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Microgrid systems have evolved based on renewable energies including wind, solar, and hydrogen to
make the satisfaction of loads far from the main grid more flexible and controllable using both island-
and grid-connected modes. Albeit microgrids can gain beneficial results in cost and energy schedules
once operating in grid-connected mode, such systems are vulnerable to malicious attacks from the
viewpoint of cybersecurity. With this in mind, this paper explores a novel advanced attack model
named the false transferred data injection (FTDI) attack aiming to manipulatively alter the power
flowing from the microgrid to the upstream grid to raise voltage usability probability. One crucial piece
of information that the model uses to change the system and cause the greatest amount of damage
while concealing the attacker’s view is the voltage stability index. Saying that the power transaction
between the microgrid and the upstream grid is within the broad scope of bilateral exchange at any
given moment is noteworthy. Put otherwise, with respect to the FTDI assault, the microgrid’s power
direction is just as significant to the detection system as the transferred power value. Therefore, once
the microgrid is running in the grid-connected mode, the false data detector needs to concurrently
detect changes in the value and direction of power. To overcome this problem, the paper presents a
learning generative network model, based on the generative adversarial network (GAN) paradigm, to
recognize the change in probability values that is maliciously aimed. To this end, a studied microgrid
system including the wind turbine, photovoltaic, storage, tidal turbine, and fuel cell units is performed
on the tested 24-bus IEEE grid to satisfy the local load demands. Comparative analysis indicates
notable gains, such as scores of 0.95%, 0.92%, 0.7%, and 10% for the Hit rate, C.R. rate, F.A. rate, and
Miss rate in order to evaluate the GAN-based detection model within the microgrid.
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Abbreviations

Sets/Indices

t/QT Set/index of time where Q7 ={1,...,24}.

1/ Line

n/Q" Buss

u/Q* Generation unit

Constants

g Solar radiation

PpVloss Photovoltaic system energy loss
Ve Wind velocity

Ceutin, Crated Cut-in and rated speeds of tidal currents
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PT,ated Rated power of tidal
SA Direct solar irradiance
H, Power capture ratio (for tidal)
P1 Density of ocean water
SI Area covered by the tidal turbine blades
P Wind power density
Area covered by the wind rotor blades
Wt Triidal Price of the WT, tidal, vehcile, pv, battary and fuel cell respectively.

C,SU™ SDY™  Prices of the generation power, shut up and shut down.
AVminn, AVmaz,n Voltage boundary

pmin  pmaz Active power generation capacity
Ply, Qly¢ Demands on the power grid
Variables
PVFY, PW,, PT, The power generation capacity of solar PV, wind turbines, and tidal energy.
Cy Current speed of tidal
Ut Binarry variable of grid generators
01t Line phase angel
AV Voltage deviation
QZ%Z QL Generator reactive power and line reactive flow.
PI PLy, A Generator active power and line active flow.
Py, fat_m, P, tbat—dzs Output power and Charge and Discharge Powers realted to the Storage Sys-
tem
pMicrogrid Exchange energy between grid and microgrid.
pLett plroet Ptce”—B Output powers of fuel cell.
Hgh Hydrogen mass.
m Costs of the microgrid, , the electrical grid.

Ctotal total _ac (ytotal de Costs of AC microgrid, and DC microgrid, and total cost

Motivation in this paper

The primary objective of the power grid is to efficiently, reliably, and securely deliver electricity to consumers
in a cost-effective manner!. There has been considerable interest in investigating the stability of such systems,
particularly concerning voltage stability and collapse?, due to their critical role in major blackouts, such as those
experienced in Sweden, the US, and Japan, as documented in’. Voltage stability refers to the system’s inability to
maintain acceptable steady-state voltages at all points during normal operations or after disturbances. This issue
often arises due to a lack of reactive power generation and excessive system loading?. The main consequences
of voltage instability include cascade disconnection of grid components triggered by protective mechanisms,
load reduction, or even complete blackouts®. Amid escalating worries regarding atmospheric pollution in
recent times, alternative energy sources have the potential to assume a more prominent and efficient position
within electricity networks®”. On the contrary, ensuring voltage stability is paramount when integrating the
power system with microgrid systems, to optimize energy management. The power system’s dependence on the
microgrid could exacerbate voltage instability if energy transactions between the grid and microgrid are injected
or altered in a non-optimal manner for any reason. This issue can become a primary target for cyberattacks
aimed at disrupting the power grid through false data injection in the transfer point. Hence, identifying such
targeted cyber-attacks may be facilitated by implementing an adaptive defense strategy trained with the attack
model. The concept of learning generative networks could effectively detect false data injection attacks within
the microgrid-integrated power grid due to its ongoing interaction with the environment.

