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Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. 
Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining 
structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, 
including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) 
analysis of soil samples from typical sites. This study aims to elucidate the impact of various factors 
on the mechanical properties of saline clay from a macro–micro perspective and reveal its physical 
mechanisms. A prediction model is formulated and validated. The findings indicate the following: 
(1) Cohesion in direct shear tests has a linear negative correlation with water content and a positive 
correlation with dry density and initially decreases with increasing salt content until 2%, after which 
it increases. The internal friction angle initially increases and then decreases with increasing water 
content, reaching a peak at the optimal water content, and then gradually increases with dry density 
while initially decreasing, followed by an increase in salt content, stabilizing thereafter. Water content, 
dry density, or salt content chiefly affect cohesion by influencing electrostatic attraction, van der 
Waals forces, particle cementation, and valence bonds at particle contact points. (2) Compression 
tests reveal a linear positive correlation between the compression coefficient and water content, a 
negative correlation with dry density, and a stepwise linear correlation with salt content, peaking 
at 2%. The compression index decreases with increasing water content and dry density, following a 
trend similar to that of the compression coefficient with increasing salt content. The rebound index 
shows a linear negative correlation with water content and dry density, transitioning from a negative 
to a positive correlation at 2% salt content. Scanning electron microscopy analysis revealed particle 
flattening and increased aggregation with increasing consolidation pressure, reducing compressibility. 
Large pores and three-dimensional porosity have the greatest influence on soil compressibility. (3) 
Permeability tests reveal an exponential negative correlation between the permeability coefficient and 
dry density. As the dry density increases, the particle arrangement becomes denser, decreasing the 
pore quantity, with micropores disproportionately impacting the permeability coefficient. An increase 
in salinity initially increases the permeability coefficient before it decreases. The boundary point of 
the 2% salt content divides the effect of salt ions from promoting free water flow to blocking seepage 
channels, with the proportion of micropores being the primary influencing factor. (4) Employing 
statistical theory and machine learning algorithms, dry density, water content, and salinity are used to 
predict mechanical index values. The improved particle swarm optimization-support vector regression 
(PSO-SVR) model has high accuracy and general applicability. These findings offer insights for the 
construction and upkeep of open channel projects in arid regions.

Keywords  Salt-affected clay, Strength characteristic, Permeability characteristic, Microcosmic mechanism, 
Support vector machine

In the cold and arid areas of Northwest China, the degradation of canal foundation soil is the fundamental cause 
of canal foundation damage1. For example, the first phase of the water supply project in northern Xinjiang, 
which crosses cold deserts, gobi deserts, and sand deserts in northwestern China, was a large-scale water transfer 
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project with long distances, large flows, and inter-basin transfers. Its plain canal section is 57.23 km long, with a 
shallow burial depth of groundwater and a high content of SO2−

4  ions in water, resulting in severe salt frost heave 
and obvious degradation of the canal foundation soil.

At present, numerous studies have been carried out on the salt heave characteristics and mechanisms of 
sulfate-salinized soils, yielding interim findings through the integration of frozen soil research2–4. This work 
establishes a foundation for further examination of the engineering properties of these soils. In the context of 
the mechanical properties of silty clay, prevailing research predominantly examines the effects of various factors 
on the mechanical properties of cohesive soil via routine laboratory tests. Specifically, (1) for direct shear tests, 
various scholars have implemented direct shear tests under different conditions, such as moisture content, dry 
density, and particle size distribution, to assess the effects on the mechanical properties of cohesive soils. It has 
been observed that increased water content reduces soil strength and significantly influences the shear strength 
parameters of soil displacement5–7. Conversely, as the dry density increases, so does the shear strength of the 
soil8, with the particle size distribution being a critical factor in determining the shear strength of the soil9.

(2) Regarding compression tests, research has indicated that the combined effects of moisture content, salinity, 
and temperature primarily cause soil settlement10. Recent studies have demonstrated through compression tests 
under varying conditions that the moisture content, dry density11, and overlying pressure12–14 significantly affect 
the compression characteristics of silty clay, with the remolded yield stress decreasing as the initial moisture 
content increases. (3) In permeation test research, Wu15, Zarooei16, Mohammed and Mahmood17 explored 
the effects of varying compaction degrees and particle size distributions on the permeability coefficient under 
different water head permeation tests and reported that increased compaction reduces the permeability 
coefficient, which is closely linked to the grain size distribution index of the soil body. Furthermore, Hu18 
compared the permeability results obtained from the Gardner model with those of two other commonly utilized 
methods (the constant head method and van Genuchten model). (4) Concerning microstructure: Current 
research often involves the use of scanning electron microscopy (SEM) to qualitatively and quantitatively 
analyze changes in microstructure under various conditions19. Additionally, mercury intrusion porosimetry 
experiments have allowed scholars to quantitatively assess changes in the pore structure of silty clay, which 
are pivotal in influencing its mechanical properties. Moreover, techniques such as nuclear magnetic resonance 
(NMR)20–22 and computed tomography (CT)23,24 are increasingly used to study the microstructure of cohesive 
soils, with CT imaging frequently employed to create three-dimensional pore structures.

On the other hand, by utilizing methods such as statistics25, data mining26, and machine learning27 to analyze 
the relationships between the strength and deformation of silty clay and various factors, a predictable model for 
silty clay strength parameters has been developed. This is highly important for understanding and predicting 
changes in silty clay strength. Most existing prediction models require extensive sample data for support. 
However, in actual engineering applications, the amount of test and inspection data available is relatively small, 
which makes it impossible to quickly and accurately judge the changes in the mechanical properties of saline 
clay. Among these, the support vector machine (SVM) predictive modeling technique possesses a notable 
advantage in small sample data. Furthermore, SVMs are better suited to solving problems with small samples 
and nonlinearities, as they have superior generalizability capabilities28.

