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The growing integration of urban air mobility (UAM) for urban transportation and delivery has
accelerated due to increasing traffic congestion and its environmental and economic repercussions.
Efficiently managing the anticipated high-density air traffic in cities is critical to ensure safe and
effective operations. In this study, we propose a routing and scheduling framework to address the
needs of a large fleet of UAM vehicles operating in urban areas. Using mathematical optimization
techniques, we plan efficient and deconflicted routes for a fleet of vehicles. Formulating route planning
as a maximum weighted independent set problem enables us to utilize various algorithms and
specialized optimization hardware, such as quantum annealers, which has seen substantial progress in
recent years. Our method is validated using a traffic management simulator tailored for the airspace in
Singapore. Our approach enhances airspace utilization by distributing traffic throughout a region. This
study broadens the potential applications of optimization techniques in UAM traffic management.

Increasing city traffic induces heavy congestion, resulting in immense economic costs and adverse environmental
impacts every year. To address the issue, urban air mobility (UAM) systems have been envisioned as a technology
that utilizes automated air transportation services to carry people or cargo at lower altitudes in and around
metropolitan areas’. As the demand for UAM operations increases, there is a growing need for a systematic
approach to manage their traffic, especially in low-altitude airspace. Recent NASA-commissioned market studies
estimate that by 2030, there could be up to 500 million flights annually for package delivery services and 750
million flights for air metro services, making UAM a highly profitable and viable enterprise?. Consequently, this
poses a major challenge for aviation authorities and air navigation service providers as they attempt to integrate
these new and novel operations into the national airspace. Unmanned aircraft systems traffic management
(UTM) are conceptual frameworks for the safe and efficient management of the enormous number of aircraft
anticipated above cities and people’. A primary goal is to ensure the safe separation of UAM vehicles from each
other and from other airspace users, such as traditional manned air traffic. This can be done through strategic
deconfliction and dynamic scheduling of UAM flight requests during flight planning. However, while in flight,
unforeseen contingencies, such as weather events, emergencies, or infrastructure outages, may require a UAM
vehicle to dynamically change its route to avoid the contingency. In high-density operations, this change in route
will cause cascading conflicts for other active operations. To help maintain safe airspace operation, preflight
strategic deconfliction and in-flight tactical deconfliction are critical®.

In route planning with strategic deconfliction, flight paths are designed before launch based on demand,
considering factors such as traffic density, aerodrome capacity, weather conditions, and both permanent and
temporary flight restrictions. Routing is widely applied in various fields, including shortest route suggestions
in-car navigation systems and the control of automated guided vehicles (AGVs) in factories and warehouses®”.
Standard routing algorithms include sampling-based methods like rapidly-exploring random trees (RRT)®and
exact algorithms such as Dijkstras algorithm’and A-star (A*)!°. However, these algorithms are not directly
applicable to UAM routing, as they do not account for collision avoidance. Routing algorithms with collision
avoidance have been actively studied in the field of unmanned aerial vehicles (UAVs) rather than UAM
vehicles!!13. Most studies on UAV route design assume that UAV's can move freely in three-dimensional space.
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In contrast, only a few studies consider route design within urban environments, where the available airspace for
flight is significantly restricted.

According to the concept of operations (ConOps) for UTM, urban air space is modeled by a comprehensive
routing network composed of nodes and lines in the real space to mitigate the complexity of operations'*. Under
such a condition, strategic deconfliction methods have been proposed, and take-off and landing time for each
vehicle is controlled!>!®. Efficient fleet management remains a significant challenge, particularly in cities where
numerous flight operations occur within constrained airspace. The complexity of managing such operations
increases as the number of flights grows, requiring sophisticated coordination to avoid congestion and delays.
One approach to this challenge is mathematical optimization, which can help identify the best solutions under
defined objectives and constraints. Fleet control under some objective to be minimized or maximized can
be translated into mathematical optimization problems, which are usually hard to solve optimally for its NP-
hardness as represented by vehicle routing problem!”.