Literature review

Recently, microgrids have become the focus of research due to the increasing demand for areas far from
the upstream grid. Regarding the use of various renewable energy sources (RES), Ref.® proposed the energy
management control problem of solar power generation system by using the data-driven method®. Similarly,
the authors in'® suggested the power schedule of RESs using the Chaotic Self-Adaptive Sine Cosine Algorithm
(CSASCA). Ref.!! examined a game theory-based problem-solving method without considering the control
power of the microgrid. Reference!? presented a decentralized method to manage the hybrid energy structure.
This approach considers a multilevel problem, including the location of the power transformer, DC microgrid,
and AC microgrid, respectively. Inspired by the multi-objective problem concept, the paper!? effectively provided
a combined framework for the operational objective functions of AC and DC microgrids. Also, the authors
in!* suggested a multi-layer optimization framework for energy management in cooperative multi-microgrids.
It incorporates demand response programs and integrates techno-economic-environmental objectives. The
concept encourages microgrids to operate in unison and share resources as efficiently as possible. A closer look
at electricity transmission'® in microgrids reveals some concerns about the uncertainties regarding renewable
energy production'. The evidence discloses that numerous investigations were conducted to improve this
problem. In this way, authors in'” neutrally eliminated the above concerns and proposed Taguchi’s orthogonal
array-based absorption method aimed at modeling uncertainties. Additionally, power management considering
uncertainty for AC/DC microgrids is described in'®. In this study, as the authors considered the uncertainty,
so did the relationship between the parameters. It is worth saying that the microgrid can handle uncertainty
when operating in grid-connected mode. Then again, once the hybrid microgrid is connected to the upstream
grid through the bus station'?, the grid can be more controlled and more flexible to deal with unforeseen and
emerging threats arising from the misuse of smart tools?. So to speak, as smart devices improve accuracy
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and control, cyber attacks can disrupt physical operations. The deficiency of a secure platform for the sake of
utilizing smart devices will increase the risk of inaccessibility. Hence, the false data injection attack called FDI*!
is introduced as the most dangerous in the electrical grid. Research on FDI attacks in many literatures generally
includes three perspectives: 1- Theoretical research on the creation or creation of effective FDIA?2-%5, 2- Research
on the overall impact of FDIA?%-%, 3- Six Machine FDIA Maintain®*-32. Reference®® published a review of the
effects of incorrect injection data in modern electronic systems. Paper* pointed out how the FDI attack can
affect the energy exchange in the power grid®*. The authors in* attempted to provide a comprehensive review
of FDI attacks. This attack may bring about unwise decision-making for the grid operation if it is undetected,
as soon as possible. Based on this, Ref*’. conducted a type of FDI attack and pointed out that corruption of
information on monitoring equipment will hide the performance of the electricity grid**. first introduced
a cyber attack called blind FDI attack, which is free from knowledge. Indeed, the authors presented an FDI
attack for state estimation. In Reference?’, cyber-attacks aiming to change the values of meters through smart
devices were examined. In the literature, researchers have evaluated the cybersecurity of supervisory control and
data acquisition (SCADA) state estimation in energy projects. Identifying these types of attacks has become an
interesting topic for researchers in late literature on power systems. some investigations have been focused on
providing detection algorithms?! for various fields including control, energy management, electrical vehicles,
resiliency, and so forth. However, there is a markable gap in research regarding the effects of cyber-security on
microgrid operations*2. Hence, abnormal data detection techniques for energy management in the power system
have been proposed to identify anomalies in measurement data. Reference®® also suggested an analysis method
aimed at finding the error in state estimation once power supply SCADA systems inject latent misinformation.
In recent years, using the different concepts of artificial intelligence in detection algorithms has emerged as an
intriguing topic for researchers. Among all, machine learning methods** can be well-suited in the development
of the attack detection system due to their high accuracy. Regarding the learning methods in the literature®, the
search method based on relational network (GAN) classification is also well known. As a special feature of the
GAN protocol, it has been widely used in the smart industry since 1986°. The system uses a set of identifiers
(IDs) to place running data on smart devices. Unfortunately, the previous methods cannot guarantee the safety
of the energy scheduling in the power system equipped with smart devices. So this can be a weak area and has
become a major challenge for power systems in recent years. In the following, a brief comparison between
references is proposed (see Table 1).

Contribution
The main contributions of this work considering literature works can be defined as follows:

« Developing a well-balanced framework for the microgrid systems in preparation for employing the most
generation resources with the various primary energies such as wind, solar, water current, and hydrogen.

« Identifying the weakness of microgrid systems, especially operation in the grid-connected mode based on the
cybersecurity concept and proposing an advanced attack model named the false transferred data injection
(FTDI) derived from the change in the power transferred between the microgrid and the upstream grid.

« Proposing the artificial intelligent defense strategy inspired by the generative adversarial network (GAN)
concept aiming to learn the FTDI attack within the microgrid systems.

The rest of the paper is as follows: Section “Problem formulation” is referred to the problem formulation
definition. Also, Sect. “Cyber attack model” shows the cyber attack models within the microgrid. The detection
model is modeled in Sect. “Proposed detection model” and the results are concluded in Sect. “Simulation results”
All in all, Sect. “Conclusions” is related to the calculation.

Detection | Cyberattack | Microgrid | Hydrogen
Ref. Artificial Intelligence | model model system energy GAN method
1 X X X v X X
13 x x x v v x
2 X X v X X X
2 X v v X X X
u v v v x x x
33 v X v X X X
3 v X v X x x
37 X v X X X x
4 v 4 X X X X
3 x v X X X v
a v x x x x v
This paper | v/ v v v v v

Table 1. The comparison of contribution in literature.
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Problem formulation

Recent studies have demonstrated that microgrid performance can assist in making the grid energy operation
more flexible and controllable in the event of critical events, such as cyber-attacks”. Hence, this section attempts
to propose an exceptional energy framework based on AC/DC microgrids with the goal of energy management
for cyberattacks?. A cost-effective way to utilize both AC/DC sources within an eco-friendly framework is
the hybrid microgrid. Figure 1 shows the created structure, which includes the wind turbine units, solar units,
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hydrogen-based fuel cell resources, and tidal turbine units for the successful realization of the suggested hybrid
microgrid. This section presents the mathematical foundation of the suggested microgrid.

