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Zhengzhou city (China) experienced relatively significant land deformation following the July 20, 
2021, extreme rainstorm (7·20 event). This study jointly utilised Multi-temporal synthetic aperture 
radar interferometry (MT-InSAR), eXtreme Gradient Boosting (XGBoost), and hydrogeological analysis 
to quantitatively assess the extent and trends, as well as the causes of land deformation before and 
after the 7·20 event in Zhengzhou city. The findings detected three major subsidence zones and two 
uplift zones within the city. The most significant subsidence occurred in the northern part of Zhongmu 
(− 28 mm/year), the northwest of Xingyang (− 16 mm/year), and the western region of Gongyi (− 6 mm/
year). Conversely, a notable uplift was observed in the central city district (13 mm/year) and Xinzheng 
Airport (12 mm/year). The accuracy assessment of in-situ measurements (GNSS and levelling) yielded 
an overall root-mean-square error (RMSE) of 2.2 mm/year and an R-square of 0.948. Subsequently, the 
feature evaluation results based on the XGBoost method suggest that road density and precipitation 
are the dominant factors affecting land deformation in the entire study area or in the subsidence and 
uplift zones individually. Nevertheless, the other five factors (groundwater storage, soil type, soil 
thickness, NDVI, and slope) also act on land deformation individually and are intricately intertwined 
with each other. Furthermore, hydrogeological analysis from six groundwater wells reveals a 
synchronous relationship between groundwater level decline and land subsidence. The building load 
analysis shows a significant correlation between build-up density and subsidence rates, especially for 
those severe subsidence areas, with the maximum correlation coefficient reaching 0.6312. Finally, the 
geographic patterns analysis of post-event demonstrated a northeastward trend in land deformation, 
with a gradual reduction of deformation impact from 2018 to 2022.
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Land subsidence, the gradual settling or sudden sinking of the Earth’s surface, is often caused by natural phenomena 
or excessive human intervention, such as groundwater overpumping, urban construction, drought, and flood 
inundation. This hazard has occurred in more than 150 countries and nearly 1600 major cities1–9. Among these 
causes, groundwater extraction and urban development stand out as the most severe drivers of subsidence. 
For instance, in Pakistan’s Rawalpindi and Islamabad, rapid urban expansion and groundwater overexploitation 
have destabilised subsurface layers, leading to widespread land subsidence3. Similarly, in Semnan Plain, Iran, 
groundwater overdraft coupled with broader tectonic conditions has triggered severe subsidence phenomena, 
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affecting both natural landscapes and built infrastructure9. The importance of monitoring land subsidence 
cannot be overstated, as it provides critical insights necessary for effective land management and urban planning 
strategies to mitigate these risks10,11. In addition to infrastructure damage, subsidence exacerbates flood risks 
in urban coastal areas, particularly when combined with the effects of sea-level rise. For instance, in Singapore, 
synthetic aperture radar (SAR) interferometry has been integrated with sea-level rise scenarios to identify 
flood-prone areas, demonstrating that local land subsidence significantly amplifies inundation risks7. A similar 
trend is observed in rapidly urbanising sub-Saharan African coastal cities, where unregulated groundwater 
extraction and unplanned development disrupt socio-ecological systems, compounding flood vulnerabilities8. 
Traditionally, precise monitoring of land subsidence has been conducted using methods such as levelling, global 
navigation satellite system (GNSS) measurements, and laser scanning. These techniques are essential in areas 
with significant infrastructure, such as high-speed rail networks and airports, where even minor subsidence can 
lead to substantial economic losses and safety hazards12,13. However, these traditional methods, while accurate, 
are often limited by high costs and are typically restricted to small geographical areas. Consequently, there is 
an increasing need for more efficient, scalable, and cost-effective techniques to monitor land deformation at 
regional and global scales.

With the advent of satellite remote sensing technology, the scope of monitoring has dramatically expanded. 
Techniques such as Synthetic Aperture Radar Interferometry (InSAR) have revolutionised the field, enabling the 
detection of land deformation over extensive areas with unprecedented precision and efficiency with respect to 
traditional in-situ measurements14–16. Globally, InSAR has been successfully applied to monitor subsidence in 
regions such as Houston, USA, and Mexico City, as well as in agricultural and urbanised areas where groundwater 
depletion is a critical issue10. These examples highlight the versatility of InSAR for large-scale, high-resolution 
subsidence monitoring. One of the most widely utilised tools in this field is Sentinel-1 imagery, renowned for 
its comprehensive spatial coverage, frequent revisit times, and open data access. Its active imaging mode allows 
all-weather monitoring capabilities, which are crucial for continuous observation, and its relatively short revisits 
and superior orbit tube control reduce temporal decorrelation errors in dynamic urban environments. Therefore, 
it has been widely used for research in the fields of landslides, ground settlement, and deformation monitoring 
of synthetic structures2,11,17–21.

While numerous studies have demonstrated the utility of InSAR techniques in monitoring land subsidence 
globally, their application in specific urban contexts has provided critical insights into localised deformation 
patterns and driving mechanisms. In rapidly urbanising regions, such as those in China, subsidence has become 
a pressing issue due to intensive human activities, including groundwater extraction and urban development. 
Zhengzhou city, located in central China, serves as a representative case for examining the intricate interplay 
of natural and anthropogenic factors contributing to land subsidence. Based on Multi-temporal InSAR (MT-
InSAR), several studies have leveraged this technology to monitor subsidence in Zhengzhou city and primarily 
analysed the spatiotemporal evolution characteristics of land deformation from a qualitative perspective22–25. 
Zhang et al.22 employed persistent scatterer InSAR (PS-InSAR) and distributed scatterers InSAR (DS-InSAR) 
methods to invert the spatial distribution and deformation mean rates of land deformation in Zhengzhou city 
from 2014 to 2016. The results indicated that most of the subsidence areas were located in the northern and 
northeastern parts of Zhengzhou city, and the causes attributed to sediment consolidation, water resource 
development, and urban expansion. Wang et al.23 analysed the patterns of land subsidence in Zhengzhou city 
jointly using ENVISAT, TerraSAR-X, and Radarsat-2 SAR data from four distinct phases spanning the years 
2007 to 2017 for extracting land subsidence information from and levelling campaigns. It concluded that 
urban expansion was the dominant factor predisposing the evolution of land subsidence. Guo et al.25 processed 
364 Sentinel-1 A images based on the Small baseline subset InSAR (SBAS-InSAR) technique to obtain land 
deformation information in Henan province from 2019 to 2022. The results revealed significant and uneven 
land subsidence with seasonal variations. The results demonstrated the effectiveness of radar interferometry, 
particularly MT-InSAR, providing valuable data that supports urban development and decision-making 
management.

