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Forsythia suspensa leaf fermented
tea extracts attenuated oxidative

stress in mice via the Ref-1/HIF-1a
signal pathway and modulation of
gut microbiota

Lijuan Li%, Yating zhao?, Yuxin Ding?, Lanze Guo?, Ruiyao Dai?, Aixiang Chen?! &
Guofeng Duan™*

Forsythia suspensa leaf fermented tea (FSLFT) is made from tender buds of Forsythia suspensa
collected in spring. The main active components of FSLFT include forsythiaside, forsythia ester
glycoside, rutin, and forsythia flavonoids, which have antibacterial, antioxidant, liver-protective, and
immune-regulatory effects. Oxidative stress can trigger excessive apoptosis in intestinal epithelial
cells, leading to dysfunction of the small intestinal mucosa and impaired intestinal absorption. This
study focused on Kunming mice as research subjects and used hydrogen peroxide as an inducer to
investigate the antioxidant and anti-inflammatory effects of FSLFT in vivo, as well as its regulatory
effects on the intestinal microbiota of mice. The aim of this study was to establish a theoretical
foundation for the functional study of Forsythia suspensa leaves and provide specific recommendations
for their growth and application. The results showed that H,0, treatment led to an increase in
oxidative levels in mice. FSLFT has been shown to have antioxidant effects via the Redox Factor-
1(Ref-1)/ hypoxia-inducible factor-1 alpha (HIF-1a) pathway, reduce inflammation caused by hydrogen
peroxide through the Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-kB) signaling pathway,
and protect mouse colons from oxidative stress by repairing gut microbiota imbalance and increasing
microbial diversity and abundance. These findings establish a theoretical basis for studying the
functional properties of FSLFT.

Keywords Forsythia suspensa leaf fermented tea extract (FSLFT), Oxidative stress, Ref-1/HIF-1a, TLR4/NF-
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Forsythia suspensa (Thunb). Vahl, a traditional Chinese medicine, has the following effects: pyrexia, inflammation,
gonorrhea, carbuncle, and erysipelas and so on !. Modern pharmacology has also shown that Forsythia suspensa
has important anti-inﬂammatory, antioxidant, anti-cancer, and antiviral propertiesz. According to new research,
Forsythia suspensa leaves contain more of the useful chemicals phillyrin and phillygenin than fruit. These
chemicals help to protect the liver from damage caused by alcohol and CCL**.

Tea infusions prepared from Forsythia suspensa leaves have been commonly consumed as medicinal beverages
in Chinese folk for centuries®. FSLFT is made from the tender buds of Forsythia suspensa collected in spring,
and undergoes steps such as withering, fixing, rolling, fermenting, and baking. Research has found that the main
active components o FSLFT include forsythoside A, flavonoids, forsythin, and rutin®. These active components
have antibacterial, antioxidant, liver-protective, and immune-regulatory effects”°.

Physiologically generated Reactive oxygen species (ROS) also serve as second messengers in multiple signal
transduction pathways stimulated by cytokines and growth factors, and participate in cellular signaling®®. The
imbalance between ROS production and the abilities of biological systems to detoxify and repair secondary
damage is called oxidative stress'!. Research has shown that oxidative stress can trigger excessive apoptosis
of intestinal epithelial cells, leading to dysfunction of the small intestinal mucosa and impaired intestinal
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absorption!?, which impacts animal digestion and absorption of nutrients'>. ROS can activate NF-B to initiate
or boost inflammatory responses, which causes different cytokines to be made!*. Ref-1 is a multifunctional
35.6 kDa protein that responds to DNA damage by oxidative stress'”. Ref-1 plays a crucial role in initiating redox
processes and interacts with many transcription factors that are essential for cell development, differentiation,
and stress responses. Additionally, Ref-1's collaboration with HIF-1 is significant in controlling the expression
of genes that are dependent on low oxygen levels (hypoxia)'®. Oxidative stress can affect the balance of gut
microbiota!”. For instance, it has been shown that oxidative stress may favor the growth of certain pathogenic or
proinflammatory bacteria while reducing the populations of beneficial or commensal bacteria'®!”. A balanced
gut microbiota is essential for maintaining a healthy gut environment. When the gut microbial balance is
disrupted, deregulated bacteria can produce more ROS and impair gut barrier function?’, which allows harmful
substances and antigens to pass through the gut lining, further triggering oxidative stress®!. Therefore, the gut
microbiota can exhibit a reciprocal response to oxidative stress. The gut microbiota has an impact on oxidative
stress through metabolite synthesis, regulation of antioxidant enzymes, and maintenance of gut homeostasis?>%3,
the modulation of antioxidant enzyme production and activity by gut bacteria enables them to regulate oxidative
stress within the host; for example, specific strains of bacteria, such as Bifidobacterium longum CCFM752,
Lactobacillus plantarum CCFM10, and L. plantarum CCFM1149 can induce the production of crucial antioxidant
defense enzymes such as glutathione peroxidase?*, catalase? and superoxide dismutase(SOD)?.