Research on sulfate saline-alkali soil and silty clay has revealed several notable characteristics. First, 
it covers a wide range of topics, including salt heave characteristics, mechanical properties, compression 
behavior, permeability, and microstructure. Second, various experimental methods, such as direct shear tests, 
compression tests, permeability tests, and scanning electron microscope experiments, are employed to provide 
comprehensive insights. However, there are also several limitations. For example, while many studies have 
focused on individual factors, comprehensive research on the interactions among multiple factors is lacking. 
Additionally, further validation and refinement of the mathematical models used to simulate soil behavior are 
needed. Furthermore, more research is needed to understand the long-term impact of sulfate saline-alkali soil 
on engineering structures and to develop effective mitigation strategies. Therefore, this paper aims to investigate 
the impact of various factors on the basic mechanical properties of saline clay at the macroscopic level through 
direct shear, compression, permeability, and scanning electron microscopy (SEM) tests conducted on saline clay 
from a major canal in the north. Furthermore, this work aims to elucidate the deterioration mechanism of its 
physical properties at the microscopic level. Taking water content, dry density, and salt content as characteristic 
variables, this paper establishes a prediction model for the strength parameters of saline soil, which can provide 
a reference for the safe operation and maintenance of water conveyance canals in cold and arid regions.

Materials and methods
Test materials
The soil samples used in the test were taken from a water conveyance open channel project in northern China 
and were composed of silty clay. The basic physical properties of the soil samples were measured according to the 
"Standard for Soil Test Methods" (GB/T50123-2019). The basic physical properties and particle size distributions 
of the soil samples are presented in Table 1 and Fig. 1a, respectively. From Fig. 1a, it is evident that the clay 
soil falls within the category of low-liquid-limit clay (CL) with poor grading. The soluble salt content, mineral 

Optimum water content
w0pt/%

Max. dry density
ρdmax/g cm−3

Specific gravity
Gs

Liquid limit
WL/%

Plastic limit
WP/%

17.3 1.77 2.68 31.4 14.09

Table 1.  Basic physical indicators.
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composition, and X-ray diffraction (XRD) results are depicted in Fig. 1b. As per the "Code for Investigation of 
Geotechnical Engineering" (GB 50021-2001), a sodium ion content of 0.568% is classified as medium saline soil. 
The primary mineral components of the soil samples include quartz, albite, and calcite, among others.

Test methods
All the soil samples used in this experiment were remolded. The specific experimental design indicators are 
shown in Tables 2 and 3. The design indicators for the dry density and moisture content of the clayey soil are 
below the compaction test curve, and the required design indicators for the clayey soil can be obtained through 
compaction. The specific procedures for sample preparation were as follows: (1) After naturally air-drying the 
collected soil samples, they were crushed and sieved through a 2 mm diameter sieve. The sieved soil samples 
were then washed to remove salt until the conductivity coefficient of the elution solution no longer changed, 
indicating that the salt washing was complete. (2) The salt-washed soil samples were placed in an oven at 105 °C 

Different dry densities Different salt contents

Water contents
w/% Dry densityρd/g·cm–3

Salt contents
s/%

Water contents
w/% Dry densityρd/g·cm–3

Salt contents
s/%

17.3

1.52

0.5 17.3 1.68

0

1.57 1

1.62 2

1.67 3

1.72 4

1.77 5

Table 3.  Penetration test scheme.

 

Different water contents Different dry densities Different salt contents

Water contents w/%
Dry density 
ρd/g·cm–3 Salt contents s/%

Water contents 
w/%

Dry density 
ρd/g·cm–3 Salt contents s/%

Water contents 
w/%

Dry density 
ρd/g·cm–3

Salt 
contents 
s/%

15.3

1.68 0.5 17.3
1.50
1.59
1.68
1.77

0.5 17.3 1.68

0

1

17.3 2

19.3 3

21.3
4

5

Table 2.  Direct shear test and compression test schemes.

 

Fig. 1.  Basic physical properties of the specimens: (a) particle grading curve and (b) X-ray diffraction results.
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for 24 h to dry them. The dried soil samples were then weighed according to the set moisture content and dry 
density and mixed with sodium sulfate salt solutions with mass fractions of 0% (distilled water), 0.5%, 1%, 2%, 
3%, 4%, and 5%. Under constant-temperature conditions, dry soil and salt solution were mixed uniformly and 
placed in a plastic bag for 24 h to ensure a uniform distribution of moisture and salt. (3) Ring knife samples were 
prepared from the prepared soil samples according to the experimental scheme.

In line with the experimental plan, sample preparation was conducted as illustrated in Fig. 2a. Direct shear, 
compression, and permeability tests were subsequently performed, as depicted in Fig. 2b. Micro-scanning was 
conducted on soil samples with varying dry densities, initial salt contents, and consolidation pressures, as well 
as on samples subjected to post-permeability tests with different dry densities and salt contents (Fig. 2c). SEM 
images were captured to qualitatively describe the microstructural changes. Uniform processing of images at 
4000 × and 10,000× magnifications was carried out via ImageJ software, and relevant micro-parameters were 
extracted for quantitative analysis (Fig. 2d). The formulas for calculating the micro-quantitative parameters are 
delineated in Table 4.

Results and analysis
Direct shear test
Macroscopic analysis
Figure 3 shows the curves of the influence of different water contents, dry densities, and salt contents on the shear 
index of saline clay. (1) Figure 3a shows the influence curve of different water contents on the shear strength 
of saline clay. Figure 3a shows that the cohesion decreases linearly with increasing water content; the internal 
friction angle is less affected by the water content, the overall change trend first increases and then decreases, 
and the optimal water content is the turning point. (2) Figure 3b shows the influence curve of dry density on the 
shear strength of saline clay. Figure 3b shows that under the same water content and salt conditions, the cohesion 
of saline clay increases linearly with increasing dry density, and the cohesion of the maximum dry density is 
1.72 times greater than that of the minimum dry density. The internal friction angle shows a small upward trend 
with increasing dry density, which is only 0.62°. (3) Figure 3c shows the influence curve of different salt contents 
on the shear strength of saline clay. Figure 3c shows that s = 2% is the lowest point of cohesion and the lowest 
internal friction angle. The cohesion decreases linearly from s = 0% to s = 2% by 7.72 kPa, and the internal friction 

Microscopic parameters Pore proportion V3D Abundance Roundness Directional frequency

Computing formula P = Ac
A × 100% V3D =

N∑
i=1

Si(255−Di)
255N C = B

L
R = 4πs

p2 F (α) = nα
n

Table 4.  Quantitative parameter calculation formula for the microstructure. P represents the porosity, Ac 
represents the area of each pore, A represents the total area of the pores, s represents the particle area, p 
represents the perimeter of the particles, S represents the area of each pixel, and we select the unit pixel as the 
benchmark. N represents the total number of pixels, Si represents the area of each pixel, and Di represents the 
gray value corresponding to the ith pixel; B and L represent the lengths of the short and long axes, respectively; 
α represents the angle between the pore or particle and the horizontal direction; Fi(α) represents the 
orientational frequency; nα represents the number of pores or particles within each orientational interval; and 
n represents the total number of pores or particles.