Previous studies and literature have primarily focused on analysing the spatial distribution of MT-InSAR-
derived deformation and qualitatively exploring the causes of subsidence while lacking a quantitative assessment 
of factors driving subsidence rates26. Moreover, there has been limited exploration into the univariate quantitative 
contributions of land deformation in Zhengzhou city under the combined influence of natural factors (e.g., 
slope, annual rainfall, soil type, and soil thickness) and human activities (e.g., municipal construction, land use, 
and groundwater pumping). In particular, there has yet to be a quantitative evaluation of the ground settlement 
and the factors affecting it before and after the event in Zhengzhou city by combining hydrogeological and 
building load data.

The utilisation of machine learning techniques, particularly XGBoost and SHAP (SHapley Additive 
exPlanations), has significantly advanced the quantitative assessment of the importance and contribution of 
various predisposing factors in environmental studies. XGBoost, a highly efficient gradient boosting framework, 
has been widely praised for its predictive accuracy and performance in complex datasets. SHAP, on the other 
hand, enhances the interpretability of machine learning models by quantifying the impact of each feature 
on the prediction outcome, thus offering a transparent method for understanding model behaviour27,28. For 
instance, Hasan et al.10 employed machine learning to explore the relationships between groundwater stress, 
aquifer depletion, and land subsidence, achieving high spatial resolution (~ 2 km) in global predictions. These 
methods have proven effective in identifying key drivers of subsidence and supporting sustainable groundwater 
management practices in vulnerable regions. These methods have demonstrated considerable advantages in 
handling non-linear relationships and interactions between variables, particularly in geospatial analysis and 
model explanation. Consequently, these approaches provide robust technical support for precise evaluations of 
natural and human activity factors predisposing to city land subsidence.
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Therefore, this study obtained a longer SAR observation period from January 2018 to December 2022, 
focusing on the spatiotemporal evolution patterns of land deformation in Zhengzhou city over an extended 
period, particularly before and after the 7·20 event. Compared to existing global studies, such as those in 
Rawalpindi and Islamabad3 and Singapore7, this study provides a detailed analysis of land deformation in 
Zhengzhou with a unique focus on the post-event period after the 7·20 flood. By incorporating hydrogeological 
conditions and building load into the analysis, it bridges the gap in quantitative evaluations of subsidence 
drivers in urban contexts. The external validations were performed using in-situ measurements such as GNSS 
and levelling campaigns. On this basis, we introduced the eXtreme Gradient Boosting (XGBoost) algorithm to 
construct an initial objective function correlating predisposing factors with the land displacement time series. 
The XGBoost was employed to ascertain the contribution of each factor to land subsidence quantitatively. In 
addition, since the fluctuation of the groundwater table and the surface loading both act directly on the overlying 
soft soil, they are important predisposing factors that contribute to the consolidation and subsidence of the 
soft soil. Therefore, we delved further into the intrinsic mechanisms of Zhengzhou’s land subsidence from two 
perspectives: hydrogeological conditions (including Quaternary overburden type and piezometric heads) and 
building load (reflected by the built-up index). This approach quantitatively analysed the driving factors of land 
deformation, enhancing our understanding of the dynamic processes underlying land subsidence. Finally, as the 
geographic pattern analysis can provide a quantitative perspective on the development magnitude and direction 
of urban land subsidence, we adopted weighted gravity analysis based on standard deviational ellipse to reveal 
the spatiotemporal evolution trends of land deformation in Zhengzhou city after the 7·20 event. The findings 
will guide the Zhengzhou city administration to map and properly address potential land subsidence hazards 
after the 7·20 event.

Study area and datasets
Study area
Zhengzhou city (located between 112° 42′ E–114° 14′ E and 34° 16′ N ~ 34° 58′ N), as the capital of Henan 
province, governs six districts, five county-level cities, and one county, with a total area of 7446  km2. 
Geomorphologically, Zhengzhou city is characterised by a temperate continental monsoon climate, with an 
annual average precipitation and annual average temperature of 640.9 mm and 14.4 °C, respectively. It is located 
in a transitional zone from the western hills to the eastern plain and is bordered to the north by the Yellow River 
(Fig. 1). The terrain of Zhengzhou generally lies high in the west and low in the east, which is mainly controlled 
by the north-west tectonic structure; thus, the landscapes on the east and west sides of the Beijing-Guangzhou 
Railway (Jingguang Railway) are different. On the west side of the track, there are mainly loess hills and hills, 
with gullies and ravines in the loess plateau area. In contrast, the eastern region comprises the alluvial plains of 
the Yellow River, exhibiting a vertical discrepancy in elevation exceeding 100 m between these two geographic 

Fig. 1.  Geographical research area. The red rectangle represents the coverage of Sentinel imagery; In-situ 
observations, including GNSS station, levelling benchmarks, and hydraulic heads of wells, are depicted by solid 
red triangles, orange cross circles, and yellow-black circles, respectively. The solid black circles are exemplary 
ground collapse sites, e.g., Longhai Road overpass (a), Xiliuhu Lake subway station (b), Rand Centre carpark 
(c), and Communications World Mall (d). The background is the TanDEM-X DEM. The inset map shows the 
location of the study area (light yellow polygon) in Henan province. This figure was generated in ArcGIS 10.6 
software (https://www.esri.com).
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divisions. The alluvial plain area hosts Quaternary sedimentary deposits, primarily composed of silt, silty clay, 
fine sand, and medium-coarse sand as predominant lithological constituents29.

Furthermore, Zhengzhou city is characterised by complex hydrogeological conditions, with a total of 124 
rivers, including 29 rivers with large watersheds belonging to the two major water systems of the Yellow River 
and the Huaihe River. The shallow groundwater is primarily replenished by atmospheric precipitation. The 
unique geological and hydrological conditions, major demolition and construction over the past decades, and 
frequent engineering activities have rendered Zhengzhou highly susceptible to wet subsidence loess collapse 
accidents, as shown in Fig. 1. These were large-scale collapse accidents after long-term soaking in 7·20 event.

Materials and preparation of predisposing factor
This study gathered data across four major categories: satellite imagery, hydrogeological materials, in-situ 
observational data, and seven potential predisposing factors for land subsidence (see Table 1).

Satellite images: The item mainly contains 51 ascending Sentinel-1 A SAR images and 5 Landsat 8 Operational 
Land Imager (OLI) optical multispectral images. The SAR acquisition spans January 2018 to December 2022 
and was used to derive the large-scale deformation of Zhengzhou. Given the extensive spatial coverage of the 
Sentinel-1 A images (250 km wide), this study focused on two adjacent swaths (IW2 and IW3) covering the 
study area (highlighted by the red rectangle in Fig. 1) for subsidence analysis. The five optical multispectral 
images correspond to the end of each year and with a cloud cover of less than 1%, i.e., 2018-11-25, 2019-12-30, 
2020-12-16, 2021-12-27, and 2022-12-30. These images include five visible and near-infrared (VNIR) bands 
and two shortwave infrared (SWIR) bands processed to orthorectified surface reflectance. This study used three 
bands (green, near-infrared, and shortwave infrared 1) to generate the annual built-up density index for 2018 
to 2022.