Oxidative stress is a key pathophysiological mechanism in intestinal diseases such as Crohn’s disease (CD)
and ulcerative colitis. There have been many studies on the antioxidant and anti-inflammatory functions and
related mechanisms (signaling pathways) of Forsythia suspensa leaf (tea) extracts, but there have been no reports
on the effects of Forsythia suspensa leaf tea extract (Forsythia suspensa extract) on the Ref-1/HIF-1a signaling
pathway in vivo and in vitro. This study specifically examined Kunming mice as the objects of inquiry, utilizing
hydrogen peroxide as an inducer. This study examined the antioxidant and anti-inflammatory properties of
Forsythia suspensa leaf fermented tea extract by analyzing its effect on the Ref-1/HIF-1a and NF-«B signaling
pathways. Furthermore, we investigated the impact of Forsythia suspensa leaf fermented tea extract on the gut
microbiota. To establish a theoretical foundation for the functional study of FLFT and provide guidance for the
development and utilization of Forsythia suspensa leaves.

Results
The effect of forsythia suspensa leaf fermented tea extract (FSLFTE) on the body weight of mice under oxidative
stress.

Figure 1A indicates that the body weight of the H,0, group mice was significantly lower than that of the
control group, whereas the body weight of the H,0,-tea group mice was significantly higher than that of the
H,0, group. Figure 1B shows that the body weight of mice in the H,0, and H,O,-tea groups was significantly
lower than that of the control group, whereas the body weight of mice in the H,0,-tea group was significantly
higher than that in the H,0, group. These results indicate that H,0,-induced oxidative stress led to weight loss
in mice and that the FSLFTE could correct the weight loss induced by H,O, in mice.

The effect of FSLFTE on plasma indicators in oxidative stress mice

These images (Fig. 2A and B) demonstrate that the amounts of T-SOD and T-AOC in the plasma of mice in
the H,0, and H,0,-tea groups were significantly lower than those in the control group. However, the levels
of T-SOD and T-AOC in the plasma of mice in the H,O,-tea group were significantly higher than those in the
H,0, group. These images (Fig. 2C and D) show that the amounts of LPO and MDA in the plasma of mice in
the H,O, group were higher than those in the control group. The amounts of LPO and MDA in the plasma of
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Fig. 1. The effect of Forsythia suspensa leaf fermented tea extract on the body weight of mice under
oxidative stress. (A) Body Weight, (B) Body Weight gain. The data are shown as the means + SEM. n=10 per
group.*P<0.05, **P<0.01, **P<0.001, ****P<0.0001.
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Fig. 2. The effect of FLFTE on plasma indicators in mice with oxidative stress. (A) T-SOD activity, (B)
T-AOC concentration, (C) LPO concentration, (D) MDA concentration, (E) TNF-a concentration, (F) IL-6
concentration, (G) LPS activity, (H) IL-10 concentration. The data are shown as the means+ SEM. n=10 per
group.*P<0.05, **P<0.01, **P<0.001, ***P<0.0001.

mice in the H,O,-tea group were higher than those in the control group but much lower than those in the H,0,
group. These results indicated that H,O, led to an increase of oxidative levels in mice, and FLFTE could improve
the antioxidant levels in oxidative stress mice.

Figure 2E, E, and G show that the levels of TNF-a, IL-6, and lipopolysaccharides (LPS) in the H,0, and H,O,-
tea groups were significantly higher than those in the control group, and the levels of TNF-a, IL-6, and LPS in the
blood of mice in the H,O,-tea group were significantly lower than those in the H,O, group. Figure 2H shows that
the amounts of IL-10 in the blood of mice in the H,0, and H,O,-tea groups were significantly lower than those
in the control group, and the levels of IL-10 in the blood of mice in the H,O,-tea group were significantly higher
than those in the H,O, group. These findings indicated that H,O, treatment caused an increase in inflammation
response in mice, while FSLFTE attenuated inflammatory reaction in mice under oxidative stress by reducing
the levels of inflammatory cytokines such as IL-6 and TNF-alpha, and increasing the levels of anti-inflammatory
cytokines such as IL-10.