 

Fig. 2.  Schematic diagram of the test process: (a) specimen preparation; (b) instruments used for the direct 
shear test, compression test, and penetration test; (c) gold spraying treatment and SEM test; (d) qualitative and 
quantitative analysis of microstructural changes using SEM images.
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angle decreases by 0.95°. During the rising stage, from s = 2% to s = 5%, the cohesion increases by 5.53 kPa, and 
the internal friction angle increases by 0.78°. These changes are small and gradually tend to stabilize. The fitting 
parameters are presented in Table 5.

Using JMP statistical analysis software, we employed the least squares method to perform polynomial fitting 
of three input variables from zero-order to third-order, aiming to establish a mathematical model between the 
output variable and the input variables.

	

c = − 0.096 ∗ (s − 1.35714)3 + 1594.876 ∗ (ρd − 1.667)3 + 0.253 ∗ (w − 17.586)3 + 1.33 ∗ (s − 1.357)2

+ 217.578 ∗ (ρd − 1.667)2 − 0.438 ∗ (w − 17.586)2 − 2.745 ∗ s + 11.874 ∗ ρd − 3.914 ∗ w + 63.638
� (1)

	

φ = − 0.036 ∗ (s − 1.357)3 + 79.053 ∗ (ρd − 1.667)3 + 0.036 ∗ (w − 17.586)3 + 0.241 ∗ (s − 1.357)2

+ 20.234 ∗ (ρd − 1.667)2 − 0.188 ∗ (w − 17.586)2 − 0.278 ∗ s + 1.911 ∗ ρd + 0.093 ∗ w + 2.861
� (2)

After the initial fitting function was obtained, to verify the accuracy and reliability of the model, the root mean 
square error (RMSE) between the actual data values and the fitted output values predicted by the model was 

Correlation Total number of pores V3D Average particle abundance Particle orientation frequency

ρd

av − 0.994** 0.991** 0.699 0.436

Cc − 0.960 0.942 0.622 0.597

s
av 0.628 0.975** 0.546 0.633

Cc 0.639 0.945 0.375 0.588

Table 5.  Correlations between the compressibility coefficient and microscopic parameters. *p < 0.05 **p < 0.01.

 

Fig. 3.  Influence curves of different factors on the c and φ of cohesive soil: (a) different water contents; (b) 
different dry densities; (c) different salt contents.
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further calculated using MATLAB software. A smaller RMSE value indicates higher prediction accuracy and 
better fitting performance of the model.

As shown in Fig.  4, the comparison between the actual data values and the fitted output values clearly 
demonstrates the predictive ability of the model. By comparing the actual data values with the fitted output 
values, we obtain RMSE values of 0.5913 and 0.0733, respectively, indicating that the established model has high 
prediction accuracy and good fitting effects. This result provides a solid foundation for subsequent research and 
applications.

Shear mechanism analysis
Figure 5 shows a schematic diagram of the shear test mechanism. As shown in Fig. 5, the shear action mainly 
destroys the cementation force between particles.

(1) The moisture content has a significant effect on cohesion. As the water content increases, cohesion 
decreases. This occurs because as the water content increases, the distance between particles increases, leading 
to an increase in the water film thickness and a weakening of connections (Fig. 6). Consequently, the Coulomb 
force, van der Waals force, and cementation force weaken. At lower moisture contents, particles in saline clay are 
in a relatively loose state due to the lack of sufficient water, resulting in relatively small friction and interlocking 
forces between particles. As the moisture content increases, water begins to fill the gaps between particles, 
forming a lubricating layer that facilitates relative sliding between them. However, this lubricating effect does not 
immediately lead to a reduction in the internal friction angle, as within a certain range, an increase in moisture 
content may also enhance the cementation between particles. Therefore, within a certain range of moisture 
contents, the internal friction angle may increase with increasing moisture content. (2) With increasing dry 
density, the cohesion increases stably and linearly. The main reason is that as the dry density increases, on the 
one hand, the spacing between particles gradually decreases, making the solid phase in the soil more compact. 
This compact structure enhances the interaction forces between soil particles, including the cementation effect 
of cementitious materials between particles, electrostatic and van der Waals forces between particles, and the 
bonding effect of bound water. The increase in these forces leads to an increase in cohesion. On the other hand, 
as the dry density increases, the bound water film between the soil particles becomes more compact and stable, 
which strengthens the bonding effect of the bound water. With increasing dry density, the contact area between 
particles in saline clay gradually increases. This increase in contact area results in an increase in the friction 

Fig. 5.  Mechanistic diagram of the shear test: (a) shearing process; (b) interacting forces between particles; (c) 
interaction force between particles destroyed by slope shear action; (d) completed shear.

 

Fig. 4.  Comparison of Experimental and Predicted Values of Shear Strength Parameters.
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force between particles, leading to an increase in the internal friction angle. Additionally, as the dry density 
increases, the particle arrangement may become more compact and orderly. This tight arrangement results in 
relative movement between particles and more obstacles, thereby increasing the internal friction angle. (3) As 
the salinity increases, the cohesion of the soil mass undergoes phase changes. The experimental soil sample in 
this study contained 34.8% quartz and 5% kaolin (Fig. 1b). Quartz is a nonclay mineral with low surface activity 
and low liquid and plastic limits. The adsorbed bound water film around it is very thin29,30, resulting in a lack 
of cohesion between particles. When the salinity increases slightly, more water molecules are adsorbed onto 
the charged surfaces of soil particles, causing the bound water film between particles to thicken31, forming a 
lubricating layer that subsequently reduces the cohesion and friction between particles. However, as the salinity 
content continues to rise, the contact and packing between particles are gradually replaced by the cementation 
effect of salt crystals. These salt crystals fill the pores of the soil mass, enhancing its cohesion. Moreover, the 
cementation effect of salt crystals makes the soil skeleton more compact, and the internal friction angle gradually 
increases accordingly.

