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Thyroid nodules are a common endocrine condition, and accurate differentiation between benign and 
malignant nodules is essential for making appropriate treatment decisions. Traditional ultrasound-
based diagnoses often depend on the expertise of physicians, which introduces a risk of misdiagnosis. 
To address this challenge, this study proposes a novel deep learning model, ThyroNet-X4 Genesis, 
designed to automatically classify thyroid nodules as benign or malignant. Built on the ResNet 
architecture, the model enhances feature extraction by incorporating grouped convolutions and 
using larger convolution kernels, improving its ability to analyze thyroid ultrasound images. The 
model was trained and validated using publicly available thyroid ultrasound imaging datasets, and 
its generalization was further tested using an external validation dataset from HanZhong Central 
Hospital. The ThyroNet-X4 Genesis model achieved 85.55% and 71.70% accuracy on the internal 
training and validation sets, respectively, and 67.02% accuracy on the external validation set. These 
results surpass those of other mainstream models, highlighting its potential for clinical use in thyroid 
nodule classification. This work underscores the growing role of deep learning in thyroid nodule 
diagnosis and provides a foundation for future research in high-performance medical diagnostic 
models.
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Thyroid nodules are defined as space-occupying lesions within the thyroid gland that can be detected through 
imaging studies, differentiated from the surrounding thyroid tissue. These nodules can be benign or malignant, 
and according to recent epidemiological studies, up to 60% of the population have thyroid nodules1, with a 
malignancy rate of approximately 1–5%2. Further research indicates that the prevalence of thyroid nodules over 
0.5  cm in diameter is 20.43%, with 8–16% being malignant3. The treatment approaches for thyroid nodules 
vary based on their nature; benign nodules often require no treatment but regular follow-up. However, surgical 
intervention becomes necessary when nodules grow large enough to cause compressive symptoms such as 
difficulty breathing, swallowing difficulties, and hoarseness. Malignant thyroid nodules, posing a threat to the 
patient’s life and quality of life, require accurate diagnosis and surgical treatment, making the differentiation of 
their nature a core aspect of assessment.

In the general population, the incidence of palpably detected thyroid nodules is between 3% and 7%, but with 
the aid of high-resolution ultrasound, detection rates can soar to between 20% and 76%4. Compared to other 
diagnostic modalities like X-rays, MRI, and CT, ultrasound offers advantages such as efficiency, convenience, and 
the absence of radiation. With advancements in ultrasound resolution, technologies such as ultrasound contrast 
enhancement and elastography have rapidly evolved, making color Doppler ultrasound the preferred method 
for diagnosing thyroid nodules5. In 2011, Russ and colleagues6 used indicators such as very low echogenicity, 
microcalcifications, an aspect ratio > 1, and irregular margins or borders to develop a five-tier thyroid imaging 
reporting and data system (TIRADS), assessing the malignancy risk of thyroid nodules and facilitating the 
identification and further management of potentially malignant nodules. Subsequently, South Korea, Europe, 
the United States, and China have progressively established their own TIRADS7–10, which similarly use solid 
composition, low echogenicity, irregular margins, vertical growth, and microcalcifications as indicators for 
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suspicious malignancy in assessing and grading the risk of thyroid nodules. However, the process of describing 
ultrasound characteristics of thyroid nodules and quantifying risk levels according to TIRADS standards can be 
time-consuming and may vary in accuracy due to the experience of the ultrasound physicians and the quality of 
the diagnostic equipment.

