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The growing integration of urban air mobility (UAM) for urban transportation and delivery has 
accelerated due to increasing traffic congestion and its environmental and economic repercussions. 
Efficiently managing the anticipated high-density air traffic in cities is critical to ensure safe and 
effective operations. In this study, we propose a routing and scheduling framework to address the 
needs of a large fleet of UAM vehicles operating in urban areas. Using mathematical optimization 
techniques, we plan efficient and deconflicted routes for a fleet of vehicles. Formulating route planning 
as a maximum weighted independent set problem enables us to utilize various algorithms and 
specialized optimization hardware, such as quantum annealers, which has seen substantial progress in 
recent years. Our method is validated using a traffic management simulator tailored for the airspace in 
Singapore. Our approach enhances airspace utilization by distributing traffic throughout a region. This 
study broadens the potential applications of optimization techniques in UAM traffic management.

Increasing city traffic induces heavy congestion, resulting in immense economic costs and adverse environmental 
impacts every year. To address the issue, urban air mobility (UAM) systems have been envisioned as a technology 
that utilizes automated air transportation services to carry people or cargo at lower altitudes in and around 
metropolitan areas1. As the demand for UAM operations increases, there is a growing need for a systematic 
approach to manage their traffic, especially in low-altitude airspace. Recent NASA-commissioned market studies 
estimate that by 2030, there could be up to 500 million flights annually for package delivery services and 750 
million flights for air metro services, making UAM a highly profitable and viable enterprise2. Consequently, this 
poses a major challenge for aviation authorities and air navigation service providers as they attempt to integrate 
these new and novel operations into the national airspace. Unmanned aircraft systems traffic management 
(UTM) are conceptual frameworks for the safe and efficient management of the enormous number of aircraft 
anticipated above cities and people3. A primary goal is to ensure the safe separation of UAM vehicles from each 
other and from other airspace users, such as traditional manned air traffic. This can be done through strategic 
deconfliction and dynamic scheduling of UAM flight requests during flight planning. However, while in flight, 
unforeseen contingencies, such as weather events, emergencies, or infrastructure outages, may require a UAM 
vehicle to dynamically change its route to avoid the contingency. In high-density operations, this change in route 
will cause cascading conflicts for other active operations. To help maintain safe airspace operation, preflight 
strategic deconfliction and in-flight tactical deconfliction are critical4.

In route planning with strategic deconfliction, flight paths are designed before launch based on demand, 
considering factors such as traffic density, aerodrome capacity, weather conditions, and both permanent and 
temporary flight restrictions. Routing is widely applied in various fields, including shortest route suggestions 
in-car navigation systems and the control of automated guided vehicles (AGVs) in factories and warehouses5–7. 
Standard routing algorithms include sampling-based methods like rapidly-exploring random trees (RRT)8and 
exact algorithms such as Dijkstra’s algorithm9and A-star (A*)10. However, these algorithms are not directly 
applicable to UAM routing, as they do not account for collision avoidance. Routing algorithms with collision 
avoidance have been actively studied in the field of unmanned aerial vehicles (UAVs) rather than UAM 
vehicles11–13. Most studies on UAV route design assume that UAVs can move freely in three-dimensional space. 
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In contrast, only a few studies consider route design within urban environments, where the available airspace for 
flight is significantly restricted.

According to the concept of operations (ConOps) for UTM, urban air space is modeled by a comprehensive 
routing network composed of nodes and lines in the real space to mitigate the complexity of operations14. Under 
such a condition, strategic deconfliction methods have been proposed, and take-off and landing time for each 
vehicle is controlled15,16. Efficient fleet management remains a significant challenge, particularly in cities where 
numerous flight operations occur within constrained airspace. The complexity of managing such operations 
increases as the number of flights grows, requiring sophisticated coordination to avoid congestion and delays. 
One approach to this challenge is mathematical optimization, which can help identify the best solutions under 
defined objectives and constraints. Fleet control under some objective to be minimized or maximized can 
be translated into mathematical optimization problems, which are usually hard to solve optimally for its NP-
hardness as represented by vehicle routing problem17.

