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The effect of product design on
recycling efficiency of lithium-
ilon batteries through structural
equation modeling and life cycle
assessment

Haitao Chen, Yongxun Yang™ & Zhaohui Dong

This study investigates the impact of lithium-ion battery (LIB) design characteristics on recycling
efficiency through a comprehensive mixed-methods research approach. The study employs structural
equation modeling (SEM) and analytic hierarchy process (AHP) methodologies, analyzing data
collected through systematic expert interviews with 15 industry professionals and structured surveys
of 150 battery manufacturing and recycling facilities. Through rigorous qualitative and quantitative
analysis, this research examines the relationships between design complexity, material diversity,
connection methods, and recycling process efficiency and overall recycling performance. The

research methodology combines in-depth interviews, expert consultations, and statistical analysis to
ensure robust findings. Data sources include primary data from industry surveys, expert interviews,
and secondary data from technical documentation and recycling facility reports, providing a
comprehensive foundation for the analysis. The research compares recycling efficiency across different
battery types, including traditional designs, cell-to-pack (CTP), and cell-to-body (CTB), utilizing
multi-group analysis. Through life cycle cost analysis and environmental impact assessment, the study
quantifies the potential economic and ecological benefits of optimized designs. Results indicate that
while optimized LIB designs may increase initial production costs, they significantly enhance recycling
efficiency, reduce total lifecycle costs, and minimize environmental impacts. SEM analysis reveals
that design characteristics indirectly influence overall recycling performance by affecting recycling
process efficiency. Multi-group analysis demonstrates the superior recyclability of CTP and CTB
designs compared to traditional configurations. The study also evaluates the improvement potential
for recycling efficiency across various materials, providing a basis for optimizing recycling strategies.
This research offers valuable insights for battery design, recycling technology innovation, and

policy formulation, emphasizing the importance of incorporating recyclability considerations in LIB
development. It contributes significantly to advancing the energy storage industry towards a circular
economy model.

Keywords Lithium-ion batteries, Recycling efficiency, Structural equation modeling, Design optimization,
Life cycle analysis, Environmental impact assessment, Circular economy

The rapid proliferation of electric vehicles (EVs) and portable electronic devices has led to an unprecedented
surge in the production and consumption of lithium-ion batteries (LIBs). While these energy storage systems
play a crucial role in the transition towards a low-carbon economy, they also present significant end-of-life
challenges. The increasing volume of spent LIBs has raised concerns about resource depletion, environmental
pollution, and waste management, necessitating the development of efficient recycling strategies. However, the
complexity of modern LIB designs often hinders recycling efforts, highlighting the need for a holistic approach
that considers the entire life cycle of these batteries.

Recent studies have extensively explored the application of Life Cycle Assessment in evaluating LIB
environmental impacts. Darling & Gaustad! conducted a comprehensive LCA focusing on the financial
viability of EV battery recycling, highlighting the importance of design optimization for cost reduction. Rey &
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Alvarez? specifically examined the environmental impacts of graphite recycling from spent LIBs, emphasizing
material recovery efficiency. Furthermore, Lee & Wang® assessed the environmental implications of specific
cathode material (LiNil/3Mn1/3Co01/302) recycling, providing valuable insights into material-specific recovery
challenges. These studies collectively demonstrate the growing importance of lifecycle thinking in battery design
and recycling.

The application of Structural Equation Modeling (SEM) in battery recycling research has also gained
traction. Xu & Liang* employed SEM to analyze the driving mechanisms of power battery recycling systems,
demonstrating correlations between design parameters and recycling outcomes. Zhang & He’ further utilized
this methodology to examine the relationships between design characteristics and recycling efficiency, finding
significant direct and indirect effects. These studies have established SEM as a valuable tool for understanding
complex relationships in battery recycling systems.

Product design has emerged as a critical factor influencing the efficiency and cost-effectiveness of LIB
recycling processes. Previous research has investigated various aspects of LIB design’s influence on recycling
efficiency. Peters & Baumann® examined how battery architecture affects material recovery rates, finding that
modular designs improved recyclability by 15-20%. Bicer & Dincer” analyzed the environmental impacts of
different battery designs, demonstrating that simplified structures reduced recycling energy consumption by
up to 30%. The intricate structures and diverse material compositions of contemporary LIBs, while optimized
for performance and energy density, often complicate disassembly and material recovery. For instance, the cell-
to-pack (CTP) and cell-to-body (CTB) technologies, pioneered by companies like BYD, have revolutionized
EV battery integration but inadvertently increased recycling challenges due to extensive use of adhesives and
integrated designs.

The relationship between design characteristics and recycling efficiency has been explored through different
methodological approaches. Swain® conducted experimental studies on various battery designs, while Dai
& Kelly’ employed statistical modeling to quantify design impacts. However, a comprehensive framework
incorporating both life cycle impacts and structural relationships between design features and recycling
outcomes remains lacking. This exemplifies the tension between advancing battery technology and ensuring
recyclability, underscoring the importance of considering end-of-life scenarios during the initial design phase.

The concept of Design for Recycling (DfR) has gained traction in recent years, advocating for the
incorporation of recyclability considerations into product development. Zhang & Shaffer!® investigated the
implementation of DfR principles in battery manufacturing, identifying key design parameters that influence
recycling efficiency. Wang & Li!! further analyzed the economic implications of DfR approaches, demonstrating
potential cost savings through improved recyclability. However, implementing DfR principles in LIB design is
not straightforward, as it may conflict with other desirable attributes such as energy density, safety, and cost-
effectiveness. This complex interplay of factors necessitates a comprehensive analysis to quantify the impacts of
various design decisions on recycling efficiency and overall life cycle costs.

While existing studies have made significant contributions to understanding LIB recycling, several crucial
gaps remain:

1. Previous research has typically examined design features and recycling efficiency separately, without a uni-
fied framework for analyzing their relationships.

2. The indirect effects of design characteristics on recycling performance through process efficiency have not
been adequately quantified.

Comparative analyses of traditional and innovative designs (CTP, CTB) lack
systematic evaluation of their lifecycle implications

This study aims to bridge these gaps by investigating the influence of design characteristics on recycling
efficiency through a combined LCA-SEM approach. By quantifying the direct and indirect effects of various
design parameters on economic, environmental, and technical aspects of recycling processes, this research seeks
to provide actionable insights for battery manufacturers, recyclers, and policymakers. The findings are expected
to contribute to the development of more sustainable LIB designs that balance performance requirements with
recyclability, ultimately supporting the transition towards a circular economy in the energy storage sector.

The innovative integration of LCA and SEM methodologies in this study offers a unique perspective on the
challenges and opportunities in LIB recycling. By considering both the technical aspects of battery design and
the broader implications for recycling systems, this research aims to provide a comprehensive understanding of
the factors influencing recycling efficiency. The results of this study have the potential to inform design strategies,
recycling technologies, and policy frameworks, fostering a more sustainable approach to LIB production and
management throughout their life cycle.

Research methods
Study design
The research design for this study adopts an innovative mixed-methods approach by integrating Life Cycle
Assessment (LCA) with Structural Equation Modeling (SEM) to examine the impact of lithium-ion battery
(LIB) design characteristics on recycling efficiency. This methodology combines the comprehensive life cycle
perspective of LCA with the advanced statistical capabilities of SEM, enabling a nuanced analysis of the complex
relationships between design parameters and recycling outcomes.

The study employs a sequential exploratory design, beginning with qualitative data collection through expert
interviews (n=15) followed by quantitative surveys (n=150) of battery manufacturing and recycling facilities.
The sampling strategy utilized a stratified random approach to ensure representation across different facility
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sizes, geographical locations, and technological capabilities. Survey administration was conducted via a secure
online platform, with follow-up protocols to ensure high response rates.

Data collection proceeded in three distinct phases. First, extensive literature review and preliminary
expert consultations informed the development of interview protocols and survey instruments. Second, semi-
structured interviews with industry experts provided rich qualitative insights into the relationships between
battery design and recycling efficiency. Third, structured surveys gathered quantitative data on specific design
parameters, recycling processes, and efficiency indicators.

The quantitative phase employed a comprehensive survey instrument developed based on qualitative findings
and validated through pilot testing. The survey achieved a response rate of 78%, with respondents representing
diverse segments of the LIB industry. Data analysis integrated thematic analysis of interview transcripts with
statistical modeling of survey responses, employing both exploratory and confirmatory factor analysis before
proceeding to structural equation modeling.

This integrated research design enables triangulation of findings through multiple data sources and
analytical approaches. The combination of qualitative insights with quantitative measurements provides a robust
foundation for understanding the complex relationships between LIB design characteristics and recycling
efficiency. Furthermore, this approach allows for both depth in understanding technical processes and breadth
in analyzing industry-wide patterns.

The study population encompassed lithium-ion battery manufacturers, recycling facilities, and related
stakeholders across major industrial regions in China. Drawing from the National Battery Industry Database, the
sampling frame consisted of 450 organizations, including 200 battery manufacturers, 150 recycling facilities, and
100 supporting enterprises. The determination of sample size was guided by the model’s complexity, featuring
15 observed variables and 3 latent constructs. Following the N: q rule (ratio of cases to free parameters) with a
recommended minimum 10:1 ratio, and accounting for 33 free parameters in our model, a minimum sample
size of 330 cases was required. To ensure adequate statistical power and account for potential non-responses, we
targeted a sample size of 400 participants.