Metaheuristics, which are general-purpose algorithms for a wide range of problems, have attracted a great
deal of attention in recent years, such as genetic algorithms and simulated annealing'®!®. Furthermore, in recent
years, methods utilizing quantum nature have emerged, and both industry and academia are actively attempting
to transcend classical computation. Quantum annealing is a metaheuristic for combinatorial optimization
problems and utilizes quantum fluctuations for global search®. The method is specialized in solving quadratic
unconstrained binary optimization (QUBO) problems, and many well-known problems can be translated
into?!. In the ideal procedure, quantum annealing outputs the optimal solution by slowly decreasing the
strength of the fluctuation of binary variables. The quantum adiabatic theorem ensures that the ground state,
which corresponds to the optimal solution, is obtained by evolving the system adiabatically??~2*. The hardware
implementing quantum annealing developed by D-Wave Systems, Inc. have become commercially available,
marking a significant milestone in practical applications of quantum annealing. In contrast to theoretical aspects,
the machines do not perform quantum annealing ideally, and their optimization performance is quite limited at
the present stage. However, the rapidness of sampling can be effective for attaining relatively good solutions as a
heuristic solver. To inspect the industry applicability of D-Wave’s quantum annealer, a wide variety of practical
use cases have been explored in finance?>~%, traffic?*-, logistics®!, manufacturing®”-2, and marketing??, as well
as in decoding problems®*3°. In this study, we use the metaheuristic optimization method for fleet management.
Specifically, we realize the route planning by dynamically solving maximum weighted independent set (MWIS)
problems, which are well-known graph theoretical problems.

The remainder of this paper is organized as follows: In the next section, we outline the fundamental principles
of fleet management. We introduce our routing and scheduling framework, which leverages optimization
techniques, and explain how the problem is structured. In the following section, we evaluate our method
through the UTM simulator developed by OneSky Systems. To validate the effectiveness of quantum annealing,
we compare the results of a greedy algorithm and a classical commercial optimizer. In the final section, we
summarize our findings and discuss potential avenues for future research to enhance UAM traffic management.

Method
In this section, we introduce our routing and scheduling method for the UAM vehicles fleet.

To manage urban airspace, aerodromes, and flight corridors are designed based on the surrounding
environment, including artificial structures and geographical features. The UAM vehicles can take off, land at
these aerodromes, and navigate designated corridors. As the airspace is to be integrated with the existing urban
infrastructures, to ensure the safety of other users, UAM vehicles will fly past as little human activity area within
the urban space as possible, such as the roof of buildings, canals, and drainage systems*. Consequently, in urban
environments, the available flyable space is significantly constrained, and the airways for the UAM vehicles can
be modeled as a graph-structured routing network. An example of a routing network within Singapore’s urban
environment is illustrated in Fig. 1.

Flight requests are submitted on demand to transport cargo or passengers. Each request consists of a pair
of nodes representing the take-off and landing locations within the routing network. Additionally, requests can
include details such as the desired start time or the latest allowable start time.

Given a set of flight requests, the goal of routing and scheduling is to determine, as an output, the start time
and flight path for each request. The start time refers to the take-off time and must adhere to the time-window
constraints defined by the desired and allowable start times. The flight path consists of a sequence of nodes and
edges, representing the movement of the UAV from the source to the destination within the routing network.
As urban flyable airspace is quite limited, routing and scheduling must be managed with enough efficiency to
handle the high volume of anticipated flight requests. We break down the efficiency of management with the
number of approved requests per time unit and the shortness of determined flight path lengths. Approving as
many requests as possible creates flexibility for future requests by opening up the room for potentially incoming
demands, while keeping flight paths short helps avoid wasting both flight time and airspace. To maximize overall
efficiency, the start times and flight paths should be adjusted simultaneously for multiple requests, rather than
processing them individually.