Metaheuristics, which are general-purpose algorithms for a wide range of problems, have attracted a great 
deal of attention in recent years, such as genetic algorithms and simulated annealing18,19. Furthermore, in recent 
years, methods utilizing quantum nature have emerged, and both industry and academia are actively attempting 
to transcend classical computation. Quantum annealing is a metaheuristic for combinatorial optimization 
problems and utilizes quantum fluctuations for global search20. The method is specialized in solving quadratic 
unconstrained binary optimization (QUBO) problems, and many well-known problems can be translated 
into21. In the ideal procedure, quantum annealing outputs the optimal solution by slowly decreasing the 
strength of the fluctuation of binary variables. The quantum adiabatic theorem ensures that the ground state, 
which corresponds to the optimal solution, is obtained by evolving the system adiabatically22–24. The hardware 
implementing quantum annealing developed by D-Wave Systems, Inc. have become commercially available, 
marking a significant milestone in practical applications of quantum annealing. In contrast to theoretical aspects, 
the machines do not perform quantum annealing ideally, and their optimization performance is quite limited at 
the present stage. However, the rapidness of sampling can be effective for attaining relatively good solutions as a 
heuristic solver. To inspect the industry applicability of D-Wave’s quantum annealer, a wide variety of practical 
use cases have been explored in finance25–27, traffic28–30, logistics31, manufacturing6,7,32, and marketing33, as well 
as in decoding problems34,35. In this study, we use the metaheuristic optimization method for fleet management. 
Specifically, we realize the route planning by dynamically solving maximum weighted independent set (MWIS) 
problems, which are well-known graph theoretical problems.

The remainder of this paper is organized as follows: In the next section, we outline the fundamental principles 
of fleet management. We introduce our routing and scheduling framework, which leverages optimization 
techniques, and explain how the problem is structured. In the following section, we evaluate our method 
through the UTM simulator developed by OneSky Systems. To validate the effectiveness of quantum annealing, 
we compare the results of a greedy algorithm and a classical commercial optimizer. In the final section, we 
summarize our findings and discuss potential avenues for future research to enhance UAM traffic management.

Method
In this section, we introduce our routing and scheduling method for the UAM vehicles fleet.

To manage urban airspace, aerodromes, and flight corridors are designed based on the surrounding 
environment, including artificial structures and geographical features. The UAM vehicles can take off, land at 
these aerodromes, and navigate designated corridors. As the airspace is to be integrated with the existing urban 
infrastructures, to ensure the safety of other users, UAM vehicles will fly past as little human activity area within 
the urban space as possible, such as the roof of buildings, canals, and drainage systems4. Consequently, in urban 
environments, the available flyable space is significantly constrained, and the airways for the UAM vehicles can 
be modeled as a graph-structured routing network. An example of a routing network within Singapore’s urban 
environment is illustrated in Fig. 1.

Flight requests are submitted on demand to transport cargo or passengers. Each request consists of a pair 
of nodes representing the take-off and landing locations within the routing network. Additionally, requests can 
include details such as the desired start time or the latest allowable start time.

Given a set of flight requests, the goal of routing and scheduling is to determine, as an output, the start time 
and flight path for each request. The start time refers to the take-off time and must adhere to the time-window 
constraints defined by the desired and allowable start times. The flight path consists of a sequence of nodes and 
edges, representing the movement of the UAV from the source to the destination within the routing network. 
As urban flyable airspace is quite limited, routing and scheduling must be managed with enough efficiency to 
handle the high volume of anticipated flight requests. We break down the efficiency of management with the 
number of approved requests per time unit and the shortness of determined flight path lengths. Approving as 
many requests as possible creates flexibility for future requests by opening up the room for potentially incoming 
demands, while keeping flight paths short helps avoid wasting both flight time and airspace. To maximize overall 
efficiency, the start times and flight paths should be adjusted simultaneously for multiple requests, rather than 
processing them individually.