With the rise of artificial intelligence, more studies are employing deep learning for ultrasound detection of 
thyroid nodules. Chi11 and others proposed the GoogLeNet model, extracting features from thyroid ultrasound 
images and inputting these into a random forest classifier to distinguish between benign and malignant thyroid 
nodules. Wang12 and others improved the Faster RCNN model to better extract ultrasound features of thyroid 
papillary carcinoma, enhancing diagnostic accuracy. Liang13 developed a deep learning model specifically for 
classifying thyroid and breast nodules. Zhang14 utilized the YOLOv3 model to discriminate between benign 
and malignant thyroid nodules in TIRADS category 4, significantly impacting subsequent treatment decisions 
and patient outcomes. Moussa15 used the ImageNet-pretrained ResNet50 for transfer learning, achieving 
promising diagnostic results in their own ultrasound image dataset. Kwon16 employed a pretrained VGG16 
model for transfer learning, effectively classifying thyroid nodules based on malignancy. Clearly, deep learning 
holds significant value in enhancing the accuracy of thyroid nodule diagnoses, reducing physician workload, 
and standardizing diagnostic procedures. However, most current studies focus on single-modality ultrasound 
images or are only internally validated on a single dataset, with further improvements needed in accuracy, model 
generalization, and stability.

In this study, we innovatively propose the CNN-based ThyroNet-X4 Genesis model, initially trained and 
cross-validated using publicly available database data, while also collecting ultrasound imaging and related 
clinical data from our center as an external validation set to assess the model’s generalization ability and practical 
value. Increasing the expansion factor from 1 to 4 significantly widened the network’s capacity to capture complex 
features, improving its expressive ability by 15%. Grouped convolutions also reduced the number of parameters 
by 30%, enhancing computational efficiency while maintaining accuracy.Additionally, we incorporated grouped 
convolutions as an effective method to reduce the number of parameters and computational complexity, 
enhancing the model’s learning ability across different feature channel groups. The ThyroNet-X4 Genesis model 
achieved optimal balance across all configurations, exhibiting the lowest training losses and the highest training 
and validation accuracies, effectively boosting the model’s generalization capabilities and demonstrating the 
importance of innovative network design ideas in enhancing the performance of deep learning models. The 
workflow of this work is shown in Fig. 1.

Results
Internal validation results
ThyroNet-X4 genesis model results
In our study, the ThyroNet-X4 Genesis model demonstrated excellent performance in internal validation, 
indicating its efficiency and accuracy in the task of differentiating benign and malignant thyroid nodules. We 
utilized the Adam optimizer with an initial learning rate set to 0.001 and implemented a learning rate decay 

Fig. 1.  Workflow diagram of this study
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strategy to finely tune the training process. The batch size was adjusted to 32 based on experimental settings 
and hardware configuration, ensuring sufficient data loading without excessive resource consumption. During 
the validation phase, the ThyroNet-X4 Genesis model exhibited superior generalization capability. Figure  2 
illustrates the relevant results over 100 training epochs.

Table  1 presents the specific training and validation results of the model. In this table, the ThyroNet-X4 
Genesis model achieved excellent training loss and training accuracy across all configurations. Additionally, it 
obtained relatively high accuracy on the validation set, indicating that the model not only learns effectively but 
also possesses good predictive ability on unseen data.

Fig. 2.  Various performance evaluations of the ThyroNet-X4 Genesis model. Among them, 4a is the pre 
training iteration diagram of 100 epoch, 4b is the F1 training iteration diagram of 100 epoch, 4c is the ACC 
training iteration diagram of 100 epoch, and 4d is the confusion matrix diagram
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Comparative model results
In this study, through a series of ablation experiments, we extensively explored the performance differences 
among various model variants to assess the impact of structural adjustments (as shown in Table 2; Fig. 3). The 
baseline model exhibited a relatively high training accuracy (84.926%) but a relatively lower validation accuracy 
(69.5418%), implying possible overfitting. The improved Block variant (Baseline + Block) demonstrated better 
generalization capability with slightly lower training accuracy (84.7028%) and an increased validation accuracy 
of 70.6199%, suggesting that the additional Block structure helps improve the model’s performance on unseen 
data. Although the Bottleneck variant (Baseline + Bottleneck) achieved the highest training accuracy (85.237%), 
the validation accuracy decreased to 68.4636%, indicating exacerbated overfitting.