Renewable energy management for isolated/grid-connected modes

In technical terms, there are three types of microgrids based on the type of energy resource used: DC microgrids,
AC microgrids, and integrated energy resource-based microgrids. The provision of an AC microgrid including
the wind turbine (WT) unit and the tidal turbine system is the focus in the first place. It goes without saying that
these renewable energy sources’ structures are a contentious justification for their inclusion in the AC microgrid
class®. However, it is important to note that these resources are being used in DC microgrids because of the
various electronic converters. There is a clear relationship between wind speed and WT output power, with
changing wind speed due to weather conditions causing unsettling variations in output power. Similarly, the
same explanation can be applied to the tidal turbine in relation to the output power and current speed. In
summary, Egs. (1)-(3) define the mathematical objective function, resources, and pertinent constraints.

C™ = min Z wVT PW, + TI' pT,

(1)
teQT
1
PW, = ipSl(Vet)?’ vt e QF )
0 0 < Ct < C’rated
PTt = O5prlslc? Ccutin < Ct < Crated Vi € QT (3)
PTrated C’ra,ted < Ct

The WT and the tidal system are the two components of the objective function (1). As previously said, owners
of renewable resources tend to have lower energy costs in relation to the hourly energy prices set by the energy
market. Similarly, we use the minimization issue as the basis for the objective function. Equation (2) shows how
to satisfy the WT’s output power given the wind speed. It makes a relationship with the wind speed cube, which
is in need of the output power, as can be observed. According to (3), the power produced by the tidal unit is
derived with a strong emphasis on the different values of the current speed. It is evident that the output power
can be detached based on variations in the current speed. The DC microgrid system described in this work
comprises DC renewable resources, like the fuel cell system based on hydrogen generation and the solar unit
with the storage system. By using electronic converters, this type of microgrid may meet both DC and even AC
demands. The performance of DC energy units is explained in the sections that follow. Of all the several kinds
of fuel cell units described in the literature, the protein exchange membrane fuel cell (PEMFC) may be the best.
Hydrogen H2 is the fuel that PEMFCs require in order to produce electricity. The hydrogen value required
to meet the output power requirement is computed using Egs. (6) and (7) where the generated hydrogen is
derived from the total output power related to the fuel cell energy units and the hydrogen tanker’s limitations.
Conversely, the storage unit assumes the responsibility of meeting needs in emergency situations. This indicates
that the storage units are able to meet the dynamic swings in demand on an hourly basis. As a result, as shown
in (4) the total power equals the sum of the fuel cell and storage powers. Additionally, by using (5), the output
capacity limits can be determined.

PCell _ PFCell —|—PC€H*B Yt € QT (4)

t — 4t t

puLR  pFOelt | pCellB o piiaXyy ¢ T 5)
0< Hgh < Hg™™  vteQ” (6)

Cell_B) o 3-6MJ/kWh

Hgb = (PFC! 4 p vie ;
L ! 119.96M /5, @

The other DC resources used in the DC microgrid are the PV units. In photovoltaic systems, the link between
solar radiation and output power is a well-established fundamental interaction based on (8). It may be inferred
that the PV unit’s power generation grows in tandem with solar radiation. It is obvious that neglecting the
PV loss throughout the computation procedure could result in an abnormal generated power calculation.
Additionally, by working together to meet shared demands, PV and storage units can counteract and assure
output power swings brought on by unpredictability in solar radiation. The storage unit’s limitations are specified
in compliance with (9)-(12). As can be seen in (9), the fuel cell unit’s power consumption as well as the charging
and discharging power are taken into account when determining the output power of the storage unit. Every
hour, the battery’s energy level is also measured using Eq. (10) to check the allowed level. As seen in (11) and
(12), the storage unit is permitted to operate with a focus on the charging/discharging power constraints and the
allowable energy level. Finality, the intended DC microgrid’s goal function is defined in (13).

A % PV
PVFEY = SAXC (1-PV"*)  vteQ” (8)
g
Ptbat _ Ptbatich o Ptbatidis + PtCelliB Vt c QT (9)
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Ctotalidc — min Z Cgmpvtpv + CtCellPtCell + (Ptbat*Ch _ Ptbat*dis) % Ctb (13)
teQT
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PtMic'rog'riLi _ Ptdciload (14)
+Ptac_load Vit c QT
Ctotal _ Ctotalidc + Ctotaliac (15)

In order to reliably and optimally meet the AC/DC demands, the AC/DC microgrids can collaborate to create
a cooperative energy framework. Also, the microgrids are capable of exchanging the surplus power with the
upstream grid through the grid-connected mode. To do so, the hybrid energy structure’s generation units and
loads are expressed in a power balance by Eq. (14). The output powers of all energy units that are intended to
meet the AC and DC loads that are specified on the opposite hand are included in the right-hand term in this
relationship. The variable P$~* indicates the power exchange between the microgrids and the upstream grid.
In conclusion, Eq. (15) deﬁnes the hybrid microgrid’s overall cost.

Definition of the upstream grid structure

As previously indicated, let us assume that the hybrid microgrid is intended to decrease uncertainty and is now
in a grid-connected mode through the upstream grid. Therefore, it is necessary to present the basic formulation
of the primary grid. It is clear that lines, loads, and fossil fuel-based generator units make up the electrical grid.
In order to achieve energy-optimal scheduling, which minimizes the overall cost including the cost of starting
and shutting down generators and their reactive and active power, the grid energy management must satisfy the
loads (see Eq. (16)). Another responsibility for the operator to follow is maintaining all technical constraints
including power generation limitations and power balance.