The effect of FSLFTE on intestinal oxidative stress indicators in oxidative stress mice

The levels of LPO and MDA in the colons of mice in the H,O, group were significantly higher than those
in the control group (Fig. 3A and B). In the H,0,-tea group, the levels of LPO and MDA in mouse colons
were significantly higher than those in the control group, but significantly lower than those in the H,0, group.
As shown in Fig. 3C and D, the amounts of T-SOD and T-AOC in mouse colons in the H,0, and H,0,-tea
groups were significantly lower than those in the control group. In contrast, the amounts of T-SOD and T-AOC
in mouse colons in the H,O,-tea group were significantly higher. At the same time, we discovered that the
expressions of Ref-1 and HIF-1 a in mice’s colons in the H,O, group were significantly higher than that in the
control and H,0,-tea groups in Fig. 3E and F. These findings suggested that H,O, treatment increased the level
of oxidation in mouse colons, whereas FSLFTE lowered the level of oxidation in mice under oxidative stress. This
could be influenced by the Ref-1/HIF-1a signaling pathway.
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Fig. 3. The effect of FLFTE on oxidative stress indicators in the intestines of mice. (A) LPO
concentration(n=10 per group), (B) MDA concentration(n =10 per group), (C) T-SOD activity(n=10 per
group), (D) T-AOC concentration (n=10 per group), (E) HIF-a mRNA expression level (n=3 per group), (F)
Ref-1 mRNA expression level (n=3 per group). The results are shown as the means+ SEM, *P<0.05, **P<0.01,
P <0.001, ****P<0.0001.

The effect of FSLFTE on intestinal inflammatory in oxidative stress mice

The colons of mice in the H,O, group exhibited significantly higher levels of TNF-a, IL-6, and LPS compared
to the control group or the H,O,-tea group (Fig. 4A, B, and C). The concentration of IL-10 in mouse colons in
the H,0O, group was notably reduced compared to both the control group and the H,O,-tea group (Fig. 4D).
The H,0, group exhibited a significantly higher abundance of TLR4, NF-«B (p65), TNF-a, and IL-6 genes
compared to the control and H,O,-tea groups, as shown in Fig. 4E, E, G, and H. The findings indicated that H,0,
exacerbated colon inflammation in mice, but FSLFTE reduced inflammation in mice experiencing oxidative
stress. This could potentially be associated with the TLR4/NF-«B signaling pathway.

The effect of FLFTE on the diversity of intestinal flora in oxidative stress mice

As shown in Fig. 5A and B, the ACE and Chaol indices of the control and H,0,-tea groups were significantly or
extremely significantly higher than those of the H,0, group. The Simpson and Shannon indices of the control,
H,0,, and H,0,-tea groups were not significantly different, indicating that the species uniformity of intestinal
flora in mice was not significantly different among the three groups. Figure 5C and D show that the.

Simpson index and Shannon index of the control, H,O, group, and H,O,-tea group were not significantly
different, which means that the species uniformity of intestinal flora in mice was not significantly different
between the three groups. Figure 5E shows that the control and H,O,-tea groups’ PD_whole_tree were
significantly higher than the H,O, groups. These results showed that the a-diversity of intestinal flora in the
control and H,0,-tea groups was significantly higher than that in the H,0O, group, mainly due to the difference
in the number of flora.

We performed unsupervised principal coordinates analysis (PCoA) on all samples, as shown in Fig. 5E. The
first and second explanatory factors separated the microbial communities in the control, H,0,, and H,0,-tea
groups into distinct quadrants. We conducted further supervised partial least squares (PLS-DA) analysis on all
samples, as illustrated in Fig. 5G. We found that the flora of the control, H,O,, and H,0,-tea groups remained well
separated, indicating obvious differences in the species composition of these three groups. Anosim (analysis of
similarities, Fig. 5H) showed that the difference between groups was greater than that within groups. Permanova
(permutational multivariate analysis of variance, Fig. 5I) showed that different groups had significant differences
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Fig. 4. The effect of FLFTE on inflammatory markers in mice intestines. (A) TNF-a concentration(n= 10
per group), (B) IL-6 concentration(n=10 per group), (C) LPS concentration(n=10 per group), (D) IL-10
concentration(n =10 per group), (E) TLR4 mRNA expression level(n=3 per group), (F) NF-xB (p65) mRNA
expression level(n=3 per group), (G) TNF-a mRNA expression level(n=3 per group), (H) IL-6 mRNA
expression level(n=3 per group). The results are shown as the means+SEM, ns P>0.05, *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.

in the interpretation of samples, which was consistent with anosim results. These results demonstrated that the
intestinal microbiota of the three groups of mice was different, with significant differences between and within
the groups. suggesting that using QIIME software for beta diversity analysis can reveal the degree of similarity
in species diversity.

