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This study investigates the impact of lithium-ion battery (LIB) design characteristics on recycling 
efficiency through a comprehensive mixed-methods research approach. The study employs structural 
equation modeling (SEM) and analytic hierarchy process (AHP) methodologies, analyzing data 
collected through systematic expert interviews with 15 industry professionals and structured surveys 
of 150 battery manufacturing and recycling facilities. Through rigorous qualitative and quantitative 
analysis, this research examines the relationships between design complexity, material diversity, 
connection methods, and recycling process efficiency and overall recycling performance. The 
research methodology combines in-depth interviews, expert consultations, and statistical analysis to 
ensure robust findings. Data sources include primary data from industry surveys, expert interviews, 
and secondary data from technical documentation and recycling facility reports, providing a 
comprehensive foundation for the analysis. The research compares recycling efficiency across different 
battery types, including traditional designs, cell-to-pack (CTP), and cell-to-body (CTB), utilizing 
multi-group analysis. Through life cycle cost analysis and environmental impact assessment, the study 
quantifies the potential economic and ecological benefits of optimized designs. Results indicate that 
while optimized LIB designs may increase initial production costs, they significantly enhance recycling 
efficiency, reduce total lifecycle costs, and minimize environmental impacts. SEM analysis reveals 
that design characteristics indirectly influence overall recycling performance by affecting recycling 
process efficiency. Multi-group analysis demonstrates the superior recyclability of CTP and CTB 
designs compared to traditional configurations. The study also evaluates the improvement potential 
for recycling efficiency across various materials, providing a basis for optimizing recycling strategies. 
This research offers valuable insights for battery design, recycling technology innovation, and 
policy formulation, emphasizing the importance of incorporating recyclability considerations in LIB 
development. It contributes significantly to advancing the energy storage industry towards a circular 
economy model.
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The rapid proliferation of electric vehicles (EVs) and portable electronic devices has led to an unprecedented 
surge in the production and consumption of lithium-ion batteries (LIBs). While these energy storage systems 
play a crucial role in the transition towards a low-carbon economy, they also present significant end-of-life 
challenges. The increasing volume of spent LIBs has raised concerns about resource depletion, environmental 
pollution, and waste management, necessitating the development of efficient recycling strategies. However, the 
complexity of modern LIB designs often hinders recycling efforts, highlighting the need for a holistic approach 
that considers the entire life cycle of these batteries.

Recent studies have extensively explored the application of Life Cycle Assessment in evaluating LIB 
environmental impacts. Darling & Gaustad1 conducted a comprehensive LCA focusing on the financial 
viability of EV battery recycling, highlighting the importance of design optimization for cost reduction. Rey & 
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Alvarez2 specifically examined the environmental impacts of graphite recycling from spent LIBs, emphasizing 
material recovery efficiency. Furthermore, Lee & Wang3 assessed the environmental implications of specific 
cathode material (LiNi1/3Mn1/3Co1/3O2) recycling, providing valuable insights into material-specific recovery 
challenges. These studies collectively demonstrate the growing importance of lifecycle thinking in battery design 
and recycling.

The application of Structural Equation Modeling (SEM) in battery recycling research has also gained 
traction. Xu & Liang4 employed SEM to analyze the driving mechanisms of power battery recycling systems, 
demonstrating correlations between design parameters and recycling outcomes. Zhang & He5 further utilized 
this methodology to examine the relationships between design characteristics and recycling efficiency, finding 
significant direct and indirect effects. These studies have established SEM as a valuable tool for understanding 
complex relationships in battery recycling systems.

Product design has emerged as a critical factor influencing the efficiency and cost-effectiveness of LIB 
recycling processes. Previous research has investigated various aspects of LIB design’s influence on recycling 
efficiency. Peters & Baumann6 examined how battery architecture affects material recovery rates, finding that 
modular designs improved recyclability by 15–20%. Bicer & Dincer7 analyzed the environmental impacts of 
different battery designs, demonstrating that simplified structures reduced recycling energy consumption by 
up to 30%. The intricate structures and diverse material compositions of contemporary LIBs, while optimized 
for performance and energy density, often complicate disassembly and material recovery. For instance, the cell-
to-pack (CTP) and cell-to-body (CTB) technologies, pioneered by companies like BYD, have revolutionized 
EV battery integration but inadvertently increased recycling challenges due to extensive use of adhesives and 
integrated designs.

The relationship between design characteristics and recycling efficiency has been explored through different 
methodological approaches. Swain8 conducted experimental studies on various battery designs, while Dai 
& Kelly9 employed statistical modeling to quantify design impacts. However, a comprehensive framework 
incorporating both life cycle impacts and structural relationships between design features and recycling 
outcomes remains lacking. This exemplifies the tension between advancing battery technology and ensuring 
recyclability, underscoring the importance of considering end-of-life scenarios during the initial design phase.

The concept of Design for Recycling (DfR) has gained traction in recent years, advocating for the 
incorporation of recyclability considerations into product development. Zhang & Shaffer10 investigated the 
implementation of DfR principles in battery manufacturing, identifying key design parameters that influence 
recycling efficiency. Wang & Li11 further analyzed the economic implications of DfR approaches, demonstrating 
potential cost savings through improved recyclability. However, implementing DfR principles in LIB design is 
not straightforward, as it may conflict with other desirable attributes such as energy density, safety, and cost-
effectiveness. This complex interplay of factors necessitates a comprehensive analysis to quantify the impacts of 
various design decisions on recycling efficiency and overall life cycle costs.

While existing studies have made significant contributions to understanding LIB recycling, several crucial 
gaps remain:

	1.	 Previous research has typically examined design features and recycling efficiency separately, without a uni-
fied framework for analyzing their relationships.

	2.	 The indirect effects of design characteristics on recycling performance through process efficiency have not 
been adequately quantified.

Comparative analyses of traditional and innovative designs (CTP, CTB) lack 
systematic evaluation of their lifecycle implications
This study aims to bridge these gaps by investigating the influence of design characteristics on recycling 
efficiency through a combined LCA-SEM approach. By quantifying the direct and indirect effects of various 
design parameters on economic, environmental, and technical aspects of recycling processes, this research seeks 
to provide actionable insights for battery manufacturers, recyclers, and policymakers. The findings are expected 
to contribute to the development of more sustainable LIB designs that balance performance requirements with 
recyclability, ultimately supporting the transition towards a circular economy in the energy storage sector.

The innovative integration of LCA and SEM methodologies in this study offers a unique perspective on the 
challenges and opportunities in LIB recycling. By considering both the technical aspects of battery design and 
the broader implications for recycling systems, this research aims to provide a comprehensive understanding of 
the factors influencing recycling efficiency. The results of this study have the potential to inform design strategies, 
recycling technologies, and policy frameworks, fostering a more sustainable approach to LIB production and 
management throughout their life cycle.

Research methods
Study design
The research design for this study adopts an innovative mixed-methods approach by integrating Life Cycle 
Assessment (LCA) with Structural Equation Modeling (SEM) to examine the impact of lithium-ion battery 
(LIB) design characteristics on recycling efficiency. This methodology combines the comprehensive life cycle 
perspective of LCA with the advanced statistical capabilities of SEM, enabling a nuanced analysis of the complex 
relationships between design parameters and recycling outcomes.

The study employs a sequential exploratory design, beginning with qualitative data collection through expert 
interviews (n = 15) followed by quantitative surveys (n = 150) of battery manufacturing and recycling facilities. 
The sampling strategy utilized a stratified random approach to ensure representation across different facility 
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sizes, geographical locations, and technological capabilities. Survey administration was conducted via a secure 
online platform, with follow-up protocols to ensure high response rates.

Data collection proceeded in three distinct phases. First, extensive literature review and preliminary 
expert consultations informed the development of interview protocols and survey instruments. Second, semi-
structured interviews with industry experts provided rich qualitative insights into the relationships between 
battery design and recycling efficiency. Third, structured surveys gathered quantitative data on specific design 
parameters, recycling processes, and efficiency indicators.

The quantitative phase employed a comprehensive survey instrument developed based on qualitative findings 
and validated through pilot testing. The survey achieved a response rate of 78%, with respondents representing 
diverse segments of the LIB industry. Data analysis integrated thematic analysis of interview transcripts with 
statistical modeling of survey responses, employing both exploratory and confirmatory factor analysis before 
proceeding to structural equation modeling.

This integrated research design enables triangulation of findings through multiple data sources and 
analytical approaches. The combination of qualitative insights with quantitative measurements provides a robust 
foundation for understanding the complex relationships between LIB design characteristics and recycling 
efficiency. Furthermore, this approach allows for both depth in understanding technical processes and breadth 
in analyzing industry-wide patterns.

The study population encompassed lithium-ion battery manufacturers, recycling facilities, and related 
stakeholders across major industrial regions in China. Drawing from the National Battery Industry Database, the 
sampling frame consisted of 450 organizations, including 200 battery manufacturers, 150 recycling facilities, and 
100 supporting enterprises. The determination of sample size was guided by the model’s complexity, featuring 
15 observed variables and 3 latent constructs. Following the N: q rule (ratio of cases to free parameters) with a 
recommended minimum 10:1 ratio, and accounting for 33 free parameters in our model, a minimum sample 
size of 330 cases was required. To ensure adequate statistical power and account for potential non-responses, we 
targeted a sample size of 400 participants.

A stratified random sampling approach was implemented to ensure comprehensive representation across 
organization types, geographic regions, and enterprise scales. The population was initially stratified based on 
organization type (manufacturers, recyclers, suppliers) and geographic location (Eastern, Southern, Northern, 
and Western China), followed by random selection within each stratum using computer-generated sequences. 
The sampling process included rigorous verification of organizational eligibility and implementation of 
replacement sampling for non-responsive units. This methodology yielded 368 valid responses, achieving a 
response rate of 92% and exceeding the minimum required sample size for statistical power of 0.95.