For the safety of flight operations, UAM vehicles must maintain sufficient separation from one another by 
adhering to minimum distance requirements in the airspace. The concept of strategic deconfliction ensures that 
flight paths are calculated to avoid collisions with other aircraft, both in-flight and scheduled. To achieve this, 
the precise position of each UAM vehicle is simulated over time by following its kinematic motion, and the 
time-dependent distance between any two vehicles is continuously monitored. Flights are approved only if this 
distance remains greater than the minimum required separation. In practice, re-routing, in addition to pre-flight 
deconfliction, must also account for dynamic changes in airspace, such as geofence restrictions. For simplicity, 
we assume that the airspace remains fixed during operation, with no dynamic changes in the flyable area.
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In this study, we introduce a dynamic scheduling and routing framework to efficiently process a high volume 
of dense flight requests. The framework is depicted in Fig. 2. The framework operates through the following 
procedure: 

	1.	� Gather information on requests that are eligible to begin flights at time t.

Fig. 2.  Dynamic scheduling and routing framework. The framework consists of two main components: route 
generation, and optimization.

 

Fig. 1.  Routing Network in Singapore. The nodes represent aerodromes, while the lines represent corridors. 
This airspace structure was generated using the OneSky UTM simulator.
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	2.	� For each request, generate a set of possible candidate routes.
	3.	� Simulate the positions of all candidate routes over time.
	4.	� Calculate the distance between each pair of candidate routes and any active flight routes. Discard candidate 

routes if the separation distance falls below the minimum required threshold.
	5.	� For distinct requests, calculate the distance between each pair of candidate routes at each time step.
	6.	� Select the best routes that satisfy the deconfliction constraints using an optimization method.
	7.	� Schedule each request with a valid route as a flight starting at time t.
	8.	� Increment time by the defined time interval and repeat the process from step 1 until the operation con-

cludes.The details of specific components are described as follows. In the process of generating candidate 
routes, a set of flight paths is generated for each request, from which one will be selected as the scheduled 
flight route. It is desirable that the candidate routes are not only short but also sufficiently distinct from one 
another to increase the flexibility for system-wide adjustments. To achieve this, a Dijkstra-based algorithm is 
employed to generate a diverse set of short routes. In the standard Dijkstra algorithm, the distances of edges 
are used as weights to calculate the shortest path. In our method, once the shortest path is determined using 
Dijkstra’s algorithm, a penalty is applied to the edge weights of the routing network that the path traverses, 
and the process is repeated to compute additional routes. This penalization helps avoid outputting similar 
routes and, as subsequent paths are less likely to overlap with the previous ones. Through empirical testing, 
we have found that applying a penalty equal to five times the original edge weight effectively generates a 
sufficient variety of dissimilar routes. After the candidate routes are generated, each route is translated in to 
detailed flight paths by simulating the position of UAM vehicles at each time step. For simplicity, we assume 
that the UAM vehicles fly at a constant speed, and their positions at each time step are calculated using linear 
interpolation. At each time step throughout the journey, the distance between the UAM vehicles’ position 
and other active flight routes is computed. If the separation distance falls below the minimum required 
threshold, the candidate route is discarded. To assess potential interference between candidate routes, the 
distance between each pair of candidate routes for distinct requests is calculated at each time step. If the 
separation distance falls below the required minimum threshold, the pair of candidate routes is considered 
to be in conflict. In such cases, no more than one route from the conflicting pair can be scheduled as a flight. 
Based on this interference information, an optimization method is applied to select the most suitable routes 
that satisfy the separation constraints.

We employ mathematical optimization techniques to determine the optimal combination of routes. In 
optimization, a problem is formulated as the minimization or maximization of an objective function subject 
to constraints. Specifically, we formulate the route selection process as a maximum weighted independent set 
(MWIS) problem, which is a well-studied combinatorial optimization problem. In the MWIS problem, a graph 
G = (V, E) is given, along with a weight wi for each vertex i ∈ V . The objective is to find a subset I ⊆ V  such 
that no two vertices in I are adjacent, and the sum of the weights of the vertices in Iis maximized36–39. We denote 
the set of vertices and edges in G as V(G) and E(G), respectively. The neighborhood of a vertex i in graph G is 
denoted as N(i), and the degree of vertex i is denoted as d(i).

