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This study aims at investigating the dynamics of sexually transmitted infectious disease (STID), 
which is serious health concern. In so doing, the integer order STID model is progressed in to the 
time-delayed non-integer order STID model by introducing the Caputo fractional derivatives in 
place of integer order derivatives and including the delay factors in the susceptible and infectious 
compartments. Moreover, unique existence of the solution for the underlying model is ensured by 
establishing some benchmark results. Likewise, the positivity and boundedness of the solutions for 
the projected model is explored. The basic reproduction number is R0 is found out for the model. 
The time-delayed non-integer order STID model holds two steady states, namely, the STID free and 
endemic steady state. The model stability is carried out at the steady states. The non-standard finite 
difference (NSFD) technique is hybridized with the Grunwald Letnikov (GL) approximation for finding 
the numerical solutions of the time-delayed non-integer order STID model. The boundedness and non-
negativity of the numerical scheme is confirmed. The simulated graphs are presented with the help of 
an appropriate test example. These graphs show that the proposed numerical algorithm provides the 
positive bounded solutions. The article is ended with productive outcomes of the study.

Keywords  New epidemic model, Delayed fractional differential equations, STIDs, Voltera Lyapunov 
function, LaSalle principal, GL non-standard finite difference schemes

Sexually transmitted infectious diseases (STIDs) basically propagate through sexual contacts. These disease are 
a serious public health matter that influence the social, economic and physical health of the infected individuals. 
Some common STIDs are mycoplasma genitalium (MG), Hepatitis B and C, Herpes simplex virus, human 
papillomavirus and many more in the sequence. The World Health Organization (WHO) estimates that 376 
million new cases of STIDs appear each year, making indicating a terrific public health stumper with deep 
social outcomes. The main source of transmission are oral, anal and vaginal contact, fluid exchanges such as 
blood, vaginal secretions and semen. Multiple sexual partners and unprotected sexual effective activities can 
make the transmission of STIDs very fast 1. The teenagers and young adults compromise the major portion of 
the infected individuals with low health facilities and environment, are in danger of getting the infection. By 
addressing the social cultural and behavioral issues that consequently lead to the development of STIDs, the 
infections may be controlled and prevented effectively 2. Advancements in molecular diagnosis, therapeutic 
approaches and public health policies have culminated the medical treatment facilities. However, stigma of being 
guilty, antibiotic resistance and inaccessible medical support impacted the attempts to control and eradicate the 
STIDs 3. In epidemic models, the frequent occurring of the infection affects the basic key reproductive number, 
remarkably. It is a matter of fact that nonlinear incidences may give rise intrigue or chaotic behaviors, contrary 
to the conventional incidences, which are frequently used in the classical epidemic models 4–8. Many researchers 
studied the effect of nonlinear occurrences in the propagation of STIDs. The integer order models do not capture 
the nonlinear and complex dynamics of the STIDs. Because, the classical derivatives have the local behavior and 
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they do not incorporate the past state of the system to describe the current or future state of the system. So, the 
fractional order epidemic models are inevitable to describe the complex nature of the infection dynamics. Since, 
the fractional derivatives used in these models have non local nature and they consider the past state, memory 
effect to depict the present and future state of the infection. This improvement makes it possible to analyze STIDs 
propagation in more detail and with greater precision 9.

In various areas of research, non-integer order and delayed non-integer order systems are significant for 
modeling intricate dynamic processes. They have made significant contributions to the scientific and technical 
analysis of real events in several fields to develop prediction models for systems with memory, temporal lag, or 
non-local coupling 18–23.

The mathematical models presented in this paper are based on delay differential equations (DDE) that are 
extremely helpful if the description of the considered systems includes time dependency not only on the present 
state of the system but also on the system’s previous state. There are several classifications of DDEs which have a 
different type of delay, neutral, time-dependent, stochastic, state-dependent and constant delay. Such DDEs find 
widespread use in a numeral branches, biology, network related to electrical fields, living sciences, ecological 
sciences, mechanics, and populace mobility 24–26.

While delays plays a vital role in real scenarios systems and the learning of DDEs has fascinated attention. 
These types of differential equations have the discrete and short term memory effects, they cannot incorporate 
the long term. This particular study is a relatively new field of exploration. A generalization of the DDE to any 
non-integer order is the FDDE. For modeling real-world challenges, FDDEs have continuous and long term 
memory effect. Many, time-delayed non-integer order mathematical systems are used to incorporate the real 
world wonder in many fields of sciences and engineering. Furthermore, several approximation techniques are 
applied to solve the mathematical systems 27–33.

In this work, some factors associated with viral propagation in the time-delayed non-integer order STIDs 
model are investigated. The way in which infections spread is not easy and cannot be described by an integer 
order model, particularly when estimating the present state based on previous movement. However, the 
fractional order derivatives are more effective in determining the memory effect factors and histories of state 
variables so it can contribute in scoop out the knowledge of the disease phenomenon. It enables a better, a more 
effective way to study the spread of diseases.