A stratified random sampling approach was implemented to ensure comprehensive representation across
organization types, geographic regions, and enterprise scales. The population was initially stratified based on
organization type (manufacturers, recyclers, suppliers) and geographic location (Eastern, Southern, Northern,
and Western China), followed by random selection within each stratum using computer-generated sequences.
The sampling process included rigorous verification of organizational eligibility and implementation of
replacement sampling for non-responsive units. This methodology yvielded 368 valid responses, achieving a
response rate of 92% and exceeding the minimum required sample size for statistical power of 0.95.

Data collection proceeded through a mixed-method approach, primarily utilizing structured online
questionnaires supplemented by follow-up telephone interviews and selective on-site visits for validation
purposes. The data quality assurance protocol included pilot testing with 30 organizations, continuous
monitoring of response patterns, and systematic handling of missing data through Full Information Maximum
Likelihood (FIML) estimation. Outliers were identified and evaluated using Mahalanobis distance calculations.
To address potential sampling bias and ensure model robustness, we conducted sensitivity analyses through
bootstrap resampling with 1000 iterations, multi-group analyses across different organizational categories,
and cross-validation with hold-out samples. The model’s stability was further verified through measurement
invariance testing, residual pattern analysis, and careful assessment of modification indices.

This comprehensive sampling and validation approach provided a robust foundation for the subsequent
structural equation modeling analysis, ensuring both statistical rigor and practical relevance in examining
the relationships between battery design characteristics and recycling efficiency. The achieved sample size and
sampling methodology support generalizable findings while maintaining the statistical power necessary for
complex model estimation.

The process begins with extensive data collection on LIB design features, recycling processes, and efficiency
indicators through literature review, expert interviews, and industry surveys. This data informs a detailed LCA
focused on the end-of-life stage of LIBs, quantifying environmental impacts and resource efficiency across
various recycling scenarios. Key variables related to battery design and recycling efficiency are then identified
and operationalized, forming the foundation for the SEM model development. The structural equation
model hypothesizes relationships between design characteristics and recycling efficiency measures, which are
subsequently estimated and validated using the collected data. Rigorous analysis and interpretation of the model
results, including examination of direct and indirect effects and sensitivity analyses, provide insights into the
complex interplay between design choices and recycling outcomes. The study culminates in applying the model
to specific LIB designs, such as traditional versus cell-to-pack (CTP) or cell-to-body (CTB) configurations,
demonstrating practical implications for sustainable battery design and recycling strategies.

Asshown in Fig. 1, the research design framework integrates data analysis, modeling, and practical application
to assess LIB recycling efficiency.

Data collection

Questionnaire design

A structured questionnaire was developed to gather quantitative data on LIB design features and recycling
processes. The questionnaire was designed based on an extensive literature review and preliminary expert
consultations. As shown in Table 1, it consists of five main sections: (1) respondent demographics, (2) LIB
design characteristics, (3) recycling process details, (4) efficiency indicators, and (5) perceived challenges and
opportunities. The questionnaire employs a mix of Likert-scale items, multiple-choice questions, and open-ended
responses to capture both quantitative and qualitative data. To ensure validity and reliability, the questionnaire
underwent pilot testing with a small group of industry professionals, and refinements were made based on their
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Fig. 1. Research design framework.

feedback. The final questionnaire was distributed to a targeted sample of LIB manufacturers, recycling facilities,
and research institutions using an online survey platform.

Expert interviews

Semi-structured interviews were conducted with 15 experts representing diverse backgrounds in the lithium-
ion battery (LIB) industry. The experts were selected based on their professional experience, technical expertise,
and industry roles, ensuring comprehensive coverage of the battery lifecycle from design to recycling. The
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Section Content Question Types Number of Questions
« Respondent role and position
« Years of experience
1. Demographics « Organization type and size Multiple choice 5
« Geographic location
« Industry sector
« Battery structure and architecture
« Material composition and diversity « Likert scale (1-5)
2. LIB Design « Assembly methods and techniques « Multiple choice 12
« Connection types and complexity «Technical specifications
« Design optimization strategies
. 3lsaS§embly techniques and procedures | | Likert scale (1-5)
« Material recovery methods P N
3. Recycling Process « Process efficiency metrics : C;ocess pzére:ime ers 15
« Equipment and technology used * Tpenien <
. « Technical data
« Operating parameters
« Economic performance metric
« Environmental impact measures « Likert scale (1-5)
4. Efficiency Indicators « Technical efficiency parameters « Numerical input 10
« Resource recovery rates « Performance data
« Cost-benefit analysis
« Current technical barriers
« Economic constraints » Open-ended
5. Challenges and Opportunities | « Potential improvements +Ranking questions 8
« Future trends «Descriptive responses
« Innovation opportunities

Table 1. Questionnaire structure and content.

expert panel comprised five battery design specialists from major manufacturers and technology firms, with an
average industry experience of 13.5 years and extensive expertise in CTP and CTB technologies. These design
specialists provided crucial insights into the evolution of battery architectures and their implications for end-of-
life management.

The panel also included four recycling process experts, including facility operators and technical directors with
an average of 9 years of experience in various recycling technologies, particularly hydrometallurgical processes
and mechanical pre-treatment methods. Their practical experience in handling different battery designs provided
valuable perspectives on the challenges and opportunities in recycling processes. Three academic researchers,
including university professors in materials science and a research institute director, contributed theoretical
insights and research-based perspectives on battery materials and recycling technologies. Their expertise in
circular economy principles and industry-academic collaboration enhanced the study’s theoretical foundation.

Additionally, three policy and standards experts, including environmental policy consultants and an industry
standards specialist, provided crucial insights into regulatory frameworks and compliance requirements affecting
battery design and recycling practices. Their expertise in international policy and recycling standards helped
contextualize the technical aspects within broader regulatory and policy frameworks.

The interviews followed a structured protocol exploring key areas including technical aspects of battery
design influencing recyclability, current challenges in recycling processes, economic viability of different
recycling approaches, environmental impact considerations, policy implications, and future trends in battery
recycling. Each interview session, lasting approximately 60-90 min, was conducted either in person or via video
conferencing, allowing for in-depth exploration of complex technical and operational issues.

The interviews were recorded, transcribed, and analyzed using a rigorous thematic analysis approach to
identify key patterns and relationships between battery design characteristics and recycling efficiency. The
analysis revealed significant insights into how design decisions influence recycling outcomes, which subsequently
informed the development of the quantitative survey instrument. Follow-up consultations were conducted when
necessary to clarify technical details or expand on specific points, ensuring accuracy and comprehensiveness of
the collected data.

The qualitative insights from these expert interviews proved instrumental in bridging the gap between
theoretical frameworks and industry practice, providing a robust foundation for the development of the
structural equation model and the interpretation of quantitative results. The diverse expertise of the interview
participants enabled a comprehensive understanding of the complex interrelationships between battery design
characteristics and recycling efficiency.

Case study data collection

To complement the survey and interview data, detailed case studies of specific LIB designs were conducted. This
involved collecting technical specifications, lifecycle data, and recycling performance metrics for three distinct
LIB configurations: a traditional design, a cell-to-pack (CTP) design, and a cell-to-body (CTB) design. As
shown in Table 2, technical specifications were primarily sourced from manufacturer documentation, yielding
information on battery structure, material composition, and energy density. Lifecycle data, including resource
consumption, emissions, and lifespan, were extracted from LCA reports and industry databases. Recycling
performance metrics, such as disassembly time, material recovery rates, and energy consumption, were obtained
from facility reports and on-site measurements.
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Data Type

Sources

Metrics Collected

Technical Specifications

-Manufacturer documentation

- Technical datasheets
- Design specifications

- Battery structure and architecture

- Energy density and capacity
- Connection methods and types
- Assembly techniques

- Material composition and proportions

Lifecycle Data

- Assembly guidelines - Component specifications

- Physical dimensions and weight

- Resource consumption patterns

- Energy consumption during production
- LCA reports - Energy consumption during use phase

- Greenhouse gas emissions
- Industry databases

-Environmental impact assessments

- Production records
- Operation logs

- Water consumption

- Chemical usage

- Transportation impacts

- Expected lifespan

- Maintenance requirements
- End-of-life disposal impacts

Recycling Performance

- Facility reports

- Laboratory test results

- Process monitoring data
- Quality control records

- Environmental monitoring data

- Disassembly time and efficiency

- Process energy consumption

- Emissions during recycling

- Toxicity levels in processes

- Purity of recovered materials

- Chemical composition analysis
- Contamination levels

- Resource efficiency metrics

- Process yield rates

- Environmental compliance data

- Material recovery rates by component

Table 2. Case Study Data Collection Overview.

Category Variable Measurement Approach Scale

Design Characteristics Structural Complexity Component count and integration level Ordinal (1-5)
Material Diversity Number of distinct materials used Ratio
Disassembly Difficulty Expert assessment of disassembly process | Ordinal (1-10)

Economic Efficiency Recycling Cost Cost per kg of battery processed Ratio (/kg)

Material Recovery Value

Market value of recovered materials

Ratio (/kg)

Environmental Efficiency | Energy Consumption kWh per kg of battery recycled Ratio (kWh/kg)
Material Recovery Rate Percentage of total battery mass recovered | Ratio (%)

Technical Efficiency Disassembly Time Time required for complete disassembly | Ratio (min/kg)
Recovered Material Purity | Purity level of key recovered materials Ratio (%)

Table 3. Key variables and measurement approaches.

