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two level framework

Milos Antonijevicl, Miodrag Zivkovict, Milica Djuric Jovicic?, Bosko Nikolic?, Jasmina Perisic?,
Marina Milovanovic?, Luka Jovanovic?, Mahmoud Abdel-Salam* & Nebojsa Bacanin®5:6>¢

Internet of Things (1oT) is one of the most important emerging technologies that supports Metaverse
integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating
sensor devices, wearables, and smart gadgets into Metaverse environment enables 10T to deepen
interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse.
Nevertheless, because loT devices are often built with minimal hardware and are connected to the
Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security
problem for maintaining a secure infrastructure. Conventional security techniques have difficulty
countering these evolving threats, highlighting the need for adaptive solutions powered by artificial
intelligence (Al). This work seeks to improve trust and security in IoT edge devices integrated in to the
Metaverse. This study revolves around hybrid framework that combines convolutional neural networks
(CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light
gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for
leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling
the detection and classification of attacks within lIoT networks. A thorough analysis utilizing a real-
world loT network attacks dataset validates the proposed architecture’s efficacy in identification of
the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three
experiments were executed utilizing data open to public, where the top models attained a supreme
accuracy of 99.83% for multi-class classification. Additionally, explainable Al methods offered valuable
supplementary insights into the model’s decision-making process, supporting future data collection
efforts and enhancing security of these systems.

Keywords Metaverse, CatBoost, Light GBM, Optimization, Metaheuristics algorithms, Chimp optimization
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The Internet of Things (IoT) integrates together physical objects into the digital world, transforming how
the users engage with both realities within the emerging and evolving landscape of the Metaverse'. IoT
networks drive the development of novel virtual ecosystems across sectors like smart cities, healthcare and
entertainment. Thanks to IoT, data is autonomously collected, processed, and shared without interruptionz.
The Metaverse enhances this connection by supporting immersive experiences, personalized interactions, and
real-time decision-making®. Being a crucial part of the Metaverse, IoT leverages traditional networks into highly
interconnected environments, promoting innovation and redefining user experiences by blending together real-
world interactions with virtual opportunities. Thus, one of the requirements is to provide reliable operation of
these networks, along with high level of availability*.

Personal IoT networks, consisting of wearables, smart home systems, and AR/VR gadgets, provide users
with unprecedented levels of convenience and control over their Metaverse experiences. These devices allow
establishment of a tangible connection between an individual’s virtual environment or avatar and their physical

1Singidunum University, 11000 Belgrade, Serbia. 2Innovation Centre, School of Electrical Engineering, University
of Belgrade, 11000 Belgrade, Serbia. 3School of Electrical Engineering, University of Belgrade, 11000 Belgrade,
Serbia. *Faculty of Computer and Information Science, Mansoura University, Mansoura 35516, Egypt. *Saveetha
School of Engineering, SIMATS, Thandalam, Chennai, Tamilnadu 602105, India. ®Sinergija University, Bijeljina
76300, Bosnia and Herzegovina. *email: nbacanin@singidunum.ac.rs

Scientific Reports | (2025) 15:3555 | https://doi.org/10.1038/s41598-025-88135-9 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-88135-9&domain=pdf&date_stamp=2025-1-28

www.nature.com/scientificreports/

surroundings, supporting more inherent and advanced management of virtual spaces. The swift expansion of
IoT is propelling the evolution of the Metaverse, breaking the limits of connectivity and merging the physical
and digital worlds into a smooth and immersive experience>®.

However, this rapid expansion of IoT within the Metaverse faces significant challenges including protecting
interconnected devices that handle sensitive user data, and mitigating real-time cyber threats that could disrupt
immersive experiences’. Primarily, IoT devices in general are highly vulnerable to cyberattacks because of their
limited processing capabilities and reliance on basic systems®®. This vulnerability is even more critical within the
Metaverse, where essential virtual and physical infrastructures are managed by interconnected systems. Potential
malicious users may exploit these weaknesses and disrupt online healthcare services, cause financial losses in
Metaverse commerce, or gain unauthorized access to personal data streams, smudging the thin line between
virtual and real-world consequences. Therefore, innovative security frameworks are essential for ensuring a
secure and immersive Metaverse experience for all users. These solutions must hit the balance between the
lightweight architecture of IoT gadgets and robust security measures, like advanced encryption methods and
real-time updates'®-12,