The effect of FSLFTE on the species distribution of intestinal flora in oxidative stress mice
Figure 6A shows the distribution of the H,0,, Control, and H,0,-tea groups throughout the top 10 phyla.
More specifically, 38.20%, 32.01%, and 17 of these groups were composed of Bacteroidetes, Firmicutes, and
Proteobacteria. Figure 6B illustrates that the H,O,-tea group contained significantly more Firmicutes than the
H,0, group. Fusobacteria abundance in the H,O, group was significantly higher than that in the control and
H,0,-tea groups (Fig. 6C). Figure 6D demonstrates the presence of more Acidobacteria in the H,0,-tea group
compared to the H,0, group. As shown in Fig. 6E, the ratio of Firmicutes to Bacteroidetes (F/B) was higher in
the H,0,-tea group compared to both the control and H,O, groups. These findings suggest that H,0, disrupts
the dominant bacterial phyla in the mouse colon by increasing the abundance of Fusobacteria. Meanwhile, the
administration of FSLFT significantly increased the abundance of Firmicutes.

Figure 7A shows the distribution of the genera in the three groups (control, H,O,, and H,O,-tea) within the
top 10 genera. The abundances of Prevotella_9 and Bacteroides in the H,0,-tea group was significantly lower
than that in the control group and the H,O, group(Fig. 7B, C); Fig. 7D demonstrates that the abundance of
Escherichia-Shigella in the H,O,-tea group was significantly higher than that in the hydrogen peroxide group;
Fig. 7E reveals that the abundance of uncultured bacterium f lachnospiraceae in both the H,0O, group and
the H,O,-tea group was significantly higher than that in the control group; Fig. 7F and G illustrate that the
abundances of uncultured bacterium f_muribaculaceae and Lactobacillus in the H,O,-tea group was significantly
higher than that in the control group and the H,0, group; Fig. 7H displays that the abundance of Fusobacterium
in the H,O, group was significantly higher than that in the control group and the H,O,-tea group; According
to Fig. 71, the abundance of Phascolarctobacterium in the H,0,-tea group was significantly lower than that in
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Fig. 5. The effect of FSLFTE on the diversity of gut microbiota in mice under oxidative stress. (A) ACE index
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the H,O, group. These results demonstrate that H,0,-induced increased the abundance of Fusobacterium and
uncultured.

_bacterium_f_lachnospiraceae in the gut microbiota of mice, whereas FLFTE balanced the gut microbiota
of mice by decreasing the abundance of Prevotella_9, Fusobacterium, Phascolarctobacterium, and increasing the
abundance of Escherichia-Shigella, Lactobacillus and uncultured_bacterium_f_muribaculaceae.

The effect of FSLFTE on the differences in gut microbiota among mice under oxidative stress
Linear Discriminant Analysis (LDA) can identify biomarkers with statistical differences between different
groups. Figure 8A displays the signature phylum of gut microbiota in mice. The Firmicutes phylum served as
the signature for the H,O,-tea group, while the Fusobacteria and Epsilonproteobacteria phyla were signatures
for the H,0, group. The Spirochaetes phylum represented the control group’s signature. Figure 8B illustrates
the signature genera of gut microbiota in mice. The genera g R_UCG_005, g_Prevotellaceae_UCG_001, g_
uncultured_bacterium_f _Spirochactaceae, and g Lachnospiraceae_NK4A136_group belonged to the control
group. Helicobacter, Phascolarctobacterium, Anaerostipes, and Fusobacterium were the signature genera for the
H,0, group. The genera g_Bacteroides, Lactobacillus, and g R_UCG_005 were considered as signatures for the
H,0,-tea group.
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Fig. 7. The effect of FLFTE on the gut microbiota genus structure of mice under oxidative stress. (A) The
phylum abundance, (B) the Firmicutes relative abundance, (C) the Fusobacteria relative abundance, (D) the
Acidobacteria relative abundance, (E) the ratio of Firmicutes to Bacteroidetes. The results are shown as the
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phlym, (B) the biomarker genera. n=5 per group.

Analysis of correlation
We found that the phylum Fusobacteria was positively correlated with MDA, LPO (Fig. 9A), and TNF-a, LPS, IL-6
(Fig. 9B), while it was negatively correlated with T-SOD, T-AOC (Fig. 9A), and IL-10 (Fig. 9B); Fusobacterium,
Anaerobiospirillum, Alloprevotella, Blautia, Megamonas, and Erysipelatoclostridium were inversely correlated
with T-SOD, T-AOC (Fig. 9C), and IL-10 (Fig. 9D); Fusobacterium, Anaerobiospirillum, Alloprevotella, Blautia,
Megamonas, and Erysipelatoclostridium genera were inversely proportional to T-SOD, T-AOC (Fig. 9C), and IL-
10 (Fig. 9D); The Lachnospiraceae_ NK4-A136_group was positively correlated with T-SOD, T-AOC.