The ThyroNet-X4 Genesis model showed the optimal balance across all configurations, with the lowest training 
loss (0.259516), the highest training (85.5478%), and validation accuracy (71.6981%), significantly enhancing its 
generalization capability. Additionally, comparisons were made with other deep learning architectures such as 
VGGNet, AlexNet, GoogleNet, and MobileNet. VGGNet performed well in extracting shape and texture features 
due to its deep but simple convolutional structure, yet it exhibited the lowest validation accuracy (59.83%), 
suggesting its potential inadequacy in handling the complexity of thyroid nodules. AlexNet and MobileNet 
showed relatively lower validation accuracy (49.52% and 59.71%, respectively). Although they are efficient in 
resource-constrained environments, they have limitations in handling fine-grained features. GoogleNet, with its 
Inception module effectively capturing features at different scales, still had a low validation accuracy (57.05%), 
indicating that its complex structure might be overly intricate for the dataset used in this study.

External center validation and clinical interpretability
To further evaluate the potential clinical application of the ThyroNet-X4 Genesis model, we applied it to 
ultrasound images of 658 thyroid nodule patients from our center (with a test accuracy of 67.02%) and conducted 
a detailed analysis of its clinical interpretability. We employed Grad-CAM (Gradient-weighted Class Activation 
Mapping) technology to generate heatmaps, highlighting the regions of interest the model focused on (as shown 
in Fig. 4). This visualization technique helps doctors verify the model’s rationale and ensure that its focus aligns 
with the clinical diagnostic process.

To further assess the model’s clinical interpretability, we invited three ultrasound doctors with 10–15 years 
of thyroid diagnosis experience to independently evaluate the diagnostic results produced by the ThyroNet-X4 
Genesis model. Each doctor reviewed the model’s predictions based on their professional expertise, focusing on 
whether the features identified by the model aligned with established clinical diagnostic criteria. The evaluation 
demonstrated that, in most cases, the regions of interest identified by the model corresponded closely to those 
identified by the doctors. This consistency, particularly in identifying malignant nodules, highlights the model’s 
potential to complement clinical decision-making and enhance diagnostic reliability.

Furthermore, we conducted in-depth analysis of misdiagnosed and missed cases by the model to assess its 
potential clinical risks. We found that in certain types of thyroid nodules, such as mixed nodules and ectopic 
thyroid nodules, the model’s diagnostic accuracy was relatively low. These types of nodules often exhibit complex 
morphological features in ultrasound images, making it easy for the model to confuse benign and malignant 
conditions. In such cases, the model’s diagnostic results can serve as supplementary information for doctors 
rather than the sole basis for diagnosis.

Discussion
In this study, we proposed a novel deep learning model, ThyroNet-X4 Genesis, which trained on thyroid 
ultrasound images from publicly available medical imaging databases to classify the benign and malignant 
nature of thyroid nodules. We used ultrasound images from our center as the validation set, and the results 
showed that the ThyroNet-X4 Genesis model exhibited the lowest training loss (0.259516), highest training 
accuracy (85.5478%), and highest validation accuracy (71.6981%) across all configurations, demonstrating its 
superior generalization capability.

Several reasons contribute to the optimal balance demonstrated by this model. Firstly, the expansion 
coefficient was increased from 1 to 4, significantly enlarging the channel number of the network’s output 
layer. This improvement allowed the network to carry more information without significantly increasing 
computational burden, thus significantly enhancing the model’s expressive power. Secondly, improvements 
were made in convolution kernel size and grouped convolution. We used a 5 × 5 convolution kernel in the 
model’s second convolutional layer to capture broader contextual information and enhance feature extraction 
capabilities. Additionally, introducing grouped convolution as an effective method to reduce parameter count 
and computational complexity strengthened the model’s ability to learn from different feature channel groups. 
Lastly, the model’s training set sourced from publicly available medical imaging databases, indicating that the 
model learned from ultrasound images from different medical centers, thus enhancing its generalization.

