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Modeling and estimation of
physiochemical properties of
cancer drugs using entropy
measures
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Oladele Oyelakin®**

Hyaluronic acid-paclitaxel conjugate is a nanoparticle-based drug delivery system that combines
hyaluronic acid with paclitaxel, enhancing its solubility, stability, and targeting specificity. This
conjugate shows promise in treating breast, lung, and ovarian cancers with reduced side effects.
Entropy measures are used to predict physical and chemical properties of drugs. In this paper, we
compute entropy measures for the hyaluronic acid-paclitaxel conjugate using the edge/connectivity
partition approach. We establish a quantitative structure-property relationship using reverse entropy
measures to predict physical properties of cancer drugs. Multiple linear, Ridge, Lasso, ElasticNet, and
Support Vector regression models are employed using Python software. Our results show that reverse
entropy measures exhibit high predictive capability for physical properties, based on the highest
coefficient of determination and lowest mean squared error. We conclude that physical properties,
including boiling point, enthalpy of vaporization, flash point, molar refractivity, molar volume,
polarization, molecular weight, monoisotopic mass, topological polar surface area, and complexity,
can be predicted using reverse entropy measures. We propose models for each relationship, including
only the most significant models for estimating uncalculated physical properties.

Keywords Physiochemical characteristics, QSPR Analysis, drugs, Topological indices, Reverse entropy
measures

The mathematical field of chemical graph theory focuses on the study of chemical graphs, which are
mathematical structures representing pairwise interactions between entities'. A graph consists of two primary
components: edges (bonds) and vertices (atoms), also referred to as nodes. In this representation, vertices denote
atoms, while edges (bonds) represent the interactions between them?.

Mathematical chemistry, a subfield of theoretical chemistry, employs mathematical methodologies to
investigate and understand the properties and dynamics of chemical compounds®*. Topological indices are
numerical values corresponding to the molecular structure of compounds. Various topological indices have
been defined, including degree-based, eigenvalue-based, and distance-based indices®. Researchers have found
applications for these indices in chemistry, pharmacy, and biology®.

The concept of topological indices was first introduced by Wiener”. Later, Milan Randi¢® proposed the
Randi¢ index. Amic et al.® and Bollobas et al.!® subsequently suggested a generalization of the Randi¢ index.
In 2010, Trinajsti¢ and Zhou introduced the sum connectivity index!!. Zhong'? defined the harmonic index
in 2012. Nikolic et al.'? presented a revised version of the second Zagreb index, while Fath-Tabar!* introduced
the third Zagreb index in 2011. In 2015, Munir et al.!® converted degree-based indices into entropy measures.
Ranjini et al.'® proposed revised Zagreb indices in 2013. Notably, Shannon!” laid the foundation for entropy
metrics in 1948.

Researchers initiated investigations into the entropy value of network systems in the late 1950s, inspired by
Shannon’s influential work'8. Rashevsky employs the concept of entropy measures to quantify the structural
complexity of a graph. Shannon’s entropy is employed to quantify the intricacy of the graph in this particular
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scenario. Mowshowitz!® subsequently conducted an examination of the characteristics of graph entropy and
conducted extensive measurements pertaining to his particular application. Entropy indicators based on graphs
have been employed in diverse disciplines such as biology, chemistry, and computer science for the purpose of
characterizing patterns®. The entropy proposed by Korners?! serves as another notable illustration.

Entropy measures have been developed using several graph invariances, including eigenvalues and
connection information??, degree-based graph entropy?®, and distance-based graph entropy?*. Kulli introduced
the concept of reverse degree-based indices*>. Many researchers calculate the reverse degree-based indices for
certain chemical structures. Wei Gao et al. calculated the indices for dendrimers?. Koam et al. calculated the
indices for third type of chain hex-derived network?”. Dongming Zhao et al. examine the polycyclic metal-
organic network?®. For more information about reverse degree-based indices calculations for certain chemical
structures, sees?®31.

Recently, Furtula et al.*? did an analysis of the popular degree-based indices using the data of the octane
isomer. They concluded that the symetric division degree index is the descriptor. Recently, Rauf et al.3* developed
the QSPR between degree-based entropy and physical properties. They show that entropy measures are helpful
in predicting physical properties. QSPR is a highly effective analytical methodology utilized to transform a given
molecule into a series of numerical values that accurately depict its intrinsic chemical and physical characteristics.
Several researchers have conducted studies on statistical linear, quadratic, and polynomial regression models to
analyze the relationship between indices and physical properties*~.

Motivated by these authors’ works, we have developed the QSPR between the physical properties of cancer
drugs and reverse degree-based entropy measures. We found that the entropy measures show the best correlation
with physical properties. These results motivate and are helpful for researchers in predicting physical properties.

Degree based entropy of a graph

Let Z = (V, E) be a finite, simple, and connected graph of order p, size g edges and .% be a real valued function.
The degree of a vertex r is denoted by d(r) and is defined as the number of edges attached with vertex r. Kulli*’
introduced the reverse degree Y (r) defined as Y(r) = A(Z) — d(r) + 1, where A(Z) is the maximum degree
of vertex among the vertices of a graph Z. For the undefined term of graph theory, see®. The entropy function
of graph Z is defined as follows:
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Now, if r; € V and .#(r;) is an information function that represent the degree of vertex r;, denoted by
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Z (r:) = Y(r;), then equation (1) becomes
» Y(r;) { Y(r:) }
Er(Z) = — 1 ,
SR b > we el by o

£5(2) = log <Z T(rn) - ﬁ S [h(ro)log(Y(r:)))

=1

By simplifying the equation and using Z;;l Y(rj) =2q,
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Ex(Z) = log(2q) — Zlog
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Edge weight-based entropy of graph

In 2014, Chen et al. introduced the concept of the entropy of an edge weight graph. For an edge weight graph
P=(V(Z);E(Z): %(rs)), where E(Z) is the edge set, V(Z) is the vertex set, and .7 (rs) is the edge weight of
the edge s in Z. The entropy is defined as
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By using Table 1 and simplifying the equation (3), we can derive the entropy measures written in Table 2.

