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In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive 
volumes of high-dimensional data, presenting significant data and privacy security challenges. As 
IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority 
is vital. In the period of big data, statistical learning has seen fast progressions in methodological 
practical and innovation applications. Privacy-preserving machine learning (ML) training in the 
development of aggregation permits a demander to firmly train ML techniques with the delicate 
data of IoT collected from IoT devices. The current solution is primarily server-assisted and fails to 
address collusion attacks among servers or data owners. Additionally, it needs to adequately account 
for the complex dynamics of the IoT environment. In a large-sized big data environment, privacy 
protection challenges are additionally enlarged. The data dimensional can have vague meaningful 
patterns, making it challenging to certify that privacy-preserving models do not destroy the efficacy 
and accuracy of statistical methods. This manuscript presents a Privacy-Preserving Statistical Learning 
with an Optimization Algorithm for a High-Dimensional Big Data Environment (PPSLOA-HDBDE) 
approach. The primary purpose of the PPSLOA-HDBDE approach is to utilize advanced optimization 
and ensemble techniques to ensure data confidentiality while maintaining analytical efficacy. In the 
primary stage, the linear scaling normalization (LSN) method scales the input data. Besides, the sand 
cat swarm optimizer (SCSO)-based feature selection (FS) process is employed to decrease the high 
dimensionality problem. Moreover, the recognition of intrusion detection takes place by using an 
ensemble of temporal convolutional network (TCN), multi-layer auto-encoder (MAE), and extreme 
gradient boosting (XGBoost) models. Lastly, the hyperparameter tuning of the three models is 
accomplished by utilizing an improved marine predator algorithm (IMPA) method. An extensive range 
of experimentations is performed to improve the PPSLOA-HDBDE technique’s performance, and the 
outcomes are examined under distinct measures. The performance validation of the PPSLOA-HDBDE 
technique illustrated a superior accuracy value of 99.49% over existing models.
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In information technology, cybersecurity is the most demanding research topic at present. It is mainly 
challenging to attain when evolving technology, like the IoT, is concerned1. This development poses a vast threat 
to data confidentiality, availability, and integrity that malicious actions might utilize. There is more attention 
on IoT security as several novel applications that depend on connected devices have advanced2. With the high 
popularity of IoT, assaults against connected devices are one of the vital issues. The IoT devices are exposed to 
attacks through numerous methods, such as privilege escalation, denial of service, and eavesdropping. As an 
outcome, the necessity to defend IoT devices from these assaults is becoming gradually significant3. Besides, 
numerous devices in an incorporated network trust a wireless network for realistic communication, which is 
vulnerable to eavesdropping; so, the network is subjected to cyberattacks. Therefore, enhanced and extremely 
robust intrusion detection systems (IDS) are required for IoT devices. IDS aids in observing and examining 
the services, data, and network and analyzing within its effectual network management and classification of 
exposures in the least period4. Detecting intruders is a significant stage in certifying IoT networks’ safety. 
Intrusion detection is the protection mechanism for handling safety intrusions5. IDS is the primary tool 
employed to secure conventional information systems and networks. It observes the processes of a network or 
a host, informing the system administrator when it identifies a security intrusion. IDS recognizes unauthorized 
intrusions, attacks, and malicious actions in the network and creates one of the foremost security actions in the 
current network6.

The development of advanced technologies like the IoT with storage resources has resulted in the invention 
of big data. This has resulted in huge data generation by human beings over IoT-based sensors and devices, 
thus altering the production of various features7. Providing privacy and protection for big data is the biggest 
challenge facing developers of security management systems, particularly with the prevalent usage of the 
internet networks and the fast evolution of data produced from multiple resources; this generates more space for 
intruders to commence malicious attacks. Figure 1 represents the structure of big data. New attacks are being 
developed frequently, while insiders take advantage of their authorization to access the system to attack, leaving 
restricted suspicious tracks behind8. The conventional knowledge-based IDS should give mode to intelligent and 
data-driven networks. Unlike other models, intrusion detection based on deep learning (DL) and ML achieves 
superiority over other models. The DL has robust capabilities, such as good generalization, self-adaptation, 
self-learning, and recognition against unknown attack behaviour9. Meanwhile, the ML models are also flexible 
and scalable and, in numerous ways, can meet the exclusive demands of IoT security better than any other 
technique presently utilized10. On the other hand, the DL techniques extract features independently, can handle 
vast amounts of data, and beat classical ML in accuracy and performance.

This manuscript presents a Privacy-Preserving Statistical Learning with an Optimization Algorithm for a 
High-Dimensional Big Data Environment (PPSLOA-HDBDE) approach. The primary purpose of the PPSLOA-
HDBDE approach is to utilize advanced optimization and ensemble techniques to ensure data confidentiality 
while maintaining analytical efficacy. In the primary stage, the linear scaling normalization (LSN) method scales 
the input data. Besides, the sand cat swarm optimizer (SCSO)-based feature selection (FS) process is employed 

Fig. 1.  Big data architecture.
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to decrease the high dimensionality problem. Moreover, the recognition of intrusion detection takes place by 
using an ensemble of temporal convolutional network (TCN), multi-layer auto-encoder (MAE), and extreme 
gradient boosting (XGBoost) models. Lastly, the hyperparameter tuning of the three models is accomplished 
by utilizing an improved marine predator algorithm (IMPA) method. An extensive range of experimentations 
is performed to improve the performance of the PPSLOA-HDBDE technique, and the outcomes are examined 
using distinct measures. The major contribution of the PPSLOA-HDBDE technique is listed below.

•	 The LSN is utilized to scale input data effectually, confirming consistent feature ranges. This preprocessing 
step substantially improved the performance of subsequent models by enhancing their convergence and ac-
curacy. Furthermore, it facilitated enhanced feature interpretability and mitigated the impact of noise in the 
data.

•	 A SCSO-based FS process is implemented to handle the dataset’s high dimensionality threats. This method-
ology enhanced the model’s efficiency by mitigating computational complexity and improved accuracy by 
retaining the most relevant features. Ultimately, it resulted in more robust and reliable model performance in 
intrusion detection tasks.

•	 An ensemble approach was utilized, integrating a TCN, MAE, and XGBoost for robust intrusion detection. 
This incorporation employed the merits of every model, improving overall detection accuracy and resilience 
against various attack patterns. The ensemble approach portrayed superior performance related to individual 
models, crucially enhancing the intrusion detection capabilities.

•	 Optimized performance of the models is attained via hyperparameter tuning using an IMPA technique. This 
methodology systematically explored the parameter space, confirming the optimal settings for every method 
were detected. As a result, the overall efficiency and reliability of the IDS were substantially improved.

•	 Integrating several advanced methods, including LSN, SCSO, ensemble models, and IMPA, creates a unique 
framework for improving IDSs. This methodology emphasizes enhanced accuracy and effectiveness and co-
hesively addresses the threats of high dimensionality and model optimization. The novelty is in the synergistic 
combination of these techniques, which collectively outperform conventional models in real-world applica-
tions.