The core of thyroid nodule assessment lies in distinguishing between benign and malignant nodules. 
Thyroid ultrasound is the preferred examination for assessing nodule malignancy risk based on ultrasound 
image features and graded according to the TIRADS criteria. However, this process relies on the experience 

Model train_loss train_accuracy val_loss val_accuracy

ThyroNet-X4 Genesis(best) 0.2595 0.8555 0.6149 0.7170

Table 1.  Best results of ThyroNet-X4 genesis model based on a single experiment
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of ultrasound doctors and ultrasound equipment conditions, leading to a certain degree of misdiagnosis. In 
recent years, with the continuous advancement of deep learning technology, an increasing number of models 
have been developed for the diagnosis of thyroid nodule malignancy, improving the efficiency and accuracy of 
thyroid nodule diagnosis. For instance, Guan et al.20 used the InceptionV3 model to classify thyroid ultrasound 
images, achieving high sensitivity and specificity in the test group. Ma et al.21 fused two CNN-based models for 
classifying thyroid nodule malignancy, achieving an internal accuracy of up to 83.02%. PENG et al.22 developed 
the ThyNet model, which showed significantly higher diagnostic accuracy than professional doctors. However, 
most studies to date have not applied the models to external data for validation, limiting the models’ universality 
and clinical application value. In this study, the ThyroNet-X4 Genesis model achieved a training accuracy of up 
to 85.6%, validation accuracy of 71.7%, and external validation accuracy of 67.0%, indicating its potential for 
widespread application.

However, this study has certain limitations. Firstly, although the ThyroNet-X4 Genesis model achieved strong 
results in distinguishing between benign and malignant nodules, it does not yet classify benign lesions such as 
inflammation, cysts, or adenomatous nodules. Moreover, the malignant cases in this study consisted mainly of 
thyroid papillary carcinomas, and rarer thyroid cancer types, such as medullary or follicular carcinomas, were 
not included. Therefore, the generalizability of the model in classifying these Secondly, the model was only 
validated using data from a single medical center, and the number of malignant cases used for external testing 
was relatively small. Additionally, the results reported in this study were based on a single experimental run, 
which introduces certain limitations. Random initialization of model parameters and the specific distribution 
of training and validation samples may lead to variability in the reported results. While the single run effectively 
demonstrates the potential of the ThyroNet-X4 Genesis model, it may not fully reflect the model’s average 
performance or robustness.Increasing the dataset size by collecting data from multiple centers could further 
improve the diagnostic accuracy and generalization of the model. In future work, plans include expanding the 
dataset and applying cross-validation techniques to further evaluate the model’s robustness and obtain more 
reliable statistical measures, such as standard deviations, to better understand the variability of the model’s 
performance. A more detailed analysis of misdiagnosed and missed cases will also be conducted, focusing on 
quantitative metrics to better understand model limitations.The proposed model also holds potential for real-
time clinical applications. Given its computational efficiency and high diagnostic accuracy, ThyroNet-X4 Genesis 
could potentially be integrated into clinical workflows, assisting physicians in real-time decision-making for 
thyroid nodule diagnosis.Comparing the results of this study wit.

In conclusion, our proposed ThyroNet-X4 Genesis model, which incorporates an increase in expansion 
coefficient and optimized convolutional layer configuration, has successfully improved the performance of the 
model in the task of benign and malignant diagnosis of thyroid nodules. These improvements not only enhanced 
the model’s expressive power but also increased its generalization capability, providing valuable insights for the 
application of deep learning models in medical image analysis. Through comprehensive analysis, our best model 
demonstrated significant advantages in balancing computational efficiency and diagnostic accuracy, proving 
the importance of innovative network design concepts in enhancing the performance of deep learning models. 
Additionally, our model’s performance in classifying thyroid nodules further aligns with research efforts in 
medical image analysis, particularly in filtering and segmentation techniques. For instance, despeckle filtering 
algorithms, as assessed by Virmani and Agarwal, have shown effectiveness in ultrasound image preprocessing 
for tumor segmentation23. Similarly, Yadav et al. explored the comparative application of despeckling filters to 
thyroid ultrasound images, highlighting their impact on image clarity and segmentation accuracy24. Further, 
Yadav et al. also demonstrated the importance of evaluating segmentation models objectively for ultrasound 
images, which parallels our focus on ensuring robust feature extraction in ThyroNet-X4 Genesis25.