Hence, the type of incidence rates that may be used to describe the COVID-19 pandemic, in part, as fractional 
and stable, is the harmonic mean type incidence rates 35. Examples of deterministic and fractional cases involve 
dealing with the spread of the computer virus 36. Fractional order epidemic models 37 include vaccination 
and include asymptomatic carriers. In 36 both fractional and deterministic approach for modelling computer 
viruses propagation is used. Harmonic mean type incidence rates are, therefore, useful in the construction of 
any epidemic models for theoretical and numerical analysis, including those presented in this paper and those 
studied in 38 for rabies. By analysis with the real time data and fractional modelling particularly using the ABC 
operator mentioned in 39, the important information of the COVID-19 epidemic dynamics are ensured. The 
non-linear dengue epidemic system is studied by applying the fractional approach 40 and also the Cutaneous 
Leishmania system 41. Majee et al. 42 proposed a fractional order waning immunity delayed epidemic model under 
optimal control to demonstrate the impact of delay factors on epidemic dynamics. Comparable, fractional and 
fractal–fractional modeling strategies applied to such equations have been utilized for describing and managing 
actions such as alcohol dependence 43. Research has also been conducted on the synchronous transmission of 
(for instance) HBV and COVID-19, to demonstrate the importance of efficient control measures 45. Thus, the 
fractional order models have been also used apart from the epidemiology, examined the psychological and social 
parameters such as employees’ negative attitude towards work 45, passengers’ perception of safety in unstable 
train systems 46 and the corruption indexes dynamics 47.

The pattern of this paper is structured as follows to systematically address the research objectives. Firstly, 
Section "Cornerstones" is dedicated to presenting the mathematical model. Within this section, emphasis is 
placed on exploring system positivity, boundedness, as well as the existence of endemic equilibrium points, 
and local stability. Through rigorous examination, the intricacies of infection propagation dynamics within 
the population are elucidated. Subsequently, Section “Finite difference technique” is devoted to conducting 
numerical simulations that serve to validate the findings derived from the analysis of the mathematical model. 
These simulations provide empirical evidence supporting the theoretical analysis developed earlier. By leveraging 
computational techniques, the robustness and efficacy of the proposed model are assessed, thereby enhancing 
our understanding of infection spread within the context of delayed fractional order STIDs.

Cornerstones
Here we discussed some basic definitions of fractional calculus for better understanding.

Caputo fractional derivative 12,15

Let y(τ) satisfies some smoothness conditions in every finite interval (0,t) with t ≤ τ. Then

	
c
0D

ϕ
t y (t) = 1

Γ (m − ϕ)
t
∫
0

(t − τ)−ϕ−1+m dm

dτm y (τ) dτ , m − 1 < ϕ < m.

Mittage-Leffler function 11
The Mittage-Leffler function is represented by Eα,β , described as below
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Eα,β (s) =

∞∑
k=0

sk

Γ (αk + β) , α ∈ R+, s ∈ C.

Mittage-Leffler with two variables 11
The two variables form of Mittage–Leffler function is defined as,

	
Eα,β (s) =

∞∑
k=0

sk

Γ (αk + β) , α, β ∈ R+, s ∈ C, and Eα,β (s) = s · Eα,α+β (s) + 1
Γ (β) .

Unraveling of the model
The parameters and state variables used in the transformed model are enlisted below in Table 1.

By replacing Caputo derivatives instead of ordinary derivative in 13 for ascertaining the claims as above. The 
fractional delayed model will adopt the form as explained in system (1)–(5).

	
c
0D

ϕ
t S (t) = Zϕ − S · g (t − τ, I) · e−µτ −

(
wϕ

1 + dϕ
)

· S,� (1)

	
c
0D

ϕ
t I (t) = S · g (t − τ, I) · e−µτ + vϕ

1 T − mϕI,� (2)

	 0
cDϕ

t T (t) = τ2
ϕI − nϕT,� (3)

	 0
cDϕ

t A (t) = τ1
ϕI − dϕA + v2

ϕT,� (4)

	 0
cDϕ

t R (t) = w1
ϕS − dϕR.� (5)

where, g (t − τ, I) = I.α(t−τ)
1+I.β(t−τ) , with initial conditions

	 S (t) = S0 ≥ 0, I (t) = I0 ≥ 0, A (t) = A0 ≥ 0, T (t) = T0 ≥ 0, R(t) = R0 ≥ 0.

Feasible region
The feasible region is defined as, for any time t ≥ 0,

	
Ω =

{
(S, T, I, A, R) ∈ R5

+ : S + T + I + A + R ≤ Zϕ

dϕ
, S ≥ 0, T ≥ 0, A ≥ 0, I ≥ 0, R ≥ 0

}
.� (6)

Lemma 2.6  For any initial positive values, the system (1)-(5) is positive invariant in R5
+ 14.

Proof  Consider the Eq. (1),

0
cDϕ

t S|S=0 = Zϕ ≥ 0, similarly from Eq. (2) we have,
0
cDϕ

t I|I=0 = v1
ϕT ≥ 0, after considering Eq. (3) we reach at,

0
cDϕ

t T |T =0 = τ2
ϕI ≥ 0, from Eq. (4) we get,

0
cDϕ

t A|A=0 = τ1
ϕI + v2

ϕT ≥ 0, and finally from Eq. (5) we conclude as,
0
cDϕ

t R|R=0 = w1
ϕS ≥ 0. As desired.