The principal constraints of traditional security solutions may be summed up as the difficulty to keep up to
date with dynamic and swiftly changing Metaverse environment. They are not adaptable enough to cancel out
novel emerging threats like botnets attacks'?, attempting to exploit the vulnerabilities of the complex correlations
among the real and digital worlds within the Metaverse, as they are mostly designed to be reactive. On the other
hand, cybersecurity solutions combined with artificial intelligence (AI) provide considerably more adaptable
and data-driven defensive options'*!>. Al-fueled solutions are capable of analyzing immense datasets in real-
time, allowing identification of trends and drifts in risk to prevent damage before it happens. This is vital for
maintaining the robustness of the expanding Metaverse, providing users safe and continuous experience while
they are exploring and producing new virtual contents.

Despite numerous advantages, Al faces some weaknesses as well. Primarily, inadequate quality of data, ill-
judged algorithms and incompetently chosen hyperparameter configurations. Consequently, models trained
by inadequate quality datasets may result in unreliable outcomes, highlighting the necessity of high quality
data for proper training. Alternatively, selection of the appropriate machine learning (ML) models is crucial,
as various methods have tendency to perform unalike regarding of the challenge being solved and utilized
dataset. Hyperparameters' configuration, like number of layers, learning rate or dropout can additionally heavily
impact the model’s performance, and must be carefully optimized to achieve optimal outcomes. Wolpert’s no
free lunch (NFL) assumption'® discloses non-existance of all-round solution that works well for all classification
challenges. As a result, models have to be selected and adapted to each specific task. Nevertheless, optimizing
hyperparameters is broadly recognized as an NP-hard optimization challenge due to its inherent complexity. A
key challenge for Al scientists is determining the appropriate hyperparameter configuration in such situations,
as it is computationally infeasible. Conventional optimization algorithms regularly fall short in these scenarios,
as they struggle to deliver the desired outcomes within a tolerable time frame. One potential answer is to utilize
metaheuristics algorithms, capable to scan immense solution spaces to deliver approximate solutions. These
methods are well-suited for addressing complex real-world challenges where finding exact answers is impractical.

This paper proposes a framework consisting of two levels, galvanized by the architecture explored in the
previous research!’. Convolutional neural network (CNN) is utilized in the primary layer of the architecture,
and assigned the role to extract the features. As outlined by other relevant previous publications'3-%, significant
improvements in the performance of CNN can be introduced with replacement of the ultimate dense CNN’s
layer by other classifiers like AdaBoost or XGBoost. Consequently, this study takes similar approach, by
feeding the intercepted output of the final CNN’s data processing layer to the inputs of the second level of
framework, where CatBoost and LightGBM classifiers are used for further improvement of the classification
capability of the architecture, especially for high volume massive streams of data generated by Metaverse IoT
networks, necessitating real time processing. Moreover, configuration of both levels of framework is optimized
by metaheuristics algorithms, assigned to tune the hyperparameters of regarded models. This approach
ensures achieving the finest possible outcomes of the proposed combined framework. Generally speaking, the
proposed methodology maximizes the benefits provided by both deep learning and ensemble approaches, where
metaheuristics algorithms warrant the proper configuration of models” hyperparameters for achieving superior
performance.

An altered version of chimp optimization algorithm (ChOA)?*' was used in this research to tune the
hyperparameters of both layers of the framework to ensure good performance. ChOA metaheuristics was selected
after careful experimentation with different optimizers, since NFL!® elaborates that a ubiquitous optimizer that
could deliver the best performance for all optimization problems does not exist. Despite the existence of other
powerful optimizers like crayfish optimization algorithm (COA)??, red fox optimizer (RFO)? and reptile search
algorithm (RSA)?, elementary version of ChOA rallied astounding results over the smaller scale simulations,
and it was consequently selected for auxiliary modifications that would allow reaching even more desirable
outcomes for intrusion classification problem.

With respect to all presented facts, primary contributions of this research may be delineated along the
following lines:

« A proposition of the novel two-level AI framework for enhancing Metaverse IoT network security.

o Framework comprised of combination of CNN and boosting ensemble classifiers to perform threat classifi-
cation in IoT networks.

