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Hyaluronic acid-paclitaxel conjugate is a nanoparticle-based drug delivery system that combines 
hyaluronic acid with paclitaxel, enhancing its solubility, stability, and targeting specificity. This 
conjugate shows promise in treating breast, lung, and ovarian cancers with reduced side effects. 
Entropy measures are used to predict physical and chemical properties of drugs. In this paper, we 
compute entropy measures for the hyaluronic acid-paclitaxel conjugate using the edge/connectivity 
partition approach. We establish a quantitative structure-property relationship using reverse entropy 
measures to predict physical properties of cancer drugs. Multiple linear, Ridge, Lasso, ElasticNet, and 
Support Vector regression models are employed using Python software. Our results show that reverse 
entropy measures exhibit high predictive capability for physical properties, based on the highest 
coefficient of determination and lowest mean squared error. We conclude that physical properties, 
including boiling point, enthalpy of vaporization, flash point, molar refractivity, molar volume, 
polarization, molecular weight, monoisotopic mass, topological polar surface area, and complexity, 
can be predicted using reverse entropy measures. We propose models for each relationship, including 
only the most significant models for estimating uncalculated physical properties.

Keywords  Physiochemical characteristics, QSPR Analysis, drugs, Topological indices, Reverse entropy 
measures

      The mathematical field of chemical graph theory focuses on the study of chemical graphs, which are 
mathematical structures representing pairwise interactions between entities1. A graph consists of two primary 
components: edges (bonds) and vertices (atoms), also referred to as nodes. In this representation, vertices denote 
atoms, while edges (bonds) represent the interactions between them2.

Mathematical chemistry, a subfield of theoretical chemistry, employs mathematical methodologies to 
investigate and understand the properties and dynamics of chemical compounds3,4. Topological indices are 
numerical values corresponding to the molecular structure of compounds. Various topological indices have 
been defined, including degree-based, eigenvalue-based, and distance-based indices5. Researchers have found 
applications for these indices in chemistry, pharmacy, and biology6.

The concept of topological indices was first introduced by Wiener7. Later, Milan Randić8 proposed the 
Randić index. Amic et al.9 and Bollobas et al.10 subsequently suggested a generalization of the Randić index. 
In 2010, Trinajstić and Zhou introduced the sum connectivity index11. Zhong12 defined the harmonic index 
in 2012. Nikolic et al.13 presented a revised version of the second Zagreb index, while Fath-Tabar14 introduced 
the third Zagreb index in 2011. In 2015, Munir et al.15 converted degree-based indices into entropy measures. 
Ranjini et al.16 proposed revised Zagreb indices in 2013. Notably, Shannon17 laid the foundation for entropy 
metrics in 1948.

Researchers initiated investigations into the entropy value of network systems in the late 1950s, inspired by 
Shannon’s influential work18. Rashevsky employs the concept of entropy measures to quantify the structural 
complexity of a graph. Shannon’s entropy is employed to quantify the intricacy of the graph in this particular 
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scenario. Mowshowitz19 subsequently conducted an examination of the characteristics of graph entropy and 
conducted extensive measurements pertaining to his particular application. Entropy indicators based on graphs 
have been employed in diverse disciplines such as biology, chemistry, and computer science for the purpose of 
characterizing patterns20. The entropy proposed by Korners21 serves as another notable illustration.

Entropy measures have been developed using several graph invariances, including eigenvalues and 
connection information22, degree-based graph entropy23, and distance-based graph entropy24. Kulli introduced 
the concept of reverse degree-based indices25. Many researchers calculate the reverse degree-based indices for 
certain chemical structures. Wei Gao et al. calculated the indices for dendrimers26. Koam et al. calculated the 
indices for third type of chain hex-derived network27. Dongming Zhao et al. examine the polycyclic metal-
organic network28. For more information about reverse degree-based indices calculations for certain chemical 
structures, sees29–31.

Recently, Furtula et al.32 did an analysis of the popular degree-based indices using the data of the octane 
isomer. They concluded that the symetric division degree index is the descriptor. Recently, Rauf et al.33 developed 
the QSPR between degree-based entropy and physical properties. They show that entropy measures are helpful 
in predicting physical properties. QSPR is a highly effective analytical methodology utilized to transform a given 
molecule into a series of numerical values that accurately depict its intrinsic chemical and physical characteristics. 
Several researchers have conducted studies on statistical linear, quadratic, and polynomial regression models to 
analyze the relationship between indices and physical properties34–36.

Motivated by these authors’ works, we have developed the QSPR between the physical properties of cancer 
drugs and reverse degree-based entropy measures. We found that the entropy measures show the best correlation 
with physical properties. These results motivate and are helpful for researchers in predicting physical properties.

Degree based entropy of a graph
Let Z = (V, E) be a finite, simple, and connected graph of order p, size q edges and F  be a real valued function. 
The degree of a vertex r is denoted by d(r) and is defined as the number of edges attached with vertex r. Kulli37 
introduced the reverse degree Υ(r) defined as Υ(r) =

�
(Z) − d(r) + 1, where 

�
(Z) is the maximum degree 

of vertex among the vertices of a graph Z. For the undefined term of graph theory, see38. The entropy function 
of graph Z is defined as follows:

	
EF (Z) = −

p∑
i=1

F(ri)∑p

j=1 F(rj)
log

[
F(ri)∑p

j=1 F(rj)

]
.� (1)

Now, if ri ∈ V  and F (ri) is an information function that represent the degree of vertex ri, denoted by 
F (ri) = Υ(ri), then equation (1) becomes

	
EF (Z) = −

p∑
i=1

Υ(ri)∑p

j=1 Υ(rj)
log

[
Υ(ri)∑p

j=1 Υ(rj)

]
,

	
EF (Z) = log

(
p∑

j=1

Υ(rj)

)
− 1

(
∑p

j=1 Υ(rj))

p∑
i=1

[ℏ(ri)log(Υ(ri))].