Symbol State variables and parameter rates

S Susceptible

I Infected

R Recovered

T Treatment

A Awareness

Z Recruitment

d Natural mortality

τ1 Infected individuals safe sex practice

τ2 Infected receive anti-viral medicines

ω1 Susceptible individuals safe sex practice

ν1 Treatment defaulters

ν2 Treated individuals adhere to safe sex practices

µ Delay parameter death rate

τ Delay parameter

ϕ Fractional derivative order

Table 1.  Symbols for state variables and parameter rates.
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Lemma 2.7  For positive initial conditions, the system (1)–(5) is bounded for all t ∈ [0, tm) 14.

Proof  Consider system (1)–(5) as,

	 0
cDϕ

t N (t) = 0
cDϕ

t S (t) + 0
cDϕ

t I (t) + 0
cDϕ

t A (t) + 0
cDϕ

t T (t) + 0
cDϕ

t R (t) ,

	

0
cDϕ

t N (t) = Zϕ − Sg (t − τ, I) e−µτ −
(
w1

ϕ + dϕ
)

S + Sg (t − τ, I) e−µτ

+ v1
ϕT − mϕI + τ2

ϕI − nϕT + τ1
ϕI − dϕA + v2

ϕT + w1
ϕS − dϕR,

	 0
cDϕ

t N (t) = Zϕ − dϕ (S + I + T + A + R) ,

	 0
cDϕ

t N (t) = Zϕ − dϕ (N) ,

	 0
cDϕ

t N (t) + dϕ (N) = Zϕ.

By applying Laplace transform operator we get,

	
sϕL {N (t)} − sϕ−1N (0) + dϕL {N (t)} = Zϕ

{1
s

}
,

	
(
sϕ + dϕ

)
L {N (t)} = Zϕ

s
+ sϕ−1.N (0) ,

	
L {N (t)} = Zϕ

s (sϕ + dϕ) + N (0) .sϕ−1

(sϕ + dϕ) .

Now applying Laplace inverse operator on above expression we reach at,

	
L−1L {N (t)} = L−1

{
Zϕ

s (sϕ + dϕ) + N (0) .sϕ−1

(sϕ + dϕ)

}
,

	
N (t) = L−1

{
Zϕ.sϕ−(1+ϕ)

(sϕ + dϕ)

}
+ L−1

{
N (0) .sϕ−1

(sϕ + dϕ)

}
,

	
N (t) = Zϕ.

1
dϕ

.dϕ.tϕ.Eϕ,1+ϕ

(
−dϕtϕ

)
+ N (0) t0Eϕ,1

(
−dϕtϕ

)
.

Let M = max{N (0) , Zϕ

dϕ } then we have,

	 N (t) ≤ Mdϕ.tϕ.Eϕ,1+ϕ

(
−dϕtϕ

)
+ Mt0Eϕ,1

(
−dϕtϕ

)
.

Since, Eϕ,β (z) = z.Eϕ,ϕ+β (z) + 1
Γ(β) ,

	
N (t) ≤ M

{
dϕ.tϕ.Eϕ,1+ϕ

(
−dϕtϕ

)
+ 1

Γ (1) +
(
−dϕtϕ

)
Eϕ,1+ϕ

(
−dϕtϕ

)}
,

	
N (t) ≤ M.

1
Γ (1) ,

N (t) ≤ M. As required.

Lemma 2.8  Consider the system: t0
CDb

t x (t) = g (t, x) , t0 > 0, with initial condition x (t0) = xt0 , where, 
α ∈ (0, 1] , g : [t0, ∞) × Ω → R, Ω ⊆ C1[t0, ∞), if local Lipschitz condition is satisfied by g(t, x), with respect 
to x, then, there exists a solution on [t0, ∞) × Ω which is unique.

Theorem 2.9  For every time t, the system (1)–(5) exist a solution which is unique.

Proof  For the existence and uniqueness of the system, take into consideration the region Ω × [t0, Y ). Where,

	
Ω =

{
(S, I, T, A, R) ∈ R5, S, I, T, A, R ∈ C′ [t0, ∞) and∥S∥, ∥I∥, ∥T ∥, ∥A∥, ∥R∥ ≤ Zϕ

dϕ

}
andy < +∞.

Let δ (S) = Zϕ − S.g (t − τ, I) .e−µτ −
(
w1

ϕ + dϕ
)

S,

	 ∥ δ (S1) − δ (S2) ∥=∥ Zϕ − S1g (t − τ, I) .e−µτ −
(
w1

ϕ + dϕ
)

S1 −
(
Zϕ − S2g (t − τ, I) e−µτ −

(
w1

ϕ + dϕ
)

S2
)

∥,

	 ∥ δ (S1) − δ (S2) ∥=∥ −S1g (t − τ, I) e−µτ −
(
w1

ϕ + dϕ
)

S1 + S2g (t − τ, I) e−µτ +
(
w1

ϕ + dϕ
)

S2) ∥,
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	 ∥ δ (S1) − δ (S2) ∥=∥
(
g (t − τ, I) e−µτ + w1

ϕ + dϕ
)

(S2 − S1) ∥,

	 ∥ δ (S1) − δ (S2) ∥≤∥
(
g (t − τ, I) e−µτ + w1

ϕ + dϕ
)

∥ . ∥ (S2 − S1) ∥ .