For the safety of flight operations, UAM vehicles must maintain sufficient separation from one another by
adhering to minimum distance requirements in the airspace. The concept of strategic deconfliction ensures that
flight paths are calculated to avoid collisions with other aircraft, both in-flight and scheduled. To achieve this,
the precise position of each UAM vehicle is simulated over time by following its kinematic motion, and the
time-dependent distance between any two vehicles is continuously monitored. Flights are approved only if this
distance remains greater than the minimum required separation. In practice, re-routing, in addition to pre-flight
deconfliction, must also account for dynamic changes in airspace, such as geofence restrictions. For simplicity,
we assume that the airspace remains fixed during operation, with no dynamic changes in the flyable area.
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(C) OpenStreetMap contributors (C) CARTO.

Fig. 1. Routing Network in Singapore. The nodes represent aerodromes, while the lines represent corridors.
This airspace structure was generated using the OneSky UTM simulator.
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Fig. 2. Dynamic scheduling and routing framework. The framework consists of two main components: route
generation, and optimization.

In this study, we introduce a dynamic scheduling and routing framework to efficiently process a high volume
of dense flight requests. The framework is depicted in Fig. 2. The framework operates through the following
procedure:

1. Gather information on requests that are eligible to begin flights at time ¢.
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2. For each request, generate a set of possible candidate routes.

3. Simulate the positions of all candidate routes over time.

4. Calculate the distance between each pair of candidate routes and any active flight routes. Discard candidate
routes if the separation distance falls below the minimum required threshold.

5. For distinct requests, calculate the distance between each pair of candidate routes at each time step.

6. Select the best routes that satisfy the deconfliction constraints using an optimization method.

7. Schedule each request with a valid route as a flight starting at time ¢.

8. Increment time by the defined time interval and repeat the process from step 1 until the operation con-

cludes.The details of specific components are described as follows. In the process of generating candidate
routes, a set of flight paths is generated for each request, from which one will be selected as the scheduled
flight route. It is desirable that the candidate routes are not only short but also sufficiently distinct from one
another to increase the flexibility for system-wide adjustments. To achieve this, a Dijkstra-based algorithm is
employed to generate a diverse set of short routes. In the standard Dijkstra algorithm, the distances of edges
are used as weights to calculate the shortest path. In our method, once the shortest path is determined using
Dijkstra’s algorithm, a penalty is applied to the edge weights of the routing network that the path traverses,
and the process is repeated to compute additional routes. This penalization helps avoid outputting similar
routes and, as subsequent paths are less likely to overlap with the previous ones. Through empirical testing,
we have found that applying a penalty equal to five times the original edge weight effectively generates a
sufficient variety of dissimilar routes. After the candidate routes are generated, each route is translated in to
detailed flight paths by simulating the position of UAM vehicles at each time step. For simplicity, we assume
that the UAM vehicles fly at a constant speed, and their positions at each time step are calculated using linear
interpolation. At each time step throughout the journey, the distance between the UAM vehicles’ position
and other active flight routes is computed. If the separation distance falls below the minimum required
threshold, the candidate route is discarded. To assess potential interference between candidate routes, the
distance between each pair of candidate routes for distinct requests is calculated at each time step. If the
separation distance falls below the required minimum threshold, the pair of candidate routes is considered
to be in conflict. In such cases, no more than one route from the conflicting pair can be scheduled as a flight.
Based on this interference information, an optimization method is applied to select the most suitable routes
that satisfy the separation constraints.

We employ mathematical optimization techniques to determine the optimal combination of routes. In
optimization, a problem is formulated as the minimization or maximization of an objective function subject
to constraints. Specifically, we formulate the route selection process as a maximum weighted independent set
(MWIS) problem, which is a well-studied combinatorial optimization problem. In the MWIS problem, a graph
G = (V, E) is given, along with a weight w; for each vertex s € V. The objective is to find a subset I C V such
that no two vertices in I are adjacent, and the sum of the weights of the vertices in lis maximized®*-*°. We denote
the set of vertices and edges in G as V(G) and E(G), respectively. The neighborhood of a vertex i in graph G is
denoted as N(i), and the degree of vertex i is denoted as d(i).
The MWIS problem can also be formulated as integer programming problem as follows:

maximize Z Wi T
ieVv

subject to x; +x; <1 V(i,j) € E
z; € {0,1} VieV.