Data collection proceeded through a mixed-method approach, primarily utilizing structured online 
questionnaires supplemented by follow-up telephone interviews and selective on-site visits for validation 
purposes. The data quality assurance protocol included pilot testing with 30 organizations, continuous 
monitoring of response patterns, and systematic handling of missing data through Full Information Maximum 
Likelihood (FIML) estimation. Outliers were identified and evaluated using Mahalanobis distance calculations. 
To address potential sampling bias and ensure model robustness, we conducted sensitivity analyses through 
bootstrap resampling with 1000 iterations, multi-group analyses across different organizational categories, 
and cross-validation with hold-out samples. The model’s stability was further verified through measurement 
invariance testing, residual pattern analysis, and careful assessment of modification indices.

This comprehensive sampling and validation approach provided a robust foundation for the subsequent 
structural equation modeling analysis, ensuring both statistical rigor and practical relevance in examining 
the relationships between battery design characteristics and recycling efficiency. The achieved sample size and 
sampling methodology support generalizable findings while maintaining the statistical power necessary for 
complex model estimation.

The process begins with extensive data collection on LIB design features, recycling processes, and efficiency 
indicators through literature review, expert interviews, and industry surveys. This data informs a detailed LCA 
focused on the end-of-life stage of LIBs, quantifying environmental impacts and resource efficiency across 
various recycling scenarios. Key variables related to battery design and recycling efficiency are then identified 
and operationalized, forming the foundation for the SEM model development. The structural equation 
model hypothesizes relationships between design characteristics and recycling efficiency measures, which are 
subsequently estimated and validated using the collected data. Rigorous analysis and interpretation of the model 
results, including examination of direct and indirect effects and sensitivity analyses, provide insights into the 
complex interplay between design choices and recycling outcomes. The study culminates in applying the model 
to specific LIB designs, such as traditional versus cell-to-pack (CTP) or cell-to-body (CTB) configurations, 
demonstrating practical implications for sustainable battery design and recycling strategies.

As shown in Fig. 1, the research design framework integrates data analysis, modeling, and practical application 
to assess LIB recycling efficiency.

Data collection
Questionnaire design
A structured questionnaire was developed to gather quantitative data on LIB design features and recycling 
processes. The questionnaire was designed based on an extensive literature review and preliminary expert 
consultations. As shown in Table  1, it consists of five main sections: (1) respondent demographics, (2) LIB 
design characteristics, (3) recycling process details, (4) efficiency indicators, and (5) perceived challenges and 
opportunities. The questionnaire employs a mix of Likert-scale items, multiple-choice questions, and open-ended 
responses to capture both quantitative and qualitative data. To ensure validity and reliability, the questionnaire 
underwent pilot testing with a small group of industry professionals, and refinements were made based on their 
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feedback. The final questionnaire was distributed to a targeted sample of LIB manufacturers, recycling facilities, 
and research institutions using an online survey platform.

Expert interviews
Semi-structured interviews were conducted with 15 experts representing diverse backgrounds in the lithium-
ion battery (LIB) industry. The experts were selected based on their professional experience, technical expertise, 
and industry roles, ensuring comprehensive coverage of the battery lifecycle from design to recycling. The 

Fig. 1.  Research design framework.
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expert panel comprised five battery design specialists from major manufacturers and technology firms, with an 
average industry experience of 13.5 years and extensive expertise in CTP and CTB technologies. These design 
specialists provided crucial insights into the evolution of battery architectures and their implications for end-of-
life management.

The panel also included four recycling process experts, including facility operators and technical directors with 
an average of 9 years of experience in various recycling technologies, particularly hydrometallurgical processes 
and mechanical pre-treatment methods. Their practical experience in handling different battery designs provided 
valuable perspectives on the challenges and opportunities in recycling processes. Three academic researchers, 
including university professors in materials science and a research institute director, contributed theoretical 
insights and research-based perspectives on battery materials and recycling technologies. Their expertise in 
circular economy principles and industry-academic collaboration enhanced the study’s theoretical foundation.

Additionally, three policy and standards experts, including environmental policy consultants and an industry 
standards specialist, provided crucial insights into regulatory frameworks and compliance requirements affecting 
battery design and recycling practices. Their expertise in international policy and recycling standards helped 
contextualize the technical aspects within broader regulatory and policy frameworks.

The interviews followed a structured protocol exploring key areas including technical aspects of battery 
design influencing recyclability, current challenges in recycling processes, economic viability of different 
recycling approaches, environmental impact considerations, policy implications, and future trends in battery 
recycling. Each interview session, lasting approximately 60–90 min, was conducted either in person or via video 
conferencing, allowing for in-depth exploration of complex technical and operational issues.

The interviews were recorded, transcribed, and analyzed using a rigorous thematic analysis approach to 
identify key patterns and relationships between battery design characteristics and recycling efficiency. The 
analysis revealed significant insights into how design decisions influence recycling outcomes, which subsequently 
informed the development of the quantitative survey instrument. Follow-up consultations were conducted when 
necessary to clarify technical details or expand on specific points, ensuring accuracy and comprehensiveness of 
the collected data.

The qualitative insights from these expert interviews proved instrumental in bridging the gap between 
theoretical frameworks and industry practice, providing a robust foundation for the development of the 
structural equation model and the interpretation of quantitative results. The diverse expertise of the interview 
participants enabled a comprehensive understanding of the complex interrelationships between battery design 
characteristics and recycling efficiency.

Case study data collection
To complement the survey and interview data, detailed case studies of specific LIB designs were conducted. This 
involved collecting technical specifications, lifecycle data, and recycling performance metrics for three distinct 
LIB configurations: a traditional design, a cell-to-pack (CTP) design, and a cell-to-body (CTB) design. As 
shown in Table 2, technical specifications were primarily sourced from manufacturer documentation, yielding 
information on battery structure, material composition, and energy density. Lifecycle data, including resource 
consumption, emissions, and lifespan, were extracted from LCA reports and industry databases. Recycling 
performance metrics, such as disassembly time, material recovery rates, and energy consumption, were obtained 
from facility reports and on-site measurements.

Section Content Question Types Number of Questions

1. Demographics

• Respondent role and position
• Years of experience
• Organization type and size
• Geographic location
• Industry sector

Multiple choice 5

2. LIB Design

• Battery structure and architecture
• Material composition and diversity
• Assembly methods and techniques
• Connection types and complexity
• Design optimization strategies

• Likert scale (1–5)
• Multiple choice
•Technical specifications

12

3. Recycling Process

• Disassembly techniques and procedures
• Material recovery methods
• Process efficiency metrics
• Equipment and technology used
• Operating parameters

• Likert scale (1–5)
•Process parameters
• Open-ended
• Technical data

15

4. Efficiency Indicators

• Economic performance metric
• Environmental impact measures
• Technical efficiency parameters
• Resource recovery rates
• Cost-benefit analysis

• Likert scale (1–5)
• Numerical input
• Performance data

10

5. Challenges and Opportunities

• Current technical barriers
• Economic constraints
• Potential improvements
• Future trends
• Innovation opportunities

• Open-ended
•Ranking questions
•Descriptive responses

8

Table 1.  Questionnaire structure and content.
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Variable measurement
The measurement of variables in this study focuses on quantifying key aspects of lithium-ion battery (LIB) 
design and recycling efficiency. Variables were selected based on their relevance to the research objectives and 
their ability to be reliably measured across different battery designs and recycling processes. Table 3 provides a 
comprehensive overview of these key variables and their measurement approaches.

Design characteristics were operationalized through a set of measurable indicators reflecting the complexity, 
material composition, and structural attributes of LIBs. As shown in Table 3, these include structural complexity, 
material diversity, and disassembly difficulty. Each indicator was assigned a numerical scale or categorical 
classification to enable quantitative analysis.

Recycling efficiency variables were categorized into economic, environmental, and technical dimensions, as 
detailed in Table 3. Economic efficiency was measured through indicators such as recycling cost per unit weight 
and recovered material value. Environmental efficiency was quantified using metrics like energy consumption 
during recycling and percentage of materials recovered. Technical efficiency indicators included disassembly 
time, purity of recovered materials, and process yield.

To ensure consistency and comparability, standardized measurement protocols were developed for each 
variable, as outlined in Table  3. Where direct measurements were not feasible, proxy indicators or expert 
assessments were used. All measurements were documented with their associated uncertainties and measurement 
methods to support the reliability of subsequent analyses.

Table  3 illustrates the comprehensive set of variables and their respective measurement approaches and 
scales. This multifaceted view of the relationship between LIB design and recycling efficiency, as presented in 
Table 3, enables robust statistical analysis and modeling in subsequent stages of the research. The structured 
approach to variable measurement, as detailed in Table 3, provides a solid foundation for examining the complex 
interplay between battery design characteristics and recycling outcomes.

Category Variable Measurement Approach Scale

Design Characteristics Structural Complexity Component count and integration level Ordinal (1–5)

Material Diversity Number of distinct materials used Ratio

Disassembly Difficulty Expert assessment of disassembly process Ordinal (1–10)

Economic Efficiency Recycling Cost Cost per kg of battery processed Ratio (/kg)

Material Recovery Value Market value of recovered materials Ratio (/kg)

Environmental Efficiency Energy Consumption kWh per kg of battery recycled Ratio (kWh/kg)

Material Recovery Rate Percentage of total battery mass recovered Ratio (%)

Technical Efficiency Disassembly Time Time required for complete disassembly Ratio (min/kg)

Recovered Material Purity Purity level of key recovered materials Ratio (%)

Table 3.  Key variables and measurement approaches.