Variable measurement

The measurement of variables in this study focuses on quantifying key aspects of lithium-ion battery (LIB)
design and recycling efficiency. Variables were selected based on their relevance to the research objectives and
their ability to be reliably measured across different battery designs and recycling processes. Table 3 provides a
comprehensive overview of these key variables and their measurement approaches.

Design characteristics were operationalized through a set of measurable indicators reflecting the complexity,
material composition, and structural attributes of LIBs. As shown in Table 3, these include structural complexity,
material diversity, and disassembly difficulty. Each indicator was assigned a numerical scale or categorical
classification to enable quantitative analysis.

Recycling efficiency variables were categorized into economic, environmental, and technical dimensions, as
detailed in Table 3. Economic efficiency was measured through indicators such as recycling cost per unit weight
and recovered material value. Environmental efficiency was quantified using metrics like energy consumption
during recycling and percentage of materials recovered. Technical efficiency indicators included disassembly
time, purity of recovered materials, and process yield.

To ensure consistency and comparability, standardized measurement protocols were developed for each
variable, as outlined in Table 3. Where direct measurements were not feasible, proxy indicators or expert
assessments were used. All measurements were documented with their associated uncertainties and measurement
methods to support the reliability of subsequent analyses.

Table 3 illustrates the comprehensive set of variables and their respective measurement approaches and
scales. This multifaceted view of the relationship between LIB design and recycling efficiency, as presented in
Table 3, enables robust statistical analysis and modeling in subsequent stages of the research. The structured
approach to variable measurement, as detailed in Table 3, provides a solid foundation for examining the complex
interplay between battery design characteristics and recycling outcomes.
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Data analysis methods

Life cycle assessment (LCA)

The LCA methodology follows ISO 14,040 and 14,044 standards, focusing on the end-of-life stage of LIBs'>13.

The functional unit is defined as 1 kg of spent LIB processed for recycling, following established methodologies

in recent critical reviews'. The system boundary includes transportation, pre-treatment, and material recovery

processes. The life cycle impact assessment utilizes the ReCiPe 2016 method, considering midpoint indicators

such as global warming potential (GWP) and resource depletion potential (RDP). The inventory analysis is

conducted using SimaPro software, with data sourced from the ecoinvent database and primary data collection.
The environmental impact score (EIS) for each recycling scenario is calculated using the following equation:

EIS = iwi LA fimin
=1

Ii,maz - Ii,min

Where w; is the weighting factor for impact category i, I; is the impact score for category i, I;,min and I; max
are the minimum and maximum impact scores across all scenarios for category i.

Structural equation modeling (SEM)

The development of the conceptual framework (Fig. 2) followed a systematic approach combining theoretical
analysis and exploratory factor analysis (EFA). Initially, a comprehensive literature review identified potential
factors affecting LIB recycling efficiency, yielding 42 preliminary variables. These variables were then refined
through expert interviews (n=15) and pilot surveys (n = 30), resulting in an initial pool of 25 measured variables.

Design
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Fig. 2. Conceptual SEM Model.
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Exploratory factor analysis was conducted using principal axis factoring with oblique rotation (Promax) on
the pilot data. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.89, exceeding the recommended
threshold of 0.6, and Bartlett’s test of sphericity was significant (x> = 3245.67, p<0.001), confirming the
appropriateness of factor analysis. The initial EFA revealed three distinct factors with eigenvalues greater than
1.0, collectively explaining 78.3% of the total variance:

1. Design Characteristics (DC): Eight variables loaded significantly (>0.5) on this factor, including structural
complexity, material diversity, and connection methods.

2. Recycling Process Efficiency (RPE): Seven variables showed significant loadings, encompassing energy effi-
ciency, material recovery rates, and process optimization metrics.

3. Overall Recycling Performance (ORP): Six variables demonstrated significant loadings, including economic
viability, environmental impact, and resource conservation indicators.

Variables with cross-loadings (> 0.4) or low communalities (< 0.5) were eliminated, resulting in a refined set of 15
variables. The theoretical relationships between these factors were then established through systematic literature
analysis and validated through expert consultation, leading to the hypothesized structural relationships depicted
in Fig. 2. This combined empirical-theoretical approach ensured that the conceptual model was both statistically
sound and theoretically grounded.

The final measurement model demonstrated good fit indices in confirmatory factor analysis (CFI=0.96,
TLI=0.95, RMSEA =0.058), supporting the construct validity of the proposed framework. The path relationships
in the conceptual model were further validated through preliminary structural equation modeling using the
pilot data, providing initial support for the hypothesized relationships between design characteristics, recycling
process efficiency, and overall recycling performance.

The SEM analysis is performed using the lavaan package in R. The model consists of latent variables
representing design characteristics and recycling efficiency, with observed variables as indicators. The general
form of the structural model is:

n=Bn+T&{+¢

Where 7 is a vector of endogenous latent variables, £ is a vector of exogenous latent variables, B and I" are
matrices of structural coeflicients, ( is a vector of disturbances.

As shown in Table 4, the model fit is evaluated using four key indices: Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and Standardized Root Mean Square
Residual (SRMR). For each index, Table 4 provides thresholds for both good fit and acceptable fit. These criteria,
as outlined in Table 4, guide the interpretation of the model’s adequacy in representing the underlying data
structure.

Specifically, Table 4 indicates that for CFI and TLI, values>0.95 are considered good fit, while values>0.90
are deemed acceptable. For RMSEA, values <0.06 indicate good fit, and values <0.08 are acceptable. Similarly,
for SRMR, values<0.08 suggest good fit, while values<0.10 are considered acceptable. These thresholds, as
presented in Table 4, provide a standardized framework for evaluating the robustness of the structural equation
model in this study.

As shown in Fig. 2, the conceptual SEM model illustrates the hypothesized relationships between battery
design characteristics, recycling process efficiency, and overall recycling performance.

Quantification of design characteristics of lithium-ion battery products
Structural complexity index
The Structural Complexity Index (SCI) is developed to quantify the intricacy of lithium-ion battery (LIB) designs,
focusing on aspects that influence recycling processes. This index incorporates multiple factors, including the
number of components, their interconnectedness, and the diversity of materials used.

The SCI is calculated using the following formula:

) + ws ()

d,maz

Nc,njaz ) + wZ(

Cf ,mazx
Where N. represents the number of components (previously n), Cy represents the connectivity factor, Mgy
represents the material diversity factor, Nmaz, Crmaz, and Mia. are the maximum values observed in the
sample.

The weighting factors (w1, w2, w3) were determined through a systematic analytical hierarchy process (AHP),
incorporating comprehensive expert consultation with 15 industry professionals, including battery design

Fit Index | Good Fit | Acceptable Fit

CFI >0.95 >0.90

TLI >0.95 >0.90

RMSEA | £0.06 <0.08

SRMR <0.08 <0.10

Table 4. SEM model fit Criteria.
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engineers, recycling specialists, and academic researchers. The expert evaluation process considered multiple
aspects of battery design and recycling, including the relative impact of each factor on recycling difficulty, cost
implications, and technical feasibility of modifications. Through iterative consultation rounds, consensus was
reached on the relative importance of each component in the overall complexity assessment.

To validate the robustness of these weights, comprehensive sensitivity analyses were conducted comparing
results using equal weights (wl =w2=w3=1/3) against our weighted system. The analysis revealed that while
weighting provides more nuanced evaluation of complexity factors, the fundamental conclusions about design
optimization remain valid across different weighting scenarios. Specifically, the relative performance difference
between traditional and optimized designs varied by less than 15% when comparing weighted and unweighted
calculations, demonstrating the robustness of our findings. This consistency across different weighting schemes
supports the reliability of our approach in quantifying battery design complexity and its impact on recycling
efficiency.

The connectivity factor C is further defined as:

N
c-3
i=1

Where c;; is 1 if components i and j are directly connected, and 0 otherwise.
The material diversity factor M is calculated as:

N

Cij
+1

K
M=— Zpi In(p;)
i=1

Where K is the number of distinct materials, and p; is the proportion of material i in the battery by weight.

Table 5 details the symbols, weights, and descriptions for each SCI component. The number of components,
as described in Table 5, represents the total count of distinct parts in the battery. The connectivity factor, outlined
in Table 5, measures the degree of interconnections between components. The material diversity factor also
presented in Table 5, is based on the Shannon diversity index of materials used in the battery.

The weighting factors for each component, as shown in Table 5, allow for adjusting the relative importance
of each factor in the overall SCI calculation. This flexible approach, facilitated by the structure presented in
Table 5, enables the SCI to be tailored to specific research focuses or industry priorities in assessing battery
design complexity.

As shown in Fig. 3, the relationship between SCI components demonstrates how structural complexity varies
with increasing number of components and material diversity.

Material diversity index

The Material Diversity Index (MDI) is a crucial metric for assessing the complexity of lithium-ion battery
(LIB) compositions and their potential impact on recycling processes. This index quantifies the variety and
distribution of materials within a battery, providing insights into the challenges associated with material
separation and recovery. The MDI is calculated using a modified version of the Shannon diversity index (also
known as Shannon-Wiener diversity index), which accounts for both the number of distinct materials and their
relative proportions within the battery structure.