We formulate the route selection process as an MWIS problem by constructing a graph to model the relationships
between candidate routes. We define the vertex set V as the set of all candidate routes. For each request, edges are
added between its candidate routes, forming a complete subgraph, ensuring that at most one vertex from each
request can be included in the independent set. Additionally, edges are introduced between any pair of candidate
routes that are in conflict, guaranteeing that no conflicting routes are selected in the independent set. Next, we
define a weight w; for each vertex ¢ € V as follows:
d*
w; = d; (2)

where d; is the length of the route corresponding to vertex i, and d* is the length of the shortest path connecting
the source and destination of route i. By this definition, the weight equals 1 if the route is the shortest, and is
smaller than 1 if the route is longer than the shortest path. The objective is to maximize the total weight of the
independent set, which simultaneously increases the number of approved requests and reduces the overall route
lengths. Note that maximizing the number of approved requests is not necessarily the primary objective, as we
aim to avoid approving requests with excessively long routes. For instance, selecting a single route with a weight
of 1 is preferable to selecting two routes, each with a weight of less than 0.5. The balance between maximizing
the number of approved requests and minimizing route lengths can be adjusted by adding a constant offset to
both the numerator and denominator of the weight definition w;, though this refinement is not considered in
this study. An example of graph generation and its solution is illustrated in Fig. 3.
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Fig. 3. An example of a generated graph and its corresponding solution to the MWIS problem.

By solving the MWIS problem on the constructed graph, we can identify the optimal combination of routes that
meet the separation constraints. However, due to the intractability of MWIS problems, solving them exactly
or even approximating them efficiently is generally considered difficult®®. As a result, heuristic methods are
commonly employed to address large-scale MWIS problems. One such approach is the greedy algorithm, which,
although it does not guarantee optimality, is computationally efficient. Several greedy algorithms have been
explored for MWIS problems, and in this study, we adopt the method proposed by Sakai et al*®.. We describe the
greedy algorithm for MWIS problems in Algorithm 1. This algorithm guarantees that the size of the independent
set obtained is atleast ) . ., w;/(d(i) 4 1). However, as with other greedy approaches, this algorithm does not
always guarantee finding the optimal solution. There are instances in certain graph structure where the greedy
algorithm fails to find the optimal one, as demonstrated in the literature®.

Require: A weighted graph G.
Ensure: A maximal weighted independent set /.
1+0,i+0,G' < G;
while V(G') # 0 do
Select i such that ¥ ey, () Wj/{de () +1} < wi
I+ TU{i};
G + G'V(G)\Ng ()]
end while

Algorithm 1. Greedy algorithm for MWIS problems

Next, we introduce quantum annealing as an optimization method for solving MWIS problems. To utilize
quantum annealing for MWIS, the problem must first be reformulated as a quadratic unconstrained binary
optimization (QUBO) problem. A general QUBO problem is expressed as follows:

minimize ZQijxixj
i, (3)
subject to x; € {0,1} Vie {1,2,...,N},

where Q is a coefficient matrix, x; represents a binary variable, and N is the number of variables. To handle
constraints in QUBO problems, they are incorporated into the objective function as additional penalty terms.
These terms are designed to ensure that violations of the constraints incur a high cost, thus discouraging
solutions that break them. By applying the penalty method to the original MWIS formulation 1, we can remove
the inequality constraints and reformulate the problem into the following QUBO form:

minimize — E WiTi + A E Tik;

i€V (i,5)EE (4)
subject to x; € {0,1} Vie V.
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The first term in equation 4 corresponds to the objective function of the MWIS problem, while the second term
represents the penalty for violating the constraint. If a pair of adjacent vertices is selected in the independent
set, i.e., if x; = x; = 1, the penalty X is added to the objective function. Here, X is the penalty coefficient, and
by setting A sufficiently large, the solution to the Ising problem satisfies the constraints. Given that the weights
are defined to be less than or equal to 1, setting the penalty coeflicient A to 2 is sufficient to ensure constraint
satisfaction.