Therefore δ(S) satisfies the local Lipchitz condition (lemma 2.8), moreover, for contraction mapping,

	
(
g (t − τ, I) e−µτ + w1

ϕ + dϕ
)

< 1,

Let, F1 =
(
g (t − τ, I) e−µτ + w1

ϕ + dϕ
)

, similarly, we have F2 = S.e−µτ − mϕ, F3 = nϕ, F4 = dϕ, 
F5 = dϕ.

Also let, F = max {F1, F2, F3, F4, F5}.
Therefore,

	 ∥δ (S1) − δ (S2) ∥ ≤ F∥S1−S2∥,

	 ∥∂ (I1) − ∂ (I2) ∥ ≤ F∥I1 − I2∥,

	 ∥σ (T1) − σ (T2) ∥ ≤ F∥T1 − T2∥,

	 ∥π (A1) − π (A2) ∥ ≤ F∥A1 − A2∥,

	 ∥γ (R1) − γ (R2) ∥ ≤ F∥R1 − R2∥.

For  F < 1, δ (S) , ∂ (I) ,σ (T), π (A) ,γ (R) are contraction mappings.
Therefore, δ (S) , ∂ (I) ,σ (T), π (A) andγ (R) satisfy local Lipshitz conditions. Therefore, according to 

Banach fixed point theorem, we conclude that, the solution of the time-delayed non-integer order differential 
equation exists and is unique.

Basic reproductive number (R0)
In this section, by using next generation method on system (1)–(5) we have, R0 in the form as,

	
R0 = αnϕZϕe−µτ

(w1ϕ + dϕ)(mϕnϕ − v1ϕτ2ϕ)
.� (7)

Steady states of the model
In this segment, two equilibrium points of the system (1)–(5) are presented.

The infection free steady state is denoted by E0 and is given below.

	
E0 = (T0, S0, I0, A0, R0) =

(
0,

Zϕ

w1ϕ + dϕ
, 0, 0,

w1
ϕZϕ

dϕ (w1ϕ + dϕ)

)
.

The disease existence point is represented by E* = (T*, S*, I*, A*, R*) and values of state variables are mentioned 
as below,

	
T∗ = τ2

ϕI∗

nϕ
,

	
A∗ =

τ1
ϕ + v2

ϕτϕ
2

nϕ

dϕ
I∗,

	
R∗ = w1

ϕS∗

dϕ
, and

	
S∗ =

(mϕ − v1
ϕτϕ

2
nϕ )I

∗

g(I∗)e−µτ
.

Theorem 2.12  The disease free equilibrium E0 is locally asymptotically stable if 0 < R0 < 1 and unstable if 
R0 > 1.

Proof  Consider (JE0 ) , jacobian matrix with disease free equilibrium point,

	

JE0 =




−(w1
ϕ + dϕ) −ηZϕ

(w1ϕ+dϕ) 0 0 0

0 −ηZϕ

(w1ϕ+dϕ) − mϕ v1 0 0
0
0

w1
ϕ

τ2
ϕ

τ1
ϕ

0

−nϕ

v2
ϕ

0

0
−dϕ

0

0
0

−dϕ




.
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Since, det (JE0 − λI) = 0, calculating the eigenvalues of the characteristic equation we have,

	

(
dϕ + λ

)2 [
(w1

ϕ + dϕ) + λ
] [(

−ηZϕ

(w1ϕ + dϕ) + mϕ + λ

) (
nϕ + λ

)
− v1

ϕτ2
ϕ

]
= 0.

By using Routh–Hurwitz stability criteria, we conclude that roots are negative and real. For more details see 13. 
Hence the system (1)-(5) is locally asymptotically stable at E0.

Theorem 2.13  If R0 > 1, then the endemic equilibrium E* is locally asymptotically stable.

Proof  Consider JE∗ ,

	

JE∗ =




−g (I∗) e−µτ −
(
wϕ

1 + dϕ
)

S∗g′ (I∗) e−µτ 0 0 0
g (I∗) e−µτ S∗g′ (I∗) e−µτ − mα vϕ

1 0 0
0 τϕ

2 −nα 0 0
0 τϕ

1 vϕ
2 −dα 0

wϕ
1 0 0 0 −dα




	 det (JE∗ − λI) = 0,

	 (d + λ)2 (
λ3 + b1λ2 + b2λ + b3

)
= 0

where

	 b1 = g (I∗) e−µτ + wϕ
1 + dϕ + mα + nα − S∗g′ (I∗) e−µτ ,

	 b2 = (mα + nα)
[
g (I∗) e−µτ + wα

1 + dα
]

− S∗g′ (I∗) e−µτ (wα
1 + dα + nα) + mϕnϕ − vϕ

1 τϕ
2 ,

	 b3 =
(
mϕnϕ − vϕ

1 τϕ
2

) [
g (I∗) e−µτ + wα

1 + dα
]

− nα (wα
1 + dα) S∗g′ (I∗) e−µτ .