Methodology

In this section, we present the working methodology employed in this study. In “Hyaluronic acid-paclitaxel
conjugate”, we compute the entropy measures for hyaluronic acid-paclitaxel conjugate to estimate their physical
properties. The following steps are used to compute the entropy measures:

o We convert the hyaluronic acid-paclitaxel conjugate structure into a molecular graph by considering atoms as
vertices and chemical bonds as edges.
o We partition the vertices and edges of the graph based on the reverse degree.
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Name of Index Notation Formula Formula expansion

Randi¢ o = —1, 51,1, L | Ra(Z) ZNGE(Z) Fr,, (rs) ZTS&E(Z)(TT X Tg)™

Atom bond connectivity ABC(Z) ereE(Z) Fapc(rs) erEE(Z) \/%
Geometric arithmetic GA(Z) Zr'sEE(Z) Faa(rs) Z'r'sEE(Z) %

First Zagreb My (Z) D ez T (15) ereE(z) (T +7Ts)

Second Zagreb M (Z) ereE(Z) F My (18) ereE(z)(T7‘ x Ts)

Hyper Zagreb HM(Z) ENEE(Z) Fuam(rs) ZmeE(Z) (T, 4+ T,)?

Forgotten F(2) ereE(Z) Fr(rs) ereE(Z)[(T7')2 + (TS)’Z]
Augmented Zagreb AZI(Z) ereE(z) Fazi(rs) ereE(z) ( Tﬂ,flz;ji2 )3

Balaban J(Z) ereE(Z) F(rs) Z'V'SEE(Z)(Q_QW X ﬁ)
Redefined first Zagreb ReZG1(2) ereE(z) FRezaq (T8) ereE(Z) ;:i;frz

Redefined second Zagreb ReZG2(2) ereE(Z) FRezGy(T8) ereE(Z) ;fr:i?frz

Redefined third Zagreb ReZG3(Z) ereE(Z) FRezGs(T8) ereE(z) (Tr X T)(Tr +Ts)

Table 1. Notation and formulas of the reverse degree based indices.

Name of entropies Notation Formula

Randica = —1, 51,1, 3 | a(2) log(Ra) — 7=log {HrseE(Z)[gRa (m)]gRum)]}

Atom bond connectivity Eapc(Z) log(ABC) — gEglog |:HT‘SEE(Z) [gABC(TS)].gABC(Ts)}
Geometric arithmetic Ecal(Z) log(GA) — GilAlog |:Hry»seE(z)[’QGA(TS)]gGA(TS)}

First Zagreb Eny (Z) log(My) — ﬁll"g [HTSEE(Z)[ng (rs)]ng (rs)]

Second Zagreb Eny (Z) log(Ms) — 71210!] [H”GE(Z)[QMQ(TS)](?AQ(TS)}

Hyper Zagreb Eum(Z) log(HM) — 5z log {HmeE(z)[yHM(TS)]ﬁHM(m)}

Forgotten Er(2) log(F) — %log [HTSEE(Z)[yF(T,s)].@F(rs)}

Augmented Zagreb Eazi1(Z) log(AZI) — ﬁlog |:H7‘SEE(Z)['QAZI(TS)]I?AZI(TS)}

Balaban &5(2) log(J) — Llog [HrseE(z)[y"(rs)]gﬂ”)}

Redefined first Zagreb Erezc,(Z) |log(ReZG1) — #Gllo‘q |:HweE(z) [(Frezc, (rs)]*gRCZGl (rs):|
Redefined second Zagreb | ez, (Z) | log(ReZG2) ~ mkaylog [H,‘sem[@Rezams)}mm(“)]
Redefined third Zagreb | Erez5(2) | log(ReZGs) — pegaglod [Hmem)L%ezmrs)}“fzc‘“’M)]

Table 2. Notation and formulas of entropy measures.

o We compute the entropy measures and plot the graphical representation using Maple software.

In “Statistical analysis of entropy measures’, we develop the statistical analysis of entropy measures. The following

steps are used for statistical analysis:

» We consider a specific class of drug.

o We take the chemical structures of the drug and convert them into molecular graphs by considering atoms as

vertices and chemical bonds as edges.
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o We use newGraph software to compute the adjacency matrix from the graph.

« We propose a Maple-based algorithm to compute the entropy measures based on the adjacency matrix.

o We obtain the physical properties of cancer drugs from https://pubchem.ncbi.nlm.nih.gov/ and https://www
.chemspider.com/.

« We develop the statistical analysis between entropy measures and the physical properties using Python.

Hyaluronic acid-paclitaxel conjugate

Cancer is widely recognized as a prominent contributor to global mortality rates, with a persistent upward
trend in fatality rates. The primary culprits behind these deaths are breast, stomach, lung, and colon cancers.
Despite significant advancements in the field of cancer biology and the development of various therapeutic
approaches to combat cancer, there persist challenges in effectively treating both primary and metastatic forms
of the disease. Furthermore, it is important to acknowledge the presence of drawbacks in existing anticancer
medications, as they often exhibit a lack of specificity and a high level of toxicity, thereby significantly impairing
their effectiveness. Significant advancements have been made in the field of molecularly-targeted cancer
treatment in recent years.