Review of literature
Haseeb et al.11 present an AI-aided route method for mobile wireless sensor networks (MWSN) to enhance 
energy and identify transmission link errors. Furthermore, the presented smart security technique upsurges the 
reliability of the restraint devices on random paths. Initially, it discovers a metaheuristic optimizer, a genetic 
algorithm (GA) system to identify the possible solutions, and depending upon independent metrics, it creates 
an optimum set of routings. Next, novel routes were recognized utilizing dynamic decisions to fulfil energy 
concerns. In12, a new Artificial Intelligence (AI)-based Energy-aware IDS and Safe routing method is presented 
to improve a secured IWSN. Primarily, the presented method performs the IDS to classify several attacks. Later, a 
game strategy-based decision device is incorporated with the presented ID method to decide whether security is 
required. In the latter stage, an energy-aware ad-hoc on-demand distance vector method is recognized to deliver 
a safe routing between the several nodes. Ntizikira et al.13 present the honeypot and blockchain (BC)-based ID 
and prevention (HB-IDP) method, in which edge computing is proposed to decrease the latency in transmission. 
Primarily, three-fold verification was executed utilizing the camellia encryption algorithm (CEA), which offers 
confidential keys. The method executes preprocessing by utilizing the min-max normalization. Signature-based 
ID is executed on the data preprocessed, with well-known assaults categorized into three modules utilizing the 
improved isolation forest (IIF) method. Kipongo et al.14 propose an improved honeycomb structure-based IDS 
for SDWSN that contains safe verification utilizing the 3D cube method, improved honeycomb-based network 
reinforcement learning (RL), clustering-based smart routing with a transfer learning (TL)-based deep Q networks 
(TLDQNs), and a hybrid IDS. In15, an advanced network IDS was proposed for an IoT-based intelligent home 
atmosphere. Separate from present methods, the overall approach offers a method and integrates IoT devices as 
possible vectors in the cyber attack environments, a concern frequently ignored in the preceding study. Using 
the harmony search algorithm (HSA), the method developed the extra trees classifier (ETC) by enhancing a 
widespread array of hyperparameters. Shitharth et al.16 proposed a multi-attack IDS for edge-aided IoT, which 
unites the backpropagation NN (BPNN) with the Radial basis function (RBF) NN. A backpropagation NN is 
mainly used to identify outliers and zero down on the most significant features for every attacking approach. An 
NN depending on RBF is utilized to identify multi-attack intrusions. Sajid et al.17 presented a hybrid method 
for ID with DL and ML methods to address these restrictions. The presented technique uses CNN and XGBoost 
methods for extracting the feature and then unites them all with the LSTM technique for identification.

Salama and Ragab18 present a new BC with an Explainable AI-driven ID for the IoT-driven Ubiquitous 
Computing System (BXAI-IDCUCS) method. The BXAI-IDCUCS method primarily groups the IoT nodes 
using an energy-aware duck swarm optimizer (EADSO). DNN is also used to classify and detect data. Finally, 
the BC technique is used for safe inter-cluster data communication procedures. Vakili et al.19 propose a service 
composition methodology by utilizing Grey Wolf Optimization (GWO) and MapReduce framework to compose 
services with optimized QoS. Ntizikira et al.20 present the Secure and Privacy-Preserving Intrusion Detection 
and Prevention for UAVS (SP-IoUAV) model by using federated learning (FL), differential privacy, and CNN-
LSTM for real-time anomaly detection. Heidari et al.21 present an algorithm for constructing an optimal 
spanning tree by incorporating an artificial bee colony (ABC), genetic operators, and density correlation. Heidari, 
Navimipour, and Unal22 propose a BC-based RBF neural networks (RBFNNs) model. Heidari et al.23 present a 
model using fault trees and Markov chain analysis. Wang et al.24 introduce the DL-BiLSTM lightweight IoT 
intrusion detection model, which integrates deep neural networks (DNNs) and bidirectional LSTMs (BiLSTMs) 
for effectual feature extraction. The method employs an incremental principal component analysis (PCA) 
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for dimensionality reduction. Zanbouri et al.25 propose a Glowworm Swarm Optimization (GSO) model to 
optimize performance in BC-based Industrial IoT (IIoT) systems. Zhang et al.26 introduce a dispersed privacy-
preserving energy scheduling methodology using multi-agent deep RL (DRL) for energy harvesting clusters. 
Amiri, Heidari, and Navimipour27 introduce a novel taxonomy of the DL method. Devi and Arunachalam28 
present a method that utilizes DL to detect attack nodes with a deep LSTM classifier. The Improved Elliptic Curve 
Cryptography (IECC) approach is employed for prevention, with hybrid MA-BW optimization for optimal key 
selection. Wang et al.29 propose a high-dimensional temporal data publishing methodology by utilizing dynamic 
Bayesian networks and differential privacy. The approach constructs a network based on mutual data, assesses 
edge sensitivity with Coherent Neighborhood Propinquity, and adds noise to attributes to meet ε-differential 
privacy standards. Younis et al.30 introduce FLAMES2Graph, a horizontal FL framework. Zhao et al.31 present 
the Variational AutoEncoder Gaussian Mixture Model Clustering Vertical FL Model (VAEGMMC-VFL) model. 
Chougule et al.32 introduce a Privacy-Preserving Asynchronous FL model. El-Adawi et al.33 propose a model 
using Gramian angular field (GAF) and DenseNet. The approach comprises preprocessing signals through 
artefact removal and median filtering (MF), then converting time series data into 2D images utilizing the GAF 
approach. Zainudin et al.34 present an FL framework employing Chi-square and Pearson correlation coefficient 
methods. Bushra et al.35 introduce the attention-based random forest (ABRF) with stacked bidirectional gated 
recurrent unit (stacked Bi-GRU) methodology.

Hou et al.36 propose the adaptive training and aggregation FL (ATAFL) framework through a joint optimization 
problem. The model also incorporates the digital twin and DRL model for optimal node selection and resource 
allocation. Jiang et al.37 propose a FL framework utilizing a conditional generative adversarial network (CGAN) 
method. Additionally, the model suggests an FL scheme, namely FedDWM, which effectually combines local 
model parameters from terrestrial clients to satellite servers. Feng et al.38 present a model sparsification strategy 
by employing contrastive distillation; the framework enhances local-global model alignment and maintains 
performance. Abdallah et al.39 explore existing ML and DL methods for detecting anomalies. Shan et al.40 
introduce the CFL-IDS framework by employing local models’ evaluation metrics. An intelligent, cooperative 
model aggregation mechanism (ICMAM) method optimizes local model weights and reduces interference 
from subpar models. Babu, Barthwal, and Kaluri41 propose a trusted BC system for edge-based 5G networks. 
Begum et al.42 improve data safety by utilizing a secret key to scramble input, applying the Burrows-Wheeler 
Transform (BWT), and compressing the result with Move-To-Front and Run-Length Encoding, integrating 
cryptographic principles to improve performance. Babu et al.43 introduce a cooperative flow in fog-enabled IoT 
networks utilizing a permissioned BC system. Devarajan et al.44 present the adapted particle swarm optimization 
integrated FL-based sentiment analysis integrated deep learning (aPSO-FLSADL) for sentiment analysis. The 
method also utilizes SentiWordNet for sentiment scoring and BERT for word embedding, with a CNN-BiLSTM 
model for training. Yenduri et al.45 explore how BC technology enhances protection and transparency. Hao 
et al.46 propose a protocol for wireless applications in the multi-server environment. Saheed et al.47 present a 
hybrid model by integrating Autoencoder and Modified Particle Swarm Optimization (HAEMPSO) for feature 
selection, with a DNN for classification by optimizing DNN parameters by utilizing a modified inertia weight 
in PSO. Saheed, Abdulganiyu, and Tchakoucht48 introduce the IoT-Defender framework integrating a Modified 
Genetic Algorithm (MGA) with a deep Long Short-Term Memory (LSTM) network for cyberattack detection in 
IoT networks. Saheed, Omole, and Sabit49 present the GA-mADAM-IIoT model by integrating a GA, attention 
mechanism, and modified Adam-optimized LSTM across six modules.