(Fig. 9C), and IL-10; Fusobacterium, Megamonas, Anaerobiospirillum, and Blautia genus were positively
correlated with MDA, LPO (Fig. 9C), as well as TNF-a, LPS, and IL-6 (Fig. 9D).

Dicussion

H,0, can be metabolized to several ROS, including hydroxyl radicals, which are considered the most dangerous
compounds to organisms. Excess uneliminated H,0, and its metabolites can oxidize virtually all types of
macromolecules, including carbohydrates, nucleic ac1ds, lipids and proteins?’. The increased levels of ROS
overwhelm antioxidant defenses and lead to a state of oxidative stress, which may further impair body function
and result in clinical deterioration. The present data indicate that H,0, inhibited SOD, GSH-Px, and T-AOC
activities and increased MDA levels, suggesting a significant disruption in the oxidative balance after exposure
to H,0,%. This study was in agreement with a previous report, which also demonstrated that hydrogen peroxide
1nduces oxidative stress in the mouse body?. FSLFTE reduced the oxidative level in the mouse body, which may
be related to its various active ingredients, such as phillygenin, phillyrin, etc*®. According to a previous study,
the bioactive substances in Forsythia suspensa reduce oxidative stress caused by ROS through the nuclear factor-
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Fig. 9. Analysis of the correlation between gut microbiota and antioxidant performance. (A) The correlation
between gut microbiota and antioxidant indicators at phylum level (n=5 per group), (B) the correlation
between gut microbiota and inflammatory indicators at genus level (n=5 per group), (C) the correlation
between gut microbiota and antioxidant indicators at phylum level (n=5 per group), (D) the correlation
between gut microbiota and inflammatory indicators at genus level (n=5 per group). *P<0.05, **P<0.01,
PP <0.001.

erythroid 2-related factor 2 (Nrf2) signaling pathway’!. Ref-1 is a multifunctional protein with DNA repair
activity that exerts cytoprotective effects by post-translational redox modifications of various transcription
factors including HIF-1%2 Hydrogen peroxide (H,0,) activate HIF-1alpha by inducing the expression of Ref-1%,
The HIF-1alpha subunit is regulated by O,-dependent hydroxylation of proline residues 402 and 564, or both, by
prolyl hydroxylase domain protein 2 (PHD2), which promotes binding of the von Hippel-Lindau protein (VHL),
leading to ubiquitination and proteasomal degradation, and O,-dependent hydroxylation of asparagine residue
803 by factor inhibiting HIF-1 (FIH-1), which blocks the binding of the 300-kilodalton coactivator protein
(p300) and CREB binding protein (CBP). Hydroxylation reactions, which utilize O, and alpha-ketoglutarate as
substrates and generate CO, and succinate as by-products, provide a mechanism by which changes in cellular
oxygenation are transduced to the nucleus as changes in HIF-1 activity**. Therefore, PHD2 and FIH-1 are major
regulators of HIF-1lalpha, which are induced by external H,O, but suppressed by ROS-scavenging catalase®.
The qPCR results showed that FSLFTE lowered the expression of the Ref-1 and HIF-1a genes in the colon. This
suggests that the antioxidant effect of FSLFTE might be linked to the Ref-1/HIF-1a gene. Further research is
needed to determine the extent to which PHD2, FIH-1, and other genes are expressed.

Oxidative stress simultaneously activates a large number of inflammation-related transcription factors,
initiating the inflammatory process and increasing the production of proinflammatory cytokines®. TNF-a and
IL-6 are regarded as two key regulatory factors of pro-inflammatory responses and are involved in promoting
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inflammation and causing tissue damage®. IL-10 is a product of immunoactivity cells, mainly monocytes and
lymphocytes, and is regarded as one of the most important anti-inflammatory immune-regulating cytokines®’.
The balance between pro-inflammatory cytokines and anti-inflammatory cytokines is crucial for host health, IL-
10 reportedly inhibited IL-6 production by halting nuclear translocation of NF-xB in microglia®*, which could
counteract some of the negative effects of TNF-a*. When mice were under oxidative stress, this study found
that FLFTE significantly lowered the levels of TNF-a and IL-6 while significantly increasing the levels of IL-10.
This indicated that FLFTE exerted anti-inflammatory effects by regulating the balance of pro-inflammatory
and anti-inflammatory cytokines, but its molecular mechanisms require further research. In contrast, we found
that FLFTE greatly reduced the expression of TLR4, NF-«B (p65), TNF-a, and IL-6 genes in the colon tissues of
mice under oxidative stress. This suggests a link between the anti-inflammatory properties of Forsythia suspensa
leaf fermented tea extract and TLR4/NF-kB, potentially due to the presence of phillygenin, phillyrin, and other
compounds*'%4!, TLR4, a key receptor for commensal recognition in gut innate immunity, is over-expressed in
inflamed colonocytes and is the subject of therapeutics (target inhibition) in inflammatory bowel disease (IBD).
TLR4-mediated signal transduction events can lead to the activation of NF-kB, followed by the expression of
pleiotropic genes involved in immune and inflammatory responses*2. NF-kB, a pleiotropic transcription factor,
regulates several other genes involved in inflammatory responses and stimulates numerous cellular signaling
pathways, which leads to increased production of inflammatory cytokines such as iNOS, COX-2, IL-6, IL-1B
and TNF-a and so on*>%4,