Hydrogeological data: This item contains monthly recorded hydraulic head data from January 2018 
to December 2022 for six underground wells (see the yellow-black sphere in Fig. 1) provided by the Henan 
Provincial Water Resources Department. During the study period, daily precipitation data for Zhengzhou city 
were downloaded from Visual Crossing (https://www.​visualcrossi​ng.com/weath​er/weather-​data-services). 
Additionally, soil types and thickness data within Zhengzhou city were collected (for details, see “Soil Type 
and Soil Thickness”). These datasets were utilised to investigate the mechanisms of land deformation from a 
geotechnical thermodynamics perspective.

In-situ observational data: In-situ measurements for this study contain 13 GNSS stations (see the solid red 
triangle in Fig. 1) obtained from the Henan Institute of Surveying and Mapping and 22 levelling benchmarks 
(see the orange cross circle in Fig. 1) were conducted by Henan Provincial Natural Resources Monitoring and 
Land Rectification Institute. Their annual processed results (North, East, and Up displacement time series for 
GORS, the elevation variations for levelling) coincide with SAR observation periods and were used to validate 
the deformation results extracted by the MT-InSAR method.

In addition, seven potential predisposing factors (see Table 1) involve natural factors (slope, soil type, soil 
thickness and annual rainfall) and human activities (Road density, NDVI, and groundwater storage). The 
natural breaks method in ArcGIS 10.6 software was used to grade the land deformation results. On this basis, 
the XGBoost and SHAP methods were used to further investigate the quantitative contributions of the natural 
and human-activity factors to land subsidence in Zhengzhou city. Each factor is described as follows:

Land deformation rate (Fig.  3): The land deformation rates were determined using the StaMPS-SBAS 
technique based on Sentinel-1  A SAR data. This panel depicts six ranges of subsidence rates, with values 
spanning from slight uplift to significant subsidence. These rates highlight the areas most affected by vertical 
land motion, which are well represented for exploring the quantitative contribution of potentially influential 
factors to land subsidence.

Slope (Fig.  2a): The slope factor is closely related to the seepage process, shear stress, and gravity effect, 
which directly affects land subsidence30. TanDEM-X DEM drew the slope map in this study area in the ArcGIS 
environment, and it ranged from 0° to 62.6°. The panel illustrates the gradient variation across the study area, 
with steeper slopes delineated in red and flatter areas represented in green.

Category Data
Spatial 
resolution Source

Predisposing 
factors 
(independent 
variables)

Slope 90 m TanDEM-X DEM (https://geoservice.dlr.de/web/dataguide/tdm90/)

Soil type 1:10,00,000 The Henan province 1:1,000,000 Soil Type Map (2018)

Soil thickness 90 m China High-Resolution National Soil Information Grid Basic Attribute Dataset_90m Soil Thickness (2010–2018)

Annual precipitation 1 km National Earth System Science Data Centre ​(​​​h​t​t​p​s​:​/​/​l​o​e​s​s​.​g​e​o​d​a​t​a​.​c​n​/​​​​​)​​

Road density – Open street map (https://www.openstreetmap.org)

NDVI 1 km Landsat 8 satellite

Groundwater storage change 0.25° × 0.25° GRACE-Fo satellite and GLDAS model ​(​​​h​t​t​p​​s​:​/​/​w​w​​w​2​.​c​s​r​​.​u​t​e​x​a​​s​.​e​d​u​/​g​r​a​c​e​/​R​L​0​6​_​m​a​s​c​o​n​s​.​h​t​m​l​​​​​; ​h​t​t​​​​p​s​​:​/​​/​d​​i​​s​c​.​g​​s​f​
c​.​​n​a​​s​a​.​​g​o​​v​/​d​a​t​a​s​e​t​s​?​k​e​y​w​o​r​d​s​=​H​y​d​r​o​l​o​g​y​&​p​a​g​e​=​1​​​​​)​​

Deformation 
rates 
(Dependent 
variables)

MT-InSAR-derived vertical 
rates ~  90 m Sentinel-1 A images and StaMPS-SBAS technique ​(​​​h​t​t​p​s​:​/​/​s​e​a​r​c​h​.​a​s​f​.​a​l​a​s​k​a​.​e​d​u​/​#​/​​​​​)​​

Table 1.  Datasets of potential predisposing factors for land subsidence.
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Soil type (Fig. 2b): The distribution of 8 soil types across the study area is categorised in this map. Each soil 
type possesses distinct properties that affect its susceptibility to subsidence31–33, such as particle size, cohesion, 
and drainage capacity. On this basis, we classified Zhengzhou’s soil types into eight categories, empirically 
assigning values from 1 to 8 to rank their respective influence on land deformation in descending order (Fig. 2c). 
These classifications were subsequently incorporated into the XGBoost learning model.

Soil thickness (Fig. 2c): Soil thickness influences land deformation, with thicker soils, indicated in green, 
generally providing better load distribution and water retention, reducing susceptibility to compaction and 
erosion. Thinner soils, shown in yellow to red, could be more prone to compaction32,34. However, the effect 
depends on soil type and underlying hydrogeological conditions, making the relationship complex and variable 
across different landscapes.

Precipitation (Fig. 2d): The variation in annual precipitation captured from 2018 to 2022. Areas with high 
precipitation differences often experience changes in soil moisture content, impacting deformation behaviour 
due to hydrological loading and unloading35,36.

Road density (Fig. 2e): The complication of road network is a proxy for human activity and urbanisation 
level37,38. The road density is shown in Figs. 2e and 6 were derived using the “Line Density” tool in the Spatial 

Fig. 2.  (a) Topographic slope; (b) Soil type; (c) Soil thickness; (d) Annual precipitation difference (2018–
2022); (e) Road density; (f) NDVI difference (2018–2022); (g) groundwater difference (2018–2022). This figure 
was generated in ArcGIS 10.6 software (https://www.esri.com).
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Analyst extension of ArcGIS. This method calculates the density of linear features (in this case, roads), providing 
a spatial representation of road network density across the study area. High road density areas, marked in red, 
suggest greater anthropogenic loading on the substrate, which can exacerbate land subsidence. Note that only 
the national highways, provincial roads, railways, county roads, expressways, and level-1 urban arterial roads 
were selected for road density calculation.

NDVI (Fig. 2f): NDVI serves as an indicator reflecting the relationships among human activities, vegetation 
changes, and land subsidence39. To ensure consistency in land use/cover data between 2018 and 2022, we selected 
the maximum NDVI from 16-day interval time series products to represent land use for each year. Subsequently, 
we computed the differences between the maximum NDVI values across years to capture changes in land use/
cover during the study period. Given the threshold characteristics of different scenarios—green vegetation 
typically ranges from 0.2 to 0.8, built-up areas from 0 to 0.2, and water bodies less than 0—an increase in NDVI 
suggests enhanced vegetation cover. In contrast, a decrease indicates reduced vegetation or a shift toward built-
up land or water bodies. By extracting the differences in the maximum NDVI values of various pixels within the 
study area, we can better quantify the impact of land use changes on land deformation.