Compression test
Macroscopic result analysis
Figure 7 shows the curves that influence the compression characteristics of saline clay samples with different 
water contents, dry densities, and salt contents. Figure 7a–c show the e-lgp curves of samples with different water 
contents, dry densities, and salt contents under different consolidation pressures. Figure 7a–c show that (1) the 
compression curves of samples under different factors can be divided into three sections, which are initially 
steep, moderately flat, and straight at the tail. The initial porosity ratios at the different water contents and salt 
contents are the same. When s = 2%, the compression curves of the samples with different salt contents reach 
the lowest point; the initial porosity ratio gradually decreases with increasing dry density, and the compression 
curve decreases less. (2) The unloading and reloading rebound segments are regularly affected by the water 
content, and the differences are basically the same. The higher the water content is, the lower the rebound curve 
is; the change in the porosity ratio in the rebound segment is obviously affected by the dry density, and the higher 
the dry density is, the lower the rebound curve is. When s = 2%, the rebound curve reaches the lowest point and 
gradually increases with increasing salt content. Figure 7d–f show the relationship curves of the compression 
indices of the samples with different water contents, dry densities, and salt contents. Figure 7d shows that with 
increasing water content, the compression coefficient av and the rebound index Cs change in opposite directions, 
both of which show linear changes, and the fitting parameters are 0.999 and 0.897, respectively; the compression 
index Cc gradually increases to a stable value with increasing water content. Figure 7e shows that with increasing 
dry density, the trends of av and Cc are the same, both of which decrease linearly, and the fitting degrees are 
0.9855 and 0.9355, respectively; Cs shows a linear increasing trend. Figure 6f shows that with increasing salt 

Fig. 6.  Diagram illustrating the influence of various factors on particles: (a) Changes in particles under the 
influence of moisture content; (b) Changes in particles under the influence of dry density; (c) Changes in the 
bound water film under the influence of salinity.
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content, av and Cc first increase and then decrease, and Cs first decreases and then increases, showing a quadratic 
function change overall, and the fitting degrees are 0.878, 0.8417, and 0.9355, respectively. A comparison of the 
experimental and predicted values of the compression coefficient is shown in Fig. 8. The RMSEs are 0.0086, 
0.0053 and 1.98E-04.

Microscopic analysis of SEM images under different influencing factors
SEM images of samples with different consolidation pressures and initial samples with different dry densities 
and salt contents under 4000× magnification were obtained for microanalysis. Figure 9 shows scanning electron 
microscopy images of samples with different consolidation pressures and initial samples with different dry 
densities and salt contents.

(1) Figure 9a presents SEM images of the samples under various consolidation pressures. The image reveals 
that the uncompressed sample has an open flocculation structure with particles distributed directionally yet 
somewhat dispersed. The soil contains flat clay minerals that form clay mineral aggregates, predominantly 

Fig. 7.  Effects of different influencing factors on compression indicators: (a) e-lgp curves under different 
water contents; (b) e-lgp curves under different dry densities; (c) e-lgp curves under different salt contents; 
(d) relationship curves of compression indicators; (e) relationship curves of compression indicators; (f) 
relationship curves of compression indicators.
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consisting of fine clay particles arranged in laminated and flat formations. Some aggregates resemble wave-like or 
flower-like structures, contributing to a turbulent structure similar to water flow. With increasing consolidation 
pressure, the particles appear more flattened, and the phenomenon of aggregation becomes more pronounced. 
The lamellar particles align in parallel, creating a highly oriented laminar flow structure. Consequently, the 
flocculation structure transitions into a combined turbulent and laminar flow structure, and the compression 
curve visibly shifts from gentle to steep. (2) Figure 9b shows SEM images of the samples at different dry densities. 
The image indicates that at a ρd of 1.50 g·cm–3, the soil structure is notably loose, characterized by numerous 

Fig. 9.  4000 × scanning electron microscopy images: (a) different consolidation pressures; (b) different dry 
densities; (c) different salt contents.

 

Fig. 8.  Comparison of Experimental and Predicted Values of Compression Coefficient.
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pores among the particles and a clear flocculation structure. The structural units mainly interact in a face-
to-face manner. As the dry density increased, both the flocculation structures and the aggregates within the 
sample increased in abundance. Concurrently, the pores between the particles decrease significantly, explaining 
why the compression coefficient decreases as the dry density increases. (3) Figure  9c shows SEM images of 
the samples with varying salt contents. The image shows that at 0% salt content, the soil structure is relatively 
loose, with minimal aggregates and predominantly face-to-face particle contacts. When the salt content is less 
than 2%, the number of aggregates and pores between particles increase, and the contacts between particles 
change from face-to-face to point-to-face, with pronounced overhanging pores. This increase in porosity leads 
to an increase in the compression coefficient. Conversely, when the salt content exceeds 2%, the increase in salt 
leads to more rough and irregular aggregates on the soil surface, which also becomes more voluminous. The 
lamellar structure becomes more distinct, and the particles are tightly arranged, resulting in a decrease in the 
compression coefficient on a macroscopic scale.

Figure  10 shows the changes in the micro-parameters of the initial sample with different consolidation 
pressures, dry densities, and salt contents. Among them:

	(1)	� Pore size and distribution: According to Zhang et al.32, clay pores are classified into macropores (d > 10 μm), 
mesopores (1 < d < 10 μm), micropores (0.1 < d < 1 μm), and nanopores (d < 0.1 μm). Figure 10a shows curves 
of the changes in pore quantity and size distribution under the different consolidation pressures. Figure 10a 
shows that the total number of pores decreases gradually with increasing consolidation pressure, and the 
number of large and medium pores decreases significantly. Although there are fluctuations in the number of 
medium-sized and microscopic pores, the changes in the number of these pores are small. With increasing 
consolidation pressure, the proportion of large and medium pores in the sample decreases gradually, and 
V3D is negatively correlated with the consolidation pressure in an exponential manner. Figure 10b shows 
the curves of pore quantity and size distribution changes under different dry densities and salt contents. 
Figure 10b shows that the total number of particles decreases progressively as the dry density increases, 
with the dry density showing a positive linear correlation with the three-dimensional porosity (V3D). The 
changes in particle number and V3D occur in two phases, with s = 2% serving as the critical turning point. 
At s = 2%, both the lowest particle count and the peak V3D are observed.