So, by the Routh Hurwitz stability criterion, the E∗ is locally asymptotically stable. More details may be seen in 
13.

Lemma 2.14  Let p : [0, ∞) → R+ be a continuous function and let t0 ≥ 0. Then, for 
t ≥ t0, w ∈ (0,1) and p∗ ∈ R+, the following inequality holds 14,16,17

	
0
cDw

t

[
p (t) − p∗ − p∗ln

p(t)
p∗

]
≤

(
1 − p∗(t)

p

)
0
cDw

t p(t).

Theorem 2.15  The system (1)–(5) is globally asymptotically stable at disease free equilibrium point E0, if R0 < 1.

Proof  Consider a Voltera type Candidate Lyapunov function as introduced in 14,16,17,

0
cD∅

t ⊑ = 0
cD∅

t

(
S − S∗ − S∗ln s

S∗

)
+ 0

cD∅
t

(
R − R∗ − R∗ln R

R∗

)
+ 0

cD∅
t A + 0

cD∅
t I + 0

cD∅
t T , 

using above lemma 2.14,

	
0

cD∅
t ⊑ ≤

(
1 − S∗

s

)
0

cD∅
t S +

(
1 − R∗

R

)
0

cD∅
t R + 0

cD∅
t A + 0

cD∅
t I + 0

cD∅
t T,

	
0

cD∅
t ⊑ ≤

(
−S∗

s

)
0

cD∅
t S +

(
−R∗

R

)
0

cD∅
t R + 0

cD∅
t S + 0

cD∅
t R + 0

cD∅
t A + 0

cD∅
t I + 0

cD∅
t T,

0
cD∅

t ⊑ ≤
(
− S∗

s

)
0

cD∅
t S +

(
− R∗

R

)
0

cD∅
t R + 0, using DFE equilibrium points,

	 0
cD∅

t ⊑ (S, R, A, T, I) ≤ 0.

Hence, by LaSalle’s invariance theorem, the system (1)-(5) is globally asymptotically stable.

Theorem 2.16  The system (1)–(5) is globally asymptotically stable at endemic equilibrium point E∗, if R0 > 1.

Proof  Consider a Voltera type Candidate Lyapunov function 14,16,17,

	
Ψ = K1

(
S − S∗ − S∗ln

s

S∗

)
+ K2

(
A − A∗ − A∗ln

A

A∗

)
+ K3

(
T − T ∗ − T ∗ln

T

T ∗

)
+ K4

(
I − I∗ − I∗ln

I

I∗

)
,

	 0
cD∅

t Ψ = K10
cD∅

t

(
S − S∗ − S∗ln

s

S∗

)
+ K20

cD∅
t

(
A − A∗ − A∗ln

A

A∗

)
+ K30

cD∅
t

(
T − T ∗ − T ∗ln

T

T ∗

)
+ K40

cD∅
t

(
I − I∗ − I∗ln

I

I∗

)
,
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0

cD∅
t Ψ ≤ K1

(
1 − S∗

s

)
0

cD∅
t S + K2

(
1 − A∗

A

)
0

cD∅
t A + K3

(
1 − T ∗

T

)
0

cD∅
t T + K4

(
1 − I∗

I

)
0

cD∅
t I,

	

c
0D∅

t Ψ ≤ K1

(
S − S∗

s

) (
Zϕ − S · g (t − τ, I) .e−µτ −

(
wϕ

1 + dϕ
)

· S
)

+ K2

(
A − A∗

A

) (
τϕ

1 I − dϕA + vϕ
2 T

)

+K3

(
T − T ∗

T

) (
τϕ

2 I − nϕT
)

+ K4

(
I − I∗

I

) (
S · g (t − τ, I) · e−µτ + vϕ

1 T − mϕI
)

,

	

c
0D∅

t Ψ ≤ K1 (S − S∗)
(

Zϕ

S
− g (t − τ, I) · e−µτ −

(
wϕ

1 + dϕ
))

+ K2 (A − A∗)
(

τϕ
1 I

A
− dϕ + vϕ

2 T

A

)

+K3 (T − T ∗)
(

τϕ
2 I

T
− nϕ

)
+ K4 (I − I∗)

(
S.g (t − τ, I) · e−µτ

I
+ vϕ

1 T

I
− mϕ

)
.

Now, we consider the Eq. (1) and treat it as follows,

	 0
cDϕ

t S∗ (t) = Zϕ − S∗.g (t − τ, I) .e−µτ −
(
w1

ϕ + dϕ
)

.S∗ = 0,

	
g (t − τ, I) .e−µτ −

(
w1

ϕ + dϕ
)

= Zϕ

S∗ .

Similarly from the Eq. (2),

	
c
0D

ϕ
t I∗ (t) = S · g (t − τ, I∗) · e−µτ + vϕ

1 T − mϕI∗ = 0,
S · g (t − τ, I∗) · e−µτ

I∗ + vϕ
1 T
I∗ = mϕ.

Also the Eq. (3) gives the following result

	 0
cDϕ

t T∗ (t) = τ2
ϕI − nϕT∗ = 0,

	
τ2

ϕI
T∗ = nϕ.