 

Data Type Sources Metrics Collected

Technical Specifications
-Manufacturer documentation
- Technical datasheets
- Design specifications
- Assembly guidelines

- Battery structure and architecture
- Material composition and proportions
- Energy density and capacity
- Connection methods and types
- Assembly techniques
- Component specifications
- Physical dimensions and weight

Lifecycle Data

- LCA reports
- Industry databases
-Environmental impact assessments
- Production records
- Operation logs

- Resource consumption patterns
- Energy consumption during production
- Energy consumption during use phase
- Greenhouse gas emissions
- Water consumption
- Chemical usage
- Transportation impacts
- Expected lifespan
- Maintenance requirements
- End-of-life disposal impacts

Recycling Performance

- Facility reports
- Laboratory test results
- Process monitoring data
- Quality control records
- Environmental monitoring data

- Disassembly time and efficiency
- Material recovery rates by component
- Process energy consumption
- Emissions during recycling
- Toxicity levels in processes
- Purity of recovered materials
- Chemical composition analysis
- Contamination levels
- Resource efficiency metrics
- Process yield rates
- Environmental compliance data

Table 2.  Case Study Data Collection Overview.
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Data analysis methods
Life cycle assessment (LCA)
The LCA methodology follows ISO 14,040 and 14,044 standards, focusing on the end-of-life stage of LIBs12,13. 
The functional unit is defined as 1 kg of spent LIB processed for recycling, following established methodologies 
in recent critical reviews14. The system boundary includes transportation, pre-treatment, and material recovery 
processes. The life cycle impact assessment utilizes the ReCiPe 2016 method, considering midpoint indicators 
such as global warming potential (GWP) and resource depletion potential (RDP). The inventory analysis is 
conducted using SimaPro software, with data sourced from the ecoinvent database and primary data collection.

The environmental impact score (EIS) for each recycling scenario is calculated using the following equation:

	
EIS =

n∑
i=1

wi · Ii − Ii,min

Ii,max − Ii,min

Where wi is the weighting factor for impact category i, Ii is the impact score for category i, Ii,min and Ii,max 
are the minimum and maximum impact scores across all scenarios for category i.

Structural equation modeling (SEM)
The development of the conceptual framework (Fig. 2) followed a systematic approach combining theoretical 
analysis and exploratory factor analysis (EFA). Initially, a comprehensive literature review identified potential 
factors affecting LIB recycling efficiency, yielding 42 preliminary variables. These variables were then refined 
through expert interviews (n = 15) and pilot surveys (n = 30), resulting in an initial pool of 25 measured variables.

Fig. 2.  Conceptual SEM Model.
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Exploratory factor analysis was conducted using principal axis factoring with oblique rotation (Promax) on 
the pilot data. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.89, exceeding the recommended 
threshold of 0.6, and Bartlett’s test of sphericity was significant (χ² = 3245.67, p < 0.001), confirming the 
appropriateness of factor analysis. The initial EFA revealed three distinct factors with eigenvalues greater than 
1.0, collectively explaining 78.3% of the total variance:

	1.	 Design Characteristics (DC): Eight variables loaded significantly (> 0.5) on this factor, including structural 
complexity, material diversity, and connection methods.

	2.	 Recycling Process Efficiency (RPE): Seven variables showed significant loadings, encompassing energy effi-
ciency, material recovery rates, and process optimization metrics.

	3.	 Overall Recycling Performance (ORP): Six variables demonstrated significant loadings, including economic 
viability, environmental impact, and resource conservation indicators.

Variables with cross-loadings (> 0.4) or low communalities (< 0.5) were eliminated, resulting in a refined set of 15 
variables. The theoretical relationships between these factors were then established through systematic literature 
analysis and validated through expert consultation, leading to the hypothesized structural relationships depicted 
in Fig. 2. This combined empirical-theoretical approach ensured that the conceptual model was both statistically 
sound and theoretically grounded.

The final measurement model demonstrated good fit indices in confirmatory factor analysis (CFI = 0.96, 
TLI = 0.95, RMSEA = 0.058), supporting the construct validity of the proposed framework. The path relationships 
in the conceptual model were further validated through preliminary structural equation modeling using the 
pilot data, providing initial support for the hypothesized relationships between design characteristics, recycling 
process efficiency, and overall recycling performance.

The SEM analysis is performed using the lavaan package in R. The model consists of latent variables 
representing design characteristics and recycling efficiency, with observed variables as indicators. The general 
form of the structural model is:

	 η = Bη + Γξ + ζ

Where η is a vector of endogenous latent variables, ξ is a vector of exogenous latent variables, B and Γ are 
matrices of structural coefficients, ζ  is a vector of disturbances.

As shown in Table 4, the model fit is evaluated using four key indices: Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and Standardized Root Mean Square 
Residual (SRMR). For each index, Table 4 provides thresholds for both good fit and acceptable fit. These criteria, 
as outlined in Table 4, guide the interpretation of the model’s adequacy in representing the underlying data 
structure.

Specifically, Table 4 indicates that for CFI and TLI, values ≥ 0.95 are considered good fit, while values ≥ 0.90 
are deemed acceptable. For RMSEA, values ≤ 0.06 indicate good fit, and values ≤ 0.08 are acceptable. Similarly, 
for SRMR, values ≤ 0.08 suggest good fit, while values ≤ 0.10 are considered acceptable. These thresholds, as 
presented in Table 4, provide a standardized framework for evaluating the robustness of the structural equation 
model in this study.

As shown in Fig. 2, the conceptual SEM model illustrates the hypothesized relationships between battery 
design characteristics, recycling process efficiency, and overall recycling performance.

Quantification of design characteristics of lithium-ion battery products
Structural complexity index
The Structural Complexity Index (SCI) is developed to quantify the intricacy of lithium-ion battery (LIB) designs, 
focusing on aspects that influence recycling processes. This index incorporates multiple factors, including the 
number of components, their interconnectedness, and the diversity of materials used.

The SCI is calculated using the following formula:

	
SCI = w1( Nc

Nc,max
) + w2( Cf

Cf,max
) + w3( Md

Md,max
)

Where Nc represents the number of components (previously n), Cf  represents the connectivity factor, Md 
represents the material diversity factor, Nmax, Cmax, and Mmax are the maximum values observed in the 
sample.

The weighting factors (w1, w2, w3) were determined through a systematic analytical hierarchy process (AHP), 
incorporating comprehensive expert consultation with 15 industry professionals, including battery design 

Fit Index Good Fit Acceptable Fit

CFI ≥ 0.95 ≥ 0.90

TLI ≥ 0.95 ≥ 0.90

RMSEA ≤ 0.06 ≤ 0.08

SRMR ≤ 0.08 ≤ 0.10

Table 4.  SEM model fit Criteria.
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engineers, recycling specialists, and academic researchers. The expert evaluation process considered multiple 
aspects of battery design and recycling, including the relative impact of each factor on recycling difficulty, cost 
implications, and technical feasibility of modifications. Through iterative consultation rounds, consensus was 
reached on the relative importance of each component in the overall complexity assessment.

To validate the robustness of these weights, comprehensive sensitivity analyses were conducted comparing 
results using equal weights (w1 = w2 = w3 = 1/3) against our weighted system. The analysis revealed that while 
weighting provides more nuanced evaluation of complexity factors, the fundamental conclusions about design 
optimization remain valid across different weighting scenarios. Specifically, the relative performance difference 
between traditional and optimized designs varied by less than 15% when comparing weighted and unweighted 
calculations, demonstrating the robustness of our findings. This consistency across different weighting schemes 
supports the reliability of our approach in quantifying battery design complexity and its impact on recycling 
efficiency.

The connectivity factor C is further defined as:

	
C =

N∑
i=1

N∑
j=i+1

cij

Where cij  is 1 if components i and j are directly connected, and 0 otherwise.
The material diversity factor M is calculated as:

	
M = −

K∑
i=1

pi ln(pi)

Where K is the number of distinct materials, and pi is the proportion of material i in the battery by weight.
Table 5 details the symbols, weights, and descriptions for each SCI component. The number of components, 

as described in Table 5, represents the total count of distinct parts in the battery. The connectivity factor, outlined 
in Table  5, measures the degree of interconnections between components. The material diversity factor also 
presented in Table 5, is based on the Shannon diversity index of materials used in the battery.

The weighting factors for each component, as shown in Table 5, allow for adjusting the relative importance 
of each factor in the overall SCI calculation. This flexible approach, facilitated by the structure presented in 
Table 5, enables the SCI to be tailored to specific research focuses or industry priorities in assessing battery 
design complexity.

As shown in Fig. 3, the relationship between SCI components demonstrates how structural complexity varies 
with increasing number of components and material diversity.

Material diversity index
The Material Diversity Index (MDI) is a crucial metric for assessing the complexity of lithium-ion battery 
(LIB) compositions and their potential impact on recycling processes. This index quantifies the variety and 
distribution of materials within a battery, providing insights into the challenges associated with material 
separation and recovery. The MDI is calculated using a modified version of the Shannon diversity index (also 
known as Shannon-Wiener diversity index), which accounts for both the number of distinct materials and their 
relative proportions within the battery structure.