The MWIS problem can also be formulated as integer programming problem as follows:

	

maximize
∑
i∈V

wixi

subject to xi + xj ≤ 1 ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ V.

� (1)

We formulate the route selection process as an MWIS problem by constructing a graph to model the relationships 
between candidate routes. We define the vertex set V as the set of all candidate routes. For each request, edges are 
added between its candidate routes, forming a complete subgraph, ensuring that at most one vertex from each 
request can be included in the independent set. Additionally, edges are introduced between any pair of candidate 
routes that are in conflict, guaranteeing that no conflicting routes are selected in the independent set. Next, we 
define a weight wi for each vertex i ∈ V  as follows:

	
wi = d∗

di
,� (2)

where di is the length of the route corresponding to vertex i, and d∗ is the length of the shortest path connecting 
the source and destination of route i. By this definition, the weight equals 1 if the route is the shortest, and is 
smaller than 1 if the route is longer than the shortest path. The objective is to maximize the total weight of the 
independent set, which simultaneously increases the number of approved requests and reduces the overall route 
lengths. Note that maximizing the number of approved requests is not necessarily the primary objective, as we 
aim to avoid approving requests with excessively long routes. For instance, selecting a single route with a weight 
of 1 is preferable to selecting two routes, each with a weight of less than 0.5. The balance between maximizing 
the number of approved requests and minimizing route lengths can be adjusted by adding a constant offset to 
both the numerator and denominator of the weight definition wi, though this refinement is not considered in 
this study. An example of graph generation and its solution is illustrated in Fig. 3.
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By solving the MWIS problem on the constructed graph, we can identify the optimal combination of routes that 
meet the separation constraints. However, due to the intractability of MWIS problems, solving them exactly 
or even approximating them efficiently is generally considered difficult38. As a result, heuristic methods are 
commonly employed to address large-scale MWIS problems. One such approach is the greedy algorithm, which, 
although it does not guarantee optimality, is computationally efficient. Several greedy algorithms have been 
explored for MWIS problems, and in this study, we adopt the method proposed by Sakai et al39.. We describe the 
greedy algorithm for MWIS problems in Algorithm 1. This algorithm guarantees that the size of the independent 
set obtained is at least 

∑
i∈V

wi/(d(i) + 1). However, as with other greedy approaches, this algorithm does not 
always guarantee finding the optimal solution. There are instances in certain graph structure where the greedy 
algorithm fails to find the optimal one, as demonstrated in the literature39.

Algorithm 1.  Greedy algorithm for MWIS problems

Next, we introduce quantum annealing as an optimization method for solving MWIS problems. To utilize 
quantum annealing for MWIS, the problem must first be reformulated as a quadratic unconstrained binary 
optimization (QUBO) problem. A general QUBO problem is expressed as follows:

	

minimize
∑
i,j

Qijxixj

subject to xi ∈ {0, 1} ∀i ∈ {1, 2, . . . , N},

� (3)

where Q is a coefficient matrix, xi represents a binary variable, and N is the number of variables. To handle 
constraints in QUBO problems, they are incorporated into the objective function as additional penalty terms. 
These terms are designed to ensure that violations of the constraints incur a high cost, thus discouraging 
solutions that break them. By applying the penalty method to the original MWIS formulation 1, we can remove 
the inequality constraints and reformulate the problem into the following QUBO form:

	

minimize −
∑
i∈V

wixi + λ
∑

(i,j)∈E

xixj

subject to xi ∈ {0, 1} ∀i ∈ V.