Lastly, the Eq. (4) helps us to reach at the following expression,

	 0
cDϕ

t A∗ (t) = τ1
ϕI − dϕA∗ + v2

ϕT = 0,

	
dϕ = τ1

ϕI
A∗ + v2

ϕT
A∗ ,

	

0
cD∅

t Ψ ≤ K1 (S − S∗)
(

Zϕ

S
− Zϕ

S∗

)
+ K2 (A − A∗)

(
τ1

ϕI
A

+ v2
ϕT
A

− τ1
ϕI

A∗ − v2
ϕT

A∗

)
+ K3 (T − T ∗)

(
τ2

ϕI
T

− τ2
ϕI

T ∗

)

+ K4 (I − I∗)
(

S.g (t − τ, I) .e−µτ

I
+ v1

ϕT
I

− S.g (t − τ, I∗) .e−µτ

I∗ + v1
ϕT
I∗

)
,

	

0
cD∅

t Ψ ≤ −K1(S − S∗)2
(

Zϕ

SS∗

)
− K2(A − A∗)2

(
τ1

ϕI + v2
ϕT

AA∗

)

− K3(T − T ∗)2
(
τ2

ϕI
T T ∗

)
− K4(I − I∗)2

(
S.g (t − τ, I) .e−µτ + v1

ϕT
II∗

)
.

Here, we set K1 = K2 = K3 = K4 = 1, so we have,

	 0
cD∅

t Ψ ≤ 0.

Hence, by LaSalle’s invariance theorem, the system (1)–(5) is globally asymptotically stable.

Finite difference technique
Here we will proposed the Grunwald Letnikov finite difference scheme for the above designed model (1)–(5). 
The Grünwald-Letnikov NSFD scheme presents itself as a low complexity, numerically efficient scheme which 
preserves main physical properties of fractional systems. Due to these features, the system is very well suited for 
modeling biological system (1)–(5), where memory effects and positivity constraints are important 10.

By using Grunwald–Letnikov approximation,
0

cDα
t y (tn+1) = 1

ψ(h)α

{
yn+1 −

∑n+1
ν=1 Cα

ν yn+1−ν − rα
n+1y0

}
 to Eq. (1), we have,

	

1
φ (h)ϕ

{Sn+1 −
n+1∑
v=1

cϕ
v Sn+1−v − γϕ

n+1S0} = Zϕ − Sn+1g (t − τ, I) e−µτ −
(
w1

ϕ + dϕ
)

Sn+1,
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Sn+1 −

n+1∑
v=1

cϕ
v Sn+1−v − γϕ

n+1S0 = φ (h)ϕ
{

Zϕ − Sn+1g (t − τ, I) e−µτ −
(
w1

ϕ + dϕ
)

Sn+1
}

,

	
Sn+1

{
1 + φ (h)ϕg (t − τ, I) e−µτ + φ (h)ϕ

(
w1

ϕ + dϕ
)}

= φ (h)ϕZϕ +
n+1∑
v=1

cϕ
v Sn+1−v + γϕ

n+1S0,

	
Sn+1 =

φ (h)ϕZϕ +
∑n+1

v=1 cϕ
v Sn+1−v + γϕ

n+1S0

1 + φ (h)ϕg (t − τ, I) e−µτ + φ (h)ϕ (w1ϕ + dϕ)
.� (8)

Proceeding in this manner we have the following results,

	
In+1 =

φ (h)ϕSn+1g (t − τ, I) e−µτ + φ (h)ϕv1
ϕTn +

∑n+1
v=1 cϕ

v In+1−v + γϕ
n+1I0

1 + φ (h)ϕm
ϕ

,� (9)

	
Tn+1 =

φ (h)ϕ
{

τϕ
2 In+1

}
+

∑n+1
v=1 cϕ

v Tn+1−v + γϕ
n+1T0

1 + nϕφ (h)ϕ
,� (10)

	
An+1 =

φ (h)ϕτ1
ϕIn+1 + φ (h)ϕ

v2
ϕTn+1 +

∑n+1
v=1 cϕ

v An+1−v + γϕ
n+1A0

1 + dϕφ (h)ϕ
,� (11)

	
Rn+1 =

φ (h)ϕw1
ϕSn+1 +

∑n+1
v=1 cϕ

v Rn+1−v + γϕ
n+1R0

1 + dϕφ (h)ϕ
.� (12)

Lemma 3.1  Let all the controlled parameters and state variables are positive with S0, I0, A0, T0andR0 ≥ 0. 
Then, Sn+1, In+1, An+1, Tn+1, Rn+1 ≥ 0, ∀n ∈ Z+ .

Proof  Since, we have from the Eq. (8),

	
Sn+1 =

φ (h)ϕZϕ +
∑n+1

v=1 cϕ
v Sn+1−v + γϕ

n+1S0

1 + φ (h)ϕg (t − τ, I) e−µτ + φ (h)ϕ (w1ϕ + dϕ)
,

For n = 0,

	
S1 =

φ (h)ϕZϕ +
∑1

v=1 cϕ
v S1−v + γϕ

1 S0

1 + φ (h)ϕg (t − τ, I) e−µτ + φ (h)ϕ (w1ϕ + dϕ)
.