The formula for MDI is expressed as:

M
MDI = — Z (pi x w; x In(p;))

i=1

Where M represents the total number of distinct materials (previously n), p; represents the proportion of the
i-th material, w; represents the weighting factor based on the material’s recyclability or economic value. The
weighting factor w; is determined using a standardized scale ranging from 0.5 for materials that are difficult
to recycle or have low value, to 1.5 for highly recyclable or valuable materials. This weighting system ensures
that the MDI not only reflects the diversity of materials but also their significance in the recycling process. To
normalize the MDI for comparison across different battery designs, a relative MDI (rMDI) is calculated by
dividing the MDI by the natural logarithm of the total number of materials:

Component Symbol | Weight | Description

Number of Components | N o = 0.4 | Total count of distinct parts
Connectivity C B = 0.3 | Measure of component interconnections
Material Diversity M ~ = 0.3 | Shannon diversity index of materials

Table 5. SCI Components and Weighting factors.
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Fig. 3. Relationship between SCI Components.

Material Weight% (p;) | Recyclability Weight (w;) | p; In(p;) - w;
Cathode Active Material | 35% 1.3 -0.1552
Anode Material 20% 12 -0.1323
Electrolyte 15% 0.8 -0.0693
Separator 5% 0.7 -0.0321
Current Collectors 15% 1.5 -0.1214
Casing 10% 1.0 -0.0576.

Table 6. Sample LIB material composition and MDI calculation.

MDI
In(n)

rMDI =

The rMDI ranges from 0 to 1, with higher values indicating greater material diversity and potentially more
complex recycling processes. To illustrate the application of the MDI, consider a typical lithium-ion battery
composition as shown in Table 6.

As shown in Fig. 4, the material composition and recyclability in LIBs illustrates the diversity of materials and
their respective recovery potentials.
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Fig. 4. Material composition and recyclability in LIB.

Connection complexity index

The Connection Complexity Index (CCI) is a novel metric designed to quantify the intricacy of interconnections
within lithium-ion battery (LIB) structures, which significantly impacts the disassembly process during recycling.
This index considers both the number and nature of connections between battery components, providing a
comprehensive measure of the battery’s structural complexity. The CCl is calculated using the following formula:

i=1 j=i+1 10g(dmaz)

Where n is the total number of components, ¢;; is a binary indicator (1 if components i and j are connected,
0 otherwise), w;; is a weight factor based on the connection type, d;; is the difficulty rating of separating the
connection, and dma. is the maximum difficulty rating in the system. The weight factor w;; varies based on the
connection type: 1.0 for mechanical connections, 1.2 for adhesive bonds, and 1.5 for welded joints. The difficulty
rating d;; ranges from 1 (easily separable) to 10 (extremely difficult to separate).

To normalize the CCI for comparison across different battery designs, a relative CCI (rCCI) is calculated:

cCl

rCCI = OCT.
Where CCnac is the theoretical maximum CCI for a fully connected system with the most difficult separation
type for all connections. The rCCI ranges from 0 to 1, with higher values indicating greater connection complexity
and potentially more challenging disassembly processes.

The connection type weights for the Connection Complexity Index were derived through an empirically
grounded methodology combining quantitative analysis of battery disassembly operations with expert
evaluation. The research team analyzed data from 200 documented battery disassembly procedures, measuring
critical parameters including disassembly time, tool requirements, labor intensity, and success rates. This
comprehensive dataset provided the empirical foundation for weight determination.
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The weight calculation methodology incorporated multiple factors through a systematic evaluation process.
Mechanical connections, serving as the baseline, received a weight of 1.0. Adhesive bonds, requiring additional
processing time and specialized tools, warranted an adjusted weight of 1.2 through cumulative factors including
increased time requirements (+0.1), tool complexity (+0.05), and labor intensity (+0.05). Welded joints,
presenting the greatest disassembly challenges, received a weight of 1.5, reflecting significant increases across
all evaluation factors. The weighting system underwent extensive validation through cross-referencing with
industry data and sensitivity analyses, demonstrating result variations below 10% across different scenarios.

Table 7 provides a detailed breakdown of sample connection types and their associated weight factors and
difficulty ratings. As evident from Table 7, mechanical connections have the lowest weight (1.0) and the lowest
difficulty range (1-5), indicating they are generally the easiest to separate. Adhesive bonds, as shown in Table 7,
have a moderate weight (1.2) and a slightly higher difficulty range (3-8). Welded joints, according to Table 7, have
the highest weight (1.5) and the highest difficulty range (6-10), reflecting their status as the most challenging
type of connection to separate during the recycling process.

This structured approach to quantifying connection complexity, as detailed in Table 7, allows for a nuanced
assessment of LIB designs in terms of their recyclability and disassembly challenges. The information provided
in Table 7 is crucial for understanding how different connection types contribute to the overall complexity of
battery structures and their implications for recycling processes.

As shown in Fig. 5, the Connection Complexity Index (CCI) heatmap visualizes complexity across battery
components, with color intensity indicating CCI values and cell text showing connection types and difficulty
ratings.

Modularity assessment

The Modularity Assessment Index (MAI) is a comprehensive metric designed to evaluate the degree of modularity
in lithium-ion battery (LIB) designs, which significantly influences the efficiency of recycling processes. This
index incorporates multiple factors, including the number of distinct modules, the ease of module separation,
and the homogeneity of materials within modules. The MAI is calculated using the following formula:

N
IZ M;
MAI—N - (Mmaz 'Sz'Hl)

Where N is the total number of modules, M; is the mass of module i, My, 4. is the mass of the largest module,

S is the separation factor for module i, and Hj; is the material homogeneity factor for module i. The separation
factor S; ranges from 0 (inseparable) to 1 (easily separable), while the homogeneity factor H; is calculated as:

K
= >_ pij In(pij)

=1
Hi=1-—"

In(K)

Where K is the number of distinct materials in module i, and p;; is the proportion of material j in module i. This
formulation ensures that modules with fewer, more homogeneous materials have higher H; values.

To provide a standardized measure, the Relative Modularity Index (RMI) is derived:

MAI — MA@Lnin

RMT = M AT maw — M AL

Where M Al in and M Al aq are the theoretical minimum and maximum MALI values for the given battery
design. The RMI ranges from 0 to 1, with higher values indicating greater modularity and potentially more
efficient recycling processes.

Table 8 presents sample module characteristics for MAI calculation, illustrating how these factors are applied
in practice. As shown in Table 8, four main modules of a typical LIB are considered: the Cell Stack, Battery
Management System, Cooling System, and Casing. For each module, Table 8 provides key information including
mass, separation factor, number of materials, and homogeneity factor.

The data in Table 8 demonstrates the variability in module characteristics that impact modularity. For
instance, the Cell Stack, as indicated in Table 8, has the largest mass (10 kg) but a moderate separation factor
(0.8) and homogeneity factor (0.65). In contrast, Table 8 shows that the Casing, while having a lower mass (5 kg),
has the highest separation factor (0.95) and homogeneity factor (0.90), suggesting it may be the most modular
component for recycling purposes.

Connection Type | Weight (w;;) | Difficulty Range (d;;)
Mechanical 1.0 1-5

Adhesive 1.2 3-8

Welded 1.5 6-10

Table 7. Sample connection types and difficulty ratings.
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Fig. 5. Connection complexity index (CCI) Heatmap.

Cell Stack 10 0.8 5 0.65
Battery Management System | 2 0.9 3 0.80
Cooling System 3 0.7 4 0.70
Casing 5 0.95 2 0.90

Table 8. Sample module characteristics for MAI calculation.

This detailed breakdown in Table 8 provides crucial insights into how different components of an LIB
contribute to its overall modularity, directly influencing recycling efficiency. The information presented in Table 8
serves as a valuable reference for understanding the practical application of the MAI and RMI in assessing LIB
designs for recyclability.

As shown in Fig. 6, the bubble plot illustrates module characteristics and MAI components, with bubble size
representing module mass and color indicating MAI component values.

Construction of recycling efficiency evaluation index system

Economic efficiency indicators

The Economic Efficiency Index (EcEI) for lithium-ion battery recycling processes is a comprehensive metric
that quantifies the financial viability and economic performance of recycling operations. This index incorporates
multiple factors including recycling costs, material recovery value, and process efficiency. The EcEI is calculated
using the following formula:

R, F
EcEl] = = —P
c Cp +C
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Fig. 6. Module characteristics and MAI components.

Where R, is the total value of recovered materials, C,, is the processing cost, E, is the process efficiency factor,
and Cf is the total cost including capital investment and operational expenses.
The process efficiency factor E,, is defined as:

n

Where # is the number of recoverable materials, w; is the economic weight of material i, and R; is the recovery
rate of material i.

To normalize the EEI for comparison across different recycling processes and battery types, a Relative
Economic Efficiency Index (REEI) is calculated:

EcEI — EcELnin
EcElnmaz — EcElLnin

REEI =

The REEI ranges from 0 to 1, with higher values indicating greater economic efficiency in the recycling process.