	(2)	� Morphological characteristics: Fig. 10c shows the distribution of the abundance and frequency of round-
ness distributions of the samples under the different consolidation pressures. As shown in Fig. 10c, the 
abundance is generally stable under the different consolidation pressures, ranging from 0.4–0.5 to 0.9–1.0, 
with the largest proportion ranging from 0.4 to 0.5, and the abundance changes little in the other intervals. 
As a result of the change in particle roundness, VR (extremely rounded) accounts for 67.63%–73.85% of 
the total and gradually decreases with increasing consolidation pressure, and the overall distribution of the 
particles tends toward A (angular) and SA (subangular). Figure 10d shows the distribution of the abun-
dance values of samples with different dry densities and salt contents. As shown in Fig. 10d, the abundance 
values are concentrated at 0.4–0.5, 0.6–0.7 and 0.9–1.0 for the different dry densities and salt contents. With 
increasing dry density, there was no significant change in abundance at other intervals. With increasing salt 
content, the average abundance changed the most at s = 2%.

	(3)	� Arrangement characteristics: Fig.  10e shows the directional frequency distributions of sample particles 
under various consolidation pressures. The particle angles predominantly range between 0 to 15° and 75 
to 90°, indicating distinct directional characteristics. Moreover, the proportion is maximal when the con-
solidation pressure is low in other intervals. Figure 10f presents the directional frequency distributions of 
sample particles with different dry densities and salt contents. With increasing dry density, the particle 
arrangement tends toward greater randomness, resulting in a more uniform distribution. With respect to 
varying salt contents, the distribution of the particle direction frequency exhibits two prominent peaks and 
approximates a right angle. Notably, the proportion of particles in the vertical direction constitutes 30.1% of 
the polar angle range, with the angle of the particle directional frequency distribution gradually increasing 
with increasing salt content.

Effects of microstructural features on compressibility
The Pearson correlation coefficient is used to assess how parameters such as pore number, V3D, average particle 
abundance, and average particle directional frequency impact the compression coefficient and compression 
index. Table 5 displays the correlations between av, Cc, and micro-parameters across different dry densities and 
salt contents. According to Table 5, the pore number and V3D exhibit the strongest correlations with av and Cc 
at various dry densities, with correlation coefficients exceeding 0.94 in absolute value. With respect to the salt 
content, V3D had the highest correlation with av and Cc. Figure 11 presents the relationship curves between 
av, Cc, and the micro-parameters. As depicted in Fig. 11, under the influence of dry density, av and Cc have 
linear negative and positive correlations with the total pore number and V3D, respectively. Conversely, under the 
influence of the salt content, both av and Cc increase as V3D increases.

Penetration test
Analysis of macro results
Figure 12 shows the variation curves of the saturated permeability coefficients of saline clay across different 
dry densities and salt contents. (1) Figure 12a shows the relationship curve between the saturated permeability 
coefficient and dry density. Figure  12a clearly shows that dry density significantly influences the saturated 
permeability coefficient ks1, which decreases exponentially until it stabilizes. (2) Figure  12b shows the 
relationship between the salt content and the saturated permeability coefficient. As shown in Fig.  12b, the 
saturated permeability coefficient ks2 of saline clay with various salt contents predominantly ranges from 5 × 10–6 
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to 2.5 × 10–5 cm·s–1. The increasing trend of the saturated permeability coefficient ks2 of samples with salt contents 
of 2% and less is not obvious with increasing salt content. The value of ks2 starts to decline sharply from s = 2% 
with increasing salt content.

Microscopic analysis of results
SEM images of samples with varying dry densities and salt concentrations following permeation were obtained 
via microscopic examination at 10,000× magnification. Figure 13 shows the microstructures of cohesive soils 
with various dry densities and salt concentrations after permeation. (1) Figure 13a shows the microstructures 
of the samples with different dry densities following permeation. Figure 13a shows that at lower dry densities, 
the particles appear swollen due to percolation, and the structure is predominantly flocculated with a supportive 

Fig. 10.  4000 × SEM images of initial samples under different dry densities and salt contents: (a) changes in the 
number and size distribution of pores under different consolidation pressures; (b) changes in the number and 
size distribution of pores under different dry densities and salt contents; (c) distribution of abundance values 
and roundness distribution frequency of samples under different consolidation pressures; (d) distribution 
of abundance values of samples under different dry densities and salt contents; (e) directional frequency 
distribution of sample particles at different consolidation pressures; (f) directional frequency distribution of 
sample particles under different dry densities and salt contents.
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turbulent structure. Numerous overhead pores are present between the soil masses, where the impediment of 
particle migration by the percolation pores is the predominant effect. There are few enclosed pores formed 
by flocculation, yet the connectivity of the pores is effective. With increasing dry density, the larger particle 
aggregates break apart, and the finer particles fill into the larger pores, reorganizing due to water film adsorption. 
The number of large pores decreases, the pore connectivity worsens, and the saturated permeability coefficient 
decreases. (2) Figure  13b shows the microstructures of the samples with varying salt concentrations after 
permeation. As noted in Fig. 13b, with salt concentrations below 2%, the introduction of salt as an electrolyte 
causes an increase in the ionic presence in the sample, enhancing ion adsorption and exchange. This leads to the 
agglomeration of some finer particles, identified as clay particles, from the particle size test results. Concurrently, 
salt addition increases electrostatic attraction among particles, promoting flocculation, which reduces the 
number of large overhead pores and increases the number of interparticle pores. When the salt concentration 
exceeds 2%, the number of coarse and irregular aggregates on the soil surface increases, as does their volume, 
indicating that salt contributes to a roughening effect on soil particles, forming sheet-like and layered structures. 
Upon reaching a salt concentration of 5%, extensive salt crystals precipitate on the sample surface, and the 
permeability coefficient initially increases but then decreases, with a turning point at s = 2%.

Figure 14 shows the variations in the microscopic parameters at different dry densities and salinity levels 
following infiltration. (1) Figure 14a–c show the variation curves for the number and size distribution of pores, 

Fig. 12.  Variation curves of the permeability coefficient with different factors: (a) variation in the permeability 
coefficient with different dry densities; (b) variation in the permeability coefficient with different salt contents.