Hyaluronic acid (HA) is an endogenous compound. The compound in question is a polymer of
glycosaminoglycan, consisting of a linear arrangement of D-glucuronic acid and N-acetyl-D-glucosamine units.
These units are connected through alternating 3-1,4- and 3-1,3-glycosidic bonds. The primary structure of the
disaccharide is considered to be energetically stable®. Hyaluronic acid (HA) exhibits considerable potential
as a cancer therapeutic agent owing to its distinctive properties, including biodegradability, biocompatibility,
non-toxicity, hydrophilicity, and non-immunogenicity. Moreover, the overexpression of HA receptors has been
observed on numerous tumor cells, further supporting its promise as a cancer drug. Hyaluronic acid (HA)
is currently being recognized as a promising platform for effectively targeting cells that overexpress CD44.
The primary objective of utilizing HA in this context is to enhance the efficacy of anticancer treatments*-42,
Hyaluronic acid (HA) exhibits promising characteristics as a drug carrier and drug-targeting agent. Paclitaxel
(PTX) is a pharmacological agent that has demonstrated efficacy in the treatment of various malignancies such
as bladder, lung, breast, esophageal, ovarian, and prostate cancers, among others*’. Although the administration
of PTX also faces certain limitations, such as its limited solubility and associated side effects, as well as the
excipients commonly employed in its formulation. The initial proposal by Ringsdorf introduced a technique for
the synthesis of polymeric macromolecule-drug conjugates. This method was specifically designed to facilitate
the targeted delivery of small hydrophobic drug molecules to their intended sites of action*%. The primary benefits
of HA-PTX conjugates include enhanced water solubility and maintained activity. Moreover, these conjugates
can be employed as targeted drug delivery systems to enhance the effectiveness of anti-tumor treatment*>~*.

Figure 1 shows the unit chemical structures of hyaluronic acid and paclitaxel. Figures 2 and 3 illustrates
the molecular graph of hyaluronic acid-paclitaxel conjugate for s = 1 and s = 2, respectively. If s < 1, then it
means that hyaluronic acid-paclitaxel conjugate has degraded and as result breakdown into two or more parts
(glucuronic acid, N-acetylglucosamine and paclitaxel). If s > 1 then it means that the hyaluronic acid-paclitaxel
conjugate polymerization has occurred equal to value of s. For example, if s = 2 then degree of polymerization
is 2.

Main results
Let HA be the molecular structure of hyaluronic acid-paclitaxel conjugate. We partitioned the edges, base on the
reverse degree as list in Table 3.

Using Table 3, we will calculate the following entropy measures.

OH OH
@)
e 9 Ho =
HO o
OH NH
0 =<

CH, W

(a) Chemical structure of hyaluronic acid. (b) Molecular graph of paclitaxel.

Fig. 1. Unit structures of hyaluronic acid and paclitaxel.
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Fig. 3. Molecular graph of hyaluronic acid-paclitaxel conjugate for s = 2.

Notations for edges | (X, X5) | Frequency of edges
Eq (2,2) s

E, (2,3) 7s

Es3 (3,3) 19s — 1

E, (2,4) 3s

Ej (3,4) 325 — 1

Eg (4, 4) 13s +1

E, (2,5) 4s

Es (3,5) 165

Ey (4, 5) s+ 1

Table 3. Edge partition of HA based on reverse degree.
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Atom bond connectivity entropy

Y, +Ys—2

YTrXYTg
1 Tr+7Ts -2
Eapc(HA) =log(ABC) — pestogl [ | [\/7]

cdeEq
<1

Y, +T.—2
YrXYg

T, +YT,—2
T, x Ts

cdeE>
T -+YT:—2 i T, +7Y,—2 Gy
e |
T'r‘ X ’rs Tr X TS
cd€E3 cd€Ey
Y, tYs—2
TrXTs
y II T, +Y, -2 *
T, x Y,
cd€Es5
Y, fY.-—2 "r!r‘Jr‘r%fz
Y, xTs rXTs
™ s Tr TS — 2
« II T, +7T 2 y II +
TT X TS Tr X Ts
cd€Eg cdeEr
Y, tYs—2
TrXTs
y II T, +Y, -2 *
T, x Y,
cdeEg
Y, +Y.—2
TrXTs
y II T, +Y,—2 8 ]
T, x Ts ’
cdeEg

Eapc(HA) =log [62.6009s — 0.1082] — [62.600931— o053 {(s)(%)%} +log [(75)(\/§)

+log [(193 - 1)(\/3)*/3] +log {(33)(%)%]
+ log [(323— 1)(\/5)@} + log
(165)(\/E)E} + log

16

(=2

(135 + 1)(y/ 2) 166]

+log {(45)(L)%] + log

2 20

(s +1)( 7>@}}.
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Geometric arithmetic entropy

[ /773] [2‘/7TT><T5
2V, x Y| [ TrFT 2V, x Ts || TriTs
Eaa(HA) =log(GA) — (GA)ZOQ[ H [ T rY. } X H {W}
E1 cdeEy
< H 2/, X Ys TrFTs « H 2/ Y, X Ys TrFTs « H 2/ x Y T” EaF
T+ 7Ts T+ 7Ts R
cdeEy L E cdeEy - — cd€Es
« H 2/ x Y Tr$Ys « H 2/ x Y Tr$Ys
Yr+Ys Tr+ 7T
cdeEg L E cdeE7 b g
« H 2/ . x Y, Tr+Ys % H 2/, x Y TrtTs ]
T+, T+ 7T
cdeEg L E cdeEg - g
1 221
Eaa(HA) =log [93.9919s + 1.9836] — m[log (s) {T}
[ (25 (259) (25
2v/8
+log 2\[ ] + log [ (19s — 1) {2\[} ] + log [(35) {Tf}
: 2v/16] %) 2v/io] 7"
+log | (325 —1) { } +log [(13s+1) {T} + log | (4s) {T}
r r 5 Qm (2 920)
21
+log | (16s) [ 3 5} +log |(s+1) {T} ]