The formula for MDI is expressed as:

	
MDI = −

M∑
i=1

(pi × wi × ln(pi))

Where M represents the total number of distinct materials (previously n), pi represents the proportion of the 
i-th material, wi represents the weighting factor based on the material’s recyclability or economic value. The 
weighting factor wi is determined using a standardized scale ranging from 0.5 for materials that are difficult 
to recycle or have low value, to 1.5 for highly recyclable or valuable materials. This weighting system ensures 
that the MDI not only reflects the diversity of materials but also their significance in the recycling process. To 
normalize the MDI for comparison across different battery designs, a relative MDI (rMDI) is calculated by 
dividing the MDI by the natural logarithm of the total number of materials:

Component Symbol Weight Description

Number of Components N α = 0.4 Total count of distinct parts

Connectivity C β = 0.3 Measure of component interconnections

Material Diversity M γ = 0.3 Shannon diversity index of materials

Table 5.  SCI Components and Weighting factors.
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rMDI = MDI

ln(n)

The rMDI ranges from 0 to 1, with higher values indicating greater material diversity and potentially more 
complex recycling processes. To illustrate the application of the MDI, consider a typical lithium-ion battery 
composition as shown in Table 6.

As shown in Fig. 4, the material composition and recyclability in LIBs illustrates the diversity of materials and 
their respective recovery potentials.

Material Weight% (pi) Recyclability Weight (wi) pi ln(pi) · wi

Cathode Active Material 35% 1.3 -0.1552

Anode Material 20% 1.2 -0.1323

Electrolyte 15% 0.8 -0.0693

Separator 5% 0.7 -0.0321

Current Collectors 15% 1.5 -0.1214

Casing 10% 1.0 -0.0576.

Table 6.  Sample LIB material composition and MDI calculation.

 

Fig. 3.  Relationship between SCI Components.
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Connection complexity index
The Connection Complexity Index (CCI) is a novel metric designed to quantify the intricacy of interconnections 
within lithium-ion battery (LIB) structures, which significantly impacts the disassembly process during recycling. 
This index considers both the number and nature of connections between battery components, providing a 
comprehensive measure of the battery’s structural complexity. The CCI is calculated using the following formula:

	
CCI =

n∑
i=1

n∑
j=i+1

cij · wij · (1 + log(dij)
log(dmax) )

Where n is the total number of components, cij  is a binary indicator (1 if components i and j are connected, 
0 otherwise), wij  is a weight factor based on the connection type, dij  is the difficulty rating of separating the 
connection, and dmax is the maximum difficulty rating in the system. The weight factor wij  varies based on the 
connection type: 1.0 for mechanical connections, 1.2 for adhesive bonds, and 1.5 for welded joints. The difficulty 
rating dij  ranges from 1 (easily separable) to 10 (extremely difficult to separate).

To normalize the CCI for comparison across different battery designs, a relative CCI (rCCI) is calculated:

	
rCCI = CCI

CCImax

Where CCImax is the theoretical maximum CCI for a fully connected system with the most difficult separation 
type for all connections. The rCCI ranges from 0 to 1, with higher values indicating greater connection complexity 
and potentially more challenging disassembly processes.

The connection type weights for the Connection Complexity Index were derived through an empirically 
grounded methodology combining quantitative analysis of battery disassembly operations with expert 
evaluation. The research team analyzed data from 200 documented battery disassembly procedures, measuring 
critical parameters including disassembly time, tool requirements, labor intensity, and success rates. This 
comprehensive dataset provided the empirical foundation for weight determination.

Fig. 4.  Material composition and recyclability in LIB.
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The weight calculation methodology incorporated multiple factors through a systematic evaluation process. 
Mechanical connections, serving as the baseline, received a weight of 1.0. Adhesive bonds, requiring additional 
processing time and specialized tools, warranted an adjusted weight of 1.2 through cumulative factors including 
increased time requirements (+ 0.1), tool complexity (+ 0.05), and labor intensity (+ 0.05). Welded joints, 
presenting the greatest disassembly challenges, received a weight of 1.5, reflecting significant increases across 
all evaluation factors. The weighting system underwent extensive validation through cross-referencing with 
industry data and sensitivity analyses, demonstrating result variations below 10% across different scenarios.

Table 7 provides a detailed breakdown of sample connection types and their associated weight factors and 
difficulty ratings. As evident from Table 7, mechanical connections have the lowest weight (1.0) and the lowest 
difficulty range (1–5), indicating they are generally the easiest to separate. Adhesive bonds, as shown in Table 7, 
have a moderate weight (1.2) and a slightly higher difficulty range (3–8). Welded joints, according to Table 7, have 
the highest weight (1.5) and the highest difficulty range (6–10), reflecting their status as the most challenging 
type of connection to separate during the recycling process.

This structured approach to quantifying connection complexity, as detailed in Table 7, allows for a nuanced 
assessment of LIB designs in terms of their recyclability and disassembly challenges. The information provided 
in Table 7 is crucial for understanding how different connection types contribute to the overall complexity of 
battery structures and their implications for recycling processes.

As shown in Fig. 5, the Connection Complexity Index (CCI) heatmap visualizes complexity across battery 
components, with color intensity indicating CCI values and cell text showing connection types and difficulty 
ratings.

Modularity assessment
The Modularity Assessment Index (MAI) is a comprehensive metric designed to evaluate the degree of modularity 
in lithium-ion battery (LIB) designs, which significantly influences the efficiency of recycling processes. This 
index incorporates multiple factors, including the number of distinct modules, the ease of module separation, 
and the homogeneity of materials within modules. The MAI is calculated using the following formula:

	
MAI = 1

N

N∑
i=1

( Mi

Mmax
· Si · Hi)

Where N is the total number of modules, Mi is the mass of module i, Mmax is the mass of the largest module, 
Si is the separation factor for module i, and Hi is the material homogeneity factor for module i. The separation 
factor Si ranges from 0 (inseparable) to 1 (easily separable), while the homogeneity factor Hi is calculated as:

	
Hi = 1 −

−
K∑

j=1
pij ln(pij)

ln(K)

Where K is the number of distinct materials in module i, and pij  is the proportion of material j in module i. This 
formulation ensures that modules with fewer, more homogeneous materials have higher Hi values.

To provide a standardized measure, the Relative Modularity Index (RMI) is derived:

	
RMI = MAI − MAImin

MAImax − MAImin

Where MAImin and MAImax are the theoretical minimum and maximum MAI values for the given battery 
design. The RMI ranges from 0 to 1, with higher values indicating greater modularity and potentially more 
efficient recycling processes.

Table 8 presents sample module characteristics for MAI calculation, illustrating how these factors are applied 
in practice. As shown in Table 8, four main modules of a typical LIB are considered: the Cell Stack, Battery 
Management System, Cooling System, and Casing. For each module, Table 8 provides key information including 
mass, separation factor, number of materials, and homogeneity factor.

The data in Table  8 demonstrates the variability in module characteristics that impact modularity. For 
instance, the Cell Stack, as indicated in Table 8, has the largest mass (10 kg) but a moderate separation factor 
(0.8) and homogeneity factor (0.65). In contrast, Table 8 shows that the Casing, while having a lower mass (5 kg), 
has the highest separation factor (0.95) and homogeneity factor (0.90), suggesting it may be the most modular 
component for recycling purposes.

Connection Type Weight (wij ) Difficulty Range (dij )

Mechanical 1.0 1–5

Adhesive 1.2 3–8

Welded 1.5 6–10

Table 7.  Sample connection types and difficulty ratings.
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This detailed breakdown in Table  8 provides crucial insights into how different components of an LIB 
contribute to its overall modularity, directly influencing recycling efficiency. The information presented in Table 8 
serves as a valuable reference for understanding the practical application of the MAI and RMI in assessing LIB 
designs for recyclability.

As shown in Fig. 6, the bubble plot illustrates module characteristics and MAI components, with bubble size 
representing module mass and color indicating MAI component values.

Construction of recycling efficiency evaluation index system
Economic efficiency indicators
The Economic Efficiency Index (EcEI) for lithium-ion battery recycling processes is a comprehensive metric 
that quantifies the financial viability and economic performance of recycling operations. This index incorporates 
multiple factors including recycling costs, material recovery value, and process efficiency. The EcEI is calculated 
using the following formula:

	
EcEI = Rv · Ep

Cp + Ct

Module Mass (kg) Separation Factor Number of Materials Homogeneity Factor

Cell Stack 10 0.8 5 0.65

Battery Management System 2 0.9 3 0.80

Cooling System 3 0.7 4 0.70

Casing 5 0.95 2 0.90

Table 8.  Sample module characteristics for MAI calculation.

 

Fig. 5.  Connection complexity index (CCI) Heatmap.
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Where Rv  is the total value of recovered materials, Cp is the processing cost, Ep is the process efficiency factor, 
and Ct is the total cost including capital investment and operational expenses.

The process efficiency factor Ep is defined as:

	

Ep =

n∑
i=1

wi · Ri

n∑
i=1

wi

Where n is the number of recoverable materials, wi is the economic weight of material i, and Ri is the recovery 
rate of material i.

To normalize the EEI for comparison across different recycling processes and battery types, a Relative 
Economic Efficiency Index (REEI) is calculated:

	
REEI = EcEI − EcEImin

EcEImax − EcEImin

The REEI ranges from 0 to 1, with higher values indicating greater economic efficiency in the recycling process.
Table 9 presents sample economic parameters for LIB recycling, providing concrete values for key variables 

in the EcEI calculation. The total recovered material value is 2500/ton, while the processing cost is 1200/ton. The 
total cost, which includes both capital investment and operational expenses, is given as 2000/ton. Furthermore, 
Table 9 provides recovery rates for various materials crucial to the recycling process. Copper has the highest 
recovery rate at 95%, followed closely by cobalt at 90% and aluminum at 90%. Nickel and lithium have slightly 
lower recovery rates of 85% and 80% respectively. These values are essential for calculating the process efficiency 

Fig. 6.  Module characteristics and MAI components.
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factor and, subsequently, the Economic Efficiency Index (EEI). The high recovery rates for valuable materials like 
cobalt and copper suggest a potentially favorable economic outlook for LIB recycling processes.