� (4)

Fig. 3.  An example of a generated graph and its corresponding solution to the MWIS problem.
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The first term in equation 4 corresponds to the objective function of the MWIS problem, while the second term 
represents the penalty for violating the constraint. If a pair of adjacent vertices is selected in the independent 
set, i.e., if xi = xj = 1, the penalty λ is added to the objective function. Here, λ is the penalty coefficient, and 
by setting λ sufficiently large, the solution to the Ising problem satisfies the constraints. Given that the weights 
are defined to be less than or equal to 1, setting the penalty coefficient λ to 2 is sufficient to ensure constraint 
satisfaction.

QUBO problems can be equivalently transformed into the problem of minimizing the energy of the Ising model, 
for which the Hamiltonian is expressed as:

	
H0(σ) = −

∑
i,j

Jijσiσj −
∑

i

hiσi,� (5)

where σi is a Ising spin variable that takes either 1 or −1 and Jij  and hi are the coupling constant between 
Ising spins and the bias term, respectively. In quantum annealing, quantum fluctuations are leveraged to 
explore low-energy states of the QUBO problem. The D-Wave quantum processor operates this process using 
superconducting qubits, with quantum fluctuations controlled by the strength of a transverse field. The system’s 
Hamiltonian is expressed as:

	
Ĥ(s) = −A(s)

∑
i

σ̂x
i + B(s)Ĥ0,� (6)

where σ̂x
i  represent the x-component of the Pauli matrices. The term Ĥ0 is the problem Hamiltonian, which 

encodes the Ising problem, and is obtained by replacing the Ising spin variables with the z-component of the 
Pauli matrices, σ̂z

i . The system is governed by a predefined annealing schedule, parameterized by 0 ≤ s ≤ 1
. The functions A(s) and B(s) are defined such that A(0) ≫ B(0) and A(1) ≪ B(1), ensuring that at s = 0
, the system starts in a trivial ground state, where qubits are in a uniform superposition of all possible states. 
As s approaches 1, the system evolves into a nontrivial classical state, with spin variables that correspond to 
the solution of the QUBO problem. The quantum adiabatic theorem ensures that if the schedule parameter 
s is varied slowly enough, the system will remain in its ground state throughout the evolution. Consequently, 
the optimal solution to the Ising problem should, in theory, be obtained at the conclusion of the annealing 
process. In practice, however, the D-Wave quantum annealer does not perform ideal quantum annealing, and 
the optimization performance remains limited at the current stage of development. Despite this, the quantum 
annealer’s ability to rapidly sample solutions can be effective for finding relatively good solutions, making it a 
useful heuristic solver. Moreover, the performance of quantum annealing hardware continues to improve. This 
potential for growth is why we are particularly interested in quantum annealing as an optimization method from 
a long-term perspective.

Results
In this section, we present the results of routing and scheduling for a fleet of UAM vehicles using the OneSky’s 
UTM simulator.

The simulator is customized for the airspace over Singapore, with the routing network constructed as 
depicted in Fig. 1. Within this environment, we generate a set of requests and simulate the operations of a UAM 
fleet. Requests are generated every 30 seconds by randomly selecting a pair of aerodromes in the routing network 
as the source and destination. We refer to the number of requests generated at each step as the request rate. The 
desired start time for each request is set to zero, with an allowable delay of up to 60 seconds from the request 
generation time. The total simulation time is 3500 seconds, with routing and scheduling updates performed 
at 30-second intervals. The speed is set to 10 meters per second for all UAM vehicles, and the time-dependent 
positions at each simulation step are calculated using linear interpolation between consecutive nodes in their 
routes. The minimum required separation distance between two UAM vehicles is 100 meters. We generate five 
candidate routes for each request to be evaluated during the scheduling and routing process.