« A proposition of a modified optimization metaheuristics tailored for the problem in hand, building upon the
baseline ChOA, that was employed to tune the framework’s models.
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« The top-performance models were subjected to Explainable Al to establish the relative importance of the
features and their effect on forecasts made by the system.This study is arranged in the following units. Section
"Related works" puts forth the related works on this matter along with the utilized techniques’ foundations.
Next section "Methods" delineates the baseline ChOA metaheuristics, and showcases the altered version of
algorithm that was later employed in the experiments. The settings of the experimental environment required
for reproducibility of the simulations are set forth in Section "Experimental setup”, while simulation out-
comes of all simulations that were carried out are delineated and discussed in Section "Results". Ultimately,
Section "Conclusion and future work" delivers the concluding remarks and suggests possible ways forward in
the future research.

Related works

Conventional systems used for network protection, that revolve around firewall and blacklist solutions, have
very constrained capabilities. They are not flexible enough, depending of the collection of rules and human
interventions to adjust to the novel attacks. Moreover, they can only be upgraded with novel attacking patterns
after the system was already breached. In other words, they are capable of responding to the events that have
already happened in the past. This drawback makes conventional systems ineffective when encountering zero-
day attack and emerging menaces, leaving the networks vulnerable and open to sophisticated cyber-threats.
Many approaches were used from early 2000s%, typically divided into intrusion detection systems (IDS) and
intrusion prevention systems (IPS). Nowadays, a wide spectrum of tools is openly available for security of the
systems, including firewall and antivirus applications, however, their restricted functionality leaves them open
to novel types of threats.

One way to handle these novel types of threats that emerge each day revolves around integration of AI and
IoT security applications. Generally speaking, AI couples seamlessly with IoT networks for different purposes as
evidenced by numerous practical implementations®®?”. The role of Al in this scenario is to enhance the security
of IoT networks through identification of anomalous behavior in real time, where ML models are utilized to
detect and classify possible threats from normal traffic. Hybrid ML solutions tailored specifically for IoT security
challenge have been introduced by papers such as?®, highlighting their superiority in threat detection across
various IoT devices and architectures. More focused research, such as?, explored intrusion detection specifically
within healthcare-related IoT networks, employing ML classifiers adjusted by hybrid metaheuristics techniques.
While these studies showcased the significant potential of ML models, they also emphasized the challenges
associated with selecting the appropriate hyperparameters, which is crucial to achieve optimal performance.

Optimizing the hyperparameters of ML models is essential for achieving optimal results and maximizing
effectiveness, not only within cybersecurity but across various other fields. Poor tuning often leads to model
failure and underperformance. A significant portion of recent research focuses on hyperparameters tuning
for various ML structures utilizing metaheuristics algorithms*3!. This applies to the IoT intrusion detection
problems as well, where hybrid approaches where ML models were tuned by metaheuristics delivered promising
outcomes®>%,

Despite recent progress in this field, a significant research gap remains. While metaheuristics-tuned ML
models have been explored to some extent for IoT networks and intrusion detection, the focus has primarily
been on models like XGBoost and AdaBoost, with limited investigation into LightGBM tuning. Additionally,
the two-level framework suggested within this research, which combines a CNN with CatBoost and LightGBM
classifiers and uses metaheuristics techniques to tune both levels, has not been previously studied for the
observed challenge. Furthermore, the dataset®* employed within the experiments, published in 2023, has yet to
be thoroughly explored.

The remainder of this section yields brief background of the techniques utilized in this research, by providing
basics of CNNs, CatBoost and LightGBM classifying models, followed by a short overview of metaheuristics
approaches along with their prosperous applications.

Convolutional neural networks

Convolutional neural networks®® are famous of their image classification and object detection capabilities, but
they also excel in other tasks. Inspirited by the mammal visual cortex structure, they follow similar layered
architecture. Input data passes through all layers in a particular order, making use of transfer activation functions
like ReLu, tanh and sigmoid for mapping of the non-linear output.

To construct a deep CNN, it is essential to include a convolutional layer along with nonlinear, pooling, and
fully connected layers>®. For the provided input data, multiple filters skid over the convolutional layer, producing
an output as the sum of element-wise multiplication of each filter and the receptive field of the input data. This
weighted sum is then placed as an element in the subsequent layer. Nonlinear layers primarily function to alter
or constrain the output which is produced. Various nonlinear functions are available for use in CNNs, but ReLU
remains one of the most widely employed options®”. The pooling layer effectively shrinks the dimensionality of
the input data. The most commonly used method, max pooling, selects the highest value within each pooling
filter. Max pooling is highly regarded in the relevant literature for its efficacy, as it downsamples the input by
approximately 75%, delivering significant outcomes. Fully connected layers execute the classification task.