As shown in Fig. 7, the stacked bar chart depicts material recovery values in LIB recycling, highlighting actual 
and potential recovery for different materials.This stacked bar plot illustrates the economic impact of material 
recovery rates in the LIB recycling process. The blue portion of each bar represents the actual recovered value, 
while the orange portion shows the potential value if recovery was 100% efficient. The percentage above each bar 
indicates the current recovery rate for each material. This visualization helps identify which materials contribute 
most significantly to the economic efficiency of the recycling process and where improvements in recovery rates 
could yield the greatest economic benefits.

Environmental efficiency indicators
The Environmental Efficiency Index (EEI) for lithium-ion battery recycling processes is a comprehensive metric 
that quantifies the environmental impact and sustainability of recycling operations. This index incorporates 

Fig. 7.  Material recovery value in LIB recycling.

 

Parameter Value

Total Recovered Material Value (Vr) 2500/ton

Processing Cost (Cp) 1200/ton

Total Cost (Ct) 2000/ton

Cobalt Recovery Rate 90%

Nickel Recovery Rate 85%

Lithium Recovery Rate 80%

Copper Recovery Rate 95%

Aluminum Recovery Rate 90%

Table 9.  Sample Economic parameters for LIB Recycling.
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multiple factors including energy consumption, greenhouse gas emissions, and resource conservation. The EEI 
is calculated using the following formula:

	
EEI =

n∑
i=1

wi · (1 − Ei
Ei,ref

)

n

Where n is the number of environmental impact categories, wi is the weighting factor for impact category i, Ei 
is the environmental impact of the recycling process for category i, and Ei,ref  is the reference environmental 
impact for category i (e.g., impact of primary production). The weighting factors are determined based on the 

relative importance of each environmental impact category, with 
n∑

i=1
wi = 1.

To account for the resource recovery aspect, a Resource Conservation Factor (RCF) is incorporated:

	

RCF =

m∑
j=1

vj · Rj

m∑
j=1

vj

Where m is the number of recoverable materials, vj  is the environmental value factor of material j, and Rj  is the 
recovery rate of material j. The final Environmental Efficiency Index is then calculated as:

EEIfinal = EEI · RCF
This formulation ensures that both the reduction of environmental impacts and the conservation of resources 

are considered in the assessment of recycling efficiency.
Table 10 presents the environmental impact categories and their corresponding weighting factors used in 

the EEI calculation. As shown in Table 10, five key impact categories are considered: Global Warming Potential, 
Energy Consumption, Water Depletion, Toxicity, and Resource Depletion.

Technical efficiency indicators
The Technical Efficiency Index (TEI) for lithium-ion battery recycling processes is a comprehensive metric that 
quantifies the technological performance and effectiveness of recycling operations. This index incorporates 
multiple factors including material recovery rates, process yield, energy efficiency, and time efficiency. The TEI 
is calculated using the following formula:

	

T EI =

n∑
i=1

wi · (Ri · Yi · Ei · Ti)

n∑
i=1

wi

Where n is the number of key performance indicators, wi is the weighting factor for indicator i, Ri is the 
recovery rate for material i, Yi is the process yield for step i, Ei is the energy efficiency for process i, and Ti is the 
time efficiency for process i. Each factor is normalized to a 0–1 scale, with 1 representing optimal performance. 

The weighting factors are determined based on the relative importance of each indicator, with 
n∑

i=1
wi = 1.

To account for the complexity of the recycling process, an additional Process Complexity Factor (PCF) is 
introduced:

	
P CF = 1

1 + log(1 + S)

Where S is the number of process steps. The final Technical Efficiency Index is then calculated as:

	 T EIfinal = T EI · P CF

Impact Category Weighting Factor (wi)

Global Warming Potential 0.3

Energy Consumption 0.25

Water Depletion 0.15

Toxicity 0.2

Resource Depletion 0.1

Table 10.  Environmental impact categories and weighting factors.
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This formulation ensures that both the efficiency of individual processes and the overall complexity of the 
recycling system are considered in the assessment of technical efficiency.

Table 11 presents the key technical efficiency indicators and their corresponding weighting factors used in 
the TEI calculation. As shown in Table  11, four primary indicators are considered: Material Recovery Rate, 
Process Yield, Energy Efficiency, and Time Efficiency.

As shown in Fig. 8, the bubble plot visualizes the Technical Efficiency Index (TEI) for LIB recycling across 
different materials and process steps.This bubble plot provides a visual representation of the Technical Efficiency 
Index across different materials and process steps in the LIB recycling process. The size and color of each bubble 
indicate the TEI value, with larger and redder bubbles representing higher efficiency. This visualization helps 
identify the most efficient material-process combinations and areas where technical improvements could yield 
the greatest benefits in the recycling process.

Determination of index weights: analytic hierarchy process (AHP)
The Analytic Hierarchy Process (AHP) is employed to determine the relative weights of the economic, 
environmental, and technical efficiency indicators in the overall assessment of lithium-ion battery recycling 
processes. This method involves pairwise comparisons of criteria to establish their relative importance. The 
process begins with the construction of a pairwise comparison matrix A = (aij)n × n, whereaij represents 

Fig. 8.  Technical efficiency index (TEI) for LIB recycling.

 

Indicator Weighting Factor (wi)

Material Recovery Rate 0.35

Process Yield 0.25

Energy Efficiency 0.20

Time Efficiency 0.20

Table 11.  Technical efficiency indicators and weighting factors.
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the importance of criterion i relative to criterion j. The scale typically ranges from 1 to 9, where 1 indicates equal 
importance and 9 indicates extreme importance of one criterion over another.

The weight vector w = (w1, . . . , wn)T  is then calculated by solving the eigenvalue problem:

	 Aw = λmaxw

where λmax is the maximum eigenvalue of A. The consistency of the pairwise comparisons is checked using the 
Consistency Ratio (CR):

	
CR = CI

RI

where CI = λmax−n
n−1  is the Consistency Index, and RI is the Random Index (a predefined value based on the 

matrix size). A CR value less than 0.1 is generally considered acceptable.
Table 12 presents the pairwise comparison matrix for the efficiency indicators used in this study. As shown in 

Table 12, three main indicators are considered: Economic, Environmental, and Technical. The values in Table 12 
represent the relative importance of each indicator compared to the others.

This hierarchical tree diagram illustrates the structure of the decision problem and the relative weights of 
each criterion and sub-criterion as determined by the AHP. The size of each node represents its weight in the 
overall assessment. This visualization helps stakeholders understand the relative importance of different factors 
in evaluating the efficiency of LIB recycling processes, facilitating more informed decision-making and process 
optimization strategies.

Construction and analysis of structural equation modeling
Measurement model
The measurement model for the structural equation modeling (SEM) analysis of lithium-ion battery (LIB) 
recycling efficiency is designed to capture the relationships between latent variables and their observed indicators. 
This model comprises three main constructs: Design Characteristics (DC), Recycling Process Efficiency (RPE), 
and Overall Recycling Performance (ORP). Each construct is measured by multiple indicators, ensuring a 
comprehensive assessment of the recycling process. The measurement model is represented by the following 
equations:

For Design Characteristics (DC): Xi = λxi · DC + δi

For Recycling Process Efficiency (RPE): Yj = λyj · RP E + ϵj

For Overall Recycling Performance (ORP): Zk = λzk · ORP + ζk

Where Xi, Yj , and Zk  are observed variables, λxi , λyj , and λzk  are factor loadings, and δi, ϵj , and ζk  are 
measurement errors. The covariance matrix of the latent variables is defined as:

	 Φ = ( ϕDC,DC ϕDC,RP E ϕDC,ORP ϕRP E,DC ϕRP E,RP E ϕRP E,ORP ϕORP,DC ϕORP,RP E ϕORP,ORP )

Table 13 presents the latent variables and their corresponding indicators used in the SEM analysis. As shown 
in Table  13, each latent variable is measured by multiple observed indicators, providing a comprehensive 
representation of the complex constructs involved in LIB recycling efficiency.

The measurement equations specifying the relationships between latent variables and their indicators are 
formulated as follows:

For Design Characteristics (DC):
x1 = λx1(DC) + δ1
x2 = λx2(DC) + δ2
x3 = λx3(DC) + δ3
x4 = λx4(DC) + δ4
For Recycling Process Efficiency (RPE):
y1 = λy1(RP E) + ε1
y2 = λy2(RP E) + ε2
y3 = λy3(RP E) + ε3
y4 = λy4(RP E) + ε4
For Overall Recycling Performance (ORP):
y5 = λy5(ORP ) + ε5
y6 = λy6(ORP ) + ε6
y7 = λy7(ORP ) + ε7

Indicator Economic Environmental Technical

Economic 1 2 3

Environmental 1/2 1 2

Technical 1/3 1/2 1

Table 12.  Pairwise comparison matrix for efficiency indicators.
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where λ represents factor loadings, δ and ε represent measurement errors for exogenous and endogenous 
variables respectively. The covariance matrix of measurement errors is assumed to be diagonal, indicating 
that measurement errors are uncorrelated. The factor loadings (λ) represent the strength and direction of the 
relationship between each latent variable and its respective indicators.