QUBO problems can be equivalently transformed into the problem of minimizing the energy of the Ising model,
for which the Hamiltonian is expressed as:

HO(O') = — ZJZ‘]‘O'Z‘O']' — Zhi0i7 (5)
i,j i

where o; is a Ising spin variable that takes either 1 or —1 and J;; and h; are the coupling constant between
Ising spins and the bias term, respectively. In quantum annealing, quantum fluctuations are leveraged to
explore low-energy states of the QUBO problem. The D-Wave quantum processor operates this process using
superconducting qubits, with quantum fluctuations controlled by the strength of a transverse field. The system’s
Hamiltonian is expressed as:

H(s) = —A(s) Y 67 + B(s)Ho, (6)

i

where 67 represent the x-component of the Pauli matrices. The term Hy is the problem Hamiltonian, which
encodes the Ising problem, and is obtained by replacing the Ising spin variables with the z-component of the
Pauli matrices, ;. The system is governed by a predefined annealing schedule, parameterized by 0 < s <1
. The functions A(s) and B(s) are defined such that A(0) > B(0) and A(1) < B(1), ensuring that at s = 0
, the system starts in a trivial ground state, where qubits are in a uniform superposition of all possible states.
As s approaches 1, the system evolves into a nontrivial classical state, with spin variables that correspond to
the solution of the QUBO problem. The quantum adiabatic theorem ensures that if the schedule parameter
s is varied slowly enough, the system will remain in its ground state throughout the evolution. Consequently,
the optimal solution to the Ising problem should, in theory, be obtained at the conclusion of the annealing
process. In practice, however, the D-Wave quantum annealer does not perform ideal quantum annealing, and
the optimization performance remains limited at the current stage of development. Despite this, the quantum
annealer’s ability to rapidly sample solutions can be effective for finding relatively good solutions, making it a
useful heuristic solver. Moreover, the performance of quantum annealing hardware continues to improve. This
potential for growth is why we are particularly interested in quantum annealing as an optimization method from
a long-term perspective.

Results
In this section, we present the results of routing and scheduling for a fleet of UAM vehicles using the OneSky’s
UTM simulator.

The simulator is customized for the airspace over Singapore, with the routing network constructed as
depicted in Fig. 1. Within this environment, we generate a set of requests and simulate the operations of a UAM
fleet. Requests are generated every 30 seconds by randomly selecting a pair of aerodromes in the routing network
as the source and destination. We refer to the number of requests generated at each step as the request rate. The
desired start time for each request is set to zero, with an allowable delay of up to 60 seconds from the request
generation time. The total simulation time is 3500 seconds, with routing and scheduling updates performed
at 30-second intervals. The speed is set to 10 meters per second for all UAM vehicles, and the time-dependent
positions at each simulation step are calculated using linear interpolation between consecutive nodes in their
routes. The minimum required separation distance between two UAM vehicles is 100 meters. We generate five
candidate routes for each request to be evaluated during the scheduling and routing process.