Convolution operation, expressed by Eq. (1), manages processing of the inputs:
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here, g

i.5,% corresponds to the output feature outcomes produced by k-th feature map on position i, j within I-th

layer. The input located on i, j is marked as x, w denotes the filter set, while b describes the bias scores.

Following the convolution operation, activation is executed according to the Eq. (2):
1 !
Gign = 9(25) @

here, g(+) describes non-linear operation administered to the outputs.

The outputs resolution is reduced by the pooling layers, that apply either average or max pooling in the majority
of the practical applications. This procedure is expressed by Eq. (3).

yll o = pooling(g.') ). G)

here, y represents the pooling layer’s result.

Ultimately, dense layers perform the classifying task. For multi-labeled data, softmax layer executes classifying
task, while for binary classification problems, the logistic (sigmoidal) layer is employed. As the epochs pass by,
the network updates the weights and bias scores reducing the cross-entropy loss function in a gradient-descent
manner®®. This is mathematically expressed by Eq. (4).

H(p,q) =—»_p(x)in(q(x)) @
where p and g each denote distribution defined over discrete parameter x.

Optimizing CNN’s hyperparameters is essential, as they greatly influence the network’s accuracy. Key
hyperparameters encompass the count and size of kernels within every convolutional layer, learning rate, batch
size, the count of convolutional and fully connected (dense) coats, weight regularization within dense coat,
activation functions, dropout rate, and others. Since there is no universal solution for hyperparameter tuning
procedure, a “trial and error” approach is often necessary.

CNNs are widely adopted in computer vision®®, with recent advancements across areas such as facial
recognition®, document analysis*’, medical images classifying task and diagnostic support in general®!.
Additionally, CNNs also play an essential role in climate change analysis and extreme weather prediction®,
among numerous other applications*>*4,

CatBoost classification model

Handling categorical datasets poses a considerable challenge within machine learning. Often, substantial
preprocessing or conversion is required prior to effectively use data in models. Categorical features are
characterized by a set of distinct values known as categories that cannot be compared. One common approach
for working with categorical features in boosted tree models is one-hot encoding®®, where each category is
represented by a novel binary feature. However, for features with large cardinality, this approach can synthesize
an impractically large count of new features. A solution to this issue is to group categories into a limited count
of clusters prior to applying one-hot encoding. One popular method for this is employing target statistics
(TS)*, where each category is represented by its projected target value. Yandex scientists devised the CatBoost
algorithm* specifically to enhance the handling of categorical data compared to traditional approaches.

CatBoost adopts a more advantageous outlook inspirited by online learning frameworks, which process
training samples sequentially over time, relying on a concept of ordering. In this method, TS for each instance
are computed based solely on prior observations. To adapt this concept for traditional offline environments,
CatBoost introduces a pseudo-time by creating a random permutation of the training samples. This allows the
TS for each instance to be calculated with respect to all available historical data up to that point. Additionally,
CatBoost employs a technique called ordered boosting, which prevents prediction shift, further leveraging

the model’s reliability*®. Catboost produces s + 1 discrete random permutations of the training dataset at the

beginning. Here, oy is utilized to select the leaf scores b; of the generated trees h(x) = Z}Izl

bj”{zeRj}a and
the permutations o1, ..., 0 are used to establish tree structure (like internal nodes). Let the model training is
performed employing I trees. There have to exist F'/ ~! of them exercised without the sample x}, if there exist
unshifted residual 7' ~! (zk, yx ). Instances cannot be used in training F' T=1 since unbiased residuals are nec-
essary for all training samples. Nevertheless, it is possible to maintain a set of models that differ with respect
to the samples included in their training process. To compute the residual for a particular example, a model
trained without that example is utilized. This set of models can be constructed through application of the same

ordering principle utilized for TS. The algorithm for this approach is showcased as follows:
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return M,

Algorithm 1. CatBoost ordered boosting procedure.