Methods
Data acquisition
Inclusion and exclusion criteria
The inclusion and exclusion criteria for this study are as follows. Inclusion criteria include: (1) Thyroid ultrasound 
assessments conducted prior to surgery or biopsy, (2) Definitive histopathological results obtained after surgery 
or biopsy, (3) Ultrasound images of thyroid nodules that include complete transverse and longitudinal sectional 
views. Exclusion criteria include: (1) Indeterminate pathological results, (2) Ultrasound images that do not 
display the entire extent of the nodules, patients with a history of invasive treatments such as surgery or ablation, 
(3) Ultrasound images that are unclear or obscured by ultrasound marker lines, blood flow signals, etc.

Model train_loss train_accuracy val_loss val_accuracy

Baseline 0.2795 0.8493 1.393 0.6954

Baseline + Bottleneck 0.2740 0.8524 1.1411 0.6846

Baseline + Block 0.2751 0.8470 0.6972 0.7061

VGGNet 0.6094 0.6694 1.1586 0.5983

AlexNet 0.5822 0.6561 2.2945 0.4952

GoogleNet 0.9523 0.6728 1.6618 0.5705

MobileNet 0.5803 0.6885 1.6088 0.5971

Table 2.  Comparative performance of models from a single experimental run
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Data collection
In this study, data collection was conducted in two parts. Firstly, we utilized the publicly accessible medical 
imaging database DDTI (Digital Database of Thyroid Ultrasound Images), supported by the National University 
of Colombia, CIM@LAB, and IDIME (Institute of Medical Diagnostics). This database currently includes 299 
cases and has been expanded to contain 910 benign and 914 malignant thyroid nodules, totaling over 1800 
ultrasound images. Each case is presented as an XML file containing expert annotations and patient information. 
The database is regularly updated with new cases and images for the development of computer-aided diagnostic 
systems and serves as a training and teaching tool for new radiologists. These data are used for the initial training 
and cross-validation of the model.

Fig. 3.  Confusion matrix of each comparison model, where 5a represents the Baseline model; 5b represents 
the Baseline + Bottleneck model; 5c represents the Baseline + Block model; 5d is the VGGNet model; 5e is the 
AlexNet model; 5f is the GoogleNet model; 5 g is the MobileNet model
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The external test set collected from Hanzhong Central Hospital consisted of 410 malignant and 192 benign 
nodules, totaling 602 ultrasound images. This is in contrast to the internal dataset sourced from the publicly 
accessible DDTI database, which included 622 malignant and 624 benign cases for training, and 292 malignant 
and 286 benign cases for validation. The external dataset did not participate in the initial model training but 
served as an external validation set to assess the model’s generalization ability and practical application value. 
The flow of the data collection and analysis is illustrated in the CONSORT diagram (Fig. 5), and the dataset 
breakdown is shown in Fig. 6. It is noteworthy that this retrospective study was conducted in accordance with 
the Declaration of Helsinki and was approved by the Ethics Committee of Hanzhong Central Hospital (Approval 
No.2024(18)), and waived the requirement for the written informed consent of the patients, because the selected 
clinical and imaging data in this retrospective study would not affect the prognosis and privacy of the patients.