The optimization computations are performed using an Intel Xeon Gold 6130 CPU with 141 GB of RAM. The
greedy algorithm implemented in Python 3.8.8 is used for approximate solutions. Gurobi Optimizer 9.1.2, a state-
of-the-art mathematical optimization solver, is employed to obtain exact solutions. Gurobi is widely recognized
as the industry standard for solving complex optimization problems involving integer programming and is
focused on delivering high-performance results. Quantum annealing is carried out using the D-Wave Advantage
1.1 quantum processor. The number of samples for the quantum annealing process is 100, with an annealing
time of 1 us. To implement the QUBO problem (4) on the D-Wave quantum processor, we employ a heuristic
algorithm to map the problem graph onto the hardware graph using graph minor embedding techniques*.
After obtaining samples from the quantum processor, a post-processing step refines the solutions, ensuring they
align with the original QUBO problem. In cases where the values on redundant qubits representing the same
logical variable differed, such as chain breaks, we applied a majority vote strategy to resolve the conflicts. Chain
breaks, caused by the limited connectivity between qubits in the current D-Wave annealer, often degrade the
optimization’s performance. To mitigate this issue, we employed a steepest descent algorithm to refine the post-
processed samples, further enhancing the quality of the solutions obtained from the quantum annealer.
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Fig. 4. Cumulative number of approved flights. The plots show the cumulative number of approved flights
during the simulation. The triangle, circle, square, and down-pointing triangle markers represent the results of
the shortest FIFO, quantum annealing, exact optimization, and greedy algorithm, respectively.
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Fig. 5. Distribution of routes. These plots show the frequency with which edges are used in the selected routes.
The left and right panels present results obtained from the shortest FIFO approach and quantum annealing,
respectively. The color of each edge corresponds to the number of times it is utilized.

We first evaluate our optimization framework by comparing several methods against a non-optimized
baseline strategy, which we call the shortest first-in, first-out (FIFO) method. The shortest FIFO method is
a simple strategy that assigns each request the shortest available route and schedules flights in the order of
arrival, provided the route is deemed safe. Figure 4 illustrates the number of approved requests. Our scheduling
and routing framework approves more requests than the shortest FIFO method, demonstrating that route
optimization in fleet management effectively increases the number of approved flights. However, the difference
between our approach and the shortest FIFO method diminishes when the request rate is high. We believe that
when the request rate is dense, the airspace becomes heavily congested, and the routing network reaches full
capacity, leaving little room for further route adjustments. We provide visualizations of the simulation results in
Supplementary Movie 1. In these visualizations, we observe that when using the shortest FIFO method, aircraft
tend to utilize corridors with high centrality in the routing network, leading to congestion. In contrast, our
optimization approach mitigates this congestion by distributing the aircraft evenly throughout the airspace.
We compare the frequency with which edges are used in the selected routes in Fig. 5. Under the shortest FIFO
method, the usage of edges is highly skewed and some edges remain completely unused, while a few are used
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Fig. 6. Average number of active flights. The plots show the average number of aircraft in the airspace at any
given time during the simulation. The triangle, circle, square, and down-pointing triangle markers represent
the results of the shortest FIFO, quantum annealing, exact optimization, and greedy algorithm, respectively.

250F| ---- Upper bound I
¢ Observed value s
L ] ,,/
td
200 - e
//,
[%2] ,/’
8
5 150} s
> e
5
— il
[] vl
e
€ 100 s
z
td
/I
,/
50 s
,/
: BER t
s ¢ 1
0 i 1 i 1 ] L
10 20 30 40 50

Request rate

Fig. 7. Number of vertices. The plot illustrates the number of variables (vertices) in MWIS problems across
different request rates. The red dashed line expresses the upper bound of the number of vertices in MWIS
graphs, which will be produced if no routes have interference with already active flights. The error bar shows
the mean number of vertices in MWIS graphs appeared in the simulation. The range of bars shows 68%
confidence interval.

disproportionately often. In contrast, quantum annealing yields a more balanced usage, including edges located
away from central regions. We also present the average number of active aircraft at any given time in Fig. 6. Our
approach shows a more significant increase in active aircraft than the shortest FIFO method. This suggests that
routes are more evenly distributed throughout the airspace, leading to more efficient utilization of available
space. This implies that some routes may require detours to achieve the best combination of deconflicted paths,
allowing for higher air traffic capacity while maintaining safety.