First zagreb entropy

&y (HA) =log(Mh) — (lel)log[|:

cdeEq

~ [ H [TT+TS](TVV-+TS)
cd€E3

% [ H [TT—O—TS}(TTJrTS)
cdeEy

% [ H [TT+T5}(TT+TS)
cdeEr

H [TT+TS](T’!‘+T3)

|

:| x [ H [T,»—O—TS}(TTJFTS)
cdeEs

] ) l
cdeEg

[log [(5) X (4)4] +log [(73) X (5)5] + log [(193 -1)

H [TT+T5}(TT+TS)

|

% |: H [TT+TS](T’!‘+TS)
cd€Ey
H [T7»+Ts](TT+TS)

cd€Eg
H [TT+T5}(TT+TS>

] ) l
cde Eg

|
|

x (6)°]

Eviy (HA) =log(664s + 4) — m
+log [(35) x (6)°] +log [(32s — 1) x (7)7] + log [(13s + 1) x (8)°]
+log [(43)

< (7)7] + log [(16s) x (8)*] + log [(s + 1) x (9)°]].

g
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Second zagreb entropy

Eny (HA) =log(Ma) — (J\Z)zog[[ IT - x TS](T"'XT-”} x [ IT - x mm”s)}

cd€ By cd€ B
x |: H [Tr x TS](‘I‘,.XTS)
cd€eE3
~ |: H [T, x TS](TMTS):| % [ H [T, x TS}(TMTS):| % [ H [T, x Ts}(Trsz):|
cdeEy cd€Esx cdcEg
~ |: H [T, x Ts](T”‘XTS>:| % [ H [T, x TS}(T7~><TS):| % |: H [T, x TS}(Trsz):|]
cdeEr7 cdeEg cdeEg
1 4 6 9
Enty (HA) =log(113s + 15) — m[log [(s) x (4)'] +log [(7s) x (6)°] + log [(19s — 1) x (9)°]

+log [(3s) x (8)%] + log [(32s — 1) x (12)"*] + log [(13s + 1) x (16)"°]
+log [(45) x (10)'°] + log [(16s) x (15)*°] + log (s + 1) x (20)*°]].

Hyper first zagreb entropy

Snuny (HA) =log(HM:) - (ijl)zog[{ I [(TT+TS)2]<T*”“2} x [ II [(Twnf]“"””z}

cd€E; cd€Eqy
x { I1 rcr +T5)2](T"”$’2]
cd€E3
x { [T tere+ n)?]“f”ﬁz} x { IT tee-+ h)ﬂ“"‘”“] x { IT e+ n)ﬂm”f}
cd€Ey cdeEs cdeEg
X |: H [(TT+T5)2](T’+T°>2:| X { H [(T7.+Ts)2](rr+rs>2] % { H [(TT+TS)2](T7-+TS)2:|]
cde€E7 cdeEg cdeEg

Erny (HA) =log(4684s + 60) [log [(s) x (16)'°] + log [(7s) x (25)*°] log [(19s — 1) x (36)*°]

1
" 46845 + 60
+log [(33) X (36)36} + log [(32s —1) x (49)49] + log [(133 +1) x (64)64}
+log [(45) x (49)*] + log [(165) x (64)°*] +log [(s + 1) x (81)*']].

Forgotten entropy

Er(HA) =log(F) — 1l0g[l H ()2 + (10)?] (Trr-)2+(n)"‘1

(F) cdeEy
x H [(TT)Q+(Ts)2](TT)2+(TS)2 X H [(Tr)2+(ys)2}(h)2+(n)2
Lcde Eg i Ledc Es ]
| TT [+ ea?) 707 T [ 4+ () 0
LcdeEEy ] lcdeEs ]
<| T1 [(?rr)z+(7f5)2]“f"‘)2+“r3)2 <| TI [(TT)2+(TS)2}(TT>2+<TS)2
Lcd€Eg ] lcde Ey ]
% H [(Tr)2+(Ts)2](TT)2+(TS)2 « H [(TT)Q_F(Tg)Q} (TT)2+(TS)2 ]
Lcde Eg i Lede Eg ]
S (HA) =log(24185 +30) — 5 llog [(5) x (8)°] +log [(7s) x (13)"*]

+log [(19s — 1) x (18)"*] + log [(3s) x (20)*°] + log [(32s — 1) x (25)*°]
+log [(13s + 1) x (32)%] + log [(4s) x (29)*°] + log [(16s) x (34)*"]
+log [(s +1) x (41)41]}.

Graphical representations and numerical values of entropy measures are shown in Fig. 4 and Table 4.
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ABC, GA,M,, M,, HM, F

Fig. 4. Graphical representation of aBc, g a, Eny > Enty, Erne, and Er.

[s] SaBc | fca éaMl éaMg éaHMl EF
4.0652 | 4.5147 | 6.4724 | 4.4986 | 8.4133 7.7584

[2 47592 | 5.1975 | 7.1625 | 5.1314 | 9.1001 8.4454
[3 5.165 5.5994 | 7.567 | 5.5159 | 9.5034 8.8488
[4 5.4528 | 5.8854 | 7.8542 | 5.7929 | 9.7901 9.1355

]
]
]
]
[5] |5676 |6.1075 |8.077 |6.0096 | 10.0126 |9.358
]
]
]
]

[6 5.8584 | 6.2891 | 8.2591 | 6.1876 | 10.1945 | 9.5399
[7 6.0126 | 6.4427 | 8.4131 | 6.3387 | 10.3483 | 9.6938
[8 6.1461 | 6.5759 | 8.5466 | 6.4699 | 10.4816 | 9.8271
[9 6.2639 | 6.6934 | 8.6643 | 6.5859 | 10.5992 | 9.9447

[10] | 6.3693 | 6.7985 | 8.7696 | 6.6898 | 10.7044 | 10.0499

Table 4. Numerical representation of the reverse entropy measures.