Table 9 presents sample economic parameters for LIB recycling, providing concrete values for key variables
in the EcEI calculation. The total recovered material value is 2500/ton, while the processing cost is 1200/ton. The
total cost, which includes both capital investment and operational expenses, is given as 2000/ton. Furthermore,
Table 9 provides recovery rates for various materials crucial to the recycling process. Copper has the highest
recovery rate at 95%, followed closely by cobalt at 90% and aluminum at 90%. Nickel and lithium have slightly
lower recovery rates of 85% and 80% respectively. These values are essential for calculating the process efficiency
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30,000

20,000

Value ($/ton)

10,000

Total Recovered Material Value (V;.) | 2500/ton
Processing Cost (C') 1200/ton
Total Cost (C') 2000/ton
Cobalt Recovery Rate 90%
Nickel Recovery Rate 85%
Lithium Recovery Rate 80%
Copper Recovery Rate 95%
Aluminum Recovery Rate 90%

Table 9. Sample Economic parameters for LIB Recycling.
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Fig. 7. Material recovery value in LIB recycling.

factor and, subsequently, the Economic Efficiency Index (EEI). The high recovery rates for valuable materials like
cobalt and copper suggest a potentially favorable economic outlook for LIB recycling processes.

As shown in Fig. 7, the stacked bar chart depicts material recovery values in LIB recycling, highlighting actual
and potential recovery for different materials.This stacked bar plot illustrates the economic impact of material
recovery rates in the LIB recycling process. The blue portion of each bar represents the actual recovered value,
while the orange portion shows the potential value if recovery was 100% efficient. The percentage above each bar
indicates the current recovery rate for each material. This visualization helps identify which materials contribute
most significantly to the economic efficiency of the recycling process and where improvements in recovery rates
could yield the greatest economic benefits.

Environmental efficiency indicators
The Environmental Efficiency Index (EEI) for lithium-ion battery recycling processes is a comprehensive metric
that quantifies the environmental impact and sustainability of recycling operations. This index incorporates
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multiple factors including energy consumption, greenhouse gas emissions, and resource conservation. The EEI
is calculated using the following formula:

EEI = =2

Where 7 is the number of environmental impact categories, w; is the weighting factor for impact category i, E

is the environmental impact of the recycling process for category i, and Ej; ..y is the reference environmental

impact for category i (e.g., impact of primary production). The weighting factors are determined based on the
n

relative importance of each environmental impact category, with Z w; = 1.

To account for the resource recovery aspect, a Resource Conservat1on Factor (RCF) is incorporated:
m
RCF = ———

Where m is the number of recoverable materials, v; is the environmental value factor of material j, and R; is the
recovery rate of material j. The final Environmental Efficiency Index is then calculated as:

EFElIfina = EEI - RCF

This formulation ensures that both the reduction of environmental impacts and the conservation of resources
are considered in the assessment of recycling efficiency.

Table 10 presents the environmental impact categories and their corresponding weighting factors used in
the EEI calculation. As shown in Table 10, five key impact categories are considered: Global Warming Potential,
Energy Consumption, Water Depletion, Toxicity, and Resource Depletion.

Technical efficiency indicators

The Technical Efficiency Index (TEI) for lithium-ion battery recycling processes is a comprehensive metric that
quantifies the technological performance and effectiveness of recycling operations. This index incorporates
multiple factors including material recovery rates, process yield, energy efficiency, and time efficiency. The TEI
is calculated using the following formula:

Swi-(Ri-Yi-Ei-Th)
TEI = =L

Where 7 is the number of key performance indicators, w; is the weighting factor for indicator i, R; is the
recovery rate for material i, Y; is the process yield for step i, E; is the energy efficiency for process i, and 7 is the
time efficiency for process i. Each factor is normalized to a 0-1 scale, with 1 representing optimal performance.

n
The weighting factors are determined based on the relative importance of each indicator, with > w; = 1.

i=1
To account for the complexity of the recycling process, an additional Process Complexity Factor (PCF) is
introduced:

1

PO = 1+1log(1+5)

Where S is the number of process steps. The final Technical Efficiency Index is then calculated as:

TElfina =TEI- PCF

Impact Category Weighting Factor (w;)
Global Warming Potential | 0.3

Energy Consumption 0.25

Water Depletion 0.15

Toxicity 0.2

Resource Depletion 0.1

Table 10. Environmental impact categories and weighting factors.
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Nickel

Lithium

Copper

Material

Cobalt

Aluminum

Indicator Weighting Factor (w;)
Material Recovery Rate | 0.35
Process Yield 0.25
Energy Efficiency 0.20
Time Efficiency 0.20

Table 11. Technical efficiency indicators and weighting factors.
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Fig. 8. Technical efficiency index (TEI) for LIB recycling.

This formulation ensures that both the efficiency of individual processes and the overall complexity of the
recycling system are considered in the assessment of technical efficiency.

Table 11 presents the key technical efficiency indicators and their corresponding weighting factors used in
the TEI calculation. As shown in Table 11, four primary indicators are considered: Material Recovery Rate,
Process Yield, Energy Efficiency, and Time Efficiency.

As shown in Fig. 8, the bubble plot visualizes the Technical Efficiency Index (TEI) for LIB recycling across
different materials and process steps.This bubble plot provides a visual representation of the Technical Efficiency
Index across different materials and process steps in the LIB recycling process. The size and color of each bubble
indicate the TEI value, with larger and redder bubbles representing higher efficiency. This visualization helps
identify the most efficient material-process combinations and areas where technical improvements could yield
the greatest benefits in the recycling process.

Determination of index weights: analytic hierarchy process (AHP)

The Analytic Hierarchy Process (AHP) is employed to determine the relative weights of the economic,
environmental, and technical efficiency indicators in the overall assessment of lithium-ion battery recycling
processes. This method involves pairwise comparisons of criteria to establish their relative importance. The
process begins with the construction of a pairwise comparison matrix A = (a;;)n X n, whereaij represents
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the importance of criterion i relative to criterion j. The scale typically ranges from 1 to 9, where 1 indicates equal
importance and 9 indicates extreme importance of one criterion over another.
The weight vector w = (w1, ..., wy,)7 is then calculated by solving the eigenvalue problem:

Aw = AmazW

where A\nqz is the maximum eigenvalue of A. The consistency of the pairwise comparisons is checked using the
Consistency Ratio (CR):

Ccl
C’Rfm

where C1I = )‘mn“%l_” is the Consistency Index, and RI is the Random Index (a predefined value based on the

matrix size). A CR value less than 0.1 is generally considered acceptable.

Table 12 presents the pairwise comparison matrix for the efficiency indicators used in this study. As shown in
Table 12, three main indicators are considered: Economic, Environmental, and Technical. The values in Table 12
represent the relative importance of each indicator compared to the others.

This hierarchical tree diagram illustrates the structure of the decision problem and the relative weights of
each criterion and sub-criterion as determined by the AHP. The size of each node represents its weight in the
overall assessment. This visualization helps stakeholders understand the relative importance of different factors
in evaluating the efficiency of LIB recycling processes, facilitating more informed decision-making and process
optimization strategies.

Construction and analysis of structural equation modeling
Measurement model
The measurement model for the structural equation modeling (SEM) analysis of lithium-ion battery (LIB)
recycling efficiency is designed to capture the relationships between latent variables and their observed indicators.
This model comprises three main constructs: Design Characteristics (DC), Recycling Process Efficiency (RPE),
and Overall Recycling Performance (ORP). Each construct is measured by multiple indicators, ensuring a
comprehensive assessment of the recycling process. The measurement model is represented by the following
equations:

For Design Characteristics (DC): X; = Az, - DC + 6;

For Recycling Process Efficiency (RPE): Y; = Ay, - RPE + ¢;

For Overall Recycling Performance (ORP): Zp = A., - ORP + (x

Where X, Yj, and Zj, are observed variables, A.;, )\yj, and ., are factor loadings, and d;, €5, and (i are
measurement errors. The covariance matrix of the latent variables is defined as:

® = ( ¢pc,pc ¢pc.RPE PDC,ORP $RPE,DC PRPE,RPE QRPE,ORP PORP.DC QORP,RPE QPORP,ORP )

Table 13 presents the latent variables and their corresponding indicators used in the SEM analysis. As shown
in Table 13, each latent variable is measured by multiple observed indicators, providing a comprehensive
representation of the complex constructs involved in LIB recycling efficiency.

The measurement equations specifying the relationships between latent variables and their indicators are
formulated as follows:

For Design Characteristics (DC):

T, = )\ml(DC) + 01

To = )\;,;Q(DC) + do

xr3 = )\mg(DC) + (53

Ty = )\;,;4(DC) + 04

For Recycling Process Efficiency (RPE):

Y1 = )\yl(RPE) +e1

Y2 = )\yz (RPE) + &9

Y3z = )\yg(RPE) + €3

Ya = )\y4(RPE) —+ €4

For Overall Recycling Performance (ORP):

Ys = )\y5 (ORP) + €5

Yo = )\yG(ORP) + ¢

Y7 = )\y7(ORP) +e7

Indicator Economic | Environmental | Technical
Economic 1 2 3
Environmental | 1/2 1 2
Technical 1/3 1/2 1

Table 12. Pairwise comparison matrix for efficiency indicators.
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Latent Variable Indicators

Design Characteristics (DC) Structural Complexity Index (x1)

Material Diversity Index (x2)

Connection Complexity Index (x3)

Modularity Assessment Index (x4)

Recycling Process Efficiency (RPE) Process Time Efficiency (y1)

Energy Consumption Rate (y2)

Material Recovery Rate (y3)

Resource Utilization Rate (y4)

Overall Recycling Performance (ORP) | Economic Efficiency Index (y5)

Environmental Impact Score (y6)

Technical Performance Score (y7)

Table 13. Latent variables and their indicators.

where A represents factor loadings,  and € represent measurement errors for exogenous and endogenous
variables respectively. The covariance matrix of measurement errors is assumed to be diagonal, indicating
that measurement errors are uncorrelated. The factor loadings (\) represent the strength and direction of the
relationship between each latent variable and its respective indicators.