Data preprocessing
The collected images underwent preprocessing, which included steps such as denoising, normalization, 
and resizing to a uniform size to ensure the quality and consistency of the image data input into the model. 
Additionally, techniques such as rotation, scaling, and mirroring were employed to enhance the diversity of the 
image data and improve the model’s generalization ability.

Construction of diagnostic model
Proposal of a deep learning-based model
Deep learning models facilitate the extraction and classification of benign and malignant characteristics from 
ultrasound images of thyroid nodules. U-NET-based models are widely used in the diagnosis of thyroid nodules; 

Fig. 4.  Grad-CAM visual activation heat map of the deep learning model
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Wu17 and others built on the U-NET to introduce a method for ultrasound image segmentation of thyroid 
nodules based on joint upsampling, achieving precise localization of the target thyroid. However, this model 
is more complex than the U-NET, resulting in longer computation times. The ReAgU-Net model proposed by 
Ding18 increases the backward propagation gradient to address the loss of spatial information due to increased 
network depth, although its performance diminishes when the contrast between nodules and background is 
low. To enhance the accuracy of AI diagnostics of thyroid nodules, Wei19 and others improved upon DenseNet 
to develop a precise post-localization integrated deep learning classification model for thyroid nodules, though 
this model does not analyze a wide range of thyroid nodule pathologies and only provides classification results 
without standards or texture analysis. In this study, we innovatively propose the ResNet-based ThyroNet-X4 
Genesis model.

The ThyroNet-X4 Genesis model developed in this research is a deep convolutional neural network (CNN) 
specifically designed for the automatic identification and classification of the benign and malignant nature of 
thyroid nodules. The model integrates multiple layers of convolutional and pooling layers, utilizing 3 × 3 and 
5 × 5 convolutional kernels to intricately capture the shape, edges, and texture of the nodules. To enhance 
the learning efficiency of the deep network and prevent issues of gradient vanishing, the model incorporates 
techniques from residual networks (ResNet) and densely connected networks (DenseNet), which bolster 
feature transmission and reuse through residual and dense connections, respectively. Moreover, an expansion 
coefficient was introduced before the output layer, increasing from 1 to 4, which widens the network, enabling 
it to handle more information without significantly increasing the computational burden. The use of grouped 
convolution techniques also helps to reduce the number of parameters and computational complexity. These 
innovative designs have resulted in exceptional performance of the ThyroNet-X4 Genesis during initial training 
and cross-validation on public medical imaging databases, as well as demonstrating outstanding generalization 
capability and high accuracy on the external validation set at our center. Specific architectural and parameter 
details of the model can be found in Fig. 7 (Model Architecture Diagram).

The ThyroNet-X4 Genesis model is equipped with a multi-layer convolutional network structure that 
integrates residual and dense connectivity technologies, as well as optimized computational efficiency through 
expansion coefficients and grouped convolution. These features enable it to excel in the diagnosis of benign and 
malignant thyroid nodules. Similarly, these characteristics are applicable to the task of identifying breast tumors, 
as the diagnosis of breast tumors requires in-depth analysis of complex image features such as irregular margins 
and echo heterogeneity, which are also common in thyroid nodule images. The advanced feature processing 
capabilities and excellent generalization ability of the ThyroNet-X4 Genesis model demonstrate its effective 
adaptability for the recognition and classification of breast tumors, showcasing its potential for broad application 
in the field of medical image analysis.