Statistical analysis of entropy measures

Quantitative structure-property relationship (QSPR) studies have emerged as a vital tool in predicting
physical properties of molecules using topological indices. These indices, derived from molecular graphs, encode
structural information that correlates with physical properties of drugs.

The QSPR between the physical characteristics of cancer medications and their entropy measures is being
developed in this area. The cancer medications shown in Fig. 5. To compute the entropy measures, first we
convert the chemical structure of drugs into molecular graph given in Fig. 6. The entropy measures value given
in Table 5 and the physical properties in Table 6.

To propose the relationship between entropy measures and the physical properties of cancer drug, multiple
linear (MLR), Ridge (RR), Lasso (LR), ElasticNet (ENR) and Support Vector regression (SVR) are used. We
calculate the only correlation coeflicient, coeflicient of determination and mean squared error to decide that
which model predict the desire physical property listed in Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17.

By using Multiple Linear, Ridge, Lasso, Elastic Net, and Support Vector regression, we proposed the models
against each physical property for boiling point (BP), enthalpy of vaporization (EoV), flash point (FP), molar
refractivity (MR), molar volume (MV), polarization (P), molecular weight (MW), monoisotopic mass (MM),
topological polar surface area (TPSA) and complexity (C). Here we are writing only those model that shows the
most significant relationship.

Lasso Regression : BP = 550.1200 + (165.7870) Erezas, (4)

Ridge Regression : EoV = 86.0600 + (2.1374)Er, + (0.2140)Er_,
+ (1.1891)ER, ,, + (0.9586)Er_, ,, + (0.9586)E;
+ (1.0045)Ec.a + (0.8850)Eapc + (1.3779)Ear, + (2.1374) Eg, (5)
+ (2.9152) Ep + (2.3871) Exm
+ (1.3474)Eaz; + (0.6050) Ereza, + (1.1075)Ereza, + (3.8297)Erezas,
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HJC\( ' N
HSC—<\

(a) Abemaciclib (b) Abraxane (c) Anastrozole

’ HLC.
NH, Sy
HO' OH N
N | X
)\ =
HN N N

(d) Capecitabine (e) Methotrexate (f) Exemestane

CHy

¢) Fulvestrant (h) Ixabepilone (i) Megestrol Acetate

oy & < A
:/ DEY, S\\/

YJ\/N o_\_{m \>

(j) Letrozole (k) Cyclophosphamide (1) Tamoxifen (m) Thiotepa

Fig. 5. Chemical structures of cancer drugs.

Lasso Regression : FP = 261.7250 — (28.6916)Er_, — (4.4866)Er — (110.9448)Ec a

— (60.1245) Eapc — (42.4353) Eneza, + (3371./82187)EReZG3, (©)

Lasso Regression : MR = 108.4800 + (41.7586) Egezay, (7)

Lasso Regression : MV = 319.0400 + (—360.6798)Er_, + (479.8992)ERrczas, (8)
Lasso Regression : P = 43.000 + (15.9447) Egezas5, 9)
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Fig. 6. Molecular graphs of cancer drugs.
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Drugs AZI M, | My | ™M, |H ReZG3 | SDD I F
Abemaciclib 98.1406 | 58 |63 |3.1111 |6 298 30 13.6667 | 140
Abraxane 592.718 | 361 | 458 |13.1181 |28.2357 | 2580 165.333 | 84.5976 | 1023
Anastrozole 139.701 |94 |108 |3.6944 |7.819 |558 47.8333 | 21.3643 | 258
Capecitabine 213219 | 128 | 149 |6 11.8333 | 760 633333 | 30.0833 | 330
Cyclophosphamide | 112.194 | 64 |72 |3.4167 |6.4857 |368 32,6667 | 14.9143 | 166
Exemestane 240.867 | 156 | 208 |4.9861 |10.5714 | 1308 7475 | 34.8452 | 500
Fulvestrant 340536 | 212 | 251 |8.6181 |18.0548 | 1346 105 48.8952 | 584
Ixabepilone 273.146 | 186 |220 |7.4444 | 151571 | 1188 95 42.0095 | 524
Letrozole 202.172 | 112 | 131 [5.0833 |10.6333 | 646 51 27.2333 | 276
Megestrol Acetate | 253.422 | 164 | 209 |5.8125 |12.2262 | 1218 78.1667 | 37.3905 | 488
Methotrexate 279.359 | 172 |200 |7.6111 |15.5 1014 84.3333 | 40.4167 | 444
Tamoxifen 244313 | 138 | 158 |6.4444 |134 | 768 65 33.3667 | 336
Thiotepa 115842 (68 |88 |225  [5.1571 |500 29.5 16.1429 | 194
Table 5. Entropy measures values for cancer drugs.

Drugs BP |EoV [FP |MR |MV |P |MW |MM |PSA |HAC |C
Abemaciclib 689.3 | 101 |370.7 |140.4 |382.3 |55.7 | 506.6 | 506.27 |75 |37  |738
Abraxane 957.1 | 146 |532.6 |219.3 [610.6 | 86.9 |853.9 |853.3 |221 |62 [1790
Anastrozole 469.7 | 732 |237.9 |90  |270.3 | 357 |293.4 |293.16 | 783 |22 |456
Capecitabine 517.0 | 812 |87 823 |2405 | 326 3594 |359.1 |121 |25 |582
Cyclophosphamide | 336.1 | 57.9 [157.1 |58.1 [1957 |23 |26L1 |260.02 |41.6 (14 |212
Exemestane 4537 | 713|169 | 858 |260.6 |34 |296.4 29617 |341 |22 | 653
Fulvestrant 674.8 | 104.1 | 361.9 | 154 |505.1 |61.1 | 606.8 | 606.31 |76.7 |41 | 854
Ixabepilone 697.8 | 107.3 | 3758 | 140.1 | 451.6 | 55.5 | 506.7 | 506.2 | 140 |35 |817
Letrozole 5635 [84.7 [294.6 |87.1 |234.5 |34.5 |2853 2851 |783 |22 [420
Megestrol Acetate | 507.1 | 77.7 |77.7 | 106.4 |333.4 | 422 | 3845 | 384.23 | 60.4 |28 |82l
Methotrexate 5613 | 84.1 [284.15 | 119 |295.7 |47.2 | 4544 45417 |211 |33 |704
Tamoxifen 4823 | 747 |140 | 1189 1189 |47.1 3715 |371.2 |125 |28  [463
Thiotepa 2702 |50.8 |117.2 |49.1 |125.8 |19.5 |189.2 |189.04 |41.1 |11 | 194