Research has shown that oxidative stress can disrupt the structure of gut microbiota, reduce its diversity,
and subsequently lead to inflammation*>*. In this study, we employed 16S rRNA gene sequencing technology
to analyze changes in the gut microbiota in the colons of various groups of mice. Alpha diversity analysis
revealed that hydrogen peroxide reduced species richness and evenness in the microbial community of mice,
while Beta diversity analysis indicated that hydrogen peroxide altered the species composition among the
microbial communities of mice compared to the control group. However, FSLFTE was able to increase the
quantity of gut microbiota in oxidative stress mice and altered the gut microbiota structure in these mice, in
agreement with previous studies*®*”. In our study, the H,0,-tea group had higher levels of phyla Firmicutes
and Acidobacteria than the H,O, group. In contrast, the H,0,-tea group showed lower levels of Fusobacteria.
Firmicutes is believed to be involved in maintaining the integrity of the intestinal barrier, which plays a key
role in regulating host inflammation*®. Fusobacteria are anaerobic gram-negative bacteria whose members are
linked to immune suppression and are involved in inflammatory pathways via the recruitment of inflammatory
cytokines and increased production of ROS¥. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to
have an important influence in maintaining normal intestinal homeostasis, and decreased F/B ratio is regarded
as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel
disease®. Decreased F/B ratios are associated with inflammatory bowel disease, cancer, and enhanced oxidative
responses® 3. This study found that Forsythia suspensa leaf fermented tea extract increased the F/B ratio.
At the gene level, compared to the H,O, group, the H,0,-tea group significantly upregulated the abundance
of uncultured_bacterium_f_Muribaculaceae, Lactobacillus, and Escherichia-Shigella, while downregulating
Phascolarctobacterium and Prevotella_9. Lactobacillus, a beneficial bacterium, can significantly improve
inflammation and oxidative stress damage in the body. Fusobacterium is a proinflammatory bacterium that
can impair the intestinal barrier and serve as a potential microbial marker of hepatic inflammation®.. In this
study, the H,O,-tea group mice’s signature phylum was Firmicutes (Fig. 8A), and their signature genera were
Lactobacillus, Bacteroides, Alloprevotella, and uncultured_bacterium_f Muribaculaceae (Fig. 7). According to
the abundance analysis results in Figs. 6, 7 and 8B, the signature phyla of the H,0, group were Fusobacteria
and Epsilonbacteraeota, and the signature genera were Helicobacter, Phascolarctobacterium, Anaerobiospirillum,
and Fusobacterium. To further investigate the relationship between the microbial changes induced by the
Forsythia suspensa leaf fermented tea extract and its antioxidant and anti-inflammatory effects, we performed
a correlation analysis between the abundance of the microbiota at the phylum and genus levels and indicators
of oxidative stress and inflammation. Consistent with earlier studies, we discovered an inverse proportionality
between MDA and LPO, and the phylum Firmicutes®. In contrast, Fusobacteria was negatively correlated with
T-AOC, IL-10, MDA, LPO, TNF-q, and IL-6 and positive correlated with SOD and T-AOC?. Fusobacterium,
Anaerobiospirillum, Alloprevotella, Blautia, Megamonas, and Erysipelatoclostridium were inversely proportional
to T-SOD and T-AOC and positively proportional to MDA and LPO, whereas Lachnospiraceae_ NK4-A136_
group was related to T-SOD and T-AOC (Fig. 9C). The Lachnospiraceae-NK4A136-group, a well-known taxon
for its ability to produce butyrate, plays a vital role in preserving the integrity of the mouse intestinal barrier. It
also possesses notable anti-inflammatory capabilities and is beneficial for intestinal health®’. Studies have shown
that low-grade inflammation between gut microbiota and metabolic disorders is significantly influenced by LPS.
Dysbiosis can lead to increased intestinal permeability, which allows bacteria-induced LPS to enter the plasma
and cause low-grade chronic inflammation®®.