Groundwater storage change (Fig. 2g): Groundwater level changes are often reflected in buoyancy forces on 
the overlying soil, ultimately characterising the uplift or subsidence of the ground surface26,40,41. Groundwater 
storage (GWS) was derived by combining the GRACE Mascon solution and the Global Land Data Assimilation 
System42. The inverted GWS is represented as equivalent water thickness (EWT), which can reflect the 
groundwater level change in Zhengzhou city during the observation period. Negative values represent a decline 
in the groundwater level during the study period, which is likely to result in compressive settlement of the 
overburden and, conversely, a rise in the groundwater level.

Methods
Multitemporal InSAR processing
Zhengzhou city is covered by one track of Sentinel-1 A with a total of 51 images spanning from January 2018 
to December 2022 (red rectangle in Fig.  1). Due to the influence of Sentinel-1  A TOPS imaging mode, the 
registration accuracy of the image azimuth needs to reach 0.001 pixels to avoid interference phase deviation larger 
than 343. Therefore, based on the principle of minimizing baseline lengths, we initially selected January 3, 2020, 
as the super master. Then, we performed coarse co-registration before generating interferograms using Sentinel 
satellite precision orbit. Next, we used an enhanced spectral diversity method based on image information to 
refine precise co-registration further. Subsequently, taking into account the signal fading issue caused by overly 
short baselines and the need to improve computational efficiency, we set temporal and spatial baseline thresholds 
as 120 days and 200 m to maintain the suppression of incoherence caused by long spatiotemporal baselines as 
much as possible while ensuring that each interferogram has three different connections and does not appear to 
isolate subsets of interferometric connections. Moreover, the latest TanDEM-X DEM with a spatial resolution 
of 90 m and an absolute height error of less than 10 m was adopted to remove the topographic phase. Finally, 
112 single-look (~ 20 m in azimuth and 5 m in range) differential interferograms were generated. The above 
processing was performed by GAMMA software44.

Subsequently, the SBAS processing implemented in StaMPS/MTI45 was used to derive the spatial and 
temporal evolution of land deformation, which mainly include the selection of slowly-decorrelating filtered 
phase pixels (SDFPs), spatially-uncorrelated look angle (SULA) estimation, and three-dimensional phase 
unwrapping. However, upon inspecting all interferograms individually, some neighbouring pairs connected 
to a particular SAR observation were scrutinized to be severely contaminated by long-wavelength phase 
ramps and short-wavelength turbulence2,18,46. Therefore, we first used linear fitting to estimate the phase ramp 
from orbital errors and the long-wave atmospheric phase disturbances and then subtracted them from each 
unwrapped interferogram. Second, the Generic Atmospheric Correction Online Service (GACOS) for InSAR47 
was employed to curb the adverse effects of the stratified and turbulent atmospheric phase. Furthermore, various 
grid sizes were tested for the unwrapping phase derivation, e.g., 200, 100, and 50 m. Poor connections were 
dropped, and visual inspection procedures were repeated until all interferograms were reliably unwrapped. 
Finally, displacement time series and mean deformation rates along the line of sight (LOS) were retrieved and 
converted into vertical deformation by dividing the cosine of the incidence angle.

XGBoost algorithm enhanced by SHAP for feature interpretability
The eXtreme Gradient Boosting (XGBoost) algorithm, pioneered by Chen et al.28, is a robust implementation 
of gradient-boosted decision trees designed for speed and efficiency. This algorithm facilitates the appraisal of 
variable importance, offering insights into the relative significance of different predictors within the dataset. It 
enables a comprehensive evaluation of variable importance, providing insights into the relative significance of 
various predictors within the dataset. Such an approach has garnered attention and application in exploring 
nonlinear problems under multifactorial influences, marking its emergence in the field48. However, its intrinsic 
interpretability is limited, particularly in delineating the individual and interactive contributions of predictors 
to the model’s predictions.

To augment the interpretive utility of the XGBoost algorithm, we incorporate the SHapley Additive 
exPlanations (SHAP) method, a sophisticated approach grounded in cooperative game theory to elucidate model 
outputs from complex machine learning constructs (see supplementary A). The SHAP is adept at disentangling 
individual feature attributions, providing a granular understanding of feature influence at both the local (single-
sample) and global (dataset-level) scales. Our integration of SHAP aims to rectify the interpretability constraints 
of XGBoost by quantifying the impact of each feature on the predictive outcome. In this study, we adopted 
the SHAP interpreter to evaluate the above-mentioned seven predisposing factors and MT-InSAR-derived land 
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deformation. For each predicted sample, the model generates a predicted value, and the SHAP value is the 
numerical value assigned to each predisposing factor in the sample. The SHAP value is calculated as follows27:

	 ŷ1 = ybase + f (xi1) + f (xi2) + . . . + f (xij)� (1)

 where xij  represents the ith sample of the jth predisposing factor; f (xij) is the SHAP value of xij ; ybase 
signifies the baseline value, which is the mean of all target variables in the dataset; ŷ1 is the model’s predicted 
value. When f (xi1) > 0, the feature positively influences the predicted outcome, exerting a beneficial effect; 
inversely, a negative f (xi1) value indicates that the feature reduces the predicted outcome, thereby exerting a 
detrimental effect.

By integrating the SHAP method with XGBoost, our analysis transcends conventional variable importance 
metrics, enabling a nuanced exploration of feature contributions that underpin our model’s predictive 
mechanisms. This synthesis of techniques fosters a comprehensive interpretability method, facilitating informed 
decision-making and transparent model evaluations.

Extraction of built-up density index
Land subsidence is exacerbated to a certain extent by the increasing building load associated with rapid 
urbanisation49. Remote sensing-based building indices can quantitatively calculate the proportion and density 
of built-up areas, thereby indirectly reflecting the surface load exerted by buildings. Normalized difference built-
up index (NDBI) is commonly used to extract built-up density50. Although NDBI enhances the identification of 
built-up areas, its effectiveness varies due to heterogeneity between different urban regions, leading to suboptimal 
results in some areas during building extraction. Additionally, when using NDBI to enhance built-up areas, it 
strengthens both built-up areas and bare soil areas. It is found that the reflectance of bare soil and the built-up 
regions increases from Green to shortwave infrared (SWIR) and then decreases slightly to mid-infrared (MIR). 
The spectral separation between bare soil and built-up areas usually has higher reflectance, and vegetated water 
bodies experience a sudden decrease in reflectance in MIR. In this study, the surface reflectance values of three 
bands from Landsat 8 OLI sensors were used to generate an annual normalized difference red building index 
(NDRBI)51 for 2018 to 2022 as follows:

	
NDRBI = 1.5 × MIR − (NIR + Green)/2

1.5 × MIR + (NIR + Green)/2 � (2)

 where NIR and Green are the near-infrared and green bands, corresponding to band 5 and band 3 of Landsat 
8 OLI. MIR is the mid-infrared band; however, due to the absence of a specific wavelength band in Landsat 
8 OLI data, we substituted it with the shortwave infrared 1 (SWIR 1) band, which is represented by band 6 of 
Landsat 8 OLI.