The difference in airspace management efficiency between the various optimization schemes for MWIS
problems is not significant in this case. To better understand the computational difficulty of the MWIS problems
encountered during the simulation, we counted the number of variables involved in these problems, as illustrated
in Fig. 7. While the number of variables increases with the request rate, there is a large gap between the actual
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Fig. 8. TTS benchmark. The box plots show the time-to-solution benchmark of quantum annealing, Gurobi
Optimizer, and the greedy algorithm. The box plots represent the distribution of the TTS values and are drawn
from the first to the third quartiles. The whiskers are drawn 1.5 times the interquartile range from the first and
third quartiles. Outliers are shown with cross markers.

problem size and the theoretical upper bound. This situation will likely occur when the number of incoming
requests exceeds the capacity that can be efficiently managed through scheduling and routing. As the airspace
is already at full capacity, there is little room for further optimization. In such situations, the size of the MWIS
problems does not grow substantially; thus, computational complexity is not a major concern. Consequently,
we conclude that each optimization algorithm can optimally solve most of the problems, which explains the
minimal difference in airspace management efficiency observed under the current routing network capacity.
However, if the routing network’s capacity were expanded, such as by increasing the vertical dimension or using
other methods, the number of variables in the MWIS problems would increase significantly. As a result, the
computational hardness of MWIS problems would become a significant challenge, and the performance of
optimization algorithms, such as solving time or solution quality, plays a greater role in determining airspace
management efficiency.

Finally, we evaluate the current performance of each optimization method in terms of both computation time
and solution quality. Since quantum annealing is a stochastic algorithm, it is appropriate to run the algorithm
multiple times and measure the probability of obtaining the optimal solution within a given time rather than
solely focusing on the average runtime. To assess this, we employ the time-to-solution (TTS) benchmark as a
performance metric, which is defined as:

log(1 — p)

TTS(p) = te—————,
2 log(1 — popt)

(7)

where p represents the probability of obtaining the optimal solution at least once after a fixed number of trials,
Dopt is the probability of obtaining the optimal solution in a single trial, and ¢. is the computational time for a
single trial. For instance, TTS(0.99) indicates the estimated time required to achieve the optimal solution with
a99% probability. We extracted 629 MWIS problems from the UTM simulation in Singapore, with problem sizes
ranging from 5 to 50 variables, as illustrated in Fig. 7, and evaluated the performance of each algorithm. We set
the number of samples for quantum annealing to 10,000, with an annealing time of 1 us per trial.

Understanding the operation and timing of D-Waves quantum processor is crucial to measuring the runtime
of quantum annealing. Defining the runtime for a single trial as the annealing time makes sense for evaluating
the pure performance of quantum annealing. However, in practice, the current D-Wave quantum processor
requires additional computation processes beyond annealing, meaning that the annealing time alone does not
fully determine the runtime. Briefly, the runtime of the quantum annealing is divided into programming time
and sampling time, collectively referred to as quantum processor unit (QPU) access time. Programming time
refers to configuring the quantum processor with the problem, representing a one-time overhead independent
of the number of samples. On the other hand, sampling time refers to obtaining samples from the quantum
processor and is proportional to the number of samples. It includes the annealing time, post-processing time for
readout, and the delay required to reinitialize the processor. While programming time and post-processing are
nonessential for the theoretical performance of quantum annealing, they are critical in practical use. Therefore,
we evaluate the total annealing time and QPU access time. This analysis does not consider other overheads, such
as communication time and pre- or post-processing on the classical computer.