Heidari et al.50 provide insights into the generation and detection of deepfakes, explore recent improvements, 
detect weaknesses in current security methods, and emphasize areas needing additional research. Heidari et 
al.51 introduce a BC-based FL solution incorporating SegCaps, CNN, and capsule networks for enhanced image 
feature extraction, data normalization, and confidentiality in global model training. Boopathi et al.52 propose 
a strategy to improve edge computing data privacy by utilizing secure transfer, DL optimization, and trust-
based encryption with hybrid federated networks. Heidari, Navimipour, and Otsuki53 review the challenges 
and merits of Cloud Non-destructive Characterization Testing (CNDCT), comparing cloud-based testing 
environments with conventional system testing techniques. Asadi et al.54 provide a comprehensive overview 
of botnets, their evolution, detection methods, and evasion techniques while underscoring future research 
directions for combating these security threats. Ramkumar et al.55 propose the GACO-MLF framework, using 
ML and an enhanced ant colony optimization (ACO) model for balancing loads efficiently across IoT-PCN 
data centres. Heidari, Jamali, and Navimipour56 propose fuzzy multicriteria decision-making (MCDM)--based 
re-broadcasting scheme (FMRBS) for VANETs to reduce broadcast storms and improve data distribution. 
Saini et al.57 propose a trust-based, hybrid privacy-preserving strategy for cloud computing. Dansana, Kabat, 
and Pattnaik58 introduce an ML-based perturbation approach utilizing clustering, IGDP-3DR, and SVD-PCA 
for dimensionality reduction, followed by classification with KSVM-HHO for improved accuracy. Zhang and 
Tang59 propose the VPPLR framework for secure logistic regression training, utilizing secret sharing and a 
vectorization approach for effectual global parameter updates, bypassing homomorphic encryption. Jadhav and 
Borkar60 developed a data sanitization technique using the Marine Predator Whale Optimization (MPWO) 
approach to generate optimal keys, preserving the privacy of sensitive data. Vasa and Thakkar61 explore methods 
for protecting privacy in DL models for big data, discussing potential attacks and privacy protection approaches 
and proposing an effectual solution for enhancing privacy in DL models. Jahin et al.62 highlight the requirement 
for varied forecasting based on SC objectives, optimizing models using KPIs and error measurements. Bajpai, 
Verma, and Yadav63 propose a novel methodology integrating extended PCA and reinforcement learning to 
enhance clustering, data reduction, network service life, energy efficiency, and data aggregation. Song et al.64 
present a GCNN-IDS approach that uses gene expression programming (GEP) to optimize CNN parameters, 
preventing local optima through global search capabilities.
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Chen and Huang65 developed a privacy-preserving FL methodology to predict airline passengers’ willingness 
to pay for upgrades by securely incorporating multi-source data without compromising customer privacy. 
Dodda et al.66 examine three privacy-preserving algorithms—regularized logistic regression with DP, SGD with 
private updates, and distributed Lasso—underscoring the impact of training data volume on error rates and 
privacy. Kamatchi and Uma67 present an FL approach for detecting and reducing insider threats in IoT devices. 
It utilizes hybrid RSA and elliptic curve digital signatures for user registration, node clustering for privacy, and 
federated optimization with secure hashing for improved protection. Dhavamani et al.68 propose an enhanced 
Particle Swarm Optimization (PSO) approach for achieving differential privacy in IoT data sharing, optimizing 
privacy-preserving mechanisms while maintaining data utility through improved fitness functions, dynamic 
inertia weight, and adaptive coefficients. Xia69 propose Split Federated Mutual Learning (SFML), an FL approach 
for traffic classification that uses split and mutual learning, where clients maintain privacy and public models, 
sharing knowledge through distillation while offloading computation to the server. Liu70 present Hilbert-
ConvLSTM, a novel DL method for location data prediction that enhances data availability and user privacy. It 
also utilizes Hilbert curve partitioning, spatio-temporal feature extraction, and differential privacy with Laplace 
noise to protect user information. Chowa et al.71 present a privacy-preserving self-supervised framework for 
COVID-19 classification from lung CT scans utilizing FL and Paillier encryption, ensuring secure decentralized 
training with unlabeled datasets from multiple hospitals. Huang et al.72 present GeniBatch, a batch compiler that 
optimizes PPML programs with PHE for efficiency, ensuring result consistency and preventing bit-overflow. 
Integrated into FATE, it utilizes SIMD APIs for hardware acceleration. Hossain et al.73 propose a privacy-
preserving SSL-based Intrusion Detection System for 5G-V2X networks, using unlabeled data for pre-training 
and minimal labelled data for post-training, improving cyber-attack protection without compromising privacy.

Bezanjani et al.74 propose a three-phase methodology: blockchain-based encryption for secure transactions, 
request pattern recognition to detect unauthorized access, and BiLSTM-based feature selection for enhanced 
intrusion detection accuracy. Deebak and Hwang75 introduce a privacy-preserving learning mechanism 
for failure detection, using lightweight model aggregation at the edge and a 2D-CNN for improved privacy 
protection and accuracy without extra verifiability. Zhou et al.76 propose PPML-Omics, a secure ML method 
using decentralized differential private FL, ensuring privacy protection while analyzing omic data across diverse 
sequencing technologies and DL techniques. Babu et al.77 explore the challenges and solutions in managing IoT 
data, focusing on scalable modelling, real-time processing, and security. It highlights the significance of feature 
engineering and model selection for effectual IoT data analysis, contributing to improved decision-making 
and operational efficiency in IoT applications. Li et al.78 present a lightweight privacy-preserving predictive 
maintenance technique using binary neural networks (BNNs) and homomorphic encryption for privacy 
protection in 6G-IIoT scenarios. Li et al.79 propose a new training metric, Intra-modal Consistent Contrast 
Loss, to improve image-text retrieval accuracy. A quadtree index structure with hybrid representation vectors 
mitigates retrieval overhead, while encrypted feature vectors enable secure image-text matching in a large-
scale ciphertext environment. Yang et al.80 propose a privacy-preserving ML model using a cloud-edge-end 
architecture, optimizing IoT systems by offloading tasks to edge servers and using homomorphic encryption, 
secret sharing, and differential privacy for improved privacy and reduced computational burden. Mumtaz et 
al.81 explore privacy-preserving data analysis methods utilizing AI-based approaches like differential privacy, 
FL, GANs, and VAEs, emphasizing their efficiency in protecting privacy while analyzing data. Keerthana82 
examine the tactics and methods utilized in FL to preserve privacy during cooperative model training across 
dispersed devices, ensuring data security in ML workflows. Zhang et al.83 introduce SensFL, a privacy-enhancing 
methodology for protecting against privacy inference attacks in VFL by regularizing embedding sensitivity, 
preventing data reconstruction. Iam-On et al.84 propose a bi-level ensemble clustering framework that ensures 
data privacy and mitigates complexity by choosing multiple clusterings from each segment.