The NDRBI is calculated using Google Earth Engine (GEE), a cloud computing platform developed by Google. 
Since the Landsat 8 OLI level 2 surface reflectance products have been calibrated and atmospherically corrected 
in the GEE platform, we can quickly and accurately calculate the vegetation indices for each year. To compare the 
MT-InSAR-derived subsidence results with NDBI, the MT-InSAR subsidence rates were up-sampled to 30 m to 
match the Landsat imagery resolution. Finally, Spearman’s rank correlation coefficient52 is used to determine the 
correlation between land subsidence rates and NDRBI results.

Extraction of spatiotemporal evolution characteristic of land deformation
A quantitative expression of spatiotemporal evolution characteristics is indicative of revealing the magnitude, 
extent, and direction of land deformation53. The standard deviational ellipse (SDE) method calculates the mean 
centre of geographic elements and measures their standard deviations in various directions around this centre, 
forming an elliptical graphic. Meanwhile, this elliptical shape reveals the spatial patterns of concentration or 
dispersion, along with the dominant direction and anisotropy of distribution. Parameters such as the centre, 
orientation angle, and axis length of the ellipse provide a quantitative description of the centrality, directionality, 
and trend deviation in the spatial characteristics of geographic elements, which enable a multidimensional 
analysis and interpretation of geographic phenomena and global spatial distribution characteristics54. Therefore, 
in this study, we adopted the standard deviation ellipse method, using the current accumulative displacement 
value, to outline the ellipse shape of SDFPs deformation distribution. This approach can be used to explore the 
spatiotemporal evolution of land deformation in Zhengzhou city, examining the dual perspectives of “spatial 
pattern” and “temporal process” from 2018 to 2022. The basic parameters of the standard deviation ellipse, 
including the ellipse centre, major axis, minor axis, and azimuthal angle, were calculated by Eq. (2) to (3):
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√∑n
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 where xi and yi are the coordinates of SDFP pixels corresponding to the arithmetic mean centre of X̄  and Ȳ , 
their deviations are x̃i and ỹi, and n is the total number of pixels in SDFP.

Results
Accuracy and consistency assessment
Figure 3 illustrates the land deformation rates in Zhengzhou city obtained after applying the GACOS correction 
and converted into vertical direction by dividing the cosine of the look angle. This approach assumes that land 
deformation primarily occurred in the vertical direction in the North China Plain55. This assumption is further 
supported by the tiny horizontal movements in the eastward direction (− 1.26 to 1.93 mm/year) observed at 13 
GNSS stations compared to the vertical component (see Table S1 in supplementary B). Additionally, transforming 
deformation results into the vertical direction allows for a more effective causal analysis of groundwater levels. 
This is attributed to the fact that vertical land subsidence is principally induced by groundwater pumping.

After acquiring deformation rates from StaMPS-SBAS analysis, a meticulous accuracy assessment was 
undertaken by juxtaposing the derived results with geodetic observations from GNSS and high-precision 
levelling measurements (Fig. 4). To ensure congruence with the vertical deformation rates retrieved from the 
StaMPS-SBAS method, the triaxial GNSS displacement vectors (dNorth, dEast, dUpside) were projected onto 
the uniaxial radar line of sight (LOS) direction utilizing Eq. (5) and further converted into the vertical direction 
by simply dividing cos θ:

Fig. 3.  Mean vertical deformation rates in Zhengzhou from January 2018 to December 2022. Positive values 
(dark blue) represent uplift, and negative values (warm colours) represent subsidence. The red dashed polygons 
indicate three major subsidence zones: the northern region of Zhongmu (Sub_zone1), the northwest of 
Xingyang (Sub_zone2), and the western region of Gongyi (Sub_zone3). The black dashed polygons indicate 
two major uplift zones: the central city district (Upl_zone1) and Xinzheng Airport (Upl_zone2). This figure 
was generated in ArcGIS 10.6 software (https://www.esri.com).
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dlos= [ − sin θ cos(αs − 3π/2) − sin θ sin(α − 3π/2) cos θ]

[
dNorth

dEast

dUpside

]
� (5)

 where αs and θ are the satellite heading and look angle, respectively.

For the MT-InSAR measurements, we averaged the displacements of all SDFPs within a 300-m area surrounding 
each GNSS station and levelling point as the final result. Since GNSS processing and levelling campaigns are 
implemented once a year, it is difficult to compare their only 5-period displacements with the 51 accumulative 
displacements derived by StaMPS-SBAS. Therefore, we fitted the 5-period displacements from GNSS and 
levelling to obtain the mean annual deformation rates over the observation period. We compared them with 
the mean annual deformation rate obtained from StaMPS-SBAS. Figure 4 plots the linear regression between 
the MT-InSAR-derived mean vertical deformation rates and 33 available in-situ measurements (11 valid GNSS 
observations and 22 levelling points; see Table S2 in supplementary B). As seen from Fig. 4, among these three 
types of observations, the rates obtained by StaMPS-SBAS are more consistent with those obtained from levelling 
measurements, with a standard deviation of 1.7  mm/year. In contrast, for GNSS observation, the standard 
deviation of the two is 2.8 mm/year, which can be attributed to the lower accuracy of GNSS observation in the 
vertical direction. The overall standard deviation of both StaMPS-SBAS and in-situ observations is 2.2 mm/
year, with a correlation coefficient R-square of 0.948. The discrepancies at all 33 in-situ sites are within twice the 
standard deviation, i.e., 4.4 mm/year. The linear regression results in Fig. 4 indicate the high accuracy and overall 
consistency of the derived MT-InSAR results.

Fig. 4.  Regression between the mean vertical deformation rates derived by StaMPS-SBAS and the in-situ 
measurements in Zhengzhou city. The buffer radius of the in-situ stations is set to 300 m, and the mean value 
of all SDFPs falling into the buffer zone is extracted for comparison.
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Spatiotemporal characteristics of land subsidence
Utilizing the SBAS approach integrated with the StaMPS processing, a high-resolution deformation rate map 
for Zhengzhou city was successfully generated (Fig. 3) (also see supplementary C). It reveals a total of 479,272 
SDFPs, with an average density of approximately 63 SDFPs per square kilometre. Such detailed data significantly 
enhances the ability to conduct refined investigations into the causes and characteristics of land deformation 
in Zhengzhou city. As depicted in Fig. 3, aside from significant localized subsidence in the northern region of 
Zhongmu (Sub_zone1 in Fig. 3), the northwest of Xingyang (Sub_zone2 in Fig. 3), and the western region of 
Gongyi (Sub_zone3 in Fig. 3), most areas within Zhengzhou city exhibit relative stability. Notably, in Sub_zone1, 
two unconnected clusters of subsidence are observed, recording maximum subsidence rates of − 28 mm/year 
and − 21 mm/year, respectively, covering areas of 5.5 km2 and 1.3 km2. In Sub_zone2, despite the maximum 
and average deformation rates are relatively small, i.e., − 16 mm/year and − 4.9 mm/year, respectively, the land 
subsidence extends through the southwest and north of Xingyang and covers an area up to 39.9 km2. As for 
Sub_zone3, the land subsidence clusters are smaller but more concentrated, with an average subsidence rate of 
-6 mm/year.