By simplifying the equation and using 
∑n

j=1 Υ(rj) = 2q,

	
EF (Z) = log(2q) − 1

2q
log

[
p∏

i=1

Υ(ri)Υ(ri)

]
.� (2)

Edge weight-based entropy of graph
In 2014, Chen et al. introduced the concept of the entropy of an edge weight graph. For an edge weight graph 
P = (V (Z); E(Z) : F (rs)), where E(Z) is the edge set, V(Z) is the vertex set, and F (rs) is the edge weight of 
the edge rs in Z. The entropy is defined as

	
EF (Z) = −

∑
r′s′∈E(Z)

F(r′s′)∑
rs∈E(Z) F(rs)

log

[
F(r′s′)∑

rs∈E(Z) F(rs)

]
.� (3)

By using Table 1 and simplifying the equation (3), we can derive the entropy measures written in Table 2.

Methodology
In this section, we present the working methodology employed in this study. In “Hyaluronic acid-paclitaxel 
conjugate”, we compute the entropy measures for hyaluronic acid-paclitaxel conjugate to estimate their physical 
properties. The following steps are used to compute the entropy measures:

•	 We convert the hyaluronic acid-paclitaxel conjugate structure into a molecular graph by considering atoms as 
vertices and chemical bonds as edges.

•	 We partition the vertices and edges of the graph based on the reverse degree.
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•	 We compute the entropy measures and plot the graphical representation using Maple software.

In “Statistical analysis of entropy measures”, we develop the statistical analysis of entropy measures. The following 
steps are used for statistical analysis:

•	 We consider a specific class of drug.
•	 We take the chemical structures of the drug and convert them into molecular graphs by considering atoms as 

vertices and chemical bonds as edges.

Name of entropies Notation Formula

Randić α = −1, −1
2 , 1, 1

2 Eα(Z) log(Rα) − 1
Rα

log

[∏
rs∈E(Z)

[FRα (rs)]FRα
(rs)]

]

Atom bond connectivity EABC (Z) log(ABC) − 1
ABC log

[∏
rs∈E(Z)

[FABC (rs)]FABC (rs)
]

Geometric arithmetic EGA(Z) log(GA) − 1
GA log

[∏
rs∈E(Z)

[FGA(rs)]FGA(rs)
]

First Zagreb EM1 (Z) log(M1) − 1
M1

log

[∏
rs∈E(Z)

[FM1 (rs)]FM1 (rs)
]

Second Zagreb EM2 (Z) log(M2) − 1
M2

log

[∏
rs∈E(Z)

[FM2 (rs)](FM2 (rs)
]

Hyper Zagreb EHM (Z) log(HM) − 1
HM log

[∏
rs∈E(Z)

[FHM (rs)]FHM (rs)
]

Forgotten EF (Z) log(F ) − 1
F log

[∏
rs∈E(Z)

[FF (rs)]FF (rs)
]

Augmented Zagreb EAZI (Z) log(AZI) − 1
AZI log

[∏
rs∈E(Z)

[FAZI (rs)]FAZI (rs)
]

Balaban EJ (Z) log(J) − 1
J log

[∏
rs∈E(Z)

[FJ (rs)]FJ (rs)
]

Redefined first Zagreb EReZG1 (Z) log(ReZG1) − 1
ReZG1

log

[∏
rs∈E(Z)

[FReZG1 (rs)]FReZG1 (rs)
]

Redefined second Zagreb EReZG2 (Z) log(ReZG2) − 1
ReZG2

log

[∏
rs∈E(Z)

[FReZG2 (rs)]FReZG2 (rs)
]

Redefined third Zagreb EReZG3 (Z) log(ReZG3) − 1
ReZG3

log

[∏
rs∈E(Z)

[FReZG3 (rs)]FReZG3 (rs)
]

Table 2.  Notation and formulas of entropy measures.

 

Name of Index Notation Formula Formula expansion

Randić α = −1, −1
2 , 1, 1

2 Rα(Z)
∑

rs∈E(Z)
FRα (rs)

∑
rs∈E(Z)

(Υr × Υs)α

Atom bond connectivity ABC(Z)
∑

rs∈E(Z)
FABC (rs)

∑
rs∈E(Z)

√
Υr+Υs−2

Υr×Υs

Geometric arithmetic GA(Z)
∑

rs∈E(Z)
FGA(rs)

∑
rs∈E(Z)

2
√

Υr×Υs
Υr+Υs

First Zagreb M1(Z)
∑

rs∈E(Z)
FM1 (rs)

∑
rs∈E(Z)

(Υr + Υs)

Second Zagreb M2(Z)
∑

rs∈E(Z)
FM2 (rs)

∑
rs∈E(Z)

(Υr × Υs)

Hyper Zagreb HM(Z)
∑

rs∈E(Z)
FHM (rs)

∑
rs∈E(Z)

(Υr + Υs)2

Forgotten F(Z)
∑

rs∈E(Z)
FF (rs)

∑
rs∈E(Z)

[(Υr)2 + (Υs)2]

Augmented Zagreb AZI(Z)
∑

rs∈E(Z)
FAZI (rs)

∑
rs∈E(Z)

( Υr×Υs
Υr+Υs−2 )3

Balaban J(Z)
∑

rs∈E(Z)
FJ (rs)

∑
rs∈E(Z)

( q
q−p+2 × 1√

Υr×Υs
)

Redefined first Zagreb ReZG1(Z)
∑

rs∈E(Z)
FReZG1 (rs)

∑
rs∈E(Z)

Υr+Υs
Υr×Υs

Redefined second Zagreb ReZG2(Z)
∑

rs∈E(Z)
FReZG2 (rs)

∑
rs∈E(Z)

Υr×Υs
Υr+Υs

Redefined third Zagreb ReZG3(Z)
∑

rs∈E(Z)
FReZG3 (rs)

∑
rs∈E(Z)

(Υr × Υs)(Υr + Υs)

Table 1.  Notation and formulas of the reverse degree based indices.
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•	 We use newGraph software to compute the adjacency matrix from the graph.
•	 We propose a Maple-based algorithm to compute the entropy measures based on the adjacency matrix.
•	 We obtain the physical properties of cancer drugs from https://pubchem.ncbi.nlm.nih.gov/ and ​h​t​t​p​s​:​/​/​w​w​w​

.​c​h​e​m​s​p​i​d​e​r​.​c​o​m​/​​​​​.​​
•	 We develop the statistical analysis between entropy measures and the physical properties using Python.