The existing studies present diverse enhancements in intrusion detection and prevention systems across 
various contexts. One approach improves mobile WSNs by employing a GA to optimize routing and enhance 
energy efficiency. Another technique concentrates on AI-based IDSs that classify attacks and integrate game 
theory for secure routing. A honeypot and BC-based strategy is presented to mitigate latency in data transmission, 
while an en enhanced honeycomb structure integrates RL and clustering for robust security. Methods utilizing 
DL classifiers and hybrid methods aim to address threats safeguarding IoT devices, including using optimized 
algorithms for feature extraction and improving model performance. Additionally, FL frameworks are presented 
to ease secure data sharing and decision-making, incorporating real-time anomaly detection mechanisms. 
Other proposals accentuate energy-aware scheduling and the usage of dynamic models to manage data privacy 
efficiently. At the same time, some frameworks explore the application of advanced DL methodologies to detect 
and classify threats in diverse environments. These innovations enhance security, efficiency, and reliability in 
increasingly intrinsic networked systems. Despite crucial enhancements in intrusion detection and prevention 
systems, a notable research gap remains in incorporating diverse models to improve adaptability and scalability 
in real-time environments. Many existing models need help with resource constraints and need to maintain 
performance across varying data dispersions. This underscores the requirement for more holistic solutions that 
effectively address modern cyber threats’ complexities in dynamic settings.

Materials and methods
This manuscript presents a novel PPSLOA-HDBDE methodology. The primary purpose of the PPSLOA-
HDBDE model is to leverage advanced optimization and ensemble techniques to ensure data confidentiality 
while maintaining analytical efficacy. It encompasses four processes involving data preprocessing, SCSO-based 
FS, ensemble classification models, and an IMPA-based parameter optimizer. Figure 2 portrays the entire flow 
of the PPSLOA-HDBDE methodology.
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Data preprocessing: LSN
In the first stage, the PPSLOA-HDBDE model utilizes LSN to measure the input data. This normalization 
technique is specifically beneficial for algorithms sensitive to feature ranges, namely gradient-based approaches. 
By employing LSN, the model enhances convergence rates during training and improves overall performance, as 
it reduces the influence of outliers and scales the data to a uniform range. LSN is an ideal choice to implement and 
interpret compared to other normalization methodologies, making it an accessible option for practitioners. Its 
capacity to retain the associations between features while standardizing their scales additionally contributes to the 
accuracy and reliability of the model. Overall, LSN is a valuable preprocessing step that improves the effectiveness 
of the PPSLOA-HDBDE model in handling diverse datasets. LSN, also called min-max normalization, rescales 
features to a definite range, usually [0, 1]. This model certifies that every feature donates similarly to the study by 
removing the effects of opposing units and magnitudes. Converting the data linearly improves the performance 
of ML techniques, chiefly those delicate to feature measures, like gradient descent-based approaches. Linear 
scaling enhances the rate of convergence and complete accuracy of the model. This method is mainly valuable in 
high-dimensional databases, certifying that no feature excessively affects the outcomes.

Fig. 2.  Overall flow of the PPSLOA-HDBDE model.
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FS using SCSO model
Besides, the SCSO-based FS process is applied to decrease the high dimensionality problem85. This model is 
chosen for its efficiency in handling high dimensionality, a common threat in ML techniques. SCSO replicates 
the hunting behaviour of sand cats, allowing it to effectually explore the feature space and detect the most relevant 
features while averting overfitting. Unlike conventional models, SCSO balances exploration and exploitation, 
producing a more robust FS. This adaptability makes it appropriate for intrinsic datasets where irrelevant or 
redundant features can affect the model’s performance. Furthermore, the SCSO approach underscores superior 
convergence speed related to other optimization methods, confirming quicker processing times (PTs) without 
sacrificing accuracy. Its innovative mechanism and proven efficacy make SCSO ideal for FS in IDSs. Figure 3 
portrays the working flow of the SCSO model.

In the problem of dimension optimize d, a SandCatis a 1 × d array demonstrating the problem solving, 
described as Sand Cati = . . . , xd; i ∈ population (1, n). All x should be among the lower and upper 
limits: ∀ xi ∈  [upper, lower]. If the SCSO model has been applied, it primarily makes a matrix of initialization 
(Npop × Nd) based on the size of the difficulty. The fitness cost of every SandCat has been gained by 

calculating the clear fitness function (FF). If an iteration is accomplished, the SandCat is designated using the 
optimal cost still in that iteration. When no improved solution is initiated in the following iteration, keeping it 
in the memories is redundant.

Search for prey
The SCSO model uses SandCats’ auditory ability to detect lower frequencies. SandCats can observe lower 
frequency under 2 kHz. During this model, this search range has been described as rG. Based on the algorithmic 
working principle, these values will linearly reduce from 2 - 0 in the iteration process, slowly moving toward the 
prey without skipping or missing. The Sm pretends the sand cat’s auditory features are two using the statement. 
The mathematical reproduction is described in the following:

	
rG = Sm −

(
Sm × iterc

iterMax

)
� (1)

On the other hand, iterc represents the present iteration amount, and iterMax denotes maximal iteration.
The leading parameter that controls the conversion in the middle of the development and the exploration 

stage is R. Owing to these adaptable strategies, the possibility and transition between the dual stages should be 
more stable. R is described as demonstrated:

	 R = 2 × rG × rand (0,1) − rG� (2)

To prevent dropping into a local best, every sand cat’s range of sensitivity has been changed, well-defined as:

	 r = R × rand (0,1)� (3)

During the SCSO model, the SandCat upgrades its position according to the best solution, its present position, 
and the range of sensitivity, looking for another possible optimal position of prey. This searching behaviour is 
delineated as follows:

	 P os (t + 1) = r × (P osbc (t) − rand (0,1) × P oSc (t))� (4)

P osbc represents the best candidate position, and P osc denotes the present position.

Attacking prey
If a SandCat attacks its prey, it initially utilizes the P osb ideal and P oscpresent positions to create a P osrnd 
randomly formed position. Assume that the SandCats range of circle sensitivity, to prevent dropping into the 
local optimal, the Roulette model has been applied to pick at random an angle for every SandCat, such that the 
SandCat can tactic the searching position:

	 P osrnd = |rand (0,1) × P osb (t) − P osc (t)|� (5)

	 P os (t + 1) = P osb (t) − r × P osrnd × cos (θ )� (6)

The attack and search stages from the SCSO Model are guaranteed by adaptability. rG and R. This parameter 
permits SCSO to change effortlessly among the dual stages. If R ∨ 1, the SandCats hunt for prey; If R∨ ≤ 1
, the SandCats attack prey. The pseudocode of the SCSO model is demonstrated in Algorithm 1.

The FF used in the SCSO technique is projected to balance the number of chosen features in every solution 
and the classifier accuracy gained by utilizing these preferred features. Equation (7) denotes the FF for estimating 
solutions.