In addition, we detected two relatively severe land uplift zones occurring in central Zhengzhou city (Upl_
zone1 in Fig. 3) and Xinzheng Airport (Upl_zone2 in Fig. 3). Upl_zone1 is primarily located in the densely 
populated Jinshui, Zhongyuan, Erqi, and Guancheng districts. Deformation in Upl_zone1 is concentrated and 
has obvious boundaries, with an area of 59.7 km2 and a maximum uplift rate of 13 mm/year. The Upl_zone2 is 
located at Xinzheng Airport, where the uplift deformation is concentrated, with a smaller area of 6.3 km2 and a 
maximum uplift rate of 12 mm/year (Fig. 3).

Figure  5 illustrates the spatial distribution of subsidence and its temporal evolution in Zhengzhou city. 
Similar to the above analysis, local areas such as Sub_zone1 and Upl_zone1 have undergone significant land 
deformation. Notably, after the extraordinary rainstorm disaster on July 20, 2021 (7·20 event), the accumulative 
mean displacement in Sub_zone1 decreased from − 28.2 mm in June 2021 to -32.1 mm in December 2022. The 
raster units with accumulative subsidence exceeding − 20 mm in this zone also expanded by 86.7% compared 
to before July 2021. Other deformation zones, such as Sub_zone2 and Upl_zone2, experienced more severe 
deformation and increased deformation area after the 7·20 event. Overall, the land deformation in Zhengzhou 
city has shown an escalating trend from January 2018 to December 2022, with a tendency to spread from west to 
east over time. The number of SDFPs with an absolute deformation displacement (subsidence/uplift) larger than 

Fig. 5.  Accumulative vertical land displacement was observed between January 2018 and December 2022 
by StaMPS-SBAS in Zhengzhou city. The displacement variations are referenced to the Sentinel-1 image 
from January 1, 2018, with cumulative displacements shown for December 2018, 2019, 2020, June 2021, and 
December 18, 2022. June 2021 is highlighted in red as the image closest to the 7·20 event. This figure was 
generated in ArcGIS 10.6 software (https://www.esri.com).
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50 mm increased from 15 raster units in December 2018 to 167 in June 2021 and 779 at the end of 2022 (Fig. 5). 
Evidently, the land deformation situation in Zhengzhou city sharply deteriorated after the 7·20 event.

Analysis and discussion
Predisposing factors contribute to land uplifting and subsidence zones
The SHAP value distribution depicted in Fig.  6a elucidates the influence of seven factors on the model’s 
predictive accuracy for land deformation rates. Among these factors, road density and precipitation stand out as 
the most influential contributors to the model’s predictive accuracy. Road density demonstrates a dominant and 
consistent positive impact, as its SHAP values span a wide range in both high and low feature values, indicating a 
strong correlation with areas experiencing higher deformation rates. Precipitation also shows a substantial effect 
in the overall study area, concentrating on positive areas of SHAP value between 0 and 2. This is closely followed 
by GWS (high feature value) and soil type (low feature value), showing a moderate influence with compact 
clusters around the zero SHAP value, suggesting more consistent but less pronounced contributions. The SHAP 
values of GWS reveal its dual effect: while aquifer depletion intensifies subsidence, recharge contributes to uplift, 
indicating a complex dynamic between groundwater balance and land deformation. Soil type, meanwhile, 
consistently impacts deformation, particularly in areas where geological conditions are less stable. In contrast, 
factors like soil thickness, NDVI, and slope exhibit limited influence, as reflected by SHAP values clustering 
around zero. While their contributions are less significant, their impacts are not negligible, as they may interact 
with dominant factors in specific scenarios to drive localized deformation.

The zone-specific analysis further strengthens these findings. In subsidence zones (Fig. 6b), precipitation 
emerged as the dominant factor with a significant negative impact, as shown by its wide dispersion of SHAP values 
(− 5 to 3), consistent with the short-term soil expansion caused by precipitation infiltration. Similarly, soil type 
and soil thickness with low feature value exhibit a moderate negative impact, further reinforcing the influence 
of geological conditions in these regions. In addition, groundwater storage (GWS) and slope with both high 
and low feature values had minimal positive impacts, with SHAP values clustered near the origin. Conversely, 
the uplifted zones (Fig. 6c) exhibit a strikingly different pattern, showing that precipitation, road density, and 
groundwater storage (GWS) are the primary drivers of land uplift, with precipitation having the most substantial 

Fig. 6.  The impact of seven potential predisposing factors on land uplifting and subsidence zones in 
Zhengzhou city was evaluated using SHAP values derived from the XGBoost model. (a) SHAP value 
distributions for all regions illustrate the contributions of road density, precipitation, GWS, soil type, soil 
thickness, NDVI, and slope to land deformation predictions. Higher SHAP value dispersion reflects a more 
substantial impact on land deformation. (b) SHAP values for subsidence zones highlight precipitation as the 
dominant factor, with road density and soil type showing moderate effects. (c) SHAP values for uplifting zones 
demonstrate significant influences from precipitation, road density, and GWS, with lower contributions from 
soil attributes and NDVI. (d) The mean SHAP value impacts each factor, with road density and precipitation 
emerging as predominant contributors across subsidence and uplift zones. These findings underline the 
complex interplay between natural and anthropogenic factors affecting land deformation.
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and consistent impact. High precipitation values are strongly correlated with negative land uplift, highlighting 
the importance of hydrological processes. When precipitation reached a high value, the SHAP value decreased 
from positive to negative value and concentrated between 0 and − 1. Road density and GWS show a significant 
positive correlation with SHAP value, indicating the importance of human infrastructure development and 
groundwater recharge in stabilizing and elevating land surfaces. In contrast, soil type and soil thickness have 
moderate impacts, reflecting the influence of geological characteristics, while NDVI and slope exhibit minimal 
effects, suggesting their contributions are secondary. These findings underscore the dominance of hydrological 
and anthropogenic factors in shaping land uplift and provide valuable insights for urban planning and land 
management in uplifting regions.

The mean SHAP value analysis, as summarized in Fig. 6d, delineates a clear ranking of the factors’ overall 
contributions. Road density is identified as the predominant factor across all regions, underscoring the 
transformative effects of infrastructure development on surface stability. Precipitation ranks second, with its 
influence particularly pronounced in uplift zones, reaffirming its critical role in vertical land dynamics. While 
GWS has a variable impact, its significant contribution to both subsidence and uplift highlights its dual role in 
deformation processes. In contrast, NDVI and soil type show minimal contributions overall, though their roles 
may still be significant in specific contexts.