Hyaluronic acid-paclitaxel conjugate
Cancer is widely recognized as a prominent contributor to global mortality rates, with a persistent upward 
trend in fatality rates. The primary culprits behind these deaths are breast, stomach, lung, and colon cancers. 
Despite significant advancements in the field of cancer biology and the development of various therapeutic 
approaches to combat cancer, there persist challenges in effectively treating both primary and metastatic forms 
of the disease. Furthermore, it is important to acknowledge the presence of drawbacks in existing anticancer 
medications, as they often exhibit a lack of specificity and a high level of toxicity, thereby significantly impairing 
their effectiveness. Significant advancements have been made in the field of molecularly-targeted cancer 
treatment in recent years.

Hyaluronic acid (HA) is an endogenous compound. The compound in question is a polymer of 
glycosaminoglycan, consisting of a linear arrangement of D-glucuronic acid and N-acetyl-D-glucosamine units. 
These units are connected through alternating β-1,4- and β-1,3-glycosidic bonds. The primary structure of the 
disaccharide is considered to be energetically stable39. Hyaluronic acid (HA) exhibits considerable potential 
as a cancer therapeutic agent owing to its distinctive properties, including biodegradability, biocompatibility, 
non-toxicity, hydrophilicity, and non-immunogenicity. Moreover, the overexpression of HA receptors has been 
observed on numerous tumor cells, further supporting its promise as a cancer drug. Hyaluronic acid (HA) 
is currently being recognized as a promising platform for effectively targeting cells that overexpress CD44. 
The primary objective of utilizing HA in this context is to enhance the efficacy of anticancer treatments40–42. 
Hyaluronic acid (HA) exhibits promising characteristics as a drug carrier and drug-targeting agent. Paclitaxel 
(PTX) is a pharmacological agent that has demonstrated efficacy in the treatment of various malignancies such 
as bladder, lung, breast, esophageal, ovarian, and prostate cancers, among others43. Although the administration 
of PTX also faces certain limitations, such as its limited solubility and associated side effects, as well as the 
excipients commonly employed in its formulation. The initial proposal by Ringsdorf introduced a technique for 
the synthesis of polymeric macromolecule-drug conjugates. This method was specifically designed to facilitate 
the targeted delivery of small hydrophobic drug molecules to their intended sites of action44. The primary benefits 
of HA-PTX conjugates include enhanced water solubility and maintained activity. Moreover, these conjugates 
can be employed as targeted drug delivery systems to enhance the effectiveness of anti-tumor treatment45–47.

Figure 1 shows the unit chemical structures of hyaluronic acid and paclitaxel. Figures 2 and 3 illustrates 
the molecular graph of hyaluronic acid-paclitaxel conjugate for s = 1 and s = 2, respectively. If s < 1, then it 
means that hyaluronic acid-paclitaxel conjugate has degraded and as result breakdown into two or more parts 
(glucuronic acid, N-acetylglucosamine and paclitaxel). If s ≥ 1 then it means that the hyaluronic acid-paclitaxel 
conjugate polymerization has occurred equal to value of s. For example, if s = 2 then degree of polymerization 
is 2.

Main results
Let HA be the molecular structure of hyaluronic acid-paclitaxel conjugate. We partitioned the edges, base on the 
reverse degree as list in Table 3.

Using Table 3, we will calculate the following entropy measures.

Fig. 1.  Unit structures of hyaluronic acid and paclitaxel.
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Notations for edges (Υr, Υs) Frequency of edges

E1 (2, 2) s

E2 (2, 3) 7s

E3 (3, 3) 19s − 1
E4 (2, 4) 3s

E5 (3, 4) 32s − 1
E6 (4, 4) 13s + 1
E7 (2, 5) 4s

E8 (3, 5) 16s

E9 (4, 5) s + 1

Table 3.  Edge partition of HA based on reverse degree.

 

Fig. 3.  Molecular graph of hyaluronic acid-paclitaxel conjugate for s = 2.

 

Fig. 2.  Molecular graph of hyaluronic acid-paclitaxel conjugate for s = 1.
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Atom bond connectivity entropy

	

EABC(HA) =log(ABC) − 1
(ABC) log[

∏
cd∈E1

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E2

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E3

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E4

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E5

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E6

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E7

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E8

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

×
∏

cd∈E9

[√
Υr + Υs − 2

Υr × Υs

]√
Υr+Υs−2

Υr×Υs

],

EABC(HA) =log [62.6009s − 0.1082] − 1
[62.6009s − 0.1082] [log

[
(s)( 1√

2
)

1√
2

]
+ log

[
(7s)(

√
3
6)

√
3
6

]

+log

[
(19s − 1)(

√
4
9)

√
4
9

]
+ log

[
(3s)( 1√

2
)

1√
2

]

+ log

[
(32s − 1)(

√
5
12)

√
5

12

]
+ log

[
(13s + 1)(

√
6
16)

√
6

16

]

+log

[
(4s)( 1√

2
)

1√
2

]
+ log

[
(16s)(

√
6
15)

√
6

15

]
+ log

[
(s + 1)(

√
7
20)

√
7

20

]
].