The optimization computations are performed using an Intel Xeon Gold 6130 CPU with 141 GB of RAM. The 
greedy algorithm implemented in Python 3.8.8 is used for approximate solutions. Gurobi Optimizer 9.1.2, a state-
of-the-art mathematical optimization solver, is employed to obtain exact solutions. Gurobi is widely recognized 
as the industry standard for solving complex optimization problems involving integer programming and is 
focused on delivering high-performance results. Quantum annealing is carried out using the D-Wave Advantage 
1.1 quantum processor. The number of samples for the quantum annealing process is 100, with an annealing 
time of 1 µs. To implement the QUBO problem (4) on the D-Wave quantum processor, we employ a heuristic 
algorithm to map the problem graph onto the hardware graph using graph minor embedding techniques40. 
After obtaining samples from the quantum processor, a post-processing step refines the solutions, ensuring they 
align with the original QUBO problem. In cases where the values on redundant qubits representing the same 
logical variable differed, such as chain breaks, we applied a majority vote strategy to resolve the conflicts. Chain 
breaks, caused by the limited connectivity between qubits in the current D-Wave annealer, often degrade the 
optimization’s performance. To mitigate this issue, we employed a steepest descent algorithm to refine the post-
processed samples, further enhancing the quality of the solutions obtained from the quantum annealer.
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We first evaluate our optimization framework by comparing several methods against a non-optimized 
baseline strategy, which we call the shortest first-in, first-out (FIFO) method. The shortest FIFO method is 
a simple strategy that assigns each request the shortest available route and schedules flights in the order of 
arrival, provided the route is deemed safe. Figure 4 illustrates the number of approved requests. Our scheduling 
and routing framework approves more requests than the shortest FIFO method, demonstrating that route 
optimization in fleet management effectively increases the number of approved flights. However, the difference 
between our approach and the shortest FIFO method diminishes when the request rate is high. We believe that 
when the request rate is dense, the airspace becomes heavily congested, and the routing network reaches full 
capacity, leaving little room for further route adjustments. We provide visualizations of the simulation results in 
Supplementary Movie 1. In these visualizations, we observe that when using the shortest FIFO method, aircraft 
tend to utilize corridors with high centrality in the routing network, leading to congestion. In contrast, our 
optimization approach mitigates this congestion by distributing the aircraft evenly throughout the airspace. 
We compare the frequency with which edges are used in the selected routes in Fig. 5. Under the shortest FIFO 
method, the usage of edges is highly skewed and some edges remain completely unused, while a few are used 

Fig. 5.  Distribution of routes. These plots show the frequency with which edges are used in the selected routes. 
The left and right panels present results obtained from the shortest FIFO approach and quantum annealing, 
respectively. The color of each edge corresponds to the number of times it is utilized.

 

Fig. 4.  Cumulative number of approved flights. The plots show the cumulative number of approved flights 
during the simulation. The triangle, circle, square, and down-pointing triangle markers represent the results of 
the shortest FIFO, quantum annealing, exact optimization, and greedy algorithm, respectively.
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disproportionately often. In contrast, quantum annealing yields a more balanced usage, including edges located 
away from central regions. We also present the average number of active aircraft at any given time in Fig. 6. Our 
approach shows a more significant increase in active aircraft than the shortest FIFO method. This suggests that 
routes are more evenly distributed throughout the airspace, leading to more efficient utilization of available 
space. This implies that some routes may require detours to achieve the best combination of deconflicted paths, 
allowing for higher air traffic capacity while maintaining safety.

The difference in airspace management efficiency between the various optimization schemes for MWIS 
problems is not significant in this case. To better understand the computational difficulty of the MWIS problems 
encountered during the simulation, we counted the number of variables involved in these problems, as illustrated 
in Fig. 7. While the number of variables increases with the request rate, there is a large gap between the actual 

Fig. 7.  Number of vertices. The plot illustrates the number of variables (vertices) in MWIS problems across 
different request rates. The red dashed line expresses the upper bound of the number of vertices in MWIS 
graphs, which will be produced if no routes have interference with already active flights. The error bar shows 
the mean number of vertices in MWIS graphs appeared in the simulation. The range of bars shows 68% 
confidence interval.