 

Fig. 11.  av and Cc are related to the microscopic parameters.
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the changes in particle morphological characteristics, and the frequency of pore orientation under varying 
dry densities after infiltration. Figure  14a–c clearly show that with increasing dry density, the number and 
proportion of large pores decrease progressively, whereas the number of micro- and nanopores fluctuates, but 
their proportion increases gradually. The total pore count also decreases linearly as the dry density increases. 
The V3D is exponentially negatively correlated with dry density, as evidenced by an R2 value of 0.9961. The 
abundance values are primarily concentrated between 0.4 and 0.5 and between 0.9 and 1.0. With increasing dry 
density, the particle morphology post-infiltration tends toward angular and polar angular shapes. A comparison 
of particle distribution diagrams under different dry densities post-infiltration reveals changes in the abundance 
of particle units due to increased dry density. The percentage of abundance values between 0.9 and 1 gradually 
decreases with increasing dry density, whereas the other ranges change little. Compared with the above results, 
after infiltration, the particle morphology generally shifts to a polar circular shape. (2) Figure 14d–f show the 
variation curves of pore number and size distribution, the change in particle morphological characteristics, and 
the change in pore orientation frequency under different salinities after infiltration. Figure 14d–f show that as 
the salinity increases, with s = 2% as the turning point, the proportion of large pores first increases and then 
decreases, and s = 2% is the maximum point. The nanopores exhibit the opposite trend, with s = 2% being the 
lowest point. The total number of pores and V3D both show a two-stage change, which first increases linearly 
and then decreases linearly. The R2 values are both greater than 0.88. Overall, the abundance values under the 
different salinities were relatively stable and were mainly concentrated at 0.4–0.5, 0.6–0.7 and 0.9–1.0, and there 
was no significant change in the abundance values in the other ranges. According to the statistics, the roundness 
of the particle aggregates under each salinity treatment slightly changed with increasing salinity. The proportion 
of polar roundness clearly reaches the upper limit when s = 2%. The directional distribution of sample pores is 
obvious and is concentrated from 0 to 15°, and the proportion decreases first and then increases with increasing 
salinity. When s = 2%, it is the lowest value.

Influence of microstructure characteristics on permeability parameters
Pearson correlation analysis was employed to assess the relationships among the macro-, meso-, micro-, and 
nanopores proportions; V3D; average particle roundness; average particle abundance; average particle orientation 
frequency; and saturated permeability coefficient (ks). Table 6 presents the correlations between the saturated 
permeability coefficient and the micro-parameters. According to Table 6, the proportion of micropores and V3D 
exert the most significant influence on the permeability coefficient (ks1) under varying dry densities. Specifically, 
the proportion of nanopores has a linear negative correlation with ks1, whereas V3D has a linear positive correlation 
with ks1. Conversely, the total pore count and proportion of nanopores exert the most substantial impact on the 
permeability coefficient (ks2) under different salt concentrations. Notably, the proportion of nanopores displays a 
linear negative correlation with ks2, whereas the total pore count demonstrates a linear positive correlation with 
ks2, as depicted in Fig. 15.

The empirical formula for fitting the permeability coefficient with the micro-parameters is as follows:
Dry density:

	 ks1 = 1.36 − 1.48 × 10−5Ps� (3)

	 ks1 = −1.58 + 3.34 × 10−6V3D � (4)

Different salinities:

Fig. 13.  10,000 × SEM images after infiltration: (a) different dry densities after infiltration; (b) different salt 
contents after infiltration.
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Correlation
Total number 
of pores

Macro-
pores Mesopores

Micro-
pores Nanopores V3D

Average particle 
roundness

Average particle 
abundance

Orientation 
frequency

ks1 0.803* − 0.798 − 0.836* − 0.850* − 0.827* 0.966** 0.842* 0.830* − 0.784

ks2 0.823* 0.748 − 0.147 0.538 − 0.882* 0.573 0.067 0.262 − 0.128

Table 6.  Correlations between the permeability coefficient and microscopic parameters.

 

Fig. 14.  Changes in microscopic parameters after infiltration under different conditions: (a) pore size and 
distribution under different dry densities after penetration; (b) morphological characteristics of particles under 
different dry densities after penetration; (c) directional distribution frequency of particles under different 
dry densities after penetration; (d) pore size and distribution under different salt contents after infiltration; 
(e) morphological characteristics of particles under different salt contents after penetration; (f) directional 
distribution frequency of particles under different salt contents after penetration.
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	 ks2 = 4.55 − 5.79Pmic� (5)

	 ks2 = −5.37 + 1.4N � (6)

where Ps, Pmic, and N represent the proportions of micropores, nanopores, and total pores, respectively.

Model prediction
SVR model
The support vector machine (SVM) is a supervised learning method rooted in statistical learning theory and was 
initially introduced by Vapnik in 1995. Over time, SVMs have been widely applied in addressing small-sample 
pattern classification (SVC) and nonlinear regression (SVR) tasks. Its core principle involves mapping input data 
to a higher-dimensional space via a kernel function, thereby addressing nonlinear regression challenges within 
a lower-dimensional space. Support vector regression (SVR) is classified as a black-box modeling approach that 
establishes the connection between input and output on the basis of available sample data. Given a training 
sample S = {(xi, yi |i = 1, 2, · · ·, l)}, xi, yi ∈ R , a regression function is constructed33:

	 f(x) = ω′φ′(x) + b� (7)

where f(x) is the output function, ω′ is the weight vector, and φ′(x) is the nonlinear mapping function. To 
promote effective sparsity in SVR, the insensitive loss function ε is introduced, transforming the problem into a 
convex optimization challenge:

	
min 1

2 ∥ω∥ 2� (8)

Constraint conditions:

	

{
yi − ω′xi − b ≤ ε

ω′xi + b − yi ≤ ε
� (9)

Considering the allowed fitting error, the slack variables ξi ≥ 0 and ξ∗
i ≥ 0 are introduced so that SVR is 

transformed into the minimization problem of the following objective function:

	
min 1

2 ∥ω∥ 2 + C

l∑
i

(ξj
i ≥ ξj∗

i )� (10)

	

s.t.




yi − ω′xi − b ≤ ε + ξi

ω′xi + b − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0

� (11)

Fig. 15.  Correlations between the saturated permeability coefficient and microscopic parameters under 
different conditions: (a) different dry densities and (b) different salt contents.
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Equation (12) is converted into a quadratic programming problem via the duality principle, and the Lagrange 
equation is established34:

	

l(ω′, ξi, ξ∗
i ) =1

2(ω′ · ω′) + C

l∑
i

(ξj
i ≥ ξj∗

i ) −
l∑

i=1

αi(ε + ξi − yi + ω′xi + b)

−
l∑

i=1

α∗
i (ε + ξ∗

i − yi + ω′xi + b) −
l∑

i=1

(βiξi + β∗
i ξ∗

i )

� (12)

where l(ω′, ξi, ξ∗
i ) is the dual form of the Lagrange equation, and αi, α∗

i , βi, and β∗
i  are the Lagrange operators. 