Scientific Reports |         (2025) 15:4785 6| https://doi.org/10.1038/s41598-025-87755-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Geometric arithmetic entropy

	

EGA(HA) =log(GA) − 1
(GA) log[

∏
cd∈E1

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]
×

∏
cd∈E2

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]

×
∏

cd∈E3

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]
×

∏
cd∈E4

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]
×

∏
cd∈E5

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]

×
∏

cd∈E6

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]
×

∏
cd∈E7

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]

×
∏

cd∈E8

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]
×

∏
cd∈E9

[
2
√

Υr × Υs

Υr + Υs

][
2

√
Υr×Υs

Υr+Υs

]
]

EGA(HA) =log [93.9919s + 1.9836] − 1
93.9919s + 1.9836 [log


(s)

[
2
√

4
4

]( 2
√

4
4 )




+log


(7s)

[
2
√

6
5

]( 2
√

6
5 )


 + log


(19s − 1)

[
2
√

9
6

]( 2
√

9
6 )


 + log


(3s)

[
2
√

8
6

]( 2
√

8
6 )




+log


(32s − 1)

[
2
√

12
7

]( 2
√

12
7 )


 + log


(13s + 1)

[
2
√

16
8

]( 2
√

16
8 )


 + log


(4s)

[
2
√

10
7

]( 2
√

10
7 )




+log


(16s)

[
2
√

15
8

]( 2
√

15
8 )


 + log


(s + 1)

[
2
√

20
9

]( 2
√

20
9 )


].

First zagreb entropy

	

EM1 (HA) =log(M1) − 1
(M1) log[

[ ∏
cd∈E1

[Υr + Υs](Υr+Υs)

]
×

[ ∏
cd∈E2

[Υr + Υs](Υr+Υs)

]

×

[ ∏
cd∈E3

[Υr + Υs](Υr+Υs)

]

×

[ ∏
cd∈E4

[Υr + Υs](Υr+Υs)

]
×

[ ∏
cd∈E5

[Υr + Υs](Υr+Υs)

]
×

[ ∏
cd∈E6

[Υr + Υs](Υr+Υs)

]

×

[ ∏
cd∈E7

[Υr + Υs](Υr+Υs)

]
×

[ ∏
cd∈E8

[Υr + Υs](Υr+Υs)

]
×

[ ∏
cd∈E9

[Υr + Υs](Υr+Υs)

]
]

EM1 (HA) =log(664s + 4) − 1
664s + 4[log

[
(s) × (4)4]

+ log
[
(7s) × (5)5]

+ log
[
(19s − 1) × (6)6]

+log
[
(3s) × (6)6]

+ log
[
(32s − 1) × (7)7]

+ log
[
(13s + 1) × (8)8]

+log
[
(4s) × (7)7]

+ log
[
(16s) × (8)8]

+ log
[
(s + 1) × (9)9]

].
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Second zagreb entropy

	

EM2 (HA) =log(M2) − 1
(M2) log[

[ ∏
cd∈E1

[Υr × Υs](Υr×Υs)

]
×

[ ∏
cd∈E2

[Υr × Υs](Υr×Υs)

]

×

[ ∏
cd∈E3

[Υr × Υs](Υr×Υs)

]

×

[ ∏
cd∈E4

[Υr × Υs](Υr×Υs)

]
×

[ ∏
cd∈E5

[Υr × Υs](Υr×Υs)

]
×

[ ∏
cd∈E6

[Υr × Υs](Υr×Υs)

]

×

[ ∏
cd∈E7

[Υr × Υs](Υr×Υs)

]
×

[ ∏
cd∈E8

[Υr × Υs](Υr×Υs)

]
×

[ ∏
cd∈E9

[Υr × Υs](Υr×Υs)

]
]

EM2 (HA) =log(113s + 15) − 1
113s + 15 [log

[
(s) × (4)4]

+ log
[
(7s) × (6)6]

+ log
[
(19s − 1) × (9)9]

+log
[
(3s) × (8)8]

+ log
[
(32s − 1) × (12)12]

+ log
[
(13s + 1) × (16)16]

+log
[
(4s) × (10)10]

+ log
[
(16s) × (15)15]

+ log
[
(s + 1) × (20)20]

].

Hyper first zagreb entropy

	

EHM1 (HA) =log(HM1) − 1
(HM1) log[

[ ∏
cd∈E1

[(Υr + Υs)2](Υr+Υs)2

]
×

[ ∏
cd∈E2

[(Υr + Υs)2](Υr+Υs)2

]

×

[ ∏
cd∈E3

[(Υr + Υs)2](Υr+Υs)2

]

×

[ ∏
cd∈E4

[(Υr + Υs)2](Υr+Υs)2

]
×

[ ∏
cd∈E5

[(Υr + Υs)2](Υr+Υs)2

]
×

[ ∏
cd∈E6

[(Υr + Υs)2](Υr+Υs)2

]

×

[ ∏
cd∈E7

[(Υr + Υs)2](Υr+Υs)2

]
×

[ ∏
cd∈E8

[(Υr + Υs)2](Υr+Υs)2

]
×

[ ∏
cd∈E9

[(Υr + Υs)2](Υr+Υs)2

]
]

EHM1 (HA) =log(4684s + 60) − 1
4684s + 60 [log

[
(s) × (16)16]

+ log
[
(7s) × (25)25]

log
[
(19s − 1) × (36)36]

+log
[
(3s) × (36)36]

+ log
[
(32s − 1) × (49)49]

+ log
[
(13s + 1) × (64)64]

+log
[
(4s) × (49)49]

+ log
[
(16s) × (64)64]

+ log
[
(s + 1) × (81)81]

].

Forgotten entropy

	

EF (HA) =log(F ) − 1
(F ) log[

[ ∏
cd∈E1

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]

×

[ ∏
cd∈E2

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]
×

[ ∏
cd∈E3

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]

×

[ ∏
cd∈E4

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]
×

[ ∏
cd∈E5

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]

×

[ ∏
cd∈E6

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]
×

[ ∏
cd∈E7

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]

×

[ ∏
cd∈E8

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]
×

[ ∏
cd∈E9

[
(Υr)2 + (Υs)2](Υr)2+(Υs)2

]
]

EF (HA) =log(2418s + 30) − 1
2418s + 30 [log

[
(s) × (8)8]

+ log
[
(7s) × (13)13]

+log
[
(19s − 1) × (18)18]

+ log
[
(3s) × (20)20]

+ log
[
(32s − 1) × (25)25]

+log
[
(13s + 1) × (32)32]

+ log
[
(4s) × (29)29]

+ log
[
(16s) × (34)34]

+log
[
(s + 1) × (41)41]

].