 

Fig. 6.  Average number of active flights. The plots show the average number of aircraft in the airspace at any 
given time during the simulation. The triangle, circle, square, and down-pointing triangle markers represent 
the results of the shortest FIFO, quantum annealing, exact optimization, and greedy algorithm, respectively.
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problem size and the theoretical upper bound. This situation will likely occur when the number of incoming 
requests exceeds the capacity that can be efficiently managed through scheduling and routing. As the airspace 
is already at full capacity, there is little room for further optimization. In such situations, the size of the MWIS 
problems does not grow substantially; thus, computational complexity is not a major concern. Consequently, 
we conclude that each optimization algorithm can optimally solve most of the problems, which explains the 
minimal difference in airspace management efficiency observed under the current routing network capacity. 
However, if the routing network’s capacity were expanded, such as by increasing the vertical dimension or using 
other methods, the number of variables in the MWIS problems would increase significantly. As a result, the 
computational hardness of MWIS problems would become a significant challenge, and the performance of 
optimization algorithms, such as solving time or solution quality, plays a greater role in determining airspace 
management efficiency.

Finally, we evaluate the current performance of each optimization method in terms of both computation time 
and solution quality. Since quantum annealing is a stochastic algorithm, it is appropriate to run the algorithm 
multiple times and measure the probability of obtaining the optimal solution within a given time rather than 
solely focusing on the average runtime. To assess this, we employ the time-to-solution (TTS) benchmark as a 
performance metric, which is defined as:

	
TTS(p) = tc

log(1 − p)
log(1 − popt)

,� (7)

where p represents the probability of obtaining the optimal solution at least once after a fixed number of trials, 
popt is the probability of obtaining the optimal solution in a single trial, and tc is the computational time for a 
single trial. For instance, TTS(0.99) indicates the estimated time required to achieve the optimal solution with 
a 99% probability. We extracted 629 MWIS problems from the UTM simulation in Singapore, with problem sizes 
ranging from 5 to 50 variables, as illustrated in Fig. 7, and evaluated the performance of each algorithm. We set 
the number of samples for quantum annealing to 10,000, with an annealing time of 1 µs per trial.

Understanding the operation and timing of D-Wave’s quantum processor is crucial to measuring the runtime 
of quantum annealing. Defining the runtime for a single trial as the annealing time makes sense for evaluating 
the pure performance of quantum annealing. However, in practice, the current D-Wave quantum processor 
requires additional computation processes beyond annealing, meaning that the annealing time alone does not 
fully determine the runtime. Briefly, the runtime of the quantum annealing is divided into programming time 
and sampling time, collectively referred to as quantum processor unit (QPU) access time. Programming time 
refers to configuring the quantum processor with the problem, representing a one-time overhead independent 
of the number of samples. On the other hand, sampling time refers to obtaining samples from the quantum 
processor and is proportional to the number of samples. It includes the annealing time, post-processing time for 
readout, and the delay required to reinitialize the processor. While programming time and post-processing are 
nonessential for the theoretical performance of quantum annealing, they are critical in practical use. Therefore, 
we evaluate the total annealing time and QPU access time. This analysis does not consider other overheads, such 
as communication time and pre- or post-processing on the classical computer.

For the Gurobi Optimizer and the greedy algorithm, we use the runtime of a single trial rather than time-
to-solution (TTS). As the greedy algorithm is deterministic and does not guarantee the optimal solution, we 

Fig. 8.  TTS benchmark. The box plots show the time-to-solution benchmark of quantum annealing, Gurobi 
Optimizer, and the greedy algorithm. The box plots represent the distribution of the TTS values and are drawn 
from the first to the third quartiles. The whiskers are drawn 1.5 times the interquartile range from the first and 
third quartiles. Outliers are shown with cross markers.
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set the runtime to a fixed 10 seconds when the optimal solution is not obtained. The results are illustrated in 
Fig. 8. Quantum annealing outperforms Gurobi Optimizer in terms of annealing time. However, the opposite 
is true when considering the total QPU access time. Both the Gurobi Optimizer and the greedy algorithm show 
superior consistency in runtime, with quantum annealing exhibiting greater variance across different instances. 
The greedy algorithm appears slower than Gurobi Optimizer in some cases. We attribute this to our current 
implementation of the greedy algorithm, which is likely not fully optimized, leaving room for performance 
improvements. Additionally, a few problems were not solved optimally by the greedy algorithm. Nevertheless, 
all the algorithms managed to solve most of the problems optimally within 0.1 seconds, with the differences 
in performance being relatively minor for the current simulation conditions. That said, the difference between 
solvers is expected to become more pronounced as the routing network capacity increases and the problem 
size grows. In this context, it is noteworthy that the current D-Wave quantum annealing machine performs 
competitively with classical solvers, even when accounting for QPU access time. Furthermore, quantum 
annealing could become even more competitive as its performance potentially improves over the long term.