Table 6. The physical properties of cancer drugs.

Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(0.477 0.228 100534.7691

Ridge regression 0.999 0.997 3402.2063

Lasso regression 0.999 0.998 3349.7946
ElasticNet regression 0.999 0.997 3517.0989

Support vector regression | 0.993 0.986 8921.9773

Table 7. Regression model for BP.

Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(0.559 0.313 1892.3409

Ridge regression 0.999 0.998 48.2737

Lasso regression 0.999 0.998 49.7108

ElasticNet regression 0.999 0.998 51.3297

Support vector regression | 0.992 0.984 139.9596

Table 8. Regression model for EoV.
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Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(0.346 0.120 92689.8022
Ridge regression 0.965 0.931 15647.8733
Lasso regression 0.968 0.938 15416.2368
ElasticNet regression 0.966 0.934 15801.9674
Support vector regression | 0.908 0.824 20067.9223
Table 9. Regression model for FP.
Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(.684 0.467 3201.1490
Ridge regression 0.902 0.813 253.6365
Lasso regression 0.908 0.824 245.7076
ElasticNet regression 0.908 0.825 250.6917
Support vector regression | 0.899 0.808 1256.6219

Table 10. Regression model for MR.

Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | 0.219 0.048 69903.6016
Ridge regression 0.707 0.500 11182.2656
Lasso regression 1.000 1.000 10708.8748
ElasticNet regression 0.690 0.476 11344.4313
Support vector regression | 0.704 0.495 13154.8234

Table 11. Regression model for MV.

Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(0.678 0.459 498.1708

Ridge regression 0.904 0.817 39.9896

Lasso regression 0.910 0.828 39.0514

ElasticNet regression 0.910 0.829 39.6940

Support vector regression | 0.890 0.791 193.7721

Table 12. Regression model for P.

Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(0.417 0.174 63525.0926

Ridge regression 1.000 1.000 885.8908

Lasso regression 0.915 0.838 1903.2440
ElasticNet regression 1.000 0.999 897.8231

Support vector regression | 1.000 0.999 12622.7928

Table 13. Regression model for MW.
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Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(0.416 0.173 63042.1280
Ridge regression 1.000 1.000 887.2696
Lasso regression 0.917 0.840 1898.1879
ElasticNet regression 1.000 0.999 899.1999
Support vector regression | 1.000 0.999 12267.7786
Table 14. Regression model for MM.
Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | 0.998 0.996 8327.3621
Ridge regression 0.681 0.464 3427.4200
Lasso regression 0.681 0.463 3450.3741
ElasticNet regression 0.711 0.506 3384.5901
Support vector regression | 0.733 0.537 1560.9485

Table 15. Regression model for TPSA.

Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | —(.338 0.114 200.2285

Ridge regression 0.997 0.995 8.9858

Lasso regression 0.998 0.996 9.0149

ElasticNet regression 0.998 0.996 9.2303

Support vector regression | 0.998 0.995 65.6067

Table 16. Regression model for HAC.

Model Pearson R | Coef. of determination | Mean squared error
Multiple linear regression | 0.799 0.638 37851.3148
Ridge regression 0.380 0.145 20700.5452
Lasso regression 0.996 0.993 11751.3839
ElasticNet regression 0.355 0.126 21292.8623
Support vector regression | 0.475 0.225 26543.2514

Table 17. Regression model for C.
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Ridge Regression : MW = 410.6550 + (17.6518) Er, + (—10.7141)Er_, + (9.0215)ER, ,
+(5.4112)En_, , + (5.4112)E;
+ (7.7493) Eg a + (6.4299) Eapc + (10.7622) Ear, (10)
+ (17.6518) Ear, + (23.6332) Er + (20.3607) Errar
+ (4.2815)Eazr + (1.5745) Ereza, + (7.6497)Ereza, + (36.4554) Erezcs,

Ridge Regression : MM = 410.2570 + (17.6365) Er, + (—10.6745)ERr_,
+(9.0273)Er, , + (5.4242)Eg_, , + (5.4242)E,;

1/2
+ (7.7591) Ega + (6.4450) Eapc + (10.7603) Ear, (11)
+ (17.6365) Ear, + (23.5873) Er + (20.3302) Exra

+ (4~3202)EAZI + (1.6057)ER€ZG1 + (7.6624)EREZG2 + (36.3930)ER52G3,

Multi. Linear Reg. : TPSA = 104.3100 + (37034.9815)E, + (9668.6404)Ex_,
+ (16874.7756) Er, ,, — (54374.9634) ER_, ,
— (54375.3403) E; + (17354.7896) Eqa + (24258.0159) Eapc + (45163.9464) Ear, (12)
+ (37034.9815) Enr, + (—5794.9893) Ex + (—4960.5334) Exr s + (213.1249) Eaz;
+ (11719.2140) Erezcy + (—55383.7579) Erezc, + (—24398.5301) Erezcy,

Ridge Regression : HAC = 28.7000 + (1.1989)Er, + (—0.4720)Er_,
+ (0.7580) Er, ,, + (0.5440)Ex_, , + (0.5440)E;