Graphical representations and numerical values of entropy measures are shown in Fig. 4 and Table 4.
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Statistical analysis of entropy measures
             Quantitative structure-property relationship (QSPR) studies have emerged as a vital tool in predicting 
physical properties of molecules using topological indices. These indices, derived from molecular graphs, encode 
structural information that correlates with physical properties of drugs.

The QSPR between the physical characteristics of cancer medications and their entropy measures is being 
developed in this area. The cancer medications shown in Fig. 5. To compute the entropy measures, first we 
convert the chemical structure of drugs into molecular graph given in Fig. 6. The entropy measures value given 
in Table 5 and the physical properties in Table 6.

To propose the relationship between entropy measures and the physical properties of cancer drug, multiple 
linear (MLR), Ridge (RR), Lasso (LR), ElasticNet (ENR) and Support Vector regression (SVR) are used. We 
calculate the only correlation coefficient, coefficient of determination and mean squared error to decide that 
which model predict the desire physical property listed in Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17.

By using Multiple Linear, Ridge, Lasso, Elastic Net, and Support Vector regression, we proposed the models 
against each physical property for boiling point (BP), enthalpy of vaporization (EoV), flash point (FP), molar 
refractivity (MR), molar volume (MV), polarization (P), molecular weight (MW), monoisotopic mass (MM), 
topological polar surface area (TPSA) and complexity (C). Here we are writing only those model that shows the 
most significant relationship.

	 Lasso Regression : BP = 550.1200 + (165.7870)EReZG3 , � (4)

	

Ridge Regression : EoV = 86.0600 + (2.1374)ER1 + (0.2140)ER−1

+ (1.1891)ER1/2 + (0.9586)ER−1/2 + (0.9586)EJ

+ (1.0045)EGA + (0.8850)EABC + (1.3779)EM1 + (2.1374)EM2

+ (2.9152)EF + (2.3871)EHM

+ (1.3474)EAZI + (0.6050)EReZG1 + (1.1075)EReZG2 + (3.8297)EReZG3 ,

� (5)

[s] EABC EGA EM1 EM2 EHM1 EF

[1] 4.0652 4.5147 6.4724 4.4986 8.4133 7.7584

[2] 4.7592 5.1975 7.1625 5.1314 9.1001 8.4454

[3] 5.165 5.5994 7.567 5.5159 9.5034 8.8488

[4] 5.4528 5.8854 7.8542 5.7929 9.7901 9.1355

[5] 5.676 6.1075 8.077 6.0096 10.0126 9.358

[6] 5.8584 6.2891 8.2591 6.1876 10.1945 9.5399

[7] 6.0126 6.4427 8.4131 6.3387 10.3483 9.6938

[8] 6.1461 6.5759 8.5466 6.4699 10.4816 9.8271

[9] 6.2639 6.6934 8.6643 6.5859 10.5992 9.9447

[10] 6.3693 6.7985 8.7696 6.6898 10.7044 10.0499

Table 4.  Numerical representation of the reverse entropy measures.

 

Fig. 4.  Graphical representation of EABC , EGA, EM1 , EM2 , EHM1  and EF .
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Lasso Regression : FP = 261.7250 − (28.6916)ER−1 − (4.4866)ER−1/2 − (110.9448)EGA

− (60.1245)EABC − (42.4353)EReZG1 + (337.8187)EReZG3 ,
� (6)

	 Lasso Regression : MR = 108.4800 + (41.7586)EReZG3 , � (7)

	 Lasso Regression : MV = 319.0400 + (−360.6798)ER−1 + (479.8992)EReZG3 , � (8)

	 Lasso Regression : P = 43.000 + (15.9447)EReZG3 , � (9)

Fig. 5.  Chemical structures of cancer drugs.
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Fig. 6.  Molecular graphs of cancer drugs.

 

Scientific Reports |         (2025) 15:4785 11| https://doi.org/10.1038/s41598-025-87755-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.559 0.313 1892.3409

Ridge regression 0.999 0.998 48.2737

Lasso regression 0.999 0.998 49.7108

ElasticNet regression 0.999 0.998 51.3297

Support vector regression 0.992 0.984 139.9596

Table 8.  Regression model for EoV.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.477 0.228 100534.7691

Ridge regression 0.999 0.997 3402.2063

Lasso regression 0.999 0.998 3349.7946

ElasticNet regression 0.999 0.997 3517.0989

Support vector regression 0.993 0.986 8921.9773

Table 7.  Regression model for BP.

 

Drugs BP EoV FP MR MV P MW MM PSA HAC C

Abemaciclib 689.3 101 370.7 140.4 382.3 55.7 506.6 506.27 75 37 738

Abraxane 957.1 146 532.6 219.3 610.6 86.9 853.9 853.3 221 62 1790

Anastrozole 469.7 73.2 237.9 90 270.3 35.7 293.4 293.16 78.3 22 456

Capecitabine 517.0 81.2 87 82.3 240.5 32.6 359.4 359.1 121 25 582

Cyclophosphamide 336.1 57.9 157.1 58.1 195.7 23 261.1 260.02 41.6 14 212

Exemestane 453.7 71.3 169 85.8 260.6 34 296.4 296.17 34.1 22 653

Fulvestrant 674.8 104.1 361.9 154 505.1 61.1 606.8 606.31 76.7 41 854

Ixabepilone 697.8 107.3 375.8 140.1 451.6 55.5 506.7 506.2 140 35 817

Letrozole 563.5 84.7 294.6 87.1 234.5 34.5 285.3 285.1 78.3 22 420

Megestrol Acetate 507.1 77.7 77.7 106.4 333.4 42.2 384.5 384.23 60.4 28 821

Methotrexate 561.3 84.1 284.15 119 295.7 47.2 454.4 454.17 211 33 704

Tamoxifen 482.3 74.7 140 118.9 118.9 47.1 371.5 371.2 12.5 28 463

Thiotepa 270.2 50.8 117.2 49.1 125.8 19.5 189.2 189.04 41.1 11 194

Table 6.  The physical properties of cancer drugs.