	
F itness = α γ R (D) + β

|R|
|C| � (7)

Here, γ R (D) signifies the classifier rate of error. |R| means the cardinality of the nominated sub-set, C∨  
represents the total no. of features in the database, α  and β  signify the dual parameters equivalent to the 
significance of classifier quality and sub-set length. ∈ [1,0] and β = 1 − α .
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Ensemble classification models
Moreover, the recognition of intrusion detection is accomplished by using an ensemble of TCN, MAE, and 
XGBoost models. These methods are chosen for their complementary merits. TCN outperforms in capturing 
temporal patterns in data, making it ideal for detecting time-dependent attacks. MAE efficiently learns intrinsic 
feature representations, improving the technique’s capability to detect anomalies. XGBoost, known for its high 
performance in structured data, provides robust predictions with robust generalization capabilities. Integrating 
these models employs their advantages, enhancing accuracy and resilience against various attack types. 

Fig. 3.  Workflow of SCSO model.
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Moreover, the ensemble approach mitigates the risk of overfitting and improves overall reliability, making it 
more significant than using any single model alone. This integrated strategy confirms a more comprehensive 
and effectual IDS.

TCN classifier
TCN is one of the new neural networks that depend upon the structure of CNN86. TCN utilizes structures like 
dilated causal convolution (DCC) and residual blocks. When equated to conventional CNN, DCC concentrates 
only on historical and present data without seeing prospect data. This indicates that the output value yt at t- th 

Algorithm 1.  Pseudocode of SCSO.
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time was formed only by the value of the input at a t- th time and former, up to input {x0, x1, . . . xt−1, xt}. 
Conventional CNN upsurges the receptive area by including a pooling layer foremost in data loss. Unlike, TCN 
presents DCC to enlarge the receptive area, permitting it to take dependences through a higher range without 
misplacing data. The mathematical formulation is computed below:

	
F (t) =

k=1∑
i=0

f (i) × xt−p× i� (8)

Here, t signifies the sequence part index, p represents the dilation factor, xi ∈ Rn denotes the sequence 
element, F (t) refers to a dilated convolution of element xt, and k denotes the dimension of the convolutional 
kernel. The residual connection inserts an input x to the output f (x). f (x) is stated below:

	 f (x) = h (x) − x� (9)

The extension of causal convolutional in TCN certifies that data flows precisely from the earlier to the future, 
thereby averting data leakage from the upcoming to the previous. Even with fewer layers, the DCC application 
permits TCN to hold a greater receptive area, permitting it to procedure lengthier time-series data. Besides, 
DCC includes methods like dropout regularization, weight normalization, and ReLU  activation function. These 
models improve the model’s non-linear representation abilities and recover its constancy and generalization 
performance, eventually increasing its efficiency.

MAE classifier
MAE is a neural network that removes the unseen feature from input data87. The MAE architecture comprises 
two sections: a decoder and an encoder. The encoding and decoding part contains input and output layers with 
some fully connected (FC) layers. An FC layer has accompanied the ReLU or sigmoid. The FC layer handling 
from x ∈ RΩ  to y ∈ RΨ  is calculated as:

	 y = δ (W x + b) ,� (10)

whereas δ (• ) refers to the activation function, W ∈ RΨ × Ω  represents the weighting coefficients matrix, 
and b ∈ RΨ  denotes the biased term.

In training, the auto-encoder reduces the loss function to discover the biases and optimum weighting 
coefficients. The function of loss is considered as follows:

	
Loss = 1

H

H−1∑
i=0

� (11)

Here, xi represents the i?th input neuron, and zi signifies the equivalent output neuron of the auto-encoder; 
correspondingly, H  stands for neuron counts in the input layer.

The network encoding part usually converts the data input into a low-dimensional space, and these lower-
dimensional representations are applied to minimize the data input. Hence, the auto-encoder is a non-linear 
Karhunen-Loeve transform (KLT) form.

XGBoost classifier
XGBoost combines linear scale determination with a definite regression tree learning method88. The technique 
integrates architectures with decreased accuracy by employing specific approaches. The aim is to make a 
combined architecture that must be highly accurate. In the model training procedure, XGBoost improves the 
boosting method. All iterations produce an updated DT to fit the residuals created in the prior rounds. XGBoost 
could constantly increase its accuracy and generalization capacity with the iterative optimizer. But, conventional 
gradient boosting-DT (GBDT) techniques employ only 1st order derivative; XGBoost is a 2nd order Taylor 
extension of the loss function, tackles the complexity of the method by presenting regularization relationships 
for avoiding overfit issues as well and implements a highly refined estimation method while dividing nodes for 
significantly capturing the non-linear correlations among features. Figure 4 depicts the infrastructure of the 
XGBoost technique. This method is dependent upon the resulting mathematical values:

An incorporation model for the DT is represented as given below:

	
ỳi =

M∑
m=1

fm (xi) , fm ∈ F � (12)

Here, xi denotes the first i input feature; M  represents the DT counts; F describes the tree collection space; ỳi 
denotes the predictable value.

XGBoost’s loss function is given as:

	
Q =

∑ n

i=1
l (yi, ỳi) +

M∑
m=1

θ (fm)� (13)
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The primary portion of the operation is the predictable error among the evaluated values as well as actual 
training values of the XGBoost framework, and the secondary part signifies the intricacy of the tree that is 
mainly employed for controlling the regularization of the model complexity:

	
θ (fm) = γ T + 1

2τ ∥ ω ∥ 2� (14)

Where τ  and γ  describe penalty factors.
In addition to an increment function ft (X) to Eq. (14), the loss function value will be decreased. The t − th 

time is mentioned below:

	
Q(t) =

n∑
i=1

l (yi, ýi) +
M∑

m=1

θ (fm) =
n∑

i=1

l
(
yi, ýt+1

i + ft (xi)
)

+ θ (ft)� (15)

The 2nd -order Taylor expansion of Eq. (16) has been utilized to estimate the primary function, and the set of 
instances in every branch of the j tree could be described as Ij = {i|q (xi = j)). the Q(t) could be represented,

	
Q(t) ∼=

∑ T

j=1

[(∑
i?Ij

gi

)
ω j +

(1
2

) (∑
i?Ij

hi + τ

)
ω j2

]
+ γ T � (16)

Now, gi = ∂ ′
y

t+1

i

l

(
yi,

′
y

t+1

i

)
, and hi = ∂ 2

′
y

t+1

i

l

(
yi,

′
y

t+1

i

)
 denotes the loss function’s 1st and 2nd order 

derivative, respectively. Define Gi =
∑

i ∈ Ijgi, Hi =
∑

i∈ Ij
hi:

	
Q(t) ∼=

T∑
j=1

[
Gjω j +

(1
2

)
(Hj + τ ) ω 2

j

]
+ γ T � (17)

The partial derivative of ω  yields

	
ω j = −Gj

Hj + τ
� (18)

By integrating weights to the main function as given below,

Fig. 4.  Structure of XGBoost model.

