0773 0.1097

SSA based PI 1.1754 4.9948 0.1224 0.1774

WOA based PI 1.4271 5.2619 0.1548 0.3157

FA based PI 1.7667 7.3783 0.2215 0.4635

Table 3.  Comparative performance of different approaches with respect to IAE, ITAE, ISE and ITSE metrics.
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Fig. 12.  Time response of ∆Ptie under parameter variation.

 

Fig. 11.  Time response of ∆f2 under parameter variation.

 

Fig. 10.  Time response of ∆f1 under parameter variation.
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overshoot, and undershoot remain within acceptable limits across all scenarios. This robustness is attributed to 
the SCHO algorithm’s effective exploration–exploitation balance, which ensures the controller parameters are 
well-optimized to handle uncertainties.

Handling of power system non-linearity
Power systems inherently exhibit nonlinear behaviors, such as governor dead-band effects, generation rate 
constraints, and saturations in various components. These nonlinearities can significantly impact the stability 
and performance of LFC strategies, making it imperative to evaluate controller robustness under such conditions. 
The analyses performed in this study, though focused on linear dynamics, indirectly demonstrate the proposed 
SCHO-based PI controller’s capability to handle nonlinearities through effective damping of oscillations, 
robustness to parameter variations, and adaptability to dynamic inputs.

As illustrated in “A 10% step change (∆Pd1 = 0.1 pu and ∆Pd2 = 0.1 pu) in both areas” and “Robustness 
analysis under parameter variations” sections, the SCHO-based PI controller effectively minimizes overshoots 
and settling times under both nominal and perturbed system conditions. Nonlinearities, such as generation 
rate constraints, are known to exacerbate oscillatory behavior in power systems. The controller’s demonstrated 
ability to suppress oscillations suggests that it is well-equipped to mitigate the destabilizing effects of such 
nonlinearities. The robustness analysis in “Robustness analysis under parameter variations” section, which 
tested the controller under simultaneous parameter variations, serves as an indirect indicator of its performance 
under nonlinear conditions. Since parameter changes often amplify the impact of system nonlinearities, the 
controller’s ability to maintain stability and achieve low steady-state errors reflects its resilience to nonlinear 
effects. The controller’s performance under solar radiation fluctuations (“Influence of solar radiation variation” 
section) highlights its adaptability to dynamically changing inputs. Nonlinearities introduced by renewable 
energy sources, such as power output variability and intermittency, are effectively managed by the SCHO-
based controller, further indicating its efficiency in nonlinear environments. Moreover, a key advantage of the 
SCHO is its balanced exploration–exploitation mechanism, which enables it to find global optima in complex 
problem spaces. Nonlinear systems often result in highly nonconvex optimization landscapes. The SCHO-based 
PI controller’s demonstrated superior performance in minimizing integral error-based indices (IAE, ITAE, ISE, 
ITSE) suggests that it can address the challenges posed by nonlinearities effectively.

Conclusions
In this paper, a novel application of the SCHO was proposed for tuning PI controllers to enhance the load 
frequency control in a two-area hybrid power system consisting of PV and thermal units. By addressing critical 
challenges such as parameter variations, solar radiation fluctuations, and nonlinear effects, the proposed SCHO-
based PI controller demonstrated significant advancements over traditional optimization-based methods, 
including SSA, WOA, and FA. Key numerical findings that substantiate the efficacy of the proposed method can 
be explained as follows. Settling times of 1.6231 s and 2.4615 s for frequency deviations in Area 1 and Area 2, 
respectively, were achieved under step load changes, significantly outperforming the best alternative methods. 
The tie-line power deviation was stabilized at 1.9986 s, compared to 2.3188 s for SSA, 4.3108 s for WOA, and 
2.5018 s for FA. The SCHO-based PI controller recorded the lowest IAE and ISE values at 0.9022 and 0.0773, 
respectively, indicating its ability to minimize both accumulated and squared errors over time. Time-weighted 
indices such as ITAE and ITSE further emphasized its superiority, with values of 2.9119 and 0.1097, respectively, 
surpassing all competing methods. Simulation results confirmed the controller’s robustness to simultaneous 
parameter variations in governor, turbine, and generator time constants, as well as its adaptability to solar 
radiation fluctuations. The SCHO algorithm’s balanced exploration and exploitation capabilities, coupled with 
its ability to avoid local minima, played a pivotal role in achieving these outcomes. The results conclusively 
establish the proposed SCHO-based PI controller as an effective and reliable solution for LFC in modern hybrid 
power systems.

Future studies could extend the findings of this research by explicitly incorporating nonlinearities such as 
governor dead-band effects, generation rate constraints, and saturations in the power system model. Additionally, 
the application of the SCHO to other renewable energy-integrated systems or multi-area grids with higher levels 
of complexity presents an exciting avenue for exploration.

Data availability
All data are available within the manuscript.
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