Conclusion

In summary, Forsythia suspensa leaf fermented tea extracts has been shown to have antioxidant effects via the
Ref-1/HIF-1a pathway, reduce inflammation caused by hydrogen peroxide through the TLR4/NF-kB signaling
pathway, and protect mouse colons from oxidative stress by repairing gut microbiota imbalance and increasing
microbial diversity and abundance. These findings provide experimental support for potential clinical application.
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Methods

Preparation of forsythia suspensa leaf fermented tea extract

Forsythia suspensa leaf fermented tea was obtained from the Medicinal Tea Research Centre, Shanxi Agricultural
University. The Forsythia suspensa leaf fermented tea was soaked in boiling water for 30 min (tea/water
(w/v)=1:20) and this was repeated three times. We collected the filtrates through filtration, stored it in a 10 cm
petri dish, and then treated it by freezing it overnight at -80 °C and freeze-drying it for 24 h in a freeze dryer.
Finally, the tea extract was collected separately in a moisture-proof bag and stored in a dryer.

The main instruments and equipment

The equipment used included a multifunctional enzyme labeler from Swiss Dikon, low-speed centrifuge
from Eppendorf AG, high-speed refrigerated centrifuge from German Sigma, RT-PCR instrument from Jena
Analytical Instruments, UV-Vis spectrophotometer from Japanese Shimadzu, and NanoDrop 2000 (Nanodrop
Technologies, USA).

The main reagents

We sourced the MDA, LPO, T-SOD, and T-AOC kits for small intestine tissue from Nanjing Jiancheng
Bioengineering Institute and purchased reverse transcription and RT-PCR kits for the colon tissue supernatant
from Takara Bio (Beijing) Co., Ltd.

Animal preparation and experimental protocols

Thirty SPF-grade female Kunming mice weighing 20-24 g were purchased from Spibio Biotechnology Co., Ltd.
We placed the mice in a mouse cage at room temperature (22+1 °C) with a 12-h dark/light cycle and 60%
relative humidity, allowing them to eat freely. Before the formal trial, the mice were allowed to acclimatize for
7 days and then randomly assigned 10 mice each to the control, H,0,, and H,O,-tea groups, based on their
body weight. The animal experimental process is shown in Fig. 10. We administered distilled water to the mice
in the control and H,O, groups daily at 7:00 am for 4 W, and administered the mice in the H,O,-tea group
Forsythia suspensa leaf fermented tea extracts (500 mg/kg body weight) daily at 7:00 am for 4 W. The H,0, and
H,0,-tea group mice were intraperitoneally injected with 3% H,O, (10 mg/kg) at 8:00 am on the first day of the
fifth week for 5 days. The control group mice received the same volume of physiological saline as the H,0, and
H,0,-tea group for 5 consecutive days. Weekly weight measurements were conducted on the mice. All animal
studies were conducted in accordance with the National Institutes of Health Guidelines, with the approval of the
Animal Ethical and Welfare Committee of Changzhi Medical College (Approval Document No. DW2024089),
in accordance with ARRIVE guidelines. Mice were euthanized by CO, asphyxiation. Animal carcasses were
packaged as required and handed over to the Experimental Animal Center of Changzhi Medical College for
freezing and unified harmless treatment.

Sample collection

After the experiment, the mice were subjected to a 12-h fasting period, followed by euthanasia. Prior to this,
the mice had been weighed once a week. Eyeballs were removed to collect blood samples. Subsequently, the
samples were centrifuged at 3000 rpm/min for 10 min to separate the plasma, which was then stored at -80 °C
for future biochemical analysis. Under sterile conditions, mice were carefully dissected to collect colonic feces
for microbiota assessment. The colonic tissue was rapidly extracted and immediately frozen in liquid nitrogen at
-80 °C for subsequent biochemical analysis and RT-PCR.

Biochemistry profile
The plasma and colon tissue T-SOD, MDA, T-AOC, LPO, IL-6, TNF-a, LPS, and IL-10 levels were measured
according to the manufacturer’s instructions of the reagent kit (Jiancheng Biotech Co., Nanjing, China).

The control group mice received
the same volume of physiological

We administered distilled water to the mice in the control and H202 saline as the H202 and H202-tea
groups daily at 7:00 am group for 5 consecutive days
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Fig. 10. The animal treatment plan.
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Primer name | Sequence (5'-3") Sequence (3'-5')

GAPDH F: AGGTCGGTGTGAACGGATTTG R: TGTAGACCATGTAGTTGAGG TCA
TLR4 F: GCACTGTTCTTCTCCTGCCT R: TCAAGGGGTTGAAGCTCAGA
NF-«B (p65) | F: CGGCCTCGGGACAAACAG R: TGCTTCGGCTGTTCGATGAT

TNF-a F: AGAGCTTTCAACAACTACTCAGA | R: GACATTCGAGGCTCCAGTGAA

IL-6 F: AGCCAGAGTCCTTCAGAGAGA R: GTGACTCCAGCTTATCTCTTGGTTG
Ref-1 F: CGGAAAGCAGATGCCCTGAA R: CATGCCGCCTCTGTTTATGC

HIF-1a F: GCGGCGAGAACGAGAAGAA R: GGGGAAGTGGCAACTGATGA

Table 1. Primer sequences for RT-PCR.