 

Scientific Reports |         (2025) 15:3338 11| https://doi.org/10.1038/s41598-025-87454-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Q(t) ∼= −

(1
2

) T∑
j=1

Gj

2

/ (Hj + τ ) + γ T � (19)

Parameter optimizer: IMPA
Finally, the hyperparameter tuning of three models is performed using an IMPA technique89. This method is 
chosen for its efficiency in navigating intrinsic optimization landscapes. IMPA replicates the foraging behaviour 
of marine predators, allowing it to efficiently balance exploration and exploitation during the tuning process. 
This results in a more thorough search for optimum hyperparameter settings related to conventional techniques, 
which may converge prematurely. The model’s adaptability makes it appropriate for high-dimensional parameter 
spaces commonly found in ML approaches. Furthermore, IMPA has achieved excellent performance using 
convergence speed and solution quality, outperforming other optimization models such as grid or random 
search. Overall, the usage of IMPA improves the performance of the model by confirming that hyperparameters 
are finely tuned, resulting in improved predictive accuracy and robustness in intrusion detection tasks. Figure 5 
depicts the structure of the IMPA model.

The main feature of MPA is using the social behaviour of marine animals to efficiently balance exploitation 
and exploration. Both prey and predators are considered searching individuals for prey and hunting for food. 
The MPA first generates a randomly generated population by describing the lower and upper bounds, and the 
initialization process is exposed in Eq. (20).

	 Xij = Xmin + rand (0,1) (Xmax − Xmin) ,� (20)

The P rey matrix presents the location vector.

	

P rey =




X1,1 X1,2 · · · X1,n

X2,1 X2,2 · · · X2,n

...
...

. . .
...

Xm,1 Xm,2 · · · Xm,n




m×n

,� (21)

whereas m denotes a population dimension; n refers to the location of every dimension. The Elite matrix 
depends upon the victim’s fitness assessment, choosing the finest individual as the hunter vector and repeating 
it n times to generate the Elite.

	

Elite =




Xl
1,1 Xl

1,2 · · · Xl
1,n

Xl
2,1 Xl

2,2 · · · Xl
2,n

...
...

. . .
...

Xl
m,1 Xl

m,2 · · · Xl
m,n




m×n

,� (22)

The MPA is separated into 3 stages dependent upon the victim and predator speed ratio, each equivalent to 
dissimilar iterative procedures.

Stage 1: This stage is called an exploration phase. It happens in the 1st 1/3 of the iteration procedure. The 
prey is uniformly spread all over the exploration area in the early iteration, and the distance between the prey 
and predator will be moderately great; Brownian motion simplifies fast survey of the target’s location. The 
mathematic formulation is mentioned below:

	
−→
S i =

−→
R B ⊗

(−−−→
Elitei − −→

R B ⊗ −−−→
P reyi

)
, i = 1, . . . , n� (23)

	
−−−→
P reyi =

−−−→
P reyi + P.

−→
R ⊗ −→

S i,� (24)

Here, 
−→
R B  means a vector of randomly produced values by Brownian motion that follows a Gaussian distribution. −→

S i denotes a step size. The constant value P  is set as 5, and 
−→
R  refers to a randomly generated vector uniformly 

distributed among 0 and 1.
Stage 2: This stage aims to attain a competitive changeover from the exploration to exploitation stages, which 

arise between 1/3 and 2/3 of the iterative method. The individuals are divided into dual equivalent parts, and 
one portion is upgraded depending upon Eqs. (25) and (26).

	
−→
S i =

−→
R L ⊗

(−−−−→
E1itei − −→

R L ⊗ −−−→
P reyi

)
, i = 1,

n

2 � (25)

	
−−−→
P reyi = −−−→

P reyi + P.
−→
R ⊗ −→

S i,� (26)

Here, 
−→
R L denotes a vector of randomly produced values by Levy motion. The remaining part of the population 

is upgraded depending upon Eqs. (27) and (28).

	
−→
S i =

−→
R B ⊗

(−→
R B ⊗

−−−→
Elitei − −−−→

P reyi

)
, i = n

2 , . . . , n� (27)
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Fig. 5.  Structure of the IMPA approach.
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−−−→
P reyi =

−−−→
Elitei + P.CF ⊗ −→

S i,� (28)

Whereas CF  denotes an adaptive control parameter that is definite as:

	 CF =� (29)

The variable Iter specifies the present count of iterations, whereas MaxIter  signifies the maximum iteration 
count. In the second stage, exploitation and exploration operations happen simultaneously as the hunter and 
victim technique each other, with a decreased step size compared to the preceding stage.

Stage 3 happens in the previous 1/3th of the iterative procedure. The hunters start changing from Brownian 
to Levy motions using the upgrading formulation mentioned below.

	
−→
S i =

−→
R L ⊗

(−→
R L ⊗

−−−→
Elitei − −−−→

P reyi

)
, i = 1, . . . , n.� (30)

	
−−−→
P reyi =

−−−→
Elitei + P.CF ⊗ −→

S i.� (31)

Then, there are Eddy Formation and Fish Aggregating Device (FAD) effects in the real predator method, and 
FAD is considered a local goal. So, these cases want to pretend in the iterative procedure to avoid dropping into 
local goals. The depiction of FADs is given below:

	

−−−→
P reyi =




−−−→
P reyi + CF

[−→
X min +

−→
R ⊗

(−→
X max − −→

X min

)]
⊗ −→

U , r ≤ F ADs

−−−→
P reyi + [F ADs (1 − r) + r]

(−−−−→
P reyr1 − −−−−→

P reyr2

)
, r > F ADs

� (32)

	
−→
Ui =

{ 0, rand ≤ F ADs
1, rand > F ADs � (33)

The FAD constant value is fixed as 2. r ∈ (0,1) .
−→
U , which means a dual vector, with every element described 

in Eq. (33). The norm of marine memory storage is parallel to the greedy tactic, which equates the outcomes 
beforehand and after the iteration and only recollects the solution with superior fitness. Its calculation is 
mentioned below:

	

X
(t+1)
i =




X
(t+1)
i , f

(
X

(t+1)
i

)
≤ f

(
Xt

i

)

Xt
i , f

(
X

(t+1)
i

)
> f

(
Xt

i

) � (34)

Meanwhile, Xt+1
i  signifies the location of the optimum candidate solution taken by an ith individual after the 

(t + 1) th iteration. f  indicates the FF.
A new MPA separates optimizer iterations into 3 distinct stages. The 1st stage concentrates on exploration, 

the 2nd changeovers from exploration to exploitation, and the 3rd is only for exploitation. This tactic permits 
every stage to focus on dissimilar tasks, improving the exploration ability. If the early matrix quality is lower, 
then it will gradually converge. Also, transferring among dissimilar stages might present transition costs. For 
instance, certifying the effectual transfer of outcomes without data loss is vital when transitioning from the 
global to local search phases.

Opposition-based learning (OBL) is an enhanced optimizer tactic in searching. Its main thought is to produce 
an opposite solution and use it for the optimizer procedure. The IMPA is demonstrated in Eq. (35) to incorporate 
the OBL technique into the initialize and FF computation phases.

	 XOBL = r1 × (ub + lb) − r2 × X � (35)

•	 Initialize stage: Employ Eq. (35) to produce the opposite initialize matrix of Prey, intensifying individuals’ 
distribution range within matrix form. The enhanced tactic upsurges the likelihood of an initial result cover-
ing the optimum solution, increases the range and excellence of the early matrix, and quickens convergence 
speed.