As shown in Fig. 9, the path diagram illustrates the measurement model for LIB recycling efficiency,
depicting relationships between latent variables and their observed indicators. This path diagram illustrates
the relationships between latent variables (represented by ovals) and their observed indicators (represented by
rectangles). The arrows indicate the direction of influence from latent variables to their respective indicators.
This measurement model forms the foundation for the subsequent structural model, enabling a comprehensive
analysis of the factors influencing LIB recycling efficiency.

Structural model

The structural model in the Structural Equation Modeling (SEM) analysis of lithium-ion battery (LIB) recycling
efficiency delineates the causal relationships among latent variables. This model encompasses three primary
latent constructs: Design Characteristics (DC), Recycling Process Efficiency (RPE), and Overall Recycling
Performance (ORP). The relationships between these variables are represented by the following equations:

RPE:’Y11‘DC+C1
ORPZ’YQ1'DC+ﬁ21~RPE+<2

Where 711 and 721 are the direct effect coefficients of the exogenous latent variable (DC) on the endogenous
latent variables (RPE and ORP), fo1 is the direct effect coefficient of the endogenous latent variable (RPE) on
another endogenous latent variable (ORP), and (1 and (2 are structural error terms.

The total effect (TE) of Design Characteristics on Overall Recycling Performance can be calculated as:

TEpc—orp = Y21 + 711 - B21

As shown in Fig. 10, the structural model diagram illustrates the relationships between Design Characteristics,
Recycling Process Efficiency, and Overall Recycling Performance in LIB recycling. This structural model
diagram clearly illustrates the relationships between Design Characteristics, Recycling Process Efficiency, and
Overall Recycling Performance. The arrows indicate the direction of causal relationships, while the annotated
coefficients (711, v21, B21) represent the strength of these relationships. Through this model, we can gain a
deeper understanding of how LIB design directly and indirectly influences recycling efficiency, providing a
crucial theoretical foundation for optimizing design and improving recycling performance.

Model fitting and correction

Model fitting and modification are crucial steps in Structural Equation Modeling (SEM) for lithium-ion battery
(LIB) recycling efficiency analysis. The process begins with evaluating the initial model’ fit using various indices.
The chi-square test statistic (x*) is fundamental, assessing the discrepancy between the observed and model-
implied covariance matrices:

X?=(N—-1FuL

where N is the sample size and Fisr is the value of the fitting function for maximum likelihood estimation.
However, ¥ is sensitive to sample size, so additional fit indices are considered. The Comparative Fit Index (CFI)
compares the model to a baseline model:

maz(X>model — dfmodet, 0)

CFI=1- . i
max(X baseline — dfba,selin57 X model — dfmodeh 0)
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Fig. 9. Measurement model for LIB recycling efficiency.
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Fig. 10. Structural model for LIB recycling efficiency.
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Re-evaluate Fit

The Root Mean Square Error of Approximation (RMSEA) assesses how well the model fits the population
covariance matrix:

X2model - dfmodel
(N - 1)dfmodel

RMSEA = \/

If the initial model fit is inadequate, modification indices (MI) guide potential improvements. The expected
parameter change (EPC) for a fixed parameter 0 is calculated as:

OF

_ 907
EPCy = -3
862

As shown in Fig. 11, the flowchart depicts the iterative process of model evaluation, modification, and re-
evaluation for achieving a satisfactory fit in LIB recycling efficiency analysis. This iterative process of model
evaluation, modification, and re-evaluation continues until a satisfactory fit is achieved, balancing statistical
fit with theoretical soundness. The final model provides a robust framework for understanding the complex
relationships in LIB recycling efficiency.

Analysis of direct, indirect and total effects
The analysis of direct, indirect, and total effects in the Structural Equation Model (SEM) for lithium-ion battery
(LIB) recycling efficiency provides a comprehensive understanding of the complex relationships between design
characteristics, recycling process efficiency, and overall recycling performance. Direct effects represent the
immediate impact of one variable on another, while indirect effects capture the influence mediated through
intervening variables. The total effect is the sum of direct and indirect effects.

In our model, the direct effect of Design Characteristics (DC) on Overall Recycling Performance (ORP)
is represented by 721, while the indirect effect through Recycling Process Efficiency (RPE) is calculated as the
product of y11 and B21. The total effect is thus:

TEpc—orp = Y21 + (711 - B21)

To standardize these effects for comparison, we use the formula:

Initial Model

Evaluate Fit

Identify Modifications
Implement Changes

Fig. 11. Model fitting and modification process.
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Path Direct Effect | Indirect Effect | Total Effect
DC>RPE | 711 - Y11

DC->ORP | 2 Y11 * B21 Y21 + (711 - B21)
RPE > ORP | 857 - B21

Table 14. Direct, Indirect, and total effects Analysis.

Y11 Y21 B21

Recycling Process
Efficiency

Fig. 12. Path Diagram with Effect Coefficients.

UnstandardizedE f fect - SDrv
SDpyv

StandardizedE f fect =

where SDrv and SDpy are the standard deviations of the independent and dependent variables, respectively.
The significance of these effects can be assessed using bootstrapped confidence intervals:

Clgs% = Estimate £ (1.96 - S Epootstrap)

where S Epootstrap i the standard error of the effect estimate derived from bootstrap resampling.

Table 14 presents the results of the direct, indirect, and total effects analysis for the key paths in our structural
equation model. As shown in Table 16, three critical paths are examined: DC > RPE, DC > ORP, and RPE > ORP.

As shown in Fig. 12, the path diagram illustrates the direct and indirect effects between design characteristics,
recycling process efficiency, and overall recycling performance, with coeflicients quantifying relationship
strengths.This analysis provides crucial insights into how design characteristics influence overall recycling
performance, both directly and through their impact on recycling process efficiency. It allows for a nuanced
understanding of the complex interplay between these factors in LIB recycling systems.

Multi-group analysis: comparison of different battery types
Multi-group analysis in the context of lithium-ion battery (LIB) recycling efficiency allows for the comparison
of structural equation models across different battery types, such as traditional, cell-to-pack (CTP), and cell-to-
body (CTB) designs. This approach examines whether the relationships between design characteristics, recycling
process efficiency, and overall recycling performance vary significantly across these battery types.

The multi-group SEM can be represented as:

Xy = Ag(Fng)il(Dg[(Fng)il}/Ag’ + 6y

Where g denotes the group (battery type), 3, is the model-implied covariance matrix, A4 is the factor loading
matrix, I'g is the matrix of regression coefficients for exogenous variables, By is the matrix of regression
coefficients for endogenous variables, ®, is the covariance matrix of exogenous variables, and ©4 is the
covariance matrix of residuals.

To test for invariance across groups, we use a series of nested models:

Configural invariance: Ay # Ay, T’y # T'gr, By # By
Metric invariance: Ay = Ay, Iy # g/, By # By
Scalar invariance: Ay = Ay/,I'y =T'gr, By # By
Strict invariance: Ay = Ay, T'g =T'y/, By = By

L e

The chi-square difference test is used to compare these nested models:

A2 = 2 2
X = Xconstrained — Xunconstrained

with degrees of freedom:

Table 15 presents the results of the multi-group invariance testing for different battery types. This table
provides a comprehensive overview of the model fit indices and chi-square difference tests for each level of
invariance tested.
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RPE — ORP
S
® DC—RPE
o

DC — ORP

Model X df |CFI |RMSEA | SRMR | Ax*> | Adf | p-value
Configural | 250.32 | 150 | 0.962 | 0.058 0.045 |- -

Metric 268.45 | 166 | 0.960 | 0.056 0.052 |18.13 |16 |0.316
Scalar 290.78 | 182 | 0.957 | 0.055 0.058 |22.33 |16 |0.133
Strict 315.62 | 200 | 0.954 | 0.054 0.063 |24.84 |18 |0.129

Table 15. Multi-group Invariance Testing results.

).4 0.6

Standardized Estimate
Battery Type CTB CTP Traditional

Fig. 13. Path Coefficients Comparison Across Battery Types.

As shown in Fig. 13, the comparative chart displays path coeflicients across different battery types, illustrating
variations in relationships between key variables for traditional, CTP, and CTB designs. This multi-group
analysis provides valuable insights into how the relationships between design characteristics, recycling process
efficiency, and overall recycling performance may vary across different LIB designs, informing targeted strategies
for improving recycling efficiency in diverse battery technologies.

Case study: power batteries for new energy vehicles

Comparison of traditional design vs. optimized design

The comparison between traditional and optimized designs of lithium-ion batteries (LIBs) reveals significant
differences in their recyclability and overall performance. Traditional LIB designs, while effective for energy
storage, often present challenges in the recycling process due to their complex structures and diverse material
compositions. In contrast, optimized designs incorporate recyclability considerations from the outset, leading to
improved end-of-life management.