Therefore, the grid’s technical restrictions are introduced in equations (16) through (28). To bring about
optimal power sustainability, a balanced power supply between the energy units and the load demands through
lines is necessary to comply with the grid. Thus, by (21), and (22), we define the power balance here. The
generation units commit to following the guidelines (17)-(18). Remember that ramping limits are constantly
taken into account for generators to prevent any technical issues related to changes in load. As a result, the
generator-related ramping power is restricted in (19)-(20). It goes without saying that the networking structure
of the grid’s lines establishes the relationship between the generators and loads. Thus, we can understand the
behavior of the grid and arrive at the best solution by modeling the flowing power of lines. Taking this into
consideration, we here estimate the flowing power of lines (Egs. (23), (24)) based on the angle difference and
bus voltage that is limited by (25)-(26) and must maintain within the permitted bounds as shown in (27)-(28)3.
In fact, the suggested hybrid microgrids may be helpful in reducing the grid variables through the use of power
transactions in Eq. (21). This results in a notable reduction in the generators’ power as well as in the power flow
and voltage values over Eqgs. (23) and (24).

Pg'rzd) + Ugrid
grid __ u,t
C = min Z Z qud (16)
Pl uy, ¢ < PI < P gy vt e Q" (17)
Tinuu . Qgrzd ;nazuui Vit c QT (18)
P — pIN SR uue e QT (19)
P — PV SRS uae VEEQT (20)
Yo (I = Y0 (PLuy+ PM = Pl Ve QT vne Q" (21)
Yu(n) Vk(n,m)
YU+ Y QL) =Qly vieQT vneQ" (22)
Vu(n) Vk(n,m)
PL; = (dVn — dViy) gbi — bgi6y, ¥m € Q™,¥n € Q"W € Q' (23)
QL = — (1 + 2an) bgio — (an — de) bgr — gbid , (24)
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Cyber attack model

the most important duty in a problem to examine the various aspects of system security is modeling the
cyber-attacks. The mathematical concept for stealthy cyberattacks in power systems is introduced in this part.
Cyberattack models are typically developed and classified into several types, including attack trees, attack
networks, and attack graphs®®. The acyclic-directed graph is used to model the attack tree approach according
to the network nodes. When an attack is launched in the network, the attack graph model can find solutions for
hackers. The third technique, known as attack networks, is a reliable model that may mimic an attack in terms
of a hacker’s malevolent choice. FDIA-type assaults classified as third-model are among the most devastating
ones for the power cyber-physical systems. By altering data, a successful FDIA can have negative physical and
economic repercussions on the power systems. As a result, the effects of FDIA on the power system are broadly
divided into three areas: (1) The effects on the economy (2) Attacks using load redistribution (3) The deceivative
onslaught of energy. For example, hackers may attack the energy transferred between two systems in an attempt
to manipulate the power balancing so they can bring nefarious intentions.

To further explain the FDIA concept, let’s assume that the hacker can obtain the data by means of the
pertinent system communications. In light of this, (29) designates the problem function, where X and S show
the system’s data and objective function, respectively. An attacker can transform the problematic function of a
system (S) into a new function (S), where the corrupted data is represented by Xpa4, as illustrated in (30). The
residue norm for the fake function must be zero or exhibit a small mistake when compared to function one, as
demonstrated in (31), in order for an FDIA to be successful.

S = h(X) (29)
Sx = " Xbad,t) (30)
1S = h(Xbaa,e)|| = [IS — h(Xe)|| (1

Additionally, a major criterion that is defined as follows can be used to verify the FDIA assessment:

A= I’L(Xt -+ Ct:,@) — h(Xt) (32)

where c is the malicious data that is injected at time , and also is defined based on the attack vector that allows
the hacker to verify the necessary variation to enter a successful FDIA. The fake data is defined as follows in order
to make a targeted attack:

(34)

X _ Xt + Ct ’Lf t 2 K
badt =9 ¥, otherwise

where the change time for introducing fake data into the system is denoted by index .

The advanced attack model

The understanding of a power system’s voltage stability is crucial for both grid operators and cyber attackers. For
grid operators, preserving stability is essential to guaranteeing a consistent power supply. On the other hand,
voltage stability is seen by attackers as a possible weakness that might be taken advantage of. Their goal is to do
as much damage as possible with their evil deeds and as little work as possible. This means focusing on holes in
the system and making sure their attacks are low-profile and economical. The microgrid systems can affect the
local voltage in the upstream grid through the connection point once are operating in the grid-connected mode.
Because of their complexity, such systems provide particular difficulties for voltage stability monitoring in the
grid-connected mode. The conventional techniques employed in microgrids may require modifications, or new
indices may need to be created. The fast voltage stability index, line stability index, and voltage stability index
are a few of the widely used voltage stability monitoring indices. A dependable method for evaluating voltage
stability at certain grid points, or buses, is the Voltage Stability Index. The voltage stability index takes into
account the amount of power delivered into a certain bus, as demonstrated in Eq. (35) (see the original equation
for mathematical details). Generally, values fall between 0 and 1, where 0 denotes a stable system and values
nearer 1 indicate a higher chance of voltage breakdown.