Since S0 and all the parameters are positive.
Then S1 ≥ 0. Similarly it can easily be proved that I1, A1, T1andR1 ≥ 0. Next we suppose that the result 

holds for n = {1,2, 3,4, . . . , n − 1} i.eSn, In, An, Tn, Rn ≥ 0, ∀n = {1,2, 3,4, . . . , n − 1}. Moreover for 
n ∈ Z+ we have,

	
Sn+1 =

φ (h)ϕZϕ +
∑n+1

v=1 cϕ
v Sn+1−v + γϕ

n+1S0

1 + φ (h)ϕg (t − τ, I) e−µτ + φ (h)ϕ (w1ϕ + dϕ)
.

Since, all the discretized state variables and parameters are positive. Therefore, Sn+1 ≥ 0. Similarly 
In+1, An+1, Tn+1, Rn+1 ≥ 0. Hence, the proposed numerical scheme preserve the positivity for n ∈ Z+.

Lemma 3.2  Suppose that S0, I0, A0, T0, R0 are finite and positive and S0 + I0 + A0 + T0 + R0 ≤ N0. More-
over, all the parameters involved in this model are positive. Then, Sn+1 + An+1 + Tn+1 + Rn+1 are bounded by 
a real constant Nn, forn ∈ Z+.

Proof  Since, all the parameters and state variables are positive then there exists a constant Nn, such that   
Sn+1, In+1, An+1, Tn+1, Rn+1 ≤ Nnfor n ∈ Z+.

Adding the Eqs. (8)–(12),
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{
1 + φ (h)ϕg (t − τ, I) e−µτ + φ (h)ϕ

(
w1

ϕ + dϕ
)}

Sn+1 +
{

1 + φ (h)ϕm
ϕ
}

I
n+1

+
{

1 + nϕφ (h)ϕ
}

T
n+1

+
{

1 + dϕφ (h)ϕ
}

A
n+1

+
{

1 + dϕφ (h)ϕ
}

R
n+1

= φ (h)ϕZϕ +
n+1∑
v=1

cϕ
v Sn+1−v + γϕ

n+1S0 + φ (h)ϕSn+1g (t, I) e−µτ

+ φ (h)ϕv1
ϕTn +

n+1∑
v=1

cϕ
v In+1−v + γϕ

n+1I0 + φ (h)ϕ
{

τϕ
2 In+1

}

+
n+1∑
v=1

cϕ
v Tn+1−v + γϕ

n+1T0 + φ (h)ϕτ1
ϕIn+1 + φ (h)ϕ

v2
ϕTn+1

+
n+1∑
v=1

cϕ
v An+1−v + γϕ

n+1A0 + φ (h)ϕw1
ϕSn+1 +

n+1∑
v=1

cϕ
v Rn+1−v + γϕ

n+1R0,

	

(
1 + dϕφ (h)ϕ

)
Sn+1 +

(
1 + dϕφ (h)ϕ

)
In+1 +

(
1 + dϕφ (h)ϕ

)
An+1 +

(
1 + dϕφ (h)ϕ

)
Tn+1 +

(
1 + dϕφ (h)ϕ

)
Rn+1

= φ (h)ϕZϕ +
n+1∑
v=1

cϕ
v {Sn+1−v + In+1−v + Tn+1−v + An+1−v + Rn+1−v} + γϕ

n+1{S0 + I0 + T0 + A0 + R0},

	

Sn+1 + In+1 + An+1 + Tn+1 + Rn+1

=
φ (h)ϕZϕ +

∑n+1
v=1 cϕ

v {Sn+1−v + In+1−v + Tn+1−v + An+1−v + Rn+1−v} + γϕ
n+1{S0 + I0 + T0 + A0 + R0}

1 + dϕφ (h)ϕ
.

For n = 0,

	
S1 + I1 + A1 + T1 + R1 =

φ (h)ϕZϕ +
∑1

v=1 cϕ
v {S1−v + I1−v + T1−v + A1−v + R1−v} + γϕ

1 {S0 + I0 + T0 + A0 + R0}
1 + dϕφ (h)ϕ

,

	 S1 + I1 + A1 + T1 + R1 < N1

For n = 1,

	
S2 + I2 + A2 + T2 + R2 =

φ (h)ϕZϕ +
∑2

v=1 cϕ
v {S2−v + I2−v + T2−v + A2−v + R2−v} + γϕ

2 {S0 + I0 + T0 + A0 + R0}
1 + dϕφ (h)ϕ

,

	 S2 + I2 + A2 + T2 + R2 < N2.

Now, suppose that the system is bounded for n ∈ {2,3, . . . , n − 1},

	 Sn + In + An + Tn + Rn < Nn, ∀n ∈ {2,3, . . . , n − 1} .

Further consider,

	

Sn+1 + In+1 + An+1 + Tn+1 + Rn+1

=
φ (h)ϕZϕ +

∑n+1
v=1 cϕ

v {Sn+1−v + In+1−v + Tn+1−v + An+1−v + Rn+1−v} + γϕ
n+1{S0 + I0 + T0 + A0 + R0}

1 + dϕφ (h)ϕ
.

Finally, we have

	 Sn+1 + In+1 + An+1 + Tn+1 + Rn+1 < Nn+1,

For n = {0,1, 2,3, . . . n} as desired.