Within CatBoost, base estimators behave like oblivious decision trees, meaning that the same splitting
criteria are applied across all tree levels. This structure considerably enhances execution speed for testing, creates
balanced trees, reduces susceptibility to overfitting issue, and enables significant performance acceleration. The
scores within the leaves in the ultimate model are established through the standard gradient boosting procedure,
applied consistently across both modes, incorporating all constructed trees. Each training sample is mapped to
specific leaves, such as lea fo (¢), with the permutation o utilized to calculate TS within this context. In testing
phase, when the final model is applied to a novel example, TS values are calculated utilizing the entire training
dataset.

As the count of categorical features within a dataset grows, the possible combinations increase exponentially,
making it impractical to process them all. To address this, CatBoost uses a greedy approach to produce feature
combinations. For each split in a tree, CatBoost combines all categorical features and their combinations
previously employed in earlier splits of the current tree with all categorical features in the dataset.

LightGBM classification model

LightGBM (light gradient boosting machine)*” was introduced by Microsoft and made open-source. It is
a gradient boosting framework designated for high performance and efficiency when dealing with immense
datasets. It manages to achieve excellent performance thanks to a novel method labeled gradient-based one-side
sampling (GOSS), that decreases the count of data samples while keeping the accuracy. Moreover, LightGBM
also employs exclusive feature bundling (EFB) for combining the mutually exclusive attributes, effectively
decreasing the data dimensionality and leveraging the computing efficacy. This pair of innovative procedures
helps LightGBM to perform training faster in comparison to conventional boosting models, and efficiently
handle immense datasets comprising of thousands and millions of samples and features.

LightGBM exhibited excellent performance in classification, regression and ranking challenges, and
consequently has become popular choice for various ML-based applications that span from medicine*® and
climate factors®, all the way to civil engineering® and fault detection®!. Moreover, innovative design provides
support for parallel and distributed processing, allowing it to be scaled with great efficiency over several
computing machines. The most commonly optimized LightGBM hyperparameters encompass the count of
leaves in a tree (principal parameter to control the tree complexity), maximum depth and learning rate, among
others. The model’s level of performance is significantly affected by proper choice of these values.

)47

Stochastic optimizers

Metaheuristics optimization encompasses a set of algorithms aimed at discovering approximate resolutions
for complex optimization challenges (NP-hard), which are impractical to solve exactly with administration of
deterministic conventional mechanisms. Many of these methods take inspiration from natural events, such as
evolution or collective behavioral patterns®. These are especially valuable to resolve large-scale, nonlinear, or
unstructured problems where deterministic techniques fall short because of excessive resource requirements
and/or infeasible time-frames®’. Metaheuristics provide versatility and scale well, allowing them to explore a
wide search domain while keeping the risk of becoming trapped in local optima at minimum. Despite they are
not able to guarantee the establishment of the global optimal solution, they can discover near-optimal results
in acceptable time. Swarm intelligence algorithms represent a subset of these optimization techniques, drawing
inspiration from nature, where plain individuals can express complex and smart collective behavior. Due to
their distributed nature, algorithms belonging to this group are particularly effective for tackling large, high-
dimensional optimization problems>»>°.

Notable exemplars of metaheuristics approaches encompass conventional and broadly-respected algorithms
such as particle swarm optimization (PSO), genetic algorithm (GA)%, variable neighborhood search (VNS)%,
artificial bee colony (ABC)%, firefly algorithm (FA)®* and bat algorithm (BA)®!. A considerable portion of
more recent techniques were introduced in the last few years, such as COLSHADE®, crayfish optimization
algorithm (COA)?, reptile search algorithm (RSA)**, red fox optimizer (RFO)* and recently developed sinh
cosh optimizer (SCHO)%. Methods belonging to this particular family of algorithms are well known as powerful
optimizers, and as such were applied in practice in a broad range of application domains, like time series
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forecasting®, software development!”%>, healthcare’!, cloud and edge computing systems®®” and power grids

tuning®®. Moreover, the application of metaheuristics algorithms in the domain of Al models hyperparameters
optimization can remarkably enhance their performance®, as evidenced by numerous preceding studies’’72.
IoT networks were also leveraged with the application of metaheuristics optimization algorithms’?, addressing
challenges like data aggregation’, blockchain performance optimization” and security’®””.

Methods

This unit commences by briefly introducing the concepts of the baseline chimp optimization algorithm, followed
by its known constraints. After the limitations are discussed, this chapter offers a modified variant of the
algorithm that improves the performance of the elementary version.