For the Gurobi Optimizer and the greedy algorithm, we use the runtime of a single trial rather than time-
to-solution (TTS). As the greedy algorithm is deterministic and does not guarantee the optimal solution, we
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set the runtime to a fixed 10 seconds when the optimal solution is not obtained. The results are illustrated in
Fig. 8. Quantum annealing outperforms Gurobi Optimizer in terms of annealing time. However, the opposite
is true when considering the total QPU access time. Both the Gurobi Optimizer and the greedy algorithm show
superior consistency in runtime, with quantum annealing exhibiting greater variance across different instances.
The greedy algorithm appears slower than Gurobi Optimizer in some cases. We attribute this to our current
implementation of the greedy algorithm, which is likely not fully optimized, leaving room for performance
improvements. Additionally, a few problems were not solved optimally by the greedy algorithm. Nevertheless,
all the algorithms managed to solve most of the problems optimally within 0.1 seconds, with the differences
in performance being relatively minor for the current simulation conditions. That said, the difference between
solvers is expected to become more pronounced as the routing network capacity increases and the problem
size grows. In this context, it is noteworthy that the current D-Wave quantum annealing machine performs
competitively with classical solvers, even when accounting for QPU access time. Furthermore, quantum
annealing could become even more competitive as its performance potentially improves over the long term.

Discussion

In this study, we proposed a path planning and scheduling framework for the fleet of UAMs in urban airspace.
The routing decision was formulated as a MWIS problem, allowing us to leverage existing optimization
algorithms, including quantum annealing. We evaluated the performance of the framework using the OneSky
UTM simulator for the Singapore airspace and compared the results with the shortest FIFO method. The results
indicate that the proposed framework is effective when the request rate is moderate. We further compared the
performance of each optimization algorithm in terms of runtime and solution quality using the TTS benchmark.
The findings show that all the algorithms could provide fast solutions, making them reasonable options for our
scheduling and routing framework. The comparison between quantum annealing and classical solvers reveals
that the current D-Wave machine is competitive with traditional methods. Moreover, when considering only
annealing time, quantum annealing outperforms classical solvers, although the problem sizes in our study were
relatively small. This suggests that quantum annealing has the potential to be a powerful tool for solving hard
combinatorial optimization problems in the future, especially as its performance continues to improve.

As future work, extending our framework to optimize the timing of flight departures and arrivals presents a
promising direction. In this study, flights were scheduled greedily to approve as many requests as possible at each
time step without optimizing the departure and arrival times. This strategy can lead to suboptimal outcomes
over time, potentially resulting in airspace congestion. To mitigate this, optimizing the timing of departures and
arrivals, alongside flight approval and routing decisions, will be crucial to prevent such congestion and improve
overall efficiency.

We are also interested in simulating larger-scale urban airspace. The Singapore airspace used in this study is
relatively small, and the capacity of the routing network was limited when assessing the problem size. In larger
urban airspaces, the capacity of the routing network is likely to increase, making the impact of optimization
more significant. For example, expanding the routing network into three-dimensional space is one approach
to increase its capacity and improve traffic efficiency. In such scenarios, the computational performance of
optimization methods becomes crucial, and next-generation algorithms, such as quantum annealing, may offer a
viable solution for tackling these larger, more complex problems. At the same time, managing airspace for UAM
vehicles presents a challenging issue for aviation authorities and service providers. We believe that advancing
aerial transportation through UAM vehicles will drive the need for global optimization in airspace management,
and our framework could contribute to the overall solution.

This study identified quantum annealing as a promising candidate for solving combinatorial optimization
problems. To utilize quantum annealing, problems must first be encoded as QUBO formulations, and the
effectiveness of this formulation directly influences the performance of the quantum annealing process. We
successfully reduced the routing and scheduling problems to the well-known MWIS problem, enabling the
application of already established optimization algorithms. Additionally, in the context of quantum annealing,
further performance improvements will depend on developing specialized methods tailored to specific problem
types, as its current capabilities for solving general QUBO problems remain limited. The generality of typical
combinatorial problems, like MWIS, broadens the applicability of quantum annealing to real-world challenges.
Thus, exploring specialized optimization techniques using quantum annealing for typical combinatorial
problems is an intriguing direction. For instance, graph coloring problems and capacitated vehicle routing
problems are examples where specialized approaches have proven effective®'*!. However, the development of
specialized methods for quantum annealing is still in its early stages, making future research in this area highly
promising.
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