The partial derivatives of parameters ω′, b, ξi, and ξ∗
i  in the above formula should all be equal to zero. When this 

condition is substituted into the formula, the dual optimization problem is obtained:

	
min 1

2

l∑
i,j=1

(αi − α∗
j )(αj − α∗

j ) [φ(xi) · φ(xj)] +
l∑

i=1

αi(ε − yi) +
l∑

i=1

α∗
i (ε − yi)� (13)

	

s.t.




l∑
i=1

(αi − α∗
i ) = 0

αi, α∗
i ∈ [0, C]

� (14)

In the formula, φ(xi) · φ(xj) represents the dot product operation in high-dimensional space. Let 
K(xi, yi) = φ(xi) · φ(xj), and K(xi, yi) is called the kernel function, which is used to solve the dimension 
problem. Finally, the regression function is obtained as:

	
f(x) =

l∑
i=1

(αi − α∗
i )K(xi, yi) + b� (15)

The kernel function K(·) must adhere to Mercer’s theorem and fulfill the requirements of the inner product 
algorithm. Commonly used kernel functions include the linear kernel function, Gaussian radial basis function 
(RBF) kernel function, polynomial kernel function, and sigmoid kernel function. This study opts for the RBF 
kernel function because of its robust non-linearity and relatively low computational complexity. Its formulation 
is as follows:

	
K(x, y) = exp −

(
1
2p

∥x − y∥ 2
)

� (16)

As evident from formulas (8) and (14), the prediction efficacy of SVR is significantly influenced by the kernel 
function parameter p and the penalty factor C. Inappropriate parameter settings can substantially decrease the 
predictive accuracy of SVR. Hence, it becomes imperative to devise a suitable approach for globally optimizing 
hyperparameters to enhance their prediction performance.

Improved PSO algorithm
PSO algorithm
PSO is a global optimization algorithm that emulates the cooperative behavior observed in bird flocks during 
foraging. Renowned for its simplicity and rapid convergence, PSO has been extensively applied in parameter 
optimization tasks. The algorithm commences with the initialization of a cluster of random particles, which 
then iteratively seek the optimal solution. Throughout the iteration, the particles update their positions primarily 
on the basis of individual extreme values (individual experience) and collective extreme values (population 
experience). Additionally, particles facilitate information exchange by tracking these two extreme values35.

Suppose that the swarm comprises M particles and that each particle possesses D-dimensional vectors that 
represent its position and velocity. After initialization, the particles exhibit the following attributes:

where Xi = (xi1, xi2, · · ·, xiD) represents the position of the i-th particle and where Pi = (pi1, pi2, · · ·, piD) 
signifies the best position visited by the i-th particle, which is also known as pbest. The best individual among 
all Pi(i = 1, · · ·, N) is recognized as the best position gbest ever attained by the entire particle swarm 
Vi = (vi1, vi2, · · · , viD), which represents the flight velocity of the i-th particle. The formula for updating the 
position of each particle is as follows:

	 vid(t + 1) = w′ × vid(t) + c1 × r1(pbest − p) + c2 × r2(gbest − p)� (17)

	 xid(t + 1) = xid(t) + vid(t + 1)� (18)

In the formula, d represents the current number of iterations, w' represents the inertia coefficient, regulating 
the balance between global and local search; c1 represents the cognitive constant, facilitating self-awareness, 
typically set to 2; c2 represents the social constant, mimicking interaction with the social population, also set to 
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2; and r1 and R2 represent random numbers uniformly distributed in the interval [0,1] and are utilized to prevent 
local optima.

Improved PSO algorithm
Formula (17) clearly shows that as w' increases, the PSO algorithm’s global search capability strengthens; 
conversely, as w’ decreases, its local search capability strengthens. To maintain a balance between the global 
and local optimization abilities of the particle swarm optimization algorithm and ensure swarm stability, the 
enhanced PSO algorithm adjusts the inertia weight. This adjustment facilitates robust global search capability 
in the initial stages, gradually enhancing local search capability as the iteration count increases. The modified 
weight formula is presented below:

	
wd = wstart − (wstart − wend)( d

K
)� (19)

In the formula, d represents the current iteration count, K denotes the total number of iterations, wstart is typically 
set to 0.9, and wend is typically set to 0.4.

Improved PSO-SVR mechanical property index prediction model
As previously noted, the hyperparameters of the SVR model, including the kernel function parameter p and the 
penalty factor C, significantly influence the model’s accuracy. In particular, the penalty coefficient C primarily 
impacts the model’s robustness in prediction. A smaller value implies a lower penalty on empirical errors, 
potentially leading to increased training errors, whereas a larger value may result in a reduced generalization 
ability of the SVR model. The width parameter p of the RBF kernel function predominantly influences the 
complexity of the distribution in the high-dimensional feature space. Inappropriate values of p can lead to 
overfitting or underfitting phenomena. This study introduces an enhanced PSO method to optimize the 
selection of these two hyperparameters, consequently enhancing the accuracy of the prediction model. The 
detailed process of the improved PSO-SVR model is illustrated in Fig. 16.

Algorithm test analysis
The mechanical characteristics of saline clay result from various influencing factors. Considering these factors 
and their internal connections, key parameters, such as dry density, moisture content, and salt content, were 
identified to predict the mechanical and permeability properties of the soil. This study conducted 14 sets of 
direct shear and compression tests, with 10 sets randomly selected as training samples and the remaining 4 as 
test samples. For the permeability tests, 12 sets of data were analyzed, with 8 sets chosen randomly as training 
samples and the last 4 as test samples. An SVM prediction model was developed using the same data, and its 
results were compared with those of the improved PSO-SVR, as depicted in Fig. 17. Figure 17 clearly shows that 
the prediction accuracy of the improved PSO-SVR model surpasses that of the SVM model.