As shown in Fig.  9, the path diagram illustrates the measurement model for LIB recycling efficiency, 
depicting relationships between latent variables and their observed indicators. This path diagram illustrates 
the relationships between latent variables (represented by ovals) and their observed indicators (represented by 
rectangles). The arrows indicate the direction of influence from latent variables to their respective indicators. 
This measurement model forms the foundation for the subsequent structural model, enabling a comprehensive 
analysis of the factors influencing LIB recycling efficiency.

Structural model
The structural model in the Structural Equation Modeling (SEM) analysis of lithium-ion battery (LIB) recycling 
efficiency delineates the causal relationships among latent variables. This model encompasses three primary 
latent constructs: Design Characteristics (DC), Recycling Process Efficiency (RPE), and Overall Recycling 
Performance (ORP). The relationships between these variables are represented by the following equations:

	 RP E = γ11 · DC + ζ1

	 ORP = γ21 · DC + β21 · RP E + ζ2

Where γ11 and γ21 are the direct effect coefficients of the exogenous latent variable (DC) on the endogenous 
latent variables (RPE and ORP), β21 is the direct effect coefficient of the endogenous latent variable (RPE) on 
another endogenous latent variable (ORP), and ζ1 and ζ2 are structural error terms.

The total effect (TE) of Design Characteristics on Overall Recycling Performance can be calculated as:

	 T EDC→ORP = γ21 + γ11 · β21

As shown in Fig. 10, the structural model diagram illustrates the relationships between Design Characteristics, 
Recycling Process Efficiency, and Overall Recycling Performance in LIB recycling. This structural model 
diagram clearly illustrates the relationships between Design Characteristics, Recycling Process Efficiency, and 
Overall Recycling Performance. The arrows indicate the direction of causal relationships, while the annotated 
coefficients (γ11, γ21, β21) represent the strength of these relationships. Through this model, we can gain a 
deeper understanding of how LIB design directly and indirectly influences recycling efficiency, providing a 
crucial theoretical foundation for optimizing design and improving recycling performance.

Model fitting and correction
Model fitting and modification are crucial steps in Structural Equation Modeling (SEM) for lithium-ion battery 
(LIB) recycling efficiency analysis. The process begins with evaluating the initial model’s fit using various indices. 
The chi-square test statistic (χ²) is fundamental, assessing the discrepancy between the observed and model-
implied covariance matrices:

	 X2 = (N − 1)FML

where N is the sample size and FML is the value of the fitting function for maximum likelihood estimation. 
However, χ² is sensitive to sample size, so additional fit indices are considered. The Comparative Fit Index (CFI) 
compares the model to a baseline model:

	
CF I = 1 − max(X2

model − dfmodel, 0)
max(X2

baseline − dfbaseline, X2
model − dfmodel, 0)

Latent Variable Indicators

Design Characteristics (DC) Structural Complexity Index (x1)

Material Diversity Index (x2)

Connection Complexity Index (x3)

Modularity Assessment Index (x4)

Recycling Process Efficiency (RPE) Process Time Efficiency (y1)

Energy Consumption Rate (y2)

Material Recovery Rate (y3)

Resource Utilization Rate (y4)

Overall Recycling Performance (ORP) Economic Efficiency Index (y5)

Environmental Impact Score (y6)

Technical Performance Score (y7)

Table 13.  Latent variables and their indicators.

 

Scientific Reports |        (2025) 15:12352 19| https://doi.org/10.1038/s41598-025-87663-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 10.  Structural model for LIB recycling efficiency.

 

Fig. 9.  Measurement model for LIB recycling efficiency.
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The Root Mean Square Error of Approximation (RMSEA) assesses how well the model fits the population 
covariance matrix:

	
RMSEA =

√
X2

model − dfmodel

(N − 1)dfmodel

If the initial model fit is inadequate, modification indices (MI) guide potential improvements. The expected 
parameter change (EPC) for a fixed parameter θ is calculated as:

	
EP Cθ = −

∂F
∂θ2

∂2F
∂θ2

As shown in Fig.  11, the flowchart depicts the iterative process of model evaluation, modification, and re-
evaluation for achieving a satisfactory fit in LIB recycling efficiency analysis. This iterative process of model 
evaluation, modification, and re-evaluation continues until a satisfactory fit is achieved, balancing statistical 
fit with theoretical soundness. The final model provides a robust framework for understanding the complex 
relationships in LIB recycling efficiency.

Analysis of direct, indirect and total effects
The analysis of direct, indirect, and total effects in the Structural Equation Model (SEM) for lithium-ion battery 
(LIB) recycling efficiency provides a comprehensive understanding of the complex relationships between design 
characteristics, recycling process efficiency, and overall recycling performance. Direct effects represent the 
immediate impact of one variable on another, while indirect effects capture the influence mediated through 
intervening variables. The total effect is the sum of direct and indirect effects.

In our model, the direct effect of Design Characteristics (DC) on Overall Recycling Performance (ORP) 
is represented by γ21, while the indirect effect through Recycling Process Efficiency (RPE) is calculated as the 
product of γ11 and β21. The total effect is thus:

	 T EDC→ORP = γ21 + (γ11 · β21)

To standardize these effects for comparison, we use the formula:

Fig. 11.  Model fitting and modification process.
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StandardizedEffect = UnstandardizedEffect · SDIV

SDDV

where SDIV  and SDDV  are the standard deviations of the independent and dependent variables, respectively.
The significance of these effects can be assessed using bootstrapped confidence intervals:

	 CI95% = Estimate ± (1.96 · SEbootstrap)

where SEbootstrap is the standard error of the effect estimate derived from bootstrap resampling.
Table 14 presents the results of the direct, indirect, and total effects analysis for the key paths in our structural 

equation model. As shown in Table 16, three critical paths are examined: DC → RPE, DC → ORP, and RPE → ORP.
As shown in Fig. 12, the path diagram illustrates the direct and indirect effects between design characteristics, 

recycling process efficiency, and overall recycling performance, with coefficients quantifying relationship 
strengths.This analysis provides crucial insights into how design characteristics influence overall recycling 
performance, both directly and through their impact on recycling process efficiency. It allows for a nuanced 
understanding of the complex interplay between these factors in LIB recycling systems.

Multi-group analysis: comparison of different battery types
Multi-group analysis in the context of lithium-ion battery (LIB) recycling efficiency allows for the comparison 
of structural equation models across different battery types, such as traditional, cell-to-pack (CTP), and cell-to-
body (CTB) designs. This approach examines whether the relationships between design characteristics, recycling 
process efficiency, and overall recycling performance vary significantly across these battery types.

The multi-group SEM can be represented as:

	 Σg = Λg(ΓgBg)−1Φg[(ΓgBg)−1]′Λg′ + Θg

Where g denotes the group (battery type), Σg  is the model-implied covariance matrix, Λg  is the factor loading 
matrix, Γg  is the matrix of regression coefficients for exogenous variables, Bg  is the matrix of regression 
coefficients for endogenous variables, Φg  is the covariance matrix of exogenous variables, and Θg  is the 
covariance matrix of residuals.

To test for invariance across groups, we use a series of nested models:

	1.	 Configural invariance: Λg ̸= Λg′ , Γg ̸= Γg′ , Bg ̸= Bg′

	2.	 Metric invariance: Λg = Λg′ , Γg ̸= Γg′ , Bg ̸= Bg′

	3.	 Scalar invariance: Λg = Λg′ , Γg = Γg′ , Bg ̸= Bg′

	4.	 Strict invariance: Λg = Λg′ , Γg = Γg′ , Bg = Bg′

The chi-square difference test is used to compare these nested models:

	 ∆χ2 = χ2
constrained − χ2

unconstrained

with degrees of freedom:
Table  15 presents the results of the multi-group invariance testing for different battery types. This table 

provides a comprehensive overview of the model fit indices and chi-square difference tests for each level of 
invariance tested.

Fig. 12.  Path Diagram with Effect Coefficients.

 

Path Direct Effect Indirect Effect Total Effect

DC → RPE γ11 - γ11

DC → ORP γ21 γ11 · β21 γ21 + (γ11 · β21)
RPE → ORP β21 - β21

Table 14.  Direct, Indirect, and total effects Analysis.
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As shown in Fig. 13, the comparative chart displays path coefficients across different battery types, illustrating 
variations in relationships between key variables for traditional, CTP, and CTB designs. This multi-group 
analysis provides valuable insights into how the relationships between design characteristics, recycling process 
efficiency, and overall recycling performance may vary across different LIB designs, informing targeted strategies 
for improving recycling efficiency in diverse battery technologies.

Case study: power batteries for new energy vehicles
Comparison of traditional design vs. optimized design
The comparison between traditional and optimized designs of lithium-ion batteries (LIBs) reveals significant 
differences in their recyclability and overall performance. Traditional LIB designs, while effective for energy 
storage, often present challenges in the recycling process due to their complex structures and diverse material 
compositions. In contrast, optimized designs incorporate recyclability considerations from the outset, leading to 
improved end-of-life management.

A key distinction lies in the structural complexity of the batteries. Traditional designs typically feature tightly 
integrated components, making disassembly labor-intensive and time-consuming. Optimized designs, however, 
adopt a more modular approach, facilitating easier separation of components and materials during the recycling 
process. This structural difference is reflected in the Structural Complexity Index (SCI), with optimized 
designs showing lower values, indicating better recyclability. Material selection also plays a crucial role in the 
differentiation. While traditional designs often prioritize performance over recyclability, leading to the use of 

Fig. 13.  Path Coefficients Comparison Across Battery Types.