•	 FF computation stage: Throughout the optimizer procedure, the FF is computed at the end of every iteration 
to discover and maintain the optimum solution. Conversely, owing to a stochastic method, the calculated 
fitness value might vary considerably from the real optimum solution. Then, this enhanced plan uses Eq. (20) 
to produce an opposite result of equivalent extent to the present individual result after every iteration.

Fitness choices significantly influence the efficiency of IMPA. The hyperparameter range method encompasses 
the encoded method for considering the effectiveness of candidate results. The IMPA reflects accuracy as the 
primary standard for projecting the FF in this work.

	 F itness = max (P )� (36)

	
P = T P

T P + F P
� (37)

Scientific Reports |         (2025) 15:3338 14| https://doi.org/10.1038/s41598-025-87454-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Here, T P  and F P  denote true and false positive values, respectively.

Experimental validation
The performance evaluation of the PPSLOA-HDBDE methodology is studied under the BoT-IoT dataset90. The 
database comprises 2056 samples under five classes, as represented in Table 1. The BoT-IoT dataset was developed 
in the Cyber Range Lab of UNSW Canberra, simulating a realistic network environment that integrates normal 
and botnet traffic. It encompasses diverse source files, comprising original pcap files, generated argus files, and 
CSV files, all organized by attack category and subcategory to ease labelling. The captured pcap files total 69.3 
GB, containing over 72 million records, while the extracted flow traffic in CSV format is 16.7 GB. The dataset 
features a range of attacks, including DDoS, DoS, OS and Service Scan, Keylogging, and Data Exfiltration, with 
DDoS and DoS attacks also classified by protocol. To streamline dataset handling, a 5% sample was extracted 
using MySQL queries, resulting in four files totalling approximately 1.07 GB and containing about 3 million 
records. The suggested technique is simulated using the Python 3.6.5 tool on PC i5-8600k, 250GB SSD, GeForce 
1050Ti 4GB, 16GB RAM, and 1 TB HDD. The parameter settings are provided: learning rate: 0.01, activation: 
ReLU, epoch count: 50, dropout: 0.5, and batch size: 5.

Figure 6 determines the confusion matrices produced by the PPSLOA-HDBDE model over different epochs. 
The results state that the PPSLOA-HDBDE technique precisely has effectual identification and recognition of all 
5 class labels.

The intrusion detection result of the PPSLOA-HDBDE method is identified under dissimilar epochs in 
Table  2; Fig.  7. The table values indicate that the PPSLOA-HDBDE method appropriately identified all the 
samples. On 500 epoch counts, the PPSLOA-HDBDE method offers an average accuy  of 98.89%, precn of 
96.43%, recal of 96.64%, F 1score of 96.53%, and MCC of 95.82%. Also, on 1000 epoch counts, the PPSLOA-
HDBDE methodology offers an average accuy  of 99.11%, precn of 96.76%, recal of 97.72%, F 1score of 
97.22%, and MCC of 96.66%. Furthermore, on 2000 epochs, the PPSLOA-HDBDE methodology provides 
an average accuy  of 97.47%, precn of 93.37%, Rcal of 89.85%, F 1score of 91.33%, and MCC of 89.85%. 
Eventually, on 3000 epochs, the PPSLOA-HDBDE methodology delivers an average accuy  of 96.96%, precn of 
92.90%, recal of 84.95%, F 1score of 87.38%, and MCC of 86.25%.

Figure  8 shows the training accuy(TRAAC) and validation accuy(VLAAC) outcomes of the PPSLOA-
HDBDE method under different epochs. The accuy  values are estimated for 0-3000 epoch counts. The figure 
underlined that the TRAAC and VLAAC values display an increasing trend, which reported the capability of 
the PPSLOA-HDBDE method to have enhanced performance over various iterations. Furthermore, the TRAAC 
and VLAAC remain adjacent over epochs, which specifies lower minimum overfitting and shows superior 
performances of the PPSLOA-HDBDE technique, promising constant prediction on unnoticed samples.

Figure 9 shows the TRA loss (TRALS) and VLA loss (VLALS) graph of the PPSLOA-HDBDE technique 
under different epochs. The loss values are estimated for 0-3000 epoch counts. The TRALS and VLALS curves 
indicate a decreasing trend, reporting the proficiency of the PPSLOA-HDBDE methodology in balancing a 
trade-off between generalized and data fitting. The constant reduction in loss values furthermore possibilities the 
more outstanding performances of the PPSLOA-HDBDE methodology and tuning of the predictive outcomes 
over time.

In Fig. 10, the precision-recall (PR) curve analysis of the PPSLOA-HDBDE technique under different epochs 
interprets its performances by plotting Precision against Recall for all 5 class labels. The figure demonstrates that 
the PPSLOA-HDBDE technique consistently achieves improved PR values across various classes, indicating its 
ability to maintain high precision and recall by balancing true positive predictions with actual positives. The 
constant increase in PR results between all 5 class labels represents the effectiveness of the PPSLOA-HDBDE 
methodology in the classification procedure.

In Fig.  11, the ROC curve of the PPSLOA-HDBDE technique under different epochs is examined. The 
outcomes denote that the PPSLOA-HDBDE technique attains superior ROC results over every class, representing 
the vital ability to discriminate the class labels. This consistent tendency of better ROC values over several class 
labels indicates the efficient performances of the PPSLOA-HDBDE methodology in predicting class labels, 
emphasizing the robust nature of the classifier process.

The comparison of the PPSLOA-HDBDE approach with current methods is demonstrated in Table  3; 
Fig. 1291–93. Regarding accuy , the PPSLOA-HDBDE methodology has a greater accuy  of 99.49%. In contrast, 
the AROMA, Dynamic Bandwidth Allocation(DBA), SOM-SVM, CNN-BiLSTM, CANET, RFS-1, CNN-Focal, 
Dense Convolutional Network with Discrete Wavelet Transform (DenseNet-DWT), Linear Discriminant 
Analysis with Discrete Cosine Transform (LDA-DCT), and Robust Linked List with Steganography Without 
Embedding(RLL-SWE) models have lower accuy  of 95.02%, 96.99%, 96.12%, 99.15%, 98.85%, 98.51%, 98.32%, 

Classes No. of samples

DDoS 500

DoS 500

Recon 500

Theft 79

Normal 477

Total samples 2056

Table 1.  Details of dataset.
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96.11%, 97.68%, and 95.51%, correspondingly. Also, for precn, the PPSLOA-HDBDE technique has a greater 
precn of 98.74%, whereas the AROMA, DBA, SOM-SVM, CNN-BiLSTM, CANET, RFS-1, CNN-Focal, 
DenseNet-DWT, LDA-DCT, and RLL-SWE techniques have lower precn of 95.69%, 95.00%, 91.18%, 96.89%, 
97.12%, 97.65%, 96.81%, 96.04%, 96.89%, and 95.86%, correspondingly. Finally, for the F 1score, the PPSLOA-
HDBDE technique has a better F 1score of 98.52%, while the AROMA, DBA, SOM-SVM, CNN-BiLSTM, 
CANET, RFS-1, CNN-Focal, DenseNet-DWT, LDA-DCT, and RLL-SWE models have minimum F 1score of 
93.97%, 95.12%, 94.27%, 96.68%, 98.00%, 97.89%, 96.99%, 96.39%, 94.13%, and 95.56%, respectively. The table 
values indicated that the PPSLOA-HDBDE technique outperformed existing models.