 

Drugs AZI M1 M2
mM2 H ReZG3 SDD I F

Abemaciclib 98.1406 58 63 3.1111 6 298 30 13.6667 140

Abraxane 592.718 361 458 13.1181 28.2357 2580 165.333 84.5976 1023

Anastrozole 139.701 94 108 3.6944 7.819 558 47.8333 21.3643 258

Capecitabine 213.219 128 149 6 11.8333 760 63.3333 30.0833 330

Cyclophosphamide 112.194 64 72 3.4167 6.4857 368 32.6667 14.9143 166

Exemestane 240.867 156 208 4.9861 10.5714 1308 74.75 34.8452 500

Fulvestrant 340.536 212 251 8.6181 18.0548 1346 105 48.8952 584

Ixabepilone 273.146 186 220 7.4444 15.1571 1188 95 42.0095 524

Letrozole 202.172 112 131 5.0833 10.6333 646 51 27.2333 276

Megestrol Acetate 253.422 164 209 5.8125 12.2262 1218 78.1667 37.3905 488

Methotrexate 279.359 172 200 7.6111 15.5 1014 84.3333 40.4167 444

Tamoxifen 244.313 138 158 6.4444 13.4 768 65 33.3667 336

Thiotepa 115.842 68 88 2.25 5.1571 500 29.5 16.1429 194

Table 5.  Entropy measures values for cancer drugs.
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Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.417 0.174 63525.0926

Ridge regression 1.000 1.000 885.8908

Lasso regression 0.915 0.838 1903.2440

ElasticNet regression 1.000 0.999 897.8231

Support vector regression 1.000 0.999 12622.7928

Table 13.  Regression model for MW.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.678 0.459 498.1708

Ridge regression 0.904 0.817 39.9896

Lasso regression 0.910 0.828 39.0514

ElasticNet regression 0.910 0.829 39.6940

Support vector regression 0.890 0.791 193.7721

Table 12.  Regression model for P.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression 0.219 0.048 69903.6016

Ridge regression 0.707 0.500 11182.2656

Lasso regression 1.000 1.000 10708.8748

ElasticNet regression 0.690 0.476 11344.4313

Support vector regression 0.704 0.495 13154.8234

Table 11.  Regression model for MV.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.684 0.467 3201.1490

Ridge regression 0.902 0.813 253.6365

Lasso regression 0.908 0.824 245.7076

ElasticNet regression 0.908 0.825 250.6917

Support vector regression 0.899 0.808 1256.6219

Table 10.  Regression model for MR.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.346 0.120 92689.8022

Ridge regression 0.965 0.931 15647.8733

Lasso regression 0.968 0.938 15416.2368

ElasticNet regression 0.966 0.934 15801.9674

Support vector regression 0.908 0.824 20067.9223

Table 9.  Regression model for FP.
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Model Pearson R Coef. of determination Mean squared error

Multiple linear regression 0.799 0.638 37851.3148

Ridge regression 0.380 0.145 20700.5452

Lasso regression 0.996 0.993 11751.3839

ElasticNet regression 0.355 0.126 21292.8623

Support vector regression 0.475 0.225 26543.2514

Table 17.  Regression model for C.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.338 0.114 200.2285

Ridge regression 0.997 0.995 8.9858

Lasso regression 0.998 0.996 9.0149

ElasticNet regression 0.998 0.996 9.2303

Support vector regression 0.998 0.995 65.6067

Table 16.  Regression model for HAC.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression 0.998 0.996 8327.3621

Ridge regression 0.681 0.464 3427.4200

Lasso regression 0.681 0.463 3450.3741

ElasticNet regression 0.711 0.506 3384.5901

Support vector regression 0.733 0.537 1560.9485

Table 15.  Regression model for TPSA.

 

Model Pearson R Coef. of determination Mean squared error

Multiple linear regression −0.416 0.173 63042.1280

Ridge regression 1.000 1.000 887.2696

Lasso regression 0.917 0.840 1898.1879

ElasticNet regression 1.000 0.999 899.1999

Support vector regression 1.000 0.999 12267.7786

Table 14.  Regression model for MM.
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Ridge Regression : MW = 410.6550 + (17.6518)ER1 + (−10.7141)ER−1 + (9.0215)ER1/2

+ (5.4112)ER−1/2 + (5.4112)EJ

+ (7.7493)EGA + (6.4299)EABC + (10.7622)EM1

+ (17.6518)EM2 + (23.6332)EF + (20.3607)EHM

+ (4.2815)EAZI + (1.5745)EReZG1 + (7.6497)EReZG2 + (36.4554)EReZG3 ,

� (10)

	

Ridge Regression : MM = 410.2570 + (17.6365)ER1 + (−10.6745)ER−1

+ (9.0273)ER1/2 + (5.4242)ER−1/2 + (5.4242)EJ

+ (7.7591)EGA + (6.4450)EABC + (10.7603)EM1

+ (17.6365)EM2 + (23.5873)EF + (20.3302)EHM

+ (4.3202)EAZI + (1.6057)EReZG1 + (7.6624)EReZG2 + (36.3930)EReZG3 ,

� (11)

	

Multi. Linear Reg. : TPSA = 104.3100 + (37034.9815)ER1 + (9668.6404)ER−1

+ (16874.7756)ER1/2 − (54374.9634)ER−1/2

− (54375.3403)EJ + (17354.7896)EGA + (24258.0159)EABC + (45163.9464)EM1

+ (37034.9815)EM2 + (−5794.9893)EF + (−4960.5334)EHM + (213.1249)EAZI

+ (11719.2140)EReZG1 + (−55383.7579)EReZG2 + (−24398.5301)EReZG3 ,

� (12)

	