Discussion
In this study, we proposed a path planning and scheduling framework for the fleet of UAMs in urban airspace. 
The routing decision was formulated as a MWIS problem, allowing us to leverage existing optimization 
algorithms, including quantum annealing. We evaluated the performance of the framework using the OneSky 
UTM simulator for the Singapore airspace and compared the results with the shortest FIFO method. The results 
indicate that the proposed framework is effective when the request rate is moderate. We further compared the 
performance of each optimization algorithm in terms of runtime and solution quality using the TTS benchmark. 
The findings show that all the algorithms could provide fast solutions, making them reasonable options for our 
scheduling and routing framework. The comparison between quantum annealing and classical solvers reveals 
that the current D-Wave machine is competitive with traditional methods. Moreover, when considering only 
annealing time, quantum annealing outperforms classical solvers, although the problem sizes in our study were 
relatively small. This suggests that quantum annealing has the potential to be a powerful tool for solving hard 
combinatorial optimization problems in the future, especially as its performance continues to improve.

As future work, extending our framework to optimize the timing of flight departures and arrivals presents a 
promising direction. In this study, flights were scheduled greedily to approve as many requests as possible at each 
time step without optimizing the departure and arrival times. This strategy can lead to suboptimal outcomes 
over time, potentially resulting in airspace congestion. To mitigate this, optimizing the timing of departures and 
arrivals, alongside flight approval and routing decisions, will be crucial to prevent such congestion and improve 
overall efficiency.

We are also interested in simulating larger-scale urban airspace. The Singapore airspace used in this study is 
relatively small, and the capacity of the routing network was limited when assessing the problem size. In larger 
urban airspaces, the capacity of the routing network is likely to increase, making the impact of optimization 
more significant. For example, expanding the routing network into three-dimensional space is one approach 
to increase its capacity and improve traffic efficiency. In such scenarios, the computational performance of 
optimization methods becomes crucial, and next-generation algorithms, such as quantum annealing, may offer a 
viable solution for tackling these larger, more complex problems. At the same time, managing airspace for UAM 
vehicles presents a challenging issue for aviation authorities and service providers. We believe that advancing 
aerial transportation through UAM vehicles will drive the need for global optimization in airspace management, 
and our framework could contribute to the overall solution.

This study identified quantum annealing as a promising candidate for solving combinatorial optimization 
problems. To utilize quantum annealing, problems must first be encoded as QUBO formulations, and the 
effectiveness of this formulation directly influences the performance of the quantum annealing process. We 
successfully reduced the routing and scheduling problems to the well-known MWIS problem, enabling the 
application of already established optimization algorithms. Additionally, in the context of quantum annealing, 
further performance improvements will depend on developing specialized methods tailored to specific problem 
types, as its current capabilities for solving general QUBO problems remain limited. The generality of typical 
combinatorial problems, like MWIS, broadens the applicability of quantum annealing to real-world challenges. 
Thus, exploring specialized optimization techniques using quantum annealing for typical combinatorial 
problems is an intriguing direction. For instance, graph coloring problems and capacitated vehicle routing 
problems are examples where specialized approaches have proven effective31,41. However, the development of 
specialized methods for quantum annealing is still in its early stages, making future research in this area highly 
promising.

Data Availability
The datasets used during the current study are available from the corresponding author upon reasonable request.
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