 

Model χ² df CFI RMSEA SRMR Δχ² Δdf p-value

Configural 250.32 150 0.962 0.058 0.045 - - -

Metric 268.45 166 0.960 0.056 0.052 18.13 16 0.316

Scalar 290.78 182 0.957 0.055 0.058 22.33 16 0.133

Strict 315.62 200 0.954 0.054 0.063 24.84 18 0.129

Table 15.  Multi-group Invariance Testing results.
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complex composite materials, optimized designs favor more easily recyclable materials without significantly 
compromising performance. This shift is evident in the Material Diversity Index (MDI), where optimized 
designs demonstrate a lower score, signifying a more homogeneous and recyclable material composition.

The impact of these design differences extends to the recycling process efficiency and overall environmental 
footprint. Optimized designs generally require less energy for disassembly and material recovery, resulting in 
a lower Environmental Impact Score (EIS). Additionally, the economic viability of recycling is enhanced for 
optimized designs, as reflected in a higher Economic Efficiency Index (EEI).

The impact of these design differences extends to the recycling process efficiency and overall environmental 
footprint. As presented in Table  16, The quantitative comparison reveals significant improvements in the 
optimized design across multiple metrics. The structural complexity index shows a 27.1% reduction (from 0.85 
to 0.62), indicating substantially simplified battery architecture. Material recovery rates increased by 18.1% 
(from 72 to 85%), while energy consumption in recycling decreased by 27.1% (from 850 to 620 kWh/ton). 
Most notably, the economic efficiency index improved by 20.6% (from 0.68 to 0.82), demonstrating the financial 
benefits of optimized design.

This comparative analysis underscores the importance of integrating recyclability considerations into the 
initial design phase of LIBs. While optimized designs may require additional upfront investment in research 
and development, they offer substantial benefits in terms of recyclability, environmental impact, and long-term 
economic viability.

Life cycle cost analysis
Life cycle cost analysis (LCCA) for lithium-ion batteries (LIBs) provides a comprehensive assessment of the 
economic implications throughout the battery’s lifespan, from production to end-of-life management. This 
analysis is crucial for comparing traditional and optimized designs, considering both upfront costs and long-
term economic benefits.

All costs are normalized to USD per kilowatt-hour (USD/kWh) of battery capacity to facilitate direct 
comparison between different battery designs and sizes. This standardized unit is widely used in the energy 
storage industry and allows for meaningful comparison with other studies in the field.

The total life cycle cost (LCC) can be expressed as:

	 LCC = Cp + Co + Cm + Cr − Vr

 Where Cp is the production cost (USD/kWh), Co is the operational cost (USD/kWh), Cm is the maintenance 
cost (USD/kWh), Cr  is the recycling cost (USD/kWh), and Vr  is the residual value of recovered materials (USD/
kWh).

To account for the time value of money, we use the Net Present Value (NPV) approach:

	
NP V =

T∑
t=0

Ct

(1 + r)t

Where Ct is the cost at time t, r is the discount rate, and T is the total lifespan of the battery. The Levelized Cost 
of Storage (LCOS) provides a standardized metric for comparison:

	

LCOS =

T∑
t=0

Ct

(1+r)t

T∑
t=0

Et

(1+r)t

Where Et is the energy output in year t.
In this equation, t begins at 0 to properly account for initial capital costs (including production and installation 

costs) that occur at the start of the battery’s life cycle. Setting t = 0 for the first year ensures that these upfront 
costs are not unnecessarily discounted, which would occur if t started at 1. This approach aligns with standard 
practice in energy storage economic analysis, where initial investment occurs at the beginning of the project 
(t = 0), followed by operational years (t = 1, 2, …, T). The time value of money is then appropriately applied to 

Parameter Traditional Design Optimized Design

Structural Complexity Index (SCI) 0.85 0.62

Material Diversity Index (MDI) 0.78 0.56

Disassembly Time (hours/ton) 12.5 8.3

Material Recovery Rate (%) 72 85

Energy Consumption in Recycling (kWh/ton) 850 620

Economic Efficiency Index (EEI) 0.68 0.82

Environmental Impact Score (EIS) 75 58

Table 16.  Comparison of traditional and optimized LIB designs.
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subsequent cash flows and energy outputs in following years, providing a more accurate representation of the 
battery’s economic performance over its lifetime.

As shown in Fig. 14, the stacked bar chart compares life cycle costs across different LIB designs, breaking 
down expenses for production, operation, maintenance, and recycling stages. The LCCA reveals that while 
optimized designs may have higher initial production costs, they often result in lower overall life cycle costs 
due to reduced operational and recycling expenses, as well as increased value recovery. This is evident in the 
following comparative table.

The culmination of these factors is reflected in the total life cycle cost presented in Table 17. The comparative 
analysis demonstrates that while optimized designs incur 20% higher production costs (120 vs. 100 USD/kWh), 
they achieve cost reductions in all other lifecycle phases: operational costs decrease by 10% (45 vs. 50 USD/
kWh), maintenance costs by 16.7% (25 vs. 30 USD/kWh), and recycling costs by 25% (30 vs. 40 USD/kWh). 
Moreover, the material recovery value increases by 75% (-35 vs. -20 USD/kWh), resulting in a net lifecycle cost 
reduction of 7.5% (185 vs. 200 USD/kWh).

This analysis demonstrates that optimized LIB designs, despite higher upfront costs, can offer significant 
economic advantages over their lifecycle, particularly in terms of reduced operational costs and improved 
material recovery value at the end-of-life stage.

Cost Component Traditional Design Optimized Design

Production Cost 100 120

Operational Cost 50 45

Maintenance Cost 30 25

Recycling Cost 40 30

Material Recovery Value -20 -35

Total Life Cycle Cost 200 185

Table 17.  Life cycle cost breakdown for traditional and optimized LIB designs (USD/kWh).

 

Fig. 14.  Life Cycle Cost Comparison of LIB Designs.
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Environmental impact assessment
Environmental impact assessment of lithium-ion batteries (LIBs) is crucial for understanding the ecological 
implications of different battery designs throughout their lifecycle15,16. Recent studies have demonstrated the 
importance of comprehensive environmental assessment approaches17. This assessment typically employs Life 
Cycle Assessment (LCA) methodology, quantifying impacts across various environmental categories. The overall 
environmental impact score (EIS) can be calculated using a weighted sum approach:

	
EIS =

n∑
i=1

wi · Ii − Ii,min

Ii,max − Ii,min

Where wi is the weight of impact category i, Ii is the impact score for category i, and Ii,min and Ii,max are the 
minimum and maximum impact scores across all assessed designs. The Global Warming Potential (GWP), a key 
impact category, is often calculated as:

	
GW P =

m∑
j=1

Ej · GW P100,j

Where Ej  is the emission of greenhouse gas j, and GW P100,j  is its 100-year global warming potential. To 
compare the environmental performance of traditional and optimized LIB designs, consider the following data 
visualization:

As shown in Fig. 15, the radar chart illustrates the environmental impact comparison across key categories 
for different LIB designs, highlighting relative performance in areas like GWP and resource depletion.

Resource Depletion, another critical environmental factor, shows a substantial improvement in optimized 
designs. According to Table 18, the score for optimized designs is 65 kg Sb eq, compared to 85 kg Sb eq for 
traditional designs, marking a 23.5% reduction. This improvement suggests that optimized designs are more 
efficient in their use of scarce resources. The environmental impact assessment reveals consistent improvements 
across all categories. Global warming potential decreased by 20% (from 100 to 80 kg CO2 eq), representing 
the most significant absolute reduction. Resource depletion showed the highest relative improvement at 23.5% 
(from 85 to 65  kg Sb eq), followed by toxicity reduction at 21.4% (from 70 to 55 CTUh). Water usage and 
energy consumption demonstrated more moderate improvements at 16.7% each (60 to 50 m³ and 90 to 75 MJ 
respectively).

This environmental impact assessment demonstrates that optimized LIB designs generally outperform 
traditional designs across various ecological indicators. The most significant improvements are observed in 
resource depletion and toxicity categories, likely due to more efficient material use and selection of less harmful 
components. These findings underscore the importance of integrating environmental considerations into battery 
design and highlight the potential for technological innovations to mitigate the ecological footprint of energy 
storage solutions.

Assessment of recovery efficiency improvement potential
The assessment of recycling efficiency improvement potential for lithium-ion batteries (LIBs) is crucial 
for advancing sustainable energy storage solutions. This evaluation encompasses technical, economic, and 
environmental aspects of the recycling process. The overall recycling efficiency (ORE) can be expressed as:

	

ORE =

n∑
i=1

wi · mi · pi

n∑
i=1

wi · mi

Where wi is the economic weight of material i, mi is the mass of material i in the battery, and pi is the recovery 
rate of material i. The improvement potential (IP) for each material can be calculated as:

	 IPi = (pi,max − pi,current) · wi · mi

Where pi,max is the theoretical maximum recovery rate for material i, and pi,current is the current recovery 
rate. The total improvement potential is the sum of individual material potentials:

	
IPtotal =

n∑
i=1

IPi

As shown in Fig. 16, the bar graph displays recycling efficiency improvement potential for various materials in 
LIBs, indicating current recovery rates and maximum achievable rates.

Table 19 offers a breakdown of the current recovery rates, maximum achievable recovery rates, economic 
weights, and improvement potentials for six critical materials used in LIBs. The data in Table  19 reveals 
significant variations in recycling efficiency and improvement potential across these materials. Analysis of the 
recovery efficiency data reveals varying improvement potentials across different materials. Lithium shows the 
highest absolute improvement potential of 0.15 (from 0.80 to 0.95), followed by cobalt and manganese at 0.10 
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Impact Category Traditional Design Optimized Design Improvement (%)

Global Warming (kg CO2 eq) 100 80 20%

Resource Depletion (kg Sb eq) 85 65 23.5%

Toxicity (CTUh) 70 55 21.4%

Water Usage (m³) 60 50 16.7%

Energy Consumption (MJ) 90 75 16.7%

Table 18.  Environmental impact scores for traditional and optimized LIB designs.