Ridge Regression : HAC = 28.7000 + (1.1989)ER1 + (−0.4720)ER−1

+ (0.7580)ER1/2 + (0.5440)ER−1/2 + (0.5440)EJ

+ (0.7124)EGA + (0.6437)EABC + (0.8500)EM1

+ (1.1989)EM2 + (1.5385)EF + (1.3437)EHM

+ (0.5232)EAZI + (0.3693)EReZG1 + (0.6917)EReZG2 + (2.2080)EReZG3 ,

� (13)

	 Lasso Regression : HAC = 28.7000 + (11.8539)EReZG3 , � (14)

	

ElasticNet Regression : HAC = 28.7000 + (0.8651)ER1

+ (0.5162)ER−1 + (0.7719)ER1/2 + (0.7276)ER−1/2 + (0.7277)EJ

+ (0.7611)EGA + (0.7466)EABC + (0.7915)EM1

+ (0.8652)EM2 + (0.9375)EF + (0.8967)EHM

+ (0.7131)EAZI + (0.6888)EReZG1 + (0.7564)EReZG2 + (1.0758)EReZG3 ,

� (15)

	 Lasso Regression : C = 668.2000 + (−1529.9283)ER−1 + (619.6337)ER1/2 + (515.4111)EReZG3 . � (16)

Discussion
Entropy measures are used to predict the physical and chemical properties of drugs or chemical compounds. In 
“Hyaluronic acid-paclitaxel conjugate”, we computed the reverse degree-based entropy measures for hyaluronic 
acid-paclitaxel conjugate for s ≥ 1. Table 4 shows the numerical comparisons of reverse degree-based entropy 
measures for small values of s for hyaluronic acid-paclitaxel conjugate. Figure 4 demonstrates that all entropy 
measures exhibit an upward trend as the value of s increases. These results will be helpful to the pharmaceutical 
industry.

In “Statistical analysis of entropy measures”, we propose a statistical analysis of reverse degree-based entropy 
measures using the physical properties of cancer drugs. We find that the reverse degree-based entropy measures 
show a significant relationship with the physical properties. We employ Multiple Linear, Ridge, Lasso, Elastic Net, 
and Support Vector regression to examine the relationship between entropy measures and physical properties. 
All the computed results are listed in Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17. Additionally, we propose 
the model for each relationship and include only the most significant models that will be used to estimate those 
physical properties that have not yet been calculated. We examine the following relationships:

•	 Table 7 presents a comparative analysis of various regression models, highlighting their differences in pre-
dictive capabilities. The results indicate that Multiple Linear Regression exhibits the weakest performance, 
characterized by a relatively low coefficient of determination (R2 = 0.228) and the highest mean squared 
error (MSE = 100534.7691), suggesting a poorer fit and higher prediction errors. In contrast, Ridge and Lasso 
Regression demonstrate significant improvements, with R2 values of 0.997 and 0.997, respectively. These 
models also exhibit substantially lower MSEs, indicating their superior ability to capture the relationship 
between entropy measures and the boiling point. Notably, ElasticNet Regression achieves a high R2 of 0.998 
and the lowest MSE among the models (3349.7946), striking a balance between prediction accuracy and gen-
eralization. Support Vector Regression (SVR) yields the highest MSE (8921.9773), indicating low predictive 
power, although its R2 = 0.986 is slightly lower than the other models, implying a potential trade-off in 
explaining data variability. Overall, Lasso Regression is preferred for maximizing explanatory power while 
maintaining good prediction accuracy for boiling point. The Lasso Regression model for boiling point is 
presented in Eq. (4).

•	 Table 8 presents a comparative analysis of regression models, highlighting their differences in predictive capa-
bilities. The results indicate that Multiple Linear Regression exhibits the weakest performance, characterized 
by a relatively low coefficient of determination and the highest mean squared error. This means the model is a 
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poorer fit and has higher prediction errors. In contrast, Ridge, Lasso and ElasticNet Regression demonstrate 
significant improvements, with the same R2 value of 0.998 and lower MSEs of 48.2737, 49.7108 and 51.3297, 
respectively. Ridge Regression achieves a high R2 and the lowest MSE among the models, striking a balance 
between prediction accuracy and generalization. Support Vector Regression yields that R2 = 0.984 is slightly 
lowest than the other models and the highest MSE (139.9596), indicating the model is a poorer fit and has 
higher prediction errors. Overall, Ridge Regression is preferred for maximizing explanatory power while 
maintaining good prediction accuracy for enthalpy of vaporization. Ridge Regression model for enthalpy of 
vaporization is presented in Eq. (5).

•	 Table 9 presents a comparative analysis of regression models for flash point. The results indicate that Multiple 
Linear Regression exhibits the weakest performance, characterized by a relatively low coefficient of deter-
mination and the highest mean squared error. In contrast, Lasso Regression demonstrates significant im-
provements, with R2 value of 0.938 and lower MSE of 25416.2368. On the other hand, Ridge, ElasticNet, and 
Support Vector Regression yield that R2 values are slightly lower than the Lasso Regression and the highest 
MSEs, indicating the models are poorer fit and have higher prediction errors. Overall, Lasso Regression is 
preferred for maximizing explanatory power while maintaining good prediction accuracy for flash point. The 
Lasso Regression model for flash point is presented in Eq. (6).

•	 Table 10 presents a comparative analysis of regression models for molar refractivity. The results indicate that 
Multiple Linear Regression exhibits the weakest performance, characterized by a relatively low coefficient 
of determination and the highest mean squared error. In contrast, Ridge and Lasso Regression demonstrate 
significant improvements, with R2 values of 0.813 and 0.824, respectively and with lower MSEs. Notably, 
ElasticNet Regression achieves a high R2 of 0.825 and the lowest MSE among the models (250.6917), strik-
ing a balance between prediction accuracy and generalization. Support Vector Regression (SVR) yields the 
highest MSE (1256.6219), indicating low predictions, although its R2 is slightly lower than the other models, 
implying a potential trade-off in explaining data variability. Overall, ElasticNet is preferred for maximizing 
explanatory power while maintaining good prediction accuracy for molar refractivity. ElasticNet Regression 
model for molar refractivity is presented in Eq. (7).