Numerical simulations and graphical discussions
In this segment graphs are plotted for different values of the parameters given in the below Table 2 to support 
our claimed feature of the scheme.

Numerical simulations
Here, we present the graphs of all variables against time for both the steady states and the effect of delay factor 
is also discussed.

In this case, we have illustrated the simulated graphs of the systems’ variables when (R0 > 1) for better 
perception and progressive behavior. The figures are drawn there with delay factors. Figure 1a shows the graphs 
for S(t), Fig. 1b for I(t), Fig. 1c for A(t), Fig. 1d for T(t) and Fig. 1e for R(t). These graphs illustrate the role of ∅
, the fractional order parameter by showing various trajectories which depend on this parameter. It can be seen 
that, the greater ∅ the graph will converge fastly to the endemic equilibrium point.
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Figure  2a,b show the dynamical behavior of the S(t) and I(t) respectively at the STIDs free state. While 
Fig. 2c–e represent the behavior of A(t), T(t) and R(t).

When the persons do not follow the resistor strategies, spend serenely life style and do not take the proper 
cure, the STIDs danger factor increases. In other words, the number of infected populace decreases remarkably, 
when the delay-strategies are implemented. Handling to the particular level may reduce the number of infected 
individuals to a situation where delay factors are taken into account. In addition, the effect of delay factor on 
STIDs is very significant as shown in the plots, indicating that the ”τ” has a crucial role in eradicating STIDs.

The role of delay factor τ upon control of STIDs is shown in Fig. 3. In Fig. 3 multiple graphs are drawn against 
different values of delay factor. This graph shows that when the value of τ  increases the infection goes down 
and down hence the eradication of disease. As a consequence, the infected class can be remarkably reduced by 
adopting the maximum possible control factors.

Conclusion
In this study, we successfully transform a classical integer-order disease dynamics model into a fractional-order 
delayed model for analyzing the dynamics of sexually transmitted infectious diseases (STIDs). The fractional 
Caputo differential operator is used, along with appropriate delay terms to capture the memory effects and time-
dependent interactions inherent in the disease transmission dynamics. The analysis shows that the proposed 
model admits a unique and positive bounded solution, therefore guaranteeing the biological validity of the 
model. Furthermore, the model’s mathematical stability, robustness, and biological relevance are demonstrated 
by the fact that the long-term steady states are not dependent on the initial conditions of the state variables. The 
model identifies two equilibrium states, the disease-free equilibrium and the endemic equilibrium. It is shown 
that the system is locally and globally stable at these equilibria through stability analysis. We computed the basic 
reproduction number. Biologically, it is interpreted as a critical threshold indicator. In particular, if  R0 > 1 then 
the infection is expected to persist and spread, whereas if   R0 < 1 the disease is in a contending possibility. The 
increase is due to unsafe sexual behaviors, inadequate public health interventions, and socio-economic factors 
that increase the risk of infection. However, effective control measures, including regular condom use, health 
education, and more accessible healthcare can decrease and stave off transmission of STIDs. The fractional 
order system is complicated and hence there is no way to get exact analytical solutions. To achieve this a hybrid 
numerical approach the Grünwald Letnikov Non-Standard Finite Difference (GL-NSFD) scheme is proposed 
to approximate the solutions. This scheme is positive, bounded, and converges to numerical results keeping 
the biological integrity of the model. Using simulated results we show how the system behaves in the presence 
and absence of delay terms. Comparative graphical analysis of the impact of the delay factors on the disease 
progression is presented in terms of higher values of the delay parameter τ. Stabilization and control of disease 
dynamics are highly sensitive to τ. The findings also highlight the need to take into account memory effects, 
and delays in modeling sexually transmitted diseases, to better understand temporal and behavioral aspects of 
disease spread. The proposed fractional order delayed model can be used as a generalizable framework with 
which to pursue investigation of other infectious diseases and to develop interventions. Further studies would 
broaden this model to include multi-strain infections, co-infections, and the impact of vaccination or treatment 
programs on disease control.

Parameter symbol Parameter rates Parameter values Sources

Z Recruitment 150 13

d Natural mortality 2 13

τ1 Infected individuals safe sex practice 2 13

τ2 Infected receive anti-viral medicines 3 13

ω1 Susceptible individuals safe sex practice 1 13

ν1 Treatment defaulters 1 13

ν2 Treated individuals adhere to safe sex practices 1 13

µ Death parameter 0.02 13

τ Delay parameter Variable

S0 S(0) 10 13

I0 I(0) 10 13

A0 A(0) 10 13

T0 T (0) 10 13

R0 R(0) 10 13

φ Fractional parameter 0.9, 0.7, 0.5

Table 2.  Different values of the parameters
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Fig. 1.  Graphical dynamics of S(t), I(t), A(t), T(t) and R(t) using suggested approach for disease free 
equilibrium using values of parameters given in Table 2.
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Fig. 2.  Graphical dynamics of S(t), I(t), A(t), T(t) and R(t) using suggested approach for endemic equilibrium 
using values of parameters given in Table 2.
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Data availability
The datasets used and analysed during the current study are available from the corresponding author on rea-
sonable request.
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