According to the above analysis, the interplays between the seven potential predisposing factors that impact 
land deformation phenomena are intricate. Road density, serving as a surrogate for anthropogenic activity56, 
correlates with heightened mean impacts on land deformation, most notably in areas with prevalent subsidence. 
This suggests that human interventions, through infrastructure development, significantly perturb the land 
surface stability. Precipitation demonstrates a marked influence on uplift zones, aligning with the concept that 
hydrological variations can lead to land elevation changes. Conversely, GWS has a variable impact on different 
deformation areas, possibly reflecting the dual effect of aquifer depletion and recharge. While less impactful 
than road density and precipitation, soil attributes contribute to the subsidence/uplift patterns, hinting at the 
importance of soil composition and structure in ground movement dynamics. These relationships underscore 
the complexity of factors governing land deformation and the necessity of multifaceted approaches to land 
management and urban planning.

Land deformation response to groundwater level changes
Figure  7 illustrates that vertical displacement tends to correlate with groundwater changes inversely: when 
groundwater levels decrease, subsidence intensifies, and vice versa. This is caused by the geographic location 
of the study area and factors such as hydrological soils. Located in the Yellow River’s alluvial plain within the 
North China stratigraphic region, Zhengzhou city is primarily underlain by Cenozoic formations with high 
porosity and low lithification, rendering the area prone to subsidence. Over the past century, intensive and 
multi-tiered groundwater extraction has exacerbated this tendency, causing differential subsidence due to 
the varied thickness of these formations. As groundwater is withdrawn, the resulting decrease in hydrostatic 
pressure allows the loosely consolidated soil to compact, leading to surface-level subsidence as the soil layers 
adjust to the new stress regime17,18,49,57.

To better quantify this relationship, we collected groundwater level data from six groundwater wells (indicated 
by yellow-black sphere and labelled (1)–(6) in Figs. 1 and 7) uniformly distributed within Zhengzhou city, i.e., 
numbered as Huiji_1 (1), Huiji_2 (2), Zhongmu (3), Erqi (4), Xinzheng_1 (5), and Xinzheng_2 (6) from north 
to south. The first three wells are deep groundwater wells with depths reaching 200 m, while the latter two are 
shallow groundwater wells with depths of approximately 50 m.

Except for observational data loss in Huiji_2(2) observation well at the beginning of the observation period 
and after December 2021, the other five groundwater wells have completed observational data for five years 
(January 2018–December 2022). Huiji_1 (1) and Huiji_2 (2), located in Sub_zone2, exhibit a gradual and 
gentle land subsidence pattern, with accumulative subsidence of − 45 mm and − 38 mm over the five years, 
corresponding to groundwater level declines of 7.04 m and 5.58 m, respectively. Zhongmu (3) is situated in 
the most severe subsidence area, Sub_zone1 in Zhengzhou city, with an accumulative subsidence of − 73 mm 
and a corresponding groundwater level decline of 28.93  m. Moreover, the observation points in these three 
subsidence zones show a significant and abrupt descent after July 2021 (Fig. 7). Xinzheng_1 (5) and Xinzheng_2 
(6), located in the relatively stable southern region of Zhengzhou city, exhibit average displacements of − 5 mm 
and − 7 mm over the five years, with corresponding groundwater level declines of 0.69 m and 4.87 m. Therefore, 
comparisons from the five wells indicate a robust overall consistency between groundwater level changes and 
land deformation, whether in subsiding or relatively stable areas.

To further quantify the correlation between land deformation and groundwater level change, despite the 
non-strict one-to-one correspondence and different lengths of the two types of observations, we used the 
bsxfun() function in MATLAB. The bsxfun() function searches for the index of the closest value of the MT-
InSAR observation within a specific time window for the well recordings, resulting in equivalent dimensions 
for the two types of observations (Fig. 7). Then, the Pearson correlation coefficients were calculated, yielding 
coherence coefficients of 0.84, 0.81, and 0.85 for the three heavily subsided well locations, i.e., Huiji_1 (1), 
Huiji_2 (2), and Zhongmu (3). For Xinzheng_1 (5) and Xinzheng_2 (6), where the deformation amplitudes 
of the two observations are smaller, but the fluctuations are relatively more significant, the Pearson correlation 
coefficients are 0.61 and 0.52, respectively. Except for the above subsidence and relatively stable areas, the central 
district of Zhengzhou city exhibits an uplift of approximately 28 mm in the land surface, where the groundwater 
level at Erqi (4) well has also risen by 4.5 m during the observation period (see the Erqi (4) in Fig. 7). And their 
Pearson correlation coefficient reaches 0.82. The above results show that groundwater depletion in soft soil areas 
is the primary driver of land subsidence.
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Subsidence related to building load
In the past two decades, Zhengzhou city has experienced unprecedented and rapid urban expansion, extending 
both outward and upward, with development intensity reaching unprecedented levels. Rapid urbanisation 
increases building load on the ground surface, potentially leading to additional local land subsidence49. 
However, the problem of increased building load indirectly caused by urban expansion typically only affects land 
subsidence and does not lead to ground uplift. Therefore, we focused on extracting areas in Zhengzhou city with 
land subsidence rates exceeding − 4 mm/year, mainly including the three major subsidence zones (Sub_zone1, 
Sub_zone2, and Sub_zone3 depicted with a red dashed polygon in Fig. 2), along with some scattered small local 
clusters (Fig. 8a). This allowed for a quantitative investigation of the relationship between building load and land 
subsidence.

Firstly, the vertical deformation rate results of these areas from the StaMPS-SBAS method were up-sampled 
to the exact resolution as Landsat 8 OLI. Subsequently, following the methods outlined in Sect. 3.3, the NDRBI 
values were calculated annually from 2018 to 2022, and the inter-annual changes in NDRBI were calculated 
(Fig. 8b). Finally, the raster results of the two categories of identical resolution units were converted into column 
vector structures. The average subsidence rate and NDRBI value of each pixel were extracted, and Spearman’s 
rank correlation coefficient method52 was employed to calculate their correlation coefficient (Table 2).

Figure 8b shows that the NDRBI variation values in urbanised areas range from − 0.3 to 0.9 and generally 
characterise positive values. In contrast, the vegetation-covered areas and waters show negative characteristics 
and have larger values (Fig. 8c). In Sub_zone1, Sub_zone2, and Sub_zone3, the most rapid sinking rates and 
the highest NDRBI values are observed. Particularly, in the southwest corner of Sub_zone1, the maximum 

Fig. 7.  Time series of vertical displacement derived by StaMPS-SBAS method and groundwater level changes 
at six wells during the period January 2018 and December 2022 in Zhengzhou city: (1) Huiji_1, (2) Huiji_2, (3) 
Zhongmu, (4) Erqi, (5) Xinzheng_1, and (6) Xinzheng_2 corresponding to the location (1)–(6) in Fig. 1. The 
grey bar indicates the daily rainfall schematic diagram, whose length corresponds to the daily precipitation, 
with a longer bar indicating heavier rain on that day. The red vertical bar represents the moment of the extreme 
rainstorm event in July 2021. All groundwater level changes in the graph are observed in well data.
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land subsidence rate reaches − 28 mm/year, covering an area of 4.2 km2. The corresponding maximum NDRBI 
variation reaches 0.9931, with raster units of variations greater than 0.5 accounting for 1.9 km2.