•	 Table 11 presents a comparative analysis of regression models for molar volume. The results indicate that 
Multiple Linear, Ridge, ElasticNet and vector Support Regression exhibit the weakest performances, charac-
terized by a relatively low coefficient of determination and the highest mean squared errors. In contrast, Lasso 
Regression demonstrates significant improvements, with a R2 value of 1.000 and with lower MSE among 
the models, striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is 
preferred for maximizing explanatory power while maintaining good prediction accuracy for molar volume. 
The Lasso Regression model for molar volume is presented in Eq. (8).

•	 Table 12 presents a comparative analysis of regression models for polarization. The results indicate that Mul-
tiple Linear and Support Vector Regression exhibits the weakest performances, characterized by a relatively 
low coefficient of determination and the highest mean squared error. In contrast, Ridge, Lasso and ElasticNet 
Regression demonstrate significant improvements, with R2 values of 0.817, 0.828 and 0.829, and lower MSEs 
of 39.9896, 39.0514 and 39.6940, respectively. Lasso Regression achieves the lowest MSE among the models, 
striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is preferred for 
maximizing explanatory power while maintaining good prediction accuracy for polarization and no multi-
collinearity. Ridge Regression model for polarization is presented in Eq. (9).

•	 Table 13 presents a comparative analysis of regression models for molecular weight. The results indicate that 
Multiple Linear, Lasso, and Vector Support Regression exhibits the weakest performances, characterized by 
the highest mean squared errors. In contrast, Ridge Regression and ElasticNet demonstrate significant im-
provements, with R2 values of 1.000 and 0.999 with lower MSEs 885.8908 and 897.8231 among the models, 
striking a balance between prediction accuracy and generalization. Overall, Ridge Regression is preferred 
for maximizing explanatory power while maintaining good prediction accuracy for molecular weight. Ridge 
Regression model for molecular weight is presented in Eq. (10).

•	 Table 14 presents a comparative analysis of regression models for monoisotopic mass. The results indicate 
that Multiple Linear, Lasso, and Vector Support Regression exhibits the weakest performances, characterized 
by the highest mean squared errors. In contrast, Ridge and ElasticNet Regression demonstrate significant im-
provements, with R2 values of 1.000 and 0.999 with lower MSEs 887.2696 and 899.1999 among the models, 
striking a balance between prediction accuracy and generalization. Overall, Ridge Regression is preferred for 
maximizing explanatory power while maintaining good prediction accuracy for monoisotopic mass. Ridge 
Regression model for monoisotopic mass is presented in Eq. (11).

•	 Table 15 presents a comparative analysis of regression models for topological polar surface area. The results 
indicate that Multiple Linear Regression exhibits the highest performance, characterized by a relatively high 
coefficient of determination (R2 = 996). In contrast, Ridge, Lasso, ElasticNet and Support Vector Regression 
demonstrate the lowest performance, characterized by a relatively low coefficient of determination. Overall, 
Multiple Linear Regression is preferred for maximizing explanatory power while maintaining good predic-
tion accuracy for topological polar surface area. Multiple Linear Regression model for topological polar sur-
face area is presented in Eq. (12).

•	 Table 16 presents a comparative analysis of regression models for heavy atom count. The results indicate 
that Multiple Linear and Support Vector Regression exhibits the weakest performances, characterized by a 
relatively low coefficient of determination and the highest mean squared error. In contrast, Ridge, Lasso and 
ElasticNet Regression demonstrate significant improvements, with R2 values of 0.995, 0.996 and 0.996, and 
lower MSEs of 8.9858, 9.0149 and 9.2303, respectively. Lasso Regression achieves the highest R2 value among 
the models, striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is 
preferred for maximizing explanatory power while maintaining good prediction accuracy for heavy atom 
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count. Models for heavy atom count are presented in Eqs. (13)–(15). However, the best model is the Lasso 
Regression model (Eq. 15), as it does not exhibit multicollinearity.

•	 Table 17 presents a comparative analysis of regression models for complexity. The results indicate that Multi-
ple Linear, Ridge, ElasticNet and Vector Support Regression exhibits the weakest performances, characterized 
by low coefficient of determination and highest mean squared errors. In contrast, Lasso Regression demon-
strates significant improvements, with R2 value of 0.993 with lower MSE 11751.3839 among the models, 
striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is preferred 
for maximizing explanatory power while maintaining good prediction accuracy for complexity. The Lasso 
Regression model for complexity is presented in Eq. (16).

Based on the above results and their explanations, we can conclude that the physical properties, such as boiling 
point, enthalpy of vaporization, flash point, molar refractivity, molar volume, polarization, molecular weight, 
monoisotopic mass, topological polar surface area, and complexity, can be predicted using the reverse entropy 
measures.

Conclusion
Entropy measures are utilized to predict physical and chemical properties of drugs. In this study, we computed 
entropy measures for the hyaluronic acid-paclitaxel conjugate. The results exhibited numerical values that 
demonstrated the effectiveness of entropy measures. The utilization of reverse degree-based entropy measures 
proved valuable in quantitative structure-property relationship (QSPR) investigations as predictive measures. 
This investigation focused on assessing the predictive ability of entropy measures by analyzing the physical 
properties of cancer drugs. The obtained findings demonstrated a robust positive correlation between the boiling 
point, enthalpy of vaporization, flash point, molar refractivity, molar volume, polarization, molecular weight, 
monoisotopic mass, topological polar surface area, complexity, and entropy measures. Our analysis determined 
that the entropy measures ER1 , ER−1 , ER 1

2
, ER −1

2
, EABC , EGA, EM1 , EM2 , EAZI , EHM1 , EF , EJ , EReZG1 , 

EReZG2 , and EReZG3  can be used for predicting physical properties. We developed a predictive model for each 
relationship and selected only the most significant models to estimate physical properties that have not yet been 
calculated.

Data availability
All data generated or analysed during this study are included in this published article.
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