1/2
+(0.7124) Eg 4 + (0.6437) Eapc + (0.8500) Ear, (13)
+ (1.1989) Ear, + (1.5385)Er + (1.3437) Eg v

+ (0.5232)EAZ[ + (0~3693)EReZG] + (0.6917)ER5202 + (2~2080)ER5ZG3,

Lasso Regression : HAC = 28.7000 + (11.8539) Egezas, (14)

ElasticNet Regression : HAC = 28.7000 + (0.8651) E'r,
+(0.5162)Er_, + (0.7719)Er, ,, + (0.7276)Ex_, ,, + (0.7277)E;
+ (0.7611)Ega + (0.7466) Eapc + (0.7915) Enr, (15)
+ (0.8652) Enry + (0.9375)Er + (0.8967) Eprar
1 (0.7131) Eazr + (0.6888) Egeza, + (0.7564) Erezcy + (1.0758) Egezs,

Lasso Regression : C = 668.2000 + (—1529.9283)Er_, + (619.6337)ER, ,, + (515.4111) Egezcs.  (16)

Discussion

Entropy measures are used to predict the physical and chemical properties of drugs or chemical compounds. In
“Hyaluronic acid-paclitaxel conjugate”, we computed the reverse degree-based entropy measures for hyaluronic
acid-paclitaxel conjugate for s > 1. Table 4 shows the numerical comparisons of reverse degree-based entropy
measures for small values of s for hyaluronic acid-paclitaxel conjugate. Figure 4 demonstrates that all entropy
measures exhibit an upward trend as the value of s increases. These results will be helpful to the pharmaceutical
industry.

In “Statistical analysis of entropy measures”, we propose a statistical analysis of reverse degree-based entropy
measures using the physical properties of cancer drugs. We find that the reverse degree-based entropy measures
show a significant relationship with the physical properties. We employ Multiple Linear, Ridge, Lasso, Elastic Net,
and Support Vector regression to examine the relationship between entropy measures and physical properties.
All the computed results are listed in Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17. Additionally, we propose
the model for each relationship and include only the most significant models that will be used to estimate those
physical properties that have not yet been calculated. We examine the following relationships:

o Table 7 presents a comparative analysis of various regression models, highlighting their differences in pre-
dictive capabilities. The results indicate that Multiple Linear Regression exhibits the weakest performance,
characterized by a relatively low coefficient of determination (R? = 0.228) and the highest mean squared
error (MSE = 100534.7691), suggesting a poorer fit and higher prediction errors. In contrast, Ridge and Lasso
Regression demonstrate significant improvements, with R? values of 0.997 and 0.997, respectively. These
models also exhibit substantially lower MSEs, indicating their superior ability to capture the relationship
between entropy measures and the boiling point. Notably, ElasticNet Regression achieves a high R of 0.998
and the lowest MSE among the models (3349.7946), striking a balance between prediction accuracy and gen-
eralization. Support Vector Regression (SVR) yields the highest MSE (8921.9773), indicating low predictive
power, although its R> = 0.986 is slightly lower than the other models, implying a potential trade-off in
explaining data variability. Overall, Lasso Regression is preferred for maximizing explanatory power while
maintaining good prediction accuracy for boiling point. The Lasso Regression model for boiling point is
presented in Eq. (4).

« Table 8 presents a comparative analysis of regression models, highlighting their differences in predictive capa-
bilities. The results indicate that Multiple Linear Regression exhibits the weakest performance, characterized
by a relatively low coefficient of determination and the highest mean squared error. This means the model is a
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poorer fit and has higher prediction errors. In contrast, Ridge, Lasso and ElasticNet Regression demonstrate
significant improvements, with the same R value of 0.998 and lower MSEs of 48.2737, 49.7108 and 51.3297,
respectively. Ridge Regression achieves a high R and the lowest MSE among the models, striking a balance
between prediction accuracy and generalization. Support Vector Regression yields that R? = 0.984 is slightly
lowest than the other models and the highest MSE (139.9596), indicating the model is a poorer fit and has
higher prediction errors. Overall, Ridge Regression is preferred for maximizing explanatory power while
maintaining good prediction accuracy for enthalpy of vaporization. Ridge Regression model for enthalpy of
vaporization is presented in Eq. (5).

Table 9 presents a comparative analysis of regression models for flash point. The results indicate that Multiple
Linear Regression exhibits the weakest performance, characterized by a relatively low coeflicient of deter-
mination and the highest mean squared error. In contrast, Lasso Regression demonstrates significant im-
provements, with R? value of 0.938 and lower MSE of 25416.2368. On the other hand, Ridge, ElasticNet, and
Support Vector Regression yield that R values are slightly lower than the Lasso Regression and the highest
MSEs, indicating the models are poorer fit and have higher prediction errors. Overall, Lasso Regression is
preferred for maximizing explanatory power while maintaining good prediction accuracy for flash point. The
Lasso Regression model for flash point is presented in Eq. (6).

Table 10 presents a comparative analysis of regression models for molar refractivity. The results indicate that
Multiple Linear Regression exhibits the weakest performance, characterized by a relatively low coefficient
of determination and the highest mean squared error. In contrast, Ridge and Lasso Regression demonstrate
significant improvements, with R? values of 0.813 and 0.824, respectively and with lower MSEs. Notably,
ElasticNet Regression achieves a high R? of 0.825 and the lowest MSE among the models (250.6917), strik-
ing a balance between prediction accuracy and generalization. Support Vector Regression (SVR) yields the
highest MSE (1256.6219), indicating low predictions, although its R is slightly lower than the other models,
implying a potential trade-off in explaining data variability. Overall, ElasticNet is preferred for maximizing
explanatory power while maintaining good prediction accuracy for molar refractivity. ElasticNet Regression
model for molar refractivity is presented in Eq. (7).