RT-PCR

TRIzol reagent was used to isolate total RNA from colon samples, which were then treated with DNase I according
to the manufacturer’s instructions (Wuhan Servicebio Technology Co., Ltd.). The concentration of each RNA
sample was measured. The Prime Script RT reagent kit was used to eliminate genomic DNA contamination
before reverse transcription. cDNA was synthesized using Prime Script Enzyme Mix 1, RT Primer Mix, and
5x Primer Script Buffer We performed Reverse transcription at 37 °C for 15 min and 85 °C for 3 s (Takara Bio
(Beijing) Co., Ltd). Gene-specific primer sequences were shown in Table 1, designed using NCBI and synthesized
by Sangon Biotech Co.Ltd. Real-time PCR was performed according to the manufacturer’s guidelines (Takara
Bio (Beijing) Co., Ltd). We calculated the relative expression between the control and treatment groups using
the 222 method, where Ct=Ct (target) - Ct (GAPDH). We selected as a housekeeping gene to normalize the
transcript levels of the target gene® (Table 2).

16S rRNA gene analysis

We conducted 16S rRNA gene analysis in the same manner as previously described®. The readings from each
sample were combined using FLASH v1.2.7. To produce high-quality tag sequences, we filtered the spliced
raw tags and removed chimeras using Trimmomatic v0.33 and UCHIME v4.2 software. We grouped the tag
sequences at a 97% similarity level, denoised and divided the high-quality sequences into ASVs, and then applied
an ASV filter to all sequences with a threshold of 0.0005%. We annotated the taxonomic information of each
representative sequence using the Silval38 Database and the mother algorithm. We classified the species using
AVS sequence composition on the BMK Cloud platform (www. biocloud. ent). We obtained sample taxonomic
tree maps based on the AVS analysis results at the phylum and genus levels. We analyzed alpha diversity using
QIIME and calculated ACE, Chaol, Shannon, Simpson, and PD_whole_tree indices. To determine how different
samples in beta diversity analysis differed in terms of species diversity, we used principal coordinate analysis
(PCoA), partial least squares discriminant analysis (PLS-DA), and PERMANOVA/ANOSIM. We examined the
difference in the number of species in different samples (groups) based on their taxonomic make-up using an
LDA threshold of 4.0, and a linear discriminant analysis effect size (LEfSe). We used the Spearman correlation
coeflicient to examine the relationship between blood parameters and microbiota abundance based on the
species composition distribution. We used the Spearman correlation coefficient to examine the relationship
between blood parameters and microbiota abundance based on the species composition distribution.

Statistical analysis
One-way analysis of variance (ANOVA) and Tukey’s test were used to compare group averages. Statistical
significance was set at P<0.05. The mean and SEM were used to express all data.
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Abbreviations | Name

FSLFT Forsythia suspensa leaf fermented tea
FSLFTE Forsythia suspensa leaf fermented tea extract
H202 Hydrogen peroxide

Ref-1 Redox Factor-1

HIF-1a Hypoxia-inducible factor-1 alpha

TLR4 Toll-like receptor 4

NF-«B Nuclear factor kappa-B

ROS Reactive oxygen species

T-SOD Total superoxide dismutase

T-AOC Total antioxidation

MDA Malondialdehyde

LPO Lipid Peroxide

CD Crohn’s disease

LPS Lipopolysaccharides

IL-6 Interleukin-6

IL-10 Interleukin-10

GSH-Px Glutathione peroxidase

TNF-a Tumor necrosis factor-alpha

PCoA Principal coordinates analysis

PLS-DA Partial least squares

Anosim Analysis of similarities

Permanova Permutational multivariate analysis of variance
QIIME Quantitative Insights Into Microbial Ecology
F/B Firmicutes to Bacteroidetes

LDA Linear Discriminant Analysis

Nrf2 Nuclear factor-erythroid 2-related factor 2
PHD2 Prolyl hydroxylase domain protein 2

CBP CREB binding protein

VHL von Hippel-Lindau protein

IBD Inflammatory bowel disease

iNOS Inducible nitric oxide synthase

COx2 Cyclooxygenase 2

Table 2. the list of abbreviations.

Data availability
Data is provided within the https://doi.org/10.6084/m9.figshare.26386279.
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