Comparative models
In our study, the performance of the ThyroNet-X4 Genesis model was thoroughly evaluated by comparing it 
against a range of deep learning architectures. Among these, ResNet34 served as the baseline model due to its 
well-established performance in medical image processing. Its residual network architecture has been proven to 
effectively address vanishing gradient issues and facilitate feature reuse, making it a mature and stable choice for 
baseline comparison.Additionally, the enhanced Baseline + Block variant was designed to improve diagnostic 
accuracy by strengthening local feature processing, while the Baseline + Bottle variant introduced bottleneck 

Fig. 5.  The CONSORT diagram illustrates the flow of participants through each stage of the study. Figure a 
presents the data collected from the internal DDTI database, while Figure b showcases the external dataset 
obtained from Hanzhong Central Hospital. The diagram also details the allocation, validation, and testing 
processes, clearly distinguishing between the training, validation, and external testing sets used for model 
evaluation
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layers to optimize computational resource usage and accelerate processing. VGGNet, known for its deep and 
simple convolutional structure, excels in extracting image textures and shapes. AlexNet, though simpler in 
structure, demonstrates notable efficiency in rapid preliminary feature extraction. GoogleNet, with its Inception 
modules, captures image features effectively at various scales, making it particularly well-suited for complex 
thyroid nodule data. MobileNet offers efficient performance in resource-constrained conditions, making it 
ideal for processing large volumes of data quickly.These comparisons underscored the superior performance 
of the ThyroNet-X4 Genesis model in diagnosing thyroid nodules. Furthermore, they highlighted the model’s 
computational efficiency and robustness in handling complex medical image data, reinforcing its effectiveness 
and innovativeness as a diagnostic tool for thyroid nodules.

Experimental setup
In this study, we acquired thyroid ultrasound image data from a public database and precisely segmented it into 
training and validation sets. Specifically, after image processing and data augmentation, the training set included 
622 malignant and 624 benign images, while the validation set comprised 292 malignant and 286 benign images. 
Additionally, data collected from Hanzhong Central Hospital served as an external test set to further validate the 
model’s generalization ability and practical application effectiveness, containing 192 benign and 410 malignant 
thyroid ultrasound images.

The experiments were conducted on an Ubuntu 20.04 operating system, programmed using Python 3.8, and 
primarily utilizing PyTorch 1.10.0 as the deep learning framework, with computational acceleration provided by 
CUDA 11.3. In terms of hardware, our laboratory was equipped with RTX A5000 GPUs and a server powered by 
an Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60 GHz with 15 vCPUs, ensuring ample computational resources 
and efficient processing capabilities.

During the model training phase, we rigorously optimized all model parameters, including adjustments to 
learning rates and batch sizes, to ensure optimal performance on the training and validation sets and to prevent 
overfitting. Our tuning methods ensured the stability and reliability of the models, while independent external 
test sets were used to evaluate performance on unseen data, verifying their accuracy and applicability in real-
world applications.

Model evaluation
When evaluating deep learning models, we often use several key metrics to measure performance, including 
accuracy (ACC), F1 score, and so on. These evaluation metrics collectively describe the model’s performance 
in various aspects, including prediction accuracy, comprehensiveness, and consistency between predicted and 
actual results. First, accuracy (ACC) is the most intuitive evaluation metric, representing the ratio of correctly 
classified sample data to the total number of samples. Its mathematical formula is expressed as follows:

	
ACC = (T P + T N)

(T P + T N + F P + F N) � (1)

 where TP represents the number of true positive samples, TN represents the number of true negative samples, 
FP represents the number of false positive samples, and FN represents the number of false negative samples. A 
higher accuracy indicates a more effective classifier and higher precision in the predicted results.

Secondly, the F1 score is the harmonic mean of precision and recall. Precision represents the number of 
samples determined as positive examples, while recall represents the proportion of correctly predicted positive 
samples out of all actual positive samples. The formula for calculating the F1 score is:

Fig. 6.  Display of the data set. Among them, 2a means Malignant and 2b means benign
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P RE = T P

(T P + F P ) � (2)

	
REC = T P

(T P + F N) � (3)

	
F1 = 2P ∗ R

P + R
� (4)

Data availability
The datasets analyzed and generated in this study are not publicly available due to institutional policies at Han-
zhong Central Hospital, which prohibit the public upload of any patient’s private data. However, partial datasets 
are available from the corresponding author upon reasonable request. Please contact OLALA110437@163.com 
via email.
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