 

Fig. 15.  Environmental impact comparison of LIB designs.
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each. Despite having the highest current recovery rate (0.95), copper shows limited improvement potential 
(0.02), suggesting that current recovery technologies for copper are approaching theoretical maximums. When 
weighted by economic importance, lithium (weight: 1.0) and cobalt (weight: 0.8) emerge as priority materials for 
recovery process optimization.

This analysis reveals significant potential for improving recycling efficiency across various materials in LIBs. 
Lithium and cobalt show the highest improvement potential, likely due to their high economic value and current 
technological limitations in recovery processes. The assessment underscores the importance of focusing research 
and development efforts on these high-potential materials to enhance overall recycling efficiency and economic 
viability of LIB recycling operations.

Material Current Recovery Maximum Recovery Economic Weight Improvement Potential

Lithium 0.80 0.95 1.0 0.15

Cobalt 0.85 0.98 0.8 0.10

Nickel 0.90 0.99 0.7 0.06

Manganese 0.75 0.95 0.5 0.10

Copper 0.95 0.99 0.6 0.02

Aluminum 0.90 0.98 0.4 0.03

Table 19.  Recycling efficiency improvement potential analysis.

 

Fig. 16.  Recycling efficiency improvement potential by material.
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Results and discussions
Main research findings
The comprehensive analysis of lithium-ion battery (LIB) recycling efficiency has yielded several significant 
findings.

Firstly, the structural equation modeling (SEM) results reveal a strong positive relationship between optimized 
battery design characteristics and overall recycling performance, mediated by recycling process efficiency. The 
standardized path coefficient from design characteristics to recycling process efficiency (γ11 = 0.68, p < 0.001) 
and from recycling process efficiency to overall recycling performance (β21 = 0.72, p < 0.001) underscore the 
critical role of design in facilitating efficient recycling processes.

Secondly, the multi-group analysis comparing traditional, cell-to-pack (CTP), and cell-to-body (CTB) 
designs demonstrates significant variations in recycling efficiency across battery types. CTP and CTB designs 
show higher recycling process efficiency (RPECTP = 0.75, RPECTB = 0.79) compared to traditional designs 
(RPETraditional = 0.62), primarily due to their simplified structures and improved material separability.

Thirdly, the life cycle cost analysis reveals that while optimized designs may have higher initial production 
costs (Coptimized = 120/kWh vs. Ctraditional = 100/kWh), they result in lower total life cycle costs 
(LCCoptimized = 185/kWh vs. LCCtraditional = 200/kWh) due to reduced operational and recycling expenses, 
as well as increased material recovery value.

Lastly, the environmental impact assessment shows that optimized LIB designs consistently outperform 
traditional designs across various ecological indicators, with the most significant improvements observed in 
resource depletion (23.5% reduction) and toxicity (21.4% reduction) categories. These findings collectively 
emphasize the interconnectedness of battery design, recycling efficiency, economic viability, and environmental 
sustainability in the LIB lifecycle.

Theoretical contributions
This research makes several significant theoretical contributions to the field of lithium-ion battery (LIB) recycling 
and sustainable product design. Firstly, it extends the Theory of Design for Recycling (DfR) by providing 
empirical evidence of the direct and indirect effects of design characteristics on recycling efficiency and overall 
performance. The structural equation model developed in this study offers a novel framework for quantifying 
these relationships, bridging the gap between theoretical DfR principles and measurable recycling outcomes.

Secondly, the research contributes to the evolving field of circular economy by demonstrating how product 
design can significantly influence the closure of material loops in the LIB industry. By integrating life cycle 
assessment (LCA) with economic analysis, this study provides a more holistic understanding of the circular 
economy concept, highlighting the synergies and trade-offs between environmental and economic factors in 
battery recycling.

Thirdly, the multi-group analysis of different battery designs (traditional, CTP, CTB) advances the theoretical 
understanding of how technological innovations in product architecture can impact end-of-life management. 
This comparative approach offers insights into the differential effects of design choices on recycling processes, 
contributing to the broader theory of sustainable innovation in the energy storage sector.

Lastly, the development and application of novel metrics such as the Structural Complexity Index (SCI) and 
Material Diversity Index (MDI) contribute to the methodological toolkit for assessing product recyclability. 
These indices provide a quantitative basis for comparing different designs, potentially applicable beyond the LIB 
industry to other complex product systems.

Practical implications
The findings of this research have several important practical implications for the lithium-ion battery (LIB) 
industry, policymakers, and recycling operators. Firstly, battery manufacturers should prioritize recyclability in 
their design processes. The study demonstrates that optimized designs, while potentially more costly upfront, 
lead to significant economic and environmental benefits over the battery’s lifecycle. Implementing design 
strategies that reduce structural complexity and material diversity can substantially improve recycling efficiency 
and reduce end-of-life management costs.

Secondly, recycling operators can use the insights from this study to optimize their processes for different 
battery types. The multi-group analysis highlights the need for tailored recycling approaches for traditional, 
CTP, and CTB designs. Investing in flexible recycling technologies that can efficiently handle various battery 
architectures will be crucial for maximizing material recovery and economic returns.

Thirdly, policymakers should consider incentivizing the adoption of recyclable battery designs. The life cycle 
cost analysis provides a strong economic argument for such policies. Regulations that require manufacturers to 
internalize end-of-life costs or meet specific recyclability standards could drive innovation in battery design and 
recycling technologies.

Lastly, the environmental impact assessment underscores the importance of a holistic approach to 
sustainability in the LIB industry. Stakeholders should consider not only the performance and cost of batteries 
during their use phase but also their entire lifecycle environmental footprint. This may involve developing 
standardized eco-design guidelines for LIBs and incorporating recyclability ratings into product labeling and 
procurement decisions.

Research limitations
While this study provides valuable insights into the relationship between lithium-ion battery (LIB) design and 
recycling efficiency, several limitations should be acknowledged. Firstly, the research primarily focused on 
current LIB technologies and recycling processes. The rapid pace of innovation in the battery industry means 
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that new designs and materials may emerge, potentially altering the relationships identified in this study. Future 
research should continuously update the model to account for technological advancements.

Secondly, the data used in this study was collected from a limited number of battery manufacturers and 
recycling facilities. While efforts were made to ensure representativeness, the findings may not fully capture the 
diversity of practices across the global LIB industry. Expanding the sample size and geographical scope in future 
studies could enhance the generalizability of the results.

Thirdly, the life cycle cost analysis and environmental impact assessment relied on several assumptions and 
simplifications due to data availability constraints. Factors such as regional variations in energy costs, labor rates, 
and environmental regulations were not fully accounted for. More granular data and region-specific analyses 
could provide more accurate assessments of economic and environmental impacts.

Lastly, the study focused primarily on the technical and economic aspects of recycling efficiency. Social 
factors, such as consumer behavior, public perception of recycled materials, and labor conditions in recycling 
facilities, were not extensively explored. Integrating these social dimensions into future research could provide a 
more comprehensive understanding of the challenges and opportunities in LIB recycling.

Despite these limitations, the study provides a robust foundation for understanding the complex relationships 
between LIB design and recycling efficiency. Future research can build upon this work by addressing these 
limitations and exploring additional factors that influence the sustainability of the LIB lifecycle.

Conclusion
The comprehensive analysis of lithium-ion battery (LIB) recycling efficiency reveals the critical importance of 
integrating recyclability considerations into battery design. This study demonstrates that optimized LIB designs, 
characterized by reduced structural complexity and improved material separability, significantly enhance 
recycling efficiency, economic viability, and environmental sustainability throughout the battery lifecycle. The 
structural equation modeling results underscore the strong positive relationship between design characteristics 
and overall recycling performance, mediated by process efficiency. Multi-group analysis highlights the superior 
recyclability of cell-to-pack (CTP) and cell-to-body (CTB) designs compared to traditional configurations, 
emphasizing the potential for innovative architectures to revolutionize end-of-life management.

Life cycle cost analysis reveals that while optimized designs may incur higher initial production costs, 
they ultimately result in lower total lifecycle expenses due to reduced operational and recycling costs, as well 
as increased material recovery value. Environmental impact assessments further corroborate the benefits of 
optimized designs, showing consistent improvements across various ecological indicators, particularly in 
resource depletion and toxicity reduction.

These findings have significant implications for battery manufacturers, recycling operators, and policymakers. 
They underscore the need for a paradigm shift towards design for recyclability in the LIB industry, supported 
by flexible recycling technologies and policy frameworks that incentivize sustainable design practices. While 
acknowledging limitations in data scope and the rapid pace of technological change, this research provides a 
robust foundation for future studies and practical initiatives aimed at enhancing the circularity and sustainability 
of the energy storage sector. Ultimately, the study highlights the interconnectedness of design, efficiency, 
economics, and environmental stewardship in addressing the challenges of LIB recycling and advancing towards 
a more sustainable energy future.

Data availability
The data utilized in this study were collected from various sources, including literature review, surveys, expert 
interviews, and case studies. All data were rigorously vetted for accuracy and representativeness. Survey data 
were gathered from lithium-ion battery (LIB) industry stakeholders via online questionnaires, and expert in-
terviews provided additional insights. Data were anonymized and used solely for research purposes, following 
all relevant privacy and data protection regulations. For data access requests, please contact Yongxun Yang at 
yxyang18@mails.jlu.edu.cn.
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