Table 11 presents a comparative analysis of regression models for molar volume. The results indicate that
Multiple Linear, Ridge, ElasticNet and vector Support Regression exhibit the weakest performances, charac-
terized by a relatively low coefficient of determination and the highest mean squared errors. In contrast, Lasso
Regression demonstrates significant improvements, with a R* value of 1.000 and with lower MSE among
the models, striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is
preferred for maximizing explanatory power while maintaining good prediction accuracy for molar volume.
The Lasso Regression model for molar volume is presented in Eq. (8).

Table 12 presents a comparative analysis of regression models for polarization. The results indicate that Mul-
tiple Linear and Support Vector Regression exhibits the weakest performances, characterized by a relatively
low coeflicient of determination and the highest mean squared error. In contrast, Ridge, Lasso and ElasticNet
Regression demonstrate significant improvements, with R? values of 0.817, 0.828 and 0.829, and lower MSEs
of 39.9896, 39.0514 and 39.6940, respectively. Lasso Regression achieves the lowest MSE among the models,
striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is preferred for
maximizing explanatory power while maintaining good prediction accuracy for polarization and no multi-
collinearity. Ridge Regression model for polarization is presented in Eq. (9).

Table 13 presents a comparative analysis of regression models for molecular weight. The results indicate that
Multiple Linear, Lasso, and Vector Support Regression exhibits the weakest performances, characterized by
the highest mean squared errors. In contrast, Ridge Regression and ElasticNet demonstrate significant im-
provements, with R* values of 1.000 and 0.999 with lower MSEs 885.8908 and 897.8231 among the models,
striking a balance between prediction accuracy and generalization. Overall, Ridge Regression is preferred
for maximizing explanatory power while maintaining good prediction accuracy for molecular weight. Ridge
Regression model for molecular weight is presented in Eq. (10).

Table 14 presents a comparative analysis of regression models for monoisotopic mass. The results indicate
that Multiple Linear, Lasso, and Vector Support Regression exhibits the weakest performances, characterized
by the highest mean squared errors. In contrast, Ridge and ElasticNet Regression demonstrate significant im-
provements, with R? values of 1.000 and 0.999 with lower MSEs 887.2696 and 899.1999 among the models,
striking a balance between prediction accuracy and generalization. Overall, Ridge Regression is preferred for
maximizing explanatory power while maintaining good prediction accuracy for monoisotopic mass. Ridge
Regression model for monoisotopic mass is presented in Eq. (11).

Table 15 presents a comparative analysis of regression models for topological polar surface area. The results
indicate that Multiple Linear Regression exhibits the highest performance, characterized by a relatively high
coefficient of determination (R? = 996). In contrast, Ridge, Lasso, ElasticNet and Support Vector Regression
demonstrate the lowest performance, characterized by a relatively low coefficient of determination. Overall,
Multiple Linear Regression is preferred for maximizing explanatory power while maintaining good predic-
tion accuracy for topological polar surface area. Multiple Linear Regression model for topological polar sur-
face area is presented in Eq. (12).

Table 16 presents a comparative analysis of regression models for heavy atom count. The results indicate
that Multiple Linear and Support Vector Regression exhibits the weakest performances, characterized by a
relatively low coefficient of determination and the highest mean squared error. In contrast, Ridge, Lasso and
ElasticNet Regression demonstrate significant improvements, with R? values of 0.995, 0.996 and 0.996, and
lower MSEs of 8.9858,9.0149 and 9.2303, respectively. Lasso Regression achieves the highest R? value among
the models, striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is
preferred for maximizing explanatory power while maintaining good prediction accuracy for heavy atom
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count. Models for heavy atom count are presented in Egs. (13)-(15). However, the best model is the Lasso
Regression model (Eq. 15), as it does not exhibit multicollinearity.

o Table 17 presents a comparative analysis of regression models for complexity. The results indicate that Multi-
ple Linear, Ridge, ElasticNet and Vector Support Regression exhibits the weakest performances, characterized
by low coefficient of determination and highest mean squared errors. In contrast, Lasso Regression demon-
strates significant improvements, with R? value of 0.993 with lower MSE 11751.3839 among the models,
striking a balance between prediction accuracy and generalization. Overall, Lasso Regression is preferred
for maximizing explanatory power while maintaining good prediction accuracy for complexity. The Lasso
Regression model for complexity is presented in Eq. (16).

Based on the above results and their explanations, we can conclude that the physical properties, such as boiling
point, enthalpy of vaporization, flash point, molar refractivity, molar volume, polarization, molecular weight,
monoisotopic mass, topological polar surface area, and complexity, can be predicted using the reverse entropy
measures.

Conclusion

Entropy measures are utilized to predict physical and chemical properties of drugs. In this study, we computed
entropy measures for the hyaluronic acid-paclitaxel conjugate. The results exhibited numerical values that
demonstrated the effectiveness of entropy measures. The utilization of reverse degree-based entropy measures
proved valuable in quantitative structure-property relationship (QSPR) investigations as predictive measures.
This investigation focused on assessing the predictive ability of entropy measures by analyzing the physical
properties of cancer drugs. The obtained findings demonstrated a robust positive correlation between the boiling
point, enthalpy of vaporization, flash point, molar refractivity, molar volume, polarization, molecular weight,
monoisotopic mass, topological polar surface area, complexity, and entropy measures. Our analysis determined

that the entropy measures &g, , r_,, ér,1, Er _, > EABC, 6GA, EMys EMys EAzL, My, 67, &7y ERezGr,

2
ERezaGs» and Ereza; can be used for predicting p2hysical properties. We developed a predictive model for each
relationship and selected only the most significant models to estimate physical properties that have not yet been
calculated.
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