Table 4; Fig. 13 state the comparative outcomes of the PPSLOA-HDBDE methodology based on PT. The 
result indicates that the PPSLOA-HDBDE model achieved superior performance. In terms of PT, the PPSLOA-
HDBDE model offers a lower PT of 8.48s, while the AROMA, DBA, SOM-SVM, CNN-BiLSTM, CANET, RFS-1, 
CNN-Focal, DenseNet-DWT, LDA-DCT, and RLL-SWE models attain improved PT values of 17.84s, 16.09s, 
13.41s, 15.10s, 14.20s, 15.27s, 16.63s, 14.99s, 16.23s, and 15.02s, correspondingly.

Conclusion
In this manuscript, a novel PPSLOA-HDBDE methodology is presented. The primary purpose of the PPSLOA-
HDBDE methodology is to utilize advanced optimization and ensemble techniques to ensure data confidentiality 
while maintaining analytical efficacy. It encompasses four processes involving data preprocessing, SCSO-based 
FS, ensemble classification models, and IMPA-based parameter optimizer. At the primary stage, LSN is utilized 
to scale the input data. Besides, the SCSO-based FS process is employed to diminish the high dimensionality 
problem. Moreover, intrusion detection recognition is performed using an ensemble of TCN, MAE, and XGBoost 
classifiers. Lastly, the three models’ hyperparameter tuning is accomplished using an IMPA model. An extensive 
range of experimentations is performed to improve the performance of the PPSLOA-HDBDE technique, and the 
outcomes are examined using distinct measures. The performance validation of the PPSLOA-HDBDE technique 
illustrated a superior accuracy value of 99.49% over existing models. The limitations of the PPSLOA-HDBDE 
technique comprise potential threats in data heterogeneity across diverse devices, which may affect the accuracy 
of the FL results. Furthermore, the computational overhead associated with real-time sentiment analysis can 
strain resource-constrained edge devices. Privacy concerns regarding data sharing, even in a federated setting, 
remain a critical issue. Future studies may explore advanced privacy-preserving models to improve data safety 

Fig. 6.  Confusion matrices of PPSLOA-HDBDE technique (a-f) Epochs 500–3000.

 

Scientific Reports |         (2025) 15:3338 16| https://doi.org/10.1038/s41598-025-87454-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


further. Moreover, investigating adaptive mechanisms to optimize model training depending on varying device 
capabilities and network conditions would be beneficial. Expanding the model’s applicability to diverse domains 
beyond consumer electronics could also give broader insights into its efficiency. Lastly, incorporating user 
feedback into the recommendation process could enhance personalization and user satisfaction.

Class Accuy P recn Recal F 1score MCC

Epoch − 500

DDoS 98.39 97.17 96.20 96.68 95.63

DoS 99.08 97.62 98.60 98.11 97.50

Recon 98.59 97.77 96.40 97.08 96.15

Theft 99.46 92.50 93.67 93.08 92.81

Normal 98.93 97.10 98.32 97.71 97.01

Average 98.89 96.43 96.64 96.53 95.82

Epoch − 1000

DDoS 98.83 98.77 96.40 97.57 96.82

DoS 99.08 97.06 99.20 98.12 97.52

Recon 98.88 98.77 96.60 97.67 96.95

Theft 99.56 91.67 97.47 94.48 94.30

Normal 99.17 97.52 98.95 98.23 97.70

Average 99.11 96.76 97.72 97.22 96.66

Epoch − 1500

DDoS 99.32 98.80 98.40 98.60 98.15

DoS 99.56 99.00 99.20 99.10 98.81

Recon 99.17 97.82 98.80 98.31 97.76

Theft 99.81 98.70 96.20 97.44 97.34

Normal 99.61 99.37 98.95 99.16 98.91

Average 99.49 98.74 98.31 98.52 98.19

Epoch − 2000

DDoS 96.21 91.37 93.20 92.28 89.77

DoS 97.57 94.12 96.00 95.05 93.45

Recon 97.42 94.61 94.80 94.71 93.00

Theft 98.64 91.80 70.89 80.00 80.02

Normal 97.52 94.94 94.34 94.64 93.02

Average 97.47 93.37 89.85 91.33 89.85

Epoch − 2500

DDoS 97.86 96.34 94.80 95.56 94.16

DoS 98.74 97.21 97.60 97.41 96.57

Recon 98.25 96.59 96.20 96.39 95.24

Theft 99.32 92.21 89.87 91.03 90.68

Normal 98.54 95.89 97.90 96.89 95.94

Average 98.54 95.65 95.28 95.46 94.52

Epoch − 3000

DDoS 96.11 90.08 94.40 92.19 89.64

DoS 97.47 94.09 95.60 94.84 93.17

Recon 97.08 94.18 93.80 93.99 92.06

Theft 97.91 95.00 48.10 63.87 66.80

Normal 96.25 91.15 92.87 92.00 89.57

Average 96.96 92.90 84.95 87.38 86.25

Table 2.  Detection outcome of the PPSLOA-HDBDE technique under different epochs.
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Fig. 7.  Average outcome of PPSLOA-HDBDE technique (a-f) Epochs 500–3000.
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Fig. 8.  Accuy  curve of PPSLOA-HDBDE method (a-f) Epochs 500–3000.
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Fig. 9.  Loss curve of PPSLOA-HDBDE method (a-f) Epochs 500–3000.
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Fig. 10.  PR curve of PPSLOA-HDBDE methodology (a-f) Epochs 500–3000.
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Metric Accuy P recn Recal F 1score

AROMA 95.02 95.69 96.03 93.97

DBA 96.99 95.00 97.41 95.12

SOM-SVM 96.12 91.18 96.76 94.27

CNN-BiLSTM 99.15 96.89 98.04 96.68

CANET Classifier 98.85 97.12 97.33 98.00

RFS-1 98.51 97.65 96.93 97.89

CNN-Focal 98.32 96.81 96.74 96.99

DenseNet-DWT 96.11 96.04 96.90 96.39

LDA-DCT 97.68 96.89 95.54 94.13

RLL-SWE 95.51 95.86 95.24 95.56

PPSLOA-HDBDE 99.49 98.74 98.31 98.52

Table 3.  Comparative outcome of the PPSLOA-HDBDE model with existing methods91,93.

 

Fig. 11.  ROC curve of PPSLOA-HDBDE method (a-f) Epochs 500–3000.
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Metric PT (sec)

AROMA 17.84

DBA 16.09

SOM-SVM 13.41

CNN-BiLSTM 15.10

CANET Classifier 14.20

RFS-1 15.27

CNN-Focal 16.63

DenseNet-DWT 14.99

LDA-DCT 16.23

RLL-SWE 15.02

PPSLOA-HDBDE 8.48

Table 4.  PT outcome of BEADL-EDCHD technique with recent models.

 

Fig. 12.  Comparative analysis of the PPSLOA-HDBDE model with existing methods.

 

Scientific Reports |         (2025) 15:3338 23| https://doi.org/10.1038/s41598-025-87454-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
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