A key distinction lies in the structural complexity of the batteries. Traditional designs typically feature tightly
integrated components, making disassembly labor-intensive and time-consuming. Optimized designs, however,
adopt a more modular approach, facilitating easier separation of components and materials during the recycling
process. This structural difference is reflected in the Structural Complexity Index (SCI), with optimized
designs showing lower values, indicating better recyclability. Material selection also plays a crucial role in the
differentiation. While traditional designs often prioritize performance over recyclability, leading to the use of
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complex composite materials, optimized designs favor more easily recyclable materials without significantly
compromising performance. This shift is evident in the Material Diversity Index (MDI), where optimized
designs demonstrate a lower score, signifying a more homogeneous and recyclable material composition.

The impact of these design differences extends to the recycling process efficiency and overall environmental
footprint. Optimized designs generally require less energy for disassembly and material recovery, resulting in
a lower Environmental Impact Score (EIS). Additionally, the economic viability of recycling is enhanced for
optimized designs, as reflected in a higher Economic Efficiency Index (EEI).

The impact of these design differences extends to the recycling process efficiency and overall environmental
footprint. As presented in Table 16, The quantitative comparison reveals significant improvements in the
optimized design across multiple metrics. The structural complexity index shows a 27.1% reduction (from 0.85
to 0.62), indicating substantially simplified battery architecture. Material recovery rates increased by 18.1%
(from 72 to 85%), while energy consumption in recycling decreased by 27.1% (from 850 to 620 kWh/ton).
Most notably, the economic efficiency index improved by 20.6% (from 0.68 to 0.82), demonstrating the financial
benefits of optimized design.

This comparative analysis underscores the importance of integrating recyclability considerations into the
initial design phase of LIBs. While optimized designs may require additional upfront investment in research
and development, they offer substantial benefits in terms of recyclability, environmental impact, and long-term
economic viability.

Life cycle cost analysis

Life cycle cost analysis (LCCA) for lithium-ion batteries (LIBs) provides a comprehensive assessment of the
economic implications throughout the battery’s lifespan, from production to end-of-life management. This
analysis is crucial for comparing traditional and optimized designs, considering both upfront costs and long-
term economic benefits.

All costs are normalized to USD per kilowatt-hour (USD/kWh) of battery capacity to facilitate direct
comparison between different battery designs and sizes. This standardized unit is widely used in the energy
storage industry and allows for meaningful comparison with other studies in the field.

The total life cycle cost (LCC) can be expressed as:

LCC:CP+CO+CM+CT‘_VT‘

Where C), is the production cost (USD/kWh), C, is the operational cost (USD/kWh), Cy, is the maintenance
cost (USD/kWh), C'- is the recycling cost (USD/kWh), and V. is the residual value of recovered materials (USD/
kWh).

To account for the time value of money, we use the Net Present Value (NPV) approach:

Where C} is the cost at time t, r is the discount rate, and T is the total lifespan of the battery. The Levelized Cost
of Storage (LCOS) provides a standardized metric for comparison:

~
Q
)
[95)
Il
il

o
Il
<}

Where E is the energy output in year t.

In this equation, t begins at 0 to properly account for initial capital costs (including production and installation
costs) that occur at the start of the battery’s life cycle. Setting t=0 for the first year ensures that these upfront
costs are not unnecessarily discounted, which would occur if t started at 1. This approach aligns with standard
practice in energy storage economic analysis, where initial investment occurs at the beginning of the project
(t=0), followed by operational years (t=1, 2, ..., T). The time value of money is then appropriately applied to

Parameter Traditional Design | Optimized Design
Structural Complexity Index (SCI) 0.85 0.62

Material Diversity Index (MDI) 0.78 0.56

Disassembly Time (hours/ton) 12.5 8.3

Material Recovery Rate (%) 72 85

Energy Consumption in Recycling (kWh/ton) | 850 620

Economic Efficiency Index (EEI) 0.68 0.82
Environmental Impact Score (EIS) 75 58

Table 16. Comparison of traditional and optimized LIB designs.
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Fig. 14. Life Cycle Cost Comparison of LIB Designs.

Production Cost 100 120
Operational Cost 50 45
Maintenance Cost 30 25
Recycling Cost 40 30
Material Recovery Value | -20 -35
Total Life Cycle Cost 200 185

Table 17. Life cycle cost breakdown for traditional and optimized LIB designs (USD/kWh).

subsequent cash flows and energy outputs in following years, providing a more accurate representation of the
battery’s economic performance over its lifetime.

As shown in Fig. 14, the stacked bar chart compares life cycle costs across different LIB designs, breaking
down expenses for production, operation, maintenance, and recycling stages. The LCCA reveals that while
optimized designs may have higher initial production costs, they often result in lower overall life cycle costs
due to reduced operational and recycling expenses, as well as increased value recovery. This is evident in the
following comparative table.

The culmination of these factors is reflected in the total life cycle cost presented in Table 17. The comparative
analysis demonstrates that while optimized designs incur 20% higher production costs (120 vs. 100 USD/kWh),
they achieve cost reductions in all other lifecycle phases: operational costs decrease by 10% (45 vs. 50 USD/
kWh), maintenance costs by 16.7% (25 vs. 30 USD/kWh), and recycling costs by 25% (30 vs. 40 USD/kWh).
Moreover, the material recovery value increases by 75% (-35 vs. -20 USD/kWh), resulting in a net lifecycle cost
reduction of 7.5% (185 vs. 200 USD/kWh).

This analysis demonstrates that optimized LIB designs, despite higher upfront costs, can offer significant
economic advantages over their lifecycle, particularly in terms of reduced operational costs and improved
material recovery value at the end-of-life stage.
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Environmental impact assessment

Environmental impact assessment of lithium-ion batteries (LIBs) is crucial for understanding the ecological
implications of different battery designs throughout their lifecycle!>!. Recent studies have demonstrated the
importance of comprehensive environmental assessment approaches!”. This assessment typically employs Life
Cycle Assessment (LCA) methodology, quantifying impacts across various environmental categories. The overall
environmental impact score (EIS) can be calculated using a weighted sum approach:

n

BIS =7 w7 Li = Limin

- i,maxr Ii,min
i=

Where w; is the weight of impact category i, I; is the impact score for category i, and I; min and I; maz are the
minimum and maximum impact scores across all assessed designs. The Global Warming Potential (GWP), a key
impact category, is often calculated as:

GWP =Y B;-GWPi,

Jj=1

Where E; is the emission of greenhouse gas j, and GW Pigo,; is its 100-year global warming potential. To
compare the environmental performance of traditional and optimized LIB designs, consider the following data
visualization:

As shown in Fig. 15, the radar chart illustrates the environmental impact comparison across key categories
for different LIB designs, highlighting relative performance in areas like GWP and resource depletion.

Resource Depletion, another critical environmental factor, shows a substantial improvement in optimized
designs. According to Table 18, the score for optimized designs is 65 kg Sb eq, compared to 85 kg Sb eq for
traditional designs, marking a 23.5% reduction. This improvement suggests that optimized designs are more
efficient in their use of scarce resources. The environmental impact assessment reveals consistent improvements
across all categories. Global warming potential decreased by 20% (from 100 to 80 kg CO2 eq), representing
the most significant absolute reduction. Resource depletion showed the highest relative improvement at 23.5%
(from 85 to 65 kg Sb eq), followed by toxicity reduction at 21.4% (from 70 to 55 CTUh). Water usage and
energy consumption demonstrated more moderate improvements at 16.7% each (60 to 50 m® and 90 to 75 MJ
respectively).

This environmental impact assessment demonstrates that optimized LIB designs generally outperform
traditional designs across various ecological indicators. The most significant improvements are observed in
resource depletion and toxicity categories, likely due to more efficient material use and selection of less harmful
components. These findings underscore the importance of integrating environmental considerations into battery
design and highlight the potential for technological innovations to mitigate the ecological footprint of energy
storage solutions.

Assessment of recovery efficiency improvement potential

The assessment of recycling efficiency improvement potential for lithium-ion batteries (LIBs) is crucial
for advancing sustainable energy storage solutions. This evaluation encompasses technical, economic, and
environmental aspects of the recycling process. The overall recycling efficiency (ORE) can be expressed as:

n

> wi-my - pi
ORE = =L
Zwi m;
=1

Where w; is the economic weight of material i, m; is the mass of material i in the battery, and p; is the recovery
rate of material i. The improvement potential (IP) for each material can be calculated as:

I-Pz = (pi,maz - pi,cu'rrent) s Wi - My

Where pi maz is the theoretical maximum recovery rate for material i, and p;,current is the current recovery
rate. The total improvement potential is the sum of individual material potentials:

n
[P = Y _IP;
i=1

As shown in Fig. 16, the bar graph displays recycling efficiency improvement potential for various materials in
LIBs, indicating current recovery rates and maximum achievable rates.