Microgrid :
IStability _ 2 x Pf, X Xline(l + sin 6bus;t)
= V2

bus,t

(35)

In order to particularly target vulnerabilities at the points of connection between the microgrid and the
upstream grid, this article presents an enhanced attack model based on the false data injection in the voltage bus
for the microgrids in the grid-connected mode. This attack named the false transferred data injection (FTDI)
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aims to manipulatively alter the power flowing from the microgrid to the upstream grid for raising voltage
usability probability. Indeed, two crucial elements are involved in any power interaction between the grid and
the microgrid: the amount of power and the direction of energy flow, which can either be from the grid to the
microgrid or vice versa. Changes to either of these factors can significantly impact energy management. For
instance, altering the direction of energy flow can disrupt the microgrid’s intended functionality and operations.
Similarly, changes in power magnitude can affect the balance between supply and demand. Such shifts can lead
to energy mismanagement, resource allocation errors, and even system instability, making this type of attack
particularly relevant in contemporary grid systems.To influence the system and create maximum disruption
while reducing the visibility of the attacker, the model makes use of the voltage stability index as a critical
indicator. As demonstrated by Eq. (36), a connection point bus’s voltage stability is greatly impacted by power
exchange. The aim of the proposed FTDI attack is to manipulate the amount and direction of power transfer
between the microgrid and the upstream grid. Any alteration in the transferred power disrupts the power
balance at the bus to which the microgrid is connected in the upstream network, leading to voltage fluctuations.
These fluctuations at a single bus can propagate throughout the interconnected system, affecting the voltages of
nearby buses and potentially resulting in widespread voltage instability. Instability in the power system can lead
to voltage sags or surges, which negatively impacts power quality and reduces energy delivery efficiency. This
fluctuation can also damage equipment. Additionally, as the interconnected system becomes more susceptible
to malfunctions or outages, overall reliability decreases, particularly during periods of high demand or other
critical operational conditions. To maintain system stability and ensure reliable operations, effective detection
and mitigation techniques are essential. The voltage stability index is susceptible to manipulation by hostile
actors, who could push its value closer to the crucial threshold of 1. The details of the advanced attack model are
shown in Egs. (36)-(38). This model takes into account the attacker’s goals as well as the microgrid’s operational
behavior. The following goal is taken into consideration in the first step: 1) Eq. (37) is the main objective of the
attack technique at the targeted connection point. This manipulation throws off the system’s voltage stability,
which could result in blackouts and cascading failures. The associated equation for this goal is shown below.

2 x PMroamid o X e (1 + sin Gpus ¢
V2

bus,t

F1 = max( ) (36)

2) Reducing any discernible alterations in the system’s functioning is a crucial facet of the assault. This increases
the attack’s impact by enabling the attacker to stay hidden for a longer amount of time.

Fo = mln(ﬁ > Pt]\{icrag'rid) (37)

—a X Pth'rog'r’Ld < APtI\/Iwrogr'zd <ax PtJ\/Izcr'ogmd (38)

3) Because this attack model is sophisticated, operator behavior is examined in the second stage. Here, the
attacker’s manipulation of the voltage is used by the model to answer an equation. The first stage receives
the consequent change in the I5%%¥"%_ This feedback loop aids in determining the attacker’s ideal harmful
alteration value.

Solving Egs. (18) (39)
Subject to: Solving Egs. (10) — (17) (40)

This approach provides an insightful viewpoint on how attackers could take advantage of security holes in
microgrids. Operators can greatly increase the systems’s resilience against such targeted assaults by identifying
these weaknesses and putting strong defense methods in place, such as increased cybersecurity and monitoring
at connection points of the microgrid.

Proposed detection model

This section addresses the removal of the false transferred power using an attack detection model inspired by
the deep learning technique. It is significant to say that the power transaction between the microgrid and the
upstream grid is in the wide range of the bilateral exchange at any time. In other words, regarding the FTDI
attack, not only is the value of transferred power important for the detection system, but the power direction in
the microgrid. Hence, the false data detector has to simultaneously identify the changes in both the value and
direction of power once the microgrid is operating in the grid-connected mode.

GAN-based detection model

This paper provides a generative network model to identify the maliciously targeted change in the probability
values, which is based on the generative adversarial network (GAN) model. The primary goal of current
cybersecurity policies for microgrids is to safeguard essential infrastructure, including control systems, energy
assets, and communication networks. Traditional security measures such as intrusion detection systems
(IDS), Man-in-the-Middle (MITM) attacks*$, firewalls, encryption, and authentication are crucial strategies in
this effort. These protocols aim to protect microgrids from threats like FTDI, unauthorized access, and data
manipulation. Additionally, advanced threat detection often relies on anomaly detection models, rule-based
systems, and machine learning algorithms that analyze patterns of both normal and malicious network activity.
However, conventional methods often struggle to identify complex threats, such as FTDI attacks, which exploit
vulnerabilities in microgrid control systems. These attacks pose serious threats to the stability and security of
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the grid because they can alter system settings and disrupt operations without triggering conventional alarm
thresholds. The proposed GAN-based framework significantly enhances these protocols by employing Generative
Adversarial Networks (GANs) to learn complex patterns in both normal and attack-related data. This approach
improves the framework’s ability to detect subtle anomalies indicative of FTDI attacks. During training, the
GAN can generate artificial attack scenarios, which helps it generalize across a wider range of potential threats.
Moreover, the framework boosts detection capabilities by identifying both known and previously unknown
attack methods. It provides real-time monitoring, makes more accurate predictions, and reduces false positives.
As a result, microgrid systems are better protected against evolving cyber threats due to this advanced detection
capability. As was previously indicated, the microgrid may exchange its plus/needy power with the upstream
grid through the connection point. Because the connection point is susceptible to cyberattacks, the GAN model
is thought to provide a secure communication channel for the microgrid. In actuality, the GAN model protects
the power exchange from cyberattacks that try to destabilize the voltage stability. In order to achieve this, the
GAN algorithm is used to examine each power produced at each hour to identify any modifications that are
prohibited. Stated differently, the GAN model uses the values of P;'*“"°9"**ag inputs. When the GAN algorithm
yields a value of 1, it indicates that the P**“"°9"*¢ can be utilized in the decision-making center. If not, the GAN
algorithm's resultant value of 0 indicates that changes to the values of P;'““"°9"*? are not permitted. In theory,
this model consists of two primary brain components: (1) The generating part (G) and (2) The discriminator part
(D). This approach is implemented using an adversarial game, where each part (G/D) can be learned by focusing
on the opposing player’s answer. To be sure, the discriminator component is being checked by the noise sample
that is created by the generator part. Conversely, the second part (D) moves in the direction of enhancing the
learning process as soon as the fictitious data starts to deviate from the real data. Figure 2 is an illustration of the
GAN structure. It is evident that the D can ascertain the input signal’s false probability within the interval of 0 to
1. The noise signal vector, G (N), takes the probability of Pg (V) into consideration. This signal is used in the
D section to verify that the actual data Pr (x) is correct. Following that, in response to the checking feedback
for the G/D portions, an error signal is created. During this game session. To track the D part, the G component
attempts to implement the bogus data while taking into account the genuine data x. In a similar manner, this
process continues until P (N) and Pr (z). Based on”, the loss function associated with the discriminator is
computed given the parameter of D denoted by 6 ©.