Furthermore, when the subsidence rates were categorised into three different grades and Spearman’s rank 
correlation coefficients calculated with corresponding NDRBI variations, it was evident that building density 
exerted a more pronounced impact on areas with higher land subsidence rates. For instance, the correlation 
coefficient reaches up to 0.6312 within the subsidence rates of − 28 to − 12 mm/year. In regions with moderately 
severe subsidence rates of − 11 to − 7 mm/year, Spearman’s rank correlation coefficients significantly decrease 
to 0.2641. For those relatively stable areas with subsidence rates from − 6 to −  4  mm/year, Spearman’s rank 
correlation coefficients are 0.0727, which can be neglected (see Table  2). Therefore, the characteristics that 
large subsidence rates correspond to larger NDRBI variation values and stronger correlation prove the positive 
contribution of building volume ratio, building density, and the load of high-rise buildings on land subsidence. 
However, it is essential to note that the contribution is not considered significant.

Analysis of the evolution trend of land deformation in Zhengzhou city
Based on the methodology described in Sect.  3.3, we applied the SDE method, using land subsidence data 
in Zhengzhou city as input value, to comprehensively depict the spatial pattern and temporal trends of land 
subsidence from 2018 to 2022 (Fig. 9; Table 3).

As shown in Fig. 9; Table 3, the results reveal that the subsidence centroid fluctuated within a small range over 
the five years, shifting from 113.5543° E, 34.6709° N in 2018 to 113.6229° E, 34.6947° N in 2022, concentrated 
in the Erqi district. The trajectory of the centroid’s movement experienced a pattern of “northeast (2018 to 
2020)-southeast (2020 to 2021)-northeast (2021 to 2022)”, exhibiting an overall oscillatory trend toward the 
northeast. This movement may be related to urban construction activities, human-induced factors such as 
groundwater extraction, and potentially linked to the 7·20 event. Apart from the southeastward shift of the 

Category Subsidence rate (mm/year) ∆NDRBI  range (value) Raster count Proportion of ∆NDRBI > 0.4
1 − 28 ~ − 12 − 0.28066 ~ 0.98441 352 63%

2 − 11 ~ − 7 − 0.53499 ~ 0.92394 2750 25%

3 − 6 ~ − 4 − 0.71731 ~ 0.91702 11,514 6%

Table 2.  Spearman’s rank correlation coefficient between vertical subsidence rates and NDRBI variations in 
the areas most prone to land subsidence in Zhengzhou city.

 

Fig. 8.  (a) Area with vertical subsidence rates less than − 5 mm/year, mainly including the Sub_zone1, Sub_
zone2, and Sub_zone3. (b) The variations of the NDRBI value from 2018 to 2022 correspond to the area of (a), 
whose statistical characteristics and density distributions are in (c). This figure was generated in ArcGIS 10.6 
software (https://www.esri.com) and MATLAB R2022a (https://www.mathworks.com).
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centroid in 2021, the orientation angle θ of the standard deviation ellipse gradually increases during the 
fluctuation process, changing from 77.99° in 2018 to 87.07° in 2022. This indicates that the land subsidence 
in Zhengzhou city exhibits a spatial distribution pattern characterised by “southwest-northeast.” Additionally, 
the major axis and area of the subsidence zone show a decreasing trend each year. The major axis reduces from 
73.6828 km in 2018 to 58.5903 km in 2022, and the area decreases from 2015.63 km2 in 2018 to 1535.759 km2 in 
2022. This reflects a gradual reduction in the extent of the subsidence impact, which may be related to changes 
in groundwater flow direction or load variations during urban development.

Conclusion
The extensive groundwater pumping over the past decades has triggered land deformation in Zhengzhou city. 
This situation escalated further after the 7·20 event, as evidenced by our comprehensive five-year study (2018–
2022). The number of grids with an absolute MT-InSAR-derived deformation displacement (subsidence/uplift) 
larger than 50 mm increased from 15 raster units in December 2018 to 167 in June 2021 (only one month prior 
to 7·20 event) and 779 at the end of 2022. Meanwhile, the mean deformation in three subsidence zones is also 
reduced, with − 28.2 mm in Sub_zone1 in June 2021 and changed to -32.1 mm in December 2022.

Furthermore, the XGBoost analysis suggests that road density and precipitation are the dominant factors 
affecting land deformation. In addition, the results of six water wells also showed that land subsidence patterns 
were consistent with groundwater depletion, with notable variability across different city zones. Three wells in 
the most subsided areas showed high correlation coefficients (> 0.8) between MT-InSAR-derived subsidence and 
groundwater level changes, affirming the influence of aquifer depletion on land deformation. In addition, there 
is a clear correlation between building density and land subsidence rates in Zhengzhou city. Areas with intense 
urban development show more significant subsidence rates, as evidenced by negative NDRBI values, particularly 
in heavily built-up zones. The correlation analysis indicates a more robust relationship in regions with greater 
subsidence rates, confirming that building density significantly influences land subsidence.

Finally, an analysis utilizing the SDE method to assess land subsidence in Zhengzhou city from 2018 to 2022 
has uncovered consistent spatial patterns and temporal trends. Over five years, the centroid of subsidence overall 
indicates a northeastward shift. The SDE’s orientation reflects a distinct “southwest-northeast” subsidence 
pattern, a diminishing impact of subsidence. This study comprehensively analyses the factors contributing to 

Year Major axis (km) Minor axis (km) X-axis coordinate (E/°) Y-axis coordinate (N/°) Rotation angle θ (°)

2018 73.6828 34.8301 113.5543 34.6709 77.9888

2019 62.2765 33.3061 113.6069 34.6922 83.5199

2020 54.6394 32.5039 113.6343 34.7019 80.3213

2021 59.9729 32.2137 113.6163 34.6979 83.9609

2022 58.5903 33.3739 113.6229 34.6947 87.0659

Table 3.  Standard deviation ellipses parameters of land subsidence in Zhengzhou city from 2018 to 2022.

 

Fig. 9.  Standard deviation ellipses of land subsidence in Zhengzhou city from 2018 to 2022. The ellipses, 
colour-coded by year, illustrate the shift in subsidence intensity and the movement of the centroid, mainly 
concentrated in the Erqi district. The zoomed map (right column) traces the year-on-year path of the centroid, 
depicting a northeastward migration pattern. This figure was generated in ArcGIS 10.6 software ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​
e​s​r​i​.​c​o​m​​​​​)​.​​​​
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land subsidence in Zhengzhou city, whose findings can equip policymakers with a clearer understanding of 
subsidence patterns, enabling the formulation of targeted strategies to mitigate geological risks and preserve 
urban infrastructure.

Data availability
Datasets used in the section “XGBoost Algorithm Enhanced by SHAP for Feature Interpretability”, displacement 
time series observed by GNSS sites and levelling campaign, and MT-InSAR derived data are accessible from 
supplementary materials. The other datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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