Fig. 16.  Improving the PSO-SVR algorithm process.
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Discussion
Previous studies have indicated that the strength of saline clay decreases as the water content increases36,37 and 
increases with increasing dry density and salt content. The effect of salt content on soil strength is due to salt 
expansion and pore plugging38.

The addition of Na2SO4 increases the ion concentration in pore water and enhances the electromotive 
force potential, causing the dispersion of cementation and a reduction in cohesion. With a further increase in 
Na2SO4, the cementation by salt crystals between particles begins to replace the accumulation contacts between 
them, and these crystals fill the soil pores, thereby increasing cohesion. Minimal addition of Na2SO4 results in a 
looser arrangement of the particle framework and a decrease in cohesion. As the amount of Na2SO4 increases, 
cementation by salt crystals increases, the soil framework becomes more compact, and the internal friction angle 
increases progressively. Moreover, the strength of the soil varies abruptly at a salt content of 2%. A schematic 
diagram illustrates the macro–micro mechanism of this sudden change at s = 2% (Fig. 18). As shown in Fig. 18, 
the introduction of a small quantity of salt reduces the thickness of the water film between clay particles39, 
enhancing the flocculation effect in the soil40,41. With a limited and discontinuous flocculation capacity, overhead 
pores become pronounced. However, as the salt content increases further, salt crystals start to occlude pores, 
progressively increasing the soil strength42.

In summary, the interaction between soluble salt and pore water in saline clay alters the microstructure of the 
soil, impacting its strength and permeability. Current studies indicate that concentrations of soluble salts (NaCl, 
KCl, CaCl2, and NaHCO3) ranging from 0 to 2% do not significantly affect clay strength. However, the saline 
clay analyzed in this research, sourced from the arid region of northern China, contains high levels of soluble 
salts, with sulfate ion concentrations reaching 0.568%. The clay content is high, and salt ions readily adsorb and 
bind with clay particles to form aggregates, with s = 2% identified as the critical point for changes in soil strength.

When constructing water diversion projects in such arid regions of China, where soil masses consist of 
relatively large particles and are in the transition stage of silt–clay, careful monitoring of these sudden strength 
changes is essential. Nonetheless, this paper primarily addresses the impact of a single factor on the mechanical 
properties of cohesive soil, neglecting the salt-frost heaving and thaw settlement characteristics of saline soil due 
to temperature variations, as well as the interplay among various factors. In real-world engineering disasters, 
the effects of ambient temperature changes are often significant. Consequently, further research is planned to 
explore the impact of multifactorial interactions on the strength characteristics of saline soil under temperature 
variations. This study uses existing experimental data to enhance the PSO-SVR prediction model and utilizes 
existing research data for validation. However, this research only compares the SVM and PSO-SVR prediction 
models. There remains a need to explore simpler and more rapid prediction models for assessing soil strength.

Conclusions
Through indoor direct shear, compression, permeation, and scanning electron microscopy tests conducted on 
saline clay from the arid region of northern China, this study investigated the impacts of varying water contents, 
dry densities, and salt contents on the mechanical properties of clay. The key findings are summarized as follows:

	(1)	� With increasing dry density, the particles become denser, the effective contact area increases, and the co-
hesion and internal friction angle increase. With increasing water content, the pore water decreases, the ice 
cementation effect weakens, the matric suction between soil particles decreases, and the cohesion and in-
ternal friction angle gradually decrease. When the salt content decreases, the shear strength decreases with 
increasing salt content. At a salt content of 2%, the soil pore water saturates, causing excess salt to crystallize 

Fig. 17.  Comparison of predictions between the SVR and improved POS-SVR models.
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within the soil layer. This crystallized salt acts as a cementation agent, enhancing cohesion and increasing 
the internal friction angle.

	(2)	� Compression characteristics: With increasing water content, the initial porosity ratio remains stable, where-
as the compression coefficient increases, and both the compression index and resilience coefficient grad-
ually decrease. An increasing dry density leads to a decrease in the initial porosity ratio, compression co-
efficient, compression index, and resilience coefficient. The salt content changes the initial porosity ratio, 
but the compression coefficient and compression index initially increase but then decrease. Moreover, the 
resilience coefficient initially increases, then decreases, and finally increases again, with s = 2% marking the 
critical point. Scanning electron microscopy revealed that as the consolidation pressure increased, the soil 
structure type gradually evolved from a flocculent structure to a turbulent and laminar flow structure, with 
an obvious particle aggregation effect, and the compression coefficient of the saline soil decreased. Through 
correlation analysis, the compression coefficient and compression index are strongly correlated with the 
three-dimensional porosity.

	(3)	� Permeability characteristics: With increasing dry density, the saturated permeability coefficient of saline 
clay decreases. With increasing salt content, the saturated permeability coefficient first increases but then 
decreases. The electron microscopy results revealed that with increasing dry density, the number of large 
particle aggregates decreased, and the number of small particles increased. The sample structure progres-
sively densified, reducing the porosity ratio and increasing the water flow resistance, resulting in a gradual 
decrease in the saturated permeability coefficient, with the declining trend slowing. At s < 2%, ion adsorp-
tion and exchange led to a reduction in the number of overhead macropores, an increase in interparticle 
porosity, and an increase in seepage channels. However, with increasing salt content, the internal pores of 
the soil become filled with precipitated salt crystals, blocking seepage channels and thereby reducing the 
saturated permeability coefficient. Correlation analysis revealed that three-dimensional porosity had the 
greatest influence on the saturated permeability coefficient of saline soil.

	(4)	� Prediction and validation of the strength and permeability characteristics involved the selection of three 
experimental parameters: water content, dry density, and salt content. A comparison between the SVM and 
PSO-SVR prediction results indicated superior accuracy and broader applicability for the latter. Verification 
with independent data demonstrated its suitability for predicting the strength and permeability character-
istics of saline clay, offering a relatively fast and accurate method for onsite assessment.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Fig. 18.  Macro micro-mechanism of different salt contents: (a) SEM images of microstructural changes in 
soil under different salt contents; (b) changes in the macroscopic mechanical properties of samples with 
different salt contents; (c) schematic diagram of the influence of different salt contents on the microstructure 
mechanism of the soil.
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