V(D,0) = =Fupyo llog D (#)] = Bxwpy [log (1= D (G (N))] (41)
Similar to D, the G portion takes into account the parameter 8 © would accept the following relative loss?*:
V(G,0'D) = Exop, ) [log (1 — D (G (N)))] (42)

Examining Eqs. (24) and (25), each component takes into account an owned objective function that needs to be
optimized. In fact, if the variables of V' (D, 0P )), 1% (G, 0 (G)) are minimized in order to train @ (%) upon

Input Noise (N)

Feedback

Real/Fake?

Discriminator
Generator (G)

D)

Real Data (x)

Fig. 2. Illustration of the GAN model.
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receiving the fixed value for 6 () and vice versa, the training process becomes essentially undefined. A new
min-max function of loss is taken into consideration as follows in order to follow both of the aforementioned
objective functions in the same way:

minmaxV' (D, G) = Eonppa) [log D (2)] + En~p,v) [log (1 = D (G (N)))] (43)

The max operator is indicated by the first term in (26), while the min operator is shown by the second term. Once
the G/D portions converge into a Nash equilibrium point, the min-max process keeps going.

Simulation results
In this section, the authors focus on the defense strategy evaluation of microgrids against cyberattacks,
particularly when operating in grid-connected mode. To do so, this paper first introduces an advanced attack
model based on the FTDI concept for the microgrid. Conversely, this paper also proposes an efficient defense
strategy inspired by the GAN model, aiming to detect the advanced FTDI attack in the energy synergy between
the microgrid and the upstream grid. To put it in fuller terms, this strategy is able to prevent the probable voltage
instability in the upstream grid that is aimed at the FTDI attack. Hence, a studied microgrid including two WT
units, a PV unit, a tidal unit, a storage unit, and a fuel cell unit was performed. This microgrid is connected to a
24-bus test - IEEE system as an upstream grid. Detailed information about renewable energy units and the tested
IEEE system was derived from®. It is important that the 24-bus system is a widely recognized benchmark for
evaluating the behavior and performance of energy systems and is extensively used in power system research.
This system serves as a realistic, scaled-down representation of actual power networks, making it effective for
simulation and analysis while still retaining key features of larger systems. With its balanced complexity, the
24-bus system allows for the assessment of energy management and power flow techniques, particularly in the
context of microgrids interacting with the upstream grid. Its manageable size enables meaningful reflections of
real-world conditions without being overly complicated or computationally intensive. The system can be utilized
to test the proposed FTDI attack and evaluate its impact on overall performance. It is capable of modeling
the interactions between distributed generators, energy storage, and various control mechanisms. The data
for the 24-bus system, including network topology, generation capacities, and typical load profiles, is widely
accessible. This availability facilitates realistic simulations and enables the model to be validated with real-world
data, increasing its credibility. Furthermore, this framework allows for a clear demonstration of the interactions
between the microgrid and the main grid, providing a comprehensive analysis of how the FTDI attack affects
security protocols and energy management. Considering all factors, the 24-bus IEEE grid is a practical choice
for model validation. It strikes a good balance between complexity, data availability, and relevance for modeling
interactions between microgrids and larger, interconnected power systems. This ensures that the model can
be applied to real-world scenarios and provides a manageable platform for initial testing and refinement. In
this case, the studied microgrid can transfer surplus energy itself to the upstream grid through bus 1 in grid-
connected mode. Following this, the proposed advanced FTDI attack was launched in the studied case. The
relative results were compared with the traditional attack model in the literature. Also, the GAN-based defense
strategy was carried out in the studied microgrid under the FTDI attack, and the strategy’s effectiveness was
analyzed individually. To elaborate on the proposed framework, the following case studies are provided where the
first one is relevant to the analysis of microgrid performance and the other two cases will discuss cybersecurity.

Case I: The energy synergy analysis of the microgrid in connection with the upstream grid.

Case II: The advanced FTDI attack model.

Case III: The evaluation of the GAN-based defense strategy.