Table 19 offers a breakdown of the current recovery rates, maximum achievable recovery rates, economic
weights, and improvement potentials for six critical materials used in LIBs. The data in Table 19 reveals
significant variations in recycling efficiency and improvement potential across these materials. Analysis of the
recovery efficiency data reveals varying improvement potentials across different materials. Lithium shows the
highest absolute improvement potential of 0.15 (from 0.80 to 0.95), followed by cobalt and manganese at 0.10
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Fig. 15. Environmental impact comparison of LIB designs.
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Resource Depletion (kg Sbeq) | 85 65 23.5%
Toxicity (CTUh) 70 55 21.4%
Water Usage (m*) 60 50 16.7%
Energy Consumption (M]) 90 75 16.7%

Table 18. Environmental impact scores for traditional and optimized LIB designs.
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Fig. 16. Recycling efficiency improvement potential by material.

Lithium 0.80 0.95 1.0 0.15
Cobalt 0.85 0.98 0.8 0.10
Nickel 0.90 0.99 0.7 0.06
Manganese | 0.75 0.95 0.5 0.10
Copper 0.95 0.99 0.6 0.02
Aluminum | 0.90 0.98 0.4 0.03

Table 19. Recycling efficiency improvement potential analysis.

each. Despite having the highest current recovery rate (0.95), copper shows limited improvement potential
(0.02), suggesting that current recovery technologies for copper are approaching theoretical maximums. When
weighted by economic importance, lithium (weight: 1.0) and cobalt (weight: 0.8) emerge as priority materials for
recovery process optimization.

This analysis reveals significant potential for improving recycling efficiency across various materials in LIBs.
Lithium and cobalt show the highest improvement potential, likely due to their high economic value and current
technological limitations in recovery processes. The assessment underscores the importance of focusing research
and development efforts on these high-potential materials to enhance overall recycling efficiency and economic
viability of LIB recycling operations.
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Results and discussions

Main research findings

The comprehensive analysis of lithium-ion battery (LIB) recycling efficiency has yielded several significant
findings.

Firstly, the structural equation modeling (SEM) results reveal a strong positive relationship between optimized
battery design characteristics and overall recycling performance, mediated by recycling process efficiency. The
standardized path coefficient from design characteristics to recycling process efficiency (y11=0.68, p<0.001)
and from recycling process efficiency to overall recycling performance (p21=0.72, p<0.001) underscore the
critical role of design in facilitating efficient recycling processes.

Secondly, the multi-group analysis comparing traditional, cell-to-pack (CTP), and cell-to-body (CTB)
designs demonstrates significant variations in recycling efficiency across battery types. CTP and CTB designs
show higher recycling process efficiency (RPECTP=0.75, RPECTB=0.79) compared to traditional designs
(RPETraditional = 0.62), primarily due to their simplified structures and improved material separability.

Thirdly, the life cycle cost analysis reveals that while optimized designs may have higher initial production
costs (Coptimized=120/kWh vs. Ctraditional=100/kWh), they result in lower total life cycle costs
(LCCoptimized = 185/kWh vs. LCCtraditional =200/kWh) due to reduced operational and recycling expenses,
as well as increased material recovery value.

Lastly, the environmental impact assessment shows that optimized LIB designs consistently outperform
traditional designs across various ecological indicators, with the most significant improvements observed in
resource depletion (23.5% reduction) and toxicity (21.4% reduction) categories. These findings collectively
emphasize the interconnectedness of battery design, recycling efficiency, economic viability, and environmental
sustainability in the LIB lifecycle.

Theoretical contributions

This research makes several significant theoretical contributions to the field of lithium-ion battery (LIB) recycling
and sustainable product design. Firstly, it extends the Theory of Design for Recycling (DfR) by providing
empirical evidence of the direct and indirect effects of design characteristics on recycling efficiency and overall
performance. The structural equation model developed in this study offers a novel framework for quantifying
these relationships, bridging the gap between theoretical DfR principles and measurable recycling outcomes.

Secondly, the research contributes to the evolving field of circular economy by demonstrating how product
design can significantly influence the closure of material loops in the LIB industry. By integrating life cycle
assessment (LCA) with economic analysis, this study provides a more holistic understanding of the circular
economy concept, highlighting the synergies and trade-offs between environmental and economic factors in
battery recycling.

Thirdly, the multi-group analysis of different battery designs (traditional, CTP, CTB) advances the theoretical
understanding of how technological innovations in product architecture can impact end-of-life management.
This comparative approach offers insights into the differential effects of design choices on recycling processes,
contributing to the broader theory of sustainable innovation in the energy storage sector.

Lastly, the development and application of novel metrics such as the Structural Complexity Index (SCI) and
Material Diversity Index (MDI) contribute to the methodological toolkit for assessing product recyclability.
These indices provide a quantitative basis for comparing different designs, potentially applicable beyond the LIB
industry to other complex product systems.

Practical implications

The findings of this research have several important practical implications for the lithium-ion battery (LIB)
industry, policymakers, and recycling operators. Firstly, battery manufacturers should prioritize recyclability in
their design processes. The study demonstrates that optimized designs, while potentially more costly upfront,
lead to significant economic and environmental benefits over the battery’s lifecycle. Implementing design
strategies that reduce structural complexity and material diversity can substantially improve recycling efficiency
and reduce end-of-life management costs.

Secondly, recycling operators can use the insights from this study to optimize their processes for different
battery types. The multi-group analysis highlights the need for tailored recycling approaches for traditional,
CTP, and CTB designs. Investing in flexible recycling technologies that can efficiently handle various battery
architectures will be crucial for maximizing material recovery and economic returns.

Thirdly, policymakers should consider incentivizing the adoption of recyclable battery designs. The life cycle
cost analysis provides a strong economic argument for such policies. Regulations that require manufacturers to
internalize end-of-life costs or meet specific recyclability standards could drive innovation in battery design and
recycling technologies.

Lastly, the environmental impact assessment underscores the importance of a holistic approach to
sustainability in the LIB industry. Stakeholders should consider not only the performance and cost of batteries
during their use phase but also their entire lifecycle environmental footprint. This may involve developing
standardized eco-design guidelines for LIBs and incorporating recyclability ratings into product labeling and
procurement decisions.

Research limitations

While this study provides valuable insights into the relationship between lithium-ion battery (LIB) design and
recycling efficiency, several limitations should be acknowledged. Firstly, the research primarily focused on
current LIB technologies and recycling processes. The rapid pace of innovation in the battery industry means
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that new designs and materials may emerge, potentially altering the relationships identified in this study. Future
research should continuously update the model to account for technological advancements.

Secondly, the data used in this study was collected from a limited number of battery manufacturers and
recycling facilities. While efforts were made to ensure representativeness, the findings may not fully capture the
diversity of practices across the global LIB industry. Expanding the sample size and geographical scope in future
studies could enhance the generalizability of the results.

Thirdly, the life cycle cost analysis and environmental impact assessment relied on several assumptions and
simplifications due to data availability constraints. Factors such as regional variations in energy costs, labor rates,
and environmental regulations were not fully accounted for. More granular data and region-specific analyses
could provide more accurate assessments of economic and environmental impacts.

Lastly, the study focused primarily on the technical and economic aspects of recycling efficiency. Social
factors, such as consumer behavior, public perception of recycled materials, and labor conditions in recycling
facilities, were not extensively explored. Integrating these social dimensions into future research could provide a
more comprehensive understanding of the challenges and opportunities in LIB recycling.

Despite these limitations, the study provides a robust foundation for understanding the complex relationships
between LIB design and recycling efficiency. Future research can build upon this work by addressing these
limitations and exploring additional factors that influence the sustainability of the LIB lifecycle.

Conclusion

The comprehensive analysis of lithium-ion battery (LIB) recycling efficiency reveals the critical importance of
integrating recyclability considerations into battery design. This study demonstrates that optimized LIB designs,
characterized by reduced structural complexity and improved material separability, significantly enhance
recycling efficiency, economic viability, and environmental sustainability throughout the battery lifecycle. The
structural equation modeling results underscore the strong positive relationship between design characteristics
and overall recycling performance, mediated by process efficiency. Multi-group analysis highlights the superior
recyclability of cell-to-pack (CTP) and cell-to-body (CTB) designs compared to traditional configurations,
emphasizing the potential for innovative architectures to revolutionize end-of-life management.

Life cycle cost analysis reveals that while optimized designs may incur higher initial production costs,
they ultimately result in lower total lifecycle expenses due to reduced operational and recycling costs, as well
as increased material recovery value. Environmental impact assessments further corroborate the benefits of
optimized designs, showing consistent improvements across various ecological indicators, particularly in
resource depletion and toxicity reduction.

These findings have significant implications for battery manufacturers, recycling operators, and policymakers.
They underscore the need for a paradigm shift towards design for recyclability in the LIB industry, supported
by flexible recycling technologies and policy frameworks that incentivize sustainable design practices. While
acknowledging limitations in data scope and the rapid pace of technological change, this research provides a
robust foundation for future studies and practical initiatives aimed at enhancing the circularity and sustainability
of the energy storage sector. Ultimately, the study highlights the interconnectedness of design, efficiency,
economics, and environmental stewardship in addressing the challenges of LIB recycling and advancing towards
a more sustainable energy future.

Data availability

The data utilized in this study were collected from various sources, including literature review, surveys, expert
interviews, and case studies. All data were rigorously vetted for accuracy and representativeness. Survey data
were gathered from lithium-ion battery (LIB) industry stakeholders via online questionnaires, and expert in-
terviews provided additional insights. Data were anonymized and used solely for research purposes, following
all relevant privacy and data protection regulations. For data access requests, please contact Yongxun Yang at
yxyangl8@mails.jlu.edu.cn.
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