Case I: the energy synergy analysis of the microgrid in connection with the upstream grid

As previously indicated, the microgrid system’s central energy management uses a variety of renewable energy
sources, such as fuel cells, tidal turbines, PV, WT, and energy storage units, to attempt to meet load demands
hourly. Additionally, the microgrid system is connected to the upstream grid by the transformer unit for
exchanging the required or surplus energy with the aim of decreasing the energy cost. However, the microgrid
may operate in island mode based only on renewable energy units. Consequently, the energy resource scheduling
of the microgrid would be changeable regarding the island/grid-connected modes. Indeed, the operator makes
the appropriate decisions based on the load profile and the cost decrease in real-time. To keep this in mind, the
microgrid’s energy management was carried out based on the technical limitations of renewable energy units
under both the island and grid-connected modes. The relative results of energy management were plotted in
Figs. 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19. Figure 3 illustrates the load demands satisfied by
the microgrid for 24 h. The storage unit is used to control the generation ramp related to the renewable energy
units, the outputs of which are uncertain due to the unpredictable input parameters. The operator can choose
the charging and discharging statuses for the storage unit according to their needs. Hence, Figs. 4 and 5 show
the charging and discharging powers of the storage units in island mode for a 24-hour horizon. As can be seen,
the storage unit was arrested in the discharge status in hours 1 to 5 and 19 to 21 because the power output of
the PV unit was 0 at the same time. Also, the storage unit was often in the charging status for hours 8 to 17, in
which most generation units were online. The power scheduling of the fuel cell unit in the microgrid’s energy
management was plotted in Fig. 6. Looking over this figure, when the generated power was decreased by the WT
and PV units owing to the lack of wind speed and solar radiation, the required power was covered by the fuel
cell unit in hours 1 to 5, 16-24. Given the weather conditions, the PV and WT units could generate the required
power in only hours 6 to 15, as shown in Figs. (7) and (8). The tidal turbine unit generates output power based
on the water’s current speed, which is limited most of the time. On the basis of this, the operator could utilize
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Fig. 3. Microgrid load.

the tidal turbine unit to generate the required power when energy management was particularly problematic
for satisfying the microgrid load. Figure 9 shows the power output of the tidal turbine unit during a 24-hour
horizon. The contribution of power generated by renewable energy units once the microgrid is in island mode
is plotted in Fig. 10. As can be seen, the fuel cell unit contributed 43% of the total generated power due to the
high capacity of hydrogen and its availability most of the time. The microgrid operation in the grid-connected
mode is different from the other mode because of the transformer unit. So to speak, the microgrid in this mode
is capable of utilizing the surplus power capacity of the upstream grid to facilitate load satisfaction in low-cost
conditions. In light of this fact, the energy scheduling of the microgrid was performed in grid-connected mode,
and the relative results are plotted in Figs. 11, 12, 13, 14, 15, 16, 17, 18 and 19.

Figures 11 and 12 demonstrate the charging and discharging statuses of the storage unit in grid-connected
mode. The number of charge states took a markable decrease of 12 to 9 compared to mode one. Also, the
discharge power of storage units was 24 kW on average for a 24-hour horizon, while it was 34.5 kW in island
mode. This means that the power ramp of renewable energy units has decreased due to the power received from
the upstream grid. On the other hand, the power generation of PV, WT, and tidal turbine units took an ascending
range of 3%, 3%, and 4% compared to the island mode. Figures 13, 14 and 15 indicate the power output of PV,
WT, and tidal turbine units in the grid-connected mode. As can be seen in Fig. 16, the contribution of the fuel
cell unit to the balancing load has decreased from 43 to 18% due to the use of the transformer unit during load
peak time.

Based on Figs. 17 and 18, the power exchange contributed 21.6% of the total load when the microgrid was in
the grid-connected mode. All in all, the operator tried to use the energy capacity of the fuel cell unit in the island
mode to optimally balance the load demand. While, in the grid-connected mode, the operator has injected the
surplus generations into the upstream grid with the use of increasing the output power related to the renewable
energy units. The comparative result of the microgrid in both the island and grid-connected modes was plotted
in Fig. 19.

Case II: the advanced FTDI attack model

In this paper, a unique advanced FTDI attack that targets a hybrid microgrid, in particular, is proposed. Because
of their intrinsic complexity, these hybrid systems are more susceptible to cyberattacks. The connection point
between the microgrid and the upstream grid is the main target of the suggested attack, which takes advantage
of this weakness. It is worth to say that the 24-bus IEEE system was chosen as the model for the upstream grid
due to its relevance and effectiveness in simulating the interaction between a microgrid and the larger grid. A

Scientific Reports |

(2025) 15:3762 | https://doi.org/10.1038/s41598-025-88090-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Battery Charging

=10 4

—20 -

_30 -

—40

Power (kW)

_50 -

—-60 -

_70 -

—-80 A

5 10 15 20
Time {hours)

Fig. 4. The charging status of battery in the island mode.

microgrid can operate in either islanded mode or grid-connected mode, as illustrated in Figs. 19 and 20. This
dual mode of operation directly influences the energy management of the microgrid. The upstream grid plays
a significant role in determining the generation capacity, power flow, and operational status of the microgrid’s
distributed resources, making its presence essential for formulating the microgrid’s energy management strategy.
The connection point of the microgrid to the upstream grid—specifically, the bus it connects to—significantly
affects the flow of electricity between the two systems. The balance at specific buses in the 24-bus system greatly
influences how power is delivered from the microgrid to the upstream grid and vice versa. Variations in load
and generation at each bus can alter the direction and magnitude of power flows, impacting the microgrid’s
energy management efficiency and its vulnerability to potential attacks. Additionally, the placement of the buses
plays a crucial role in determining the microgrid’s level of susceptibility to possible threats. This is particularly
important in light of the proposed FTDI attack, as understanding the structure of the 24-bus system is key to
comprehending the effects of power transfers between the grid and the microgrid.To effectively detect and mitigate
hazards arising from the interactions between the grid and microgrid, the proposed detection framework must
account for variations in power transfer at different connection points. The 24-bus system provides a controlled
environment for simulating and testing these interactions, ensuring that the detection framework is scalable
and resilient in real-world applications. The assault method manipulates exchange power to cause disruptions
in voltage stability within the upstream grid. By taking into account the defined index I°***"**_ the attack’s
effectiveness was evaluated in Fig. 20. Compared to normal operation, the accelerated FTDI attack significantly
increased I by 50.7% on average, as shown in Fig. 20. This means that, in the advanced attack scenario,
there will be a far higher level of voltage instability. On the other hand, the typical attack had very little effect on
I51¥itY increasing by a total of only 25.29% in a 24-hour period.

Case llI: the evaluation of the GAN-based defense strategy

The microgrid would be vulnerable to cyberattacks through the connection point with the upstream grid. As
shown in the previous section, the FTDI attack could affect the voltage stability of the upstream grid In a high-
risk area with the use of altering the transferred power within the microgrid. To overcome this problem, the
GAN-based detection model is able to identify the false data in the energy scheduling of the microgrid which
is generated for any reason. By doing so, the verification of the detection model under the FTDI attacks is
necessary from the viewpoint of the cyberattack. To this end, the confusion matrix tabulates the discrepancies
between the forecasts and the actual ground truth to categorize the model’s predictions into four outcomes:
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Fig. 5. The discharging status of battery in the island mode.

True positives (TP) Situations where the model correctly predicts a positive class (Hit Rate).

True negatives (TN) When a negative class is accurately predicted by the model, these are known as TN (C.R.
Rate).

False positives (FP) Situations in which the model predicts a positive class but makes a (EA. Rate).
False negatives (FN) Situations where the model predicts a negative class incorrectly (Miss Rate).

This matrix can be used to produce a number of performance metrics that show how successfully the model
identifies cyberattacks. Accuracy, precision, recall (sensitivity), specificity, F1-score, and other metrics are among
them. Hence, the detection model was performed on the energy scheduling of the microgrid and provided
the results related to the confusion matrix in Figs. 21 and 22. As previously stated, the GAN technique uses a
generator that aims to deceive the discriminator network by generating false data, and a discriminator that filters
out samples that are disqualified, leaving valid samples for more precise attack detection. The output value of the
discriminator system in relation to the dataset (real and false) is displayed in Fig. 21. This figure demonstrates
how the discriminator network in the GAN technique may most likely identify genuine data. After 500 episodes,
the Hit rate, C.R. rate, F.A. rate, and Miss rate took 0.95%, 0.92%, 0.7%, and 10%, respectively. As can be seen in
Fig. 22, how accurate and efficient this method is.

Conclusions

The current paper explored the vulnerability area of microgrid systems from the viewpoint of cybersecurity,
especially once operating in grid-connected mode. Indeed, an attacker can cybernetically affect the energy
scheduling of the upstream grid through the change in the power transferred from the microgrid. Hence, this
paper introduced an advanced attack model developed on the false transferred data injection (FTDI) attack for
microgrid systems in the grid-connected mode. In other words, to increase the likelihood that the voltage would
be unstable, the false transferred data injection, or FTDI, attempts to artificially change the power coming from
the microgrid to the upstream grid. Conversely, this paper also proposed a learning detection model inspired by
the GAN approach to cope with the FTDI attack on the microgrid. To clarify the effectiveness of the proposed
framework, a microgrid, considering the various renewable energy units along with the 24-bus IEEE system as
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Fig. 6. The output of fuel cell in the island mode.

the upstream grid was implemented in GAMS and MATLAB software. the results indicated that the fuel cell unit
contributed more rage 43% of energy scheduling in the microgrid in the island mode. While the microgrid had
a markable energy exchanging contribution of 21% in the grid-connected mode. This means that the transferred
power can considerably affect the energy management of microgrid systems. In this way, the FTDI attack was
carried out in the microgrid. On the basis of comparative results, the average rise in the accelerated FTDI attack
was 50.7% higher than that of regular operations. This indicates that there would be much more voltage instability
in the advanced attack scenario. Conversely, the average attack had only a negligible impact, rising by a total of
25.29%. Additionally, the proposed detection model was evaluated on 500 trials, and the relative results were
calculated based on the confusion matrix. The detection model could obtain an average range of 94% for true
decisions and 8.5% for false decisions. This proves the effectiveness of the detection strategy against the FTDI
attack for microgrids. As future work, enhancing the grid’s performance after an attack requires advancements
in algorithms, including more robust fault detection systems, real-time decision-making capabilities, and better
integration of security protocols to mitigate the impact of future attacks.
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Fig. 7. The output of PV in the island mode.
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Fig. 8. The output of WT in the island mode.
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Fig. 9. The output of tidal turbine in the island mode.
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Fig. 11. The charging status of battery in the grid-connected mode.
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Fig. 12. The discharging status of battery in the grid-connected mode.
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Fig. 13. The output of PV in the grid-connected mode.
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Fig. 14. the output of tidal turbine in the grid-connected mode.
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Fig. 15. The output of WT in the grid-connected mode.
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Fig. 16. The output of fuel cell in the grid-connected mode.
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