Baseline Chimp optimization algorithm
The chimp optimization algorithm (ChOA) belongs to the group of swarm intelligence metaheuristics
techniques, and it was developed to emulate the hunt technique and collective behavioral patterns of a troop of
chimpanzees?!. In this approach, chimpanzees are divided into four key subgroups: attackers, chasers, holders,
and callers, each contributing uniquely to enhance the optimization procedure. This collaborative approach aids
the algorithm to maintain a balance betwixt exploration (search for novel areas) and exploitation (improving
existing solutions).

In the baseline ChOA, the attacking group moves in line with their position update pattern, governed by Eq.

(5):
Xattack = Xbest —A- ‘C . Xbest — X| (5)

here, Xpest denotes the top-performing chimp location, while A and C correspond to the coefficient vectors
dynamically adjusted within each round, empowering the exploration procedure.

Individuals belonging to the chasing pack Xchase update their positions as governed by Eq. (6):
Xchase = Xattack -B- |D : Xattack - X| (6)

where B and D serve as control variables for maintaining the balance among exploration and exploitation phases.

The individuals belonging to the holder troop Xnola refresh their positions in line with Eq. (7):

Xhold = Xchase - F- |F . Xchase - X| (7)

here, E and F serve as supplementary parameters that govern this update.

Finally, the individuals from caller troop Xcan preform position update according to the Eq. (8):

Xeal = Xnold — G - |H - Xnola — X| (8)

here G and H have similar roles to A and C, ajdusted to the callers’ function of the optimization process.

By iteratively refining positions, ChOA leverages the collective intelligence of the different chimpanzee roles to
solve complex optimization tasks, proving to be an efficient method for addressing high-dimensional search
domains within a broad spectrum of real-world applications.

Altered ChOA

Notwithstanding excellent optimization characteristics of the relatively novel ChOA algorithm, thorough
experiments on the CEC benchmark function collection”® exposed some areas of the algorithm that may be
targeted for enhancements. These empirical experiments have showcased that the baseline ChOA could
profit from the early bolster of the population diversity. Moreover, baseline algorithm’s converging speed and
balance betwixt diversification and intensification stages could also be leveraged. With these opportunities for
improvements in mind, several alterations are proposed in this study.

Firstadded alteration targets boosting of the population diversity over the initialization stage, by incorporating
the quasi-adaptive learning (QRL)” procedure to the elementary ChOA. In the modified initialization stage,
only a half of the solutions are synthesized by applying the conventional ChOA initialization process. Other half
of solutions are synthesized with QRL mechanism to boost diversification in the early phase of the algorithm’s
run. Novel solutions are synthesized as quasi-reflexive opposite individuals with respect to the Eq. 9.

. lb; + ub;
X" = rnd<J 3 J ,xj) 9)
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here, f#u] is the arithmetic mean for each parameter’s search limits, while rnd() represents an arbitrary

selection procedure within the given boundaries.

Another modification that was implemented into the ChOA algorithm is the soft rollback mechanism,
introduced by this study. If the algorithm stagnates in T/3 iterations (empirically established), where T is the
maximum number of iterations, rollback of the entire population to the previous state is performed. Two novel
control parameters were introduced to support this alteration, stagnation counter sc and stagnation threshold st.
The initial values of these parameters are sc = 0 and st = % If there is no improvement in the current iteration,
sc is incremented. If the value of sc reaches st, soft rollback is performed. Ultimately, elitism is also applied in the
following way. When the rollback is performed, the best individual (having the best fitness value) is kept in the
population, while the rest are produced by applying the proposed initialization described above.

Considering all included modifications, the novel algorithm was named iteration stagnation aware ChOA
(ISA-ChOA), with the pseudo code given in Algorithm 2. It is also necessary to note that the ISA-ChOA utiliz-
es identical control parameters’ values and their update procedures as suggested by the authors of the baseline
algorithm?!. Regarding the complexity of the introduced algorithm, it is common to express it in terms of
fitness function evaluations (FFEs), since it is the most expensive calculation during the metaheuristics algo-
rithm’s execution. Since soft rollback is executed after every three iterations (if the stagnation is confirmed),
the complexity of ISA-ChOA algorithm is in the worst case scenario O(n) = N + N x T'+ (N — 1) x T'/3
, where N is the count of solutions, while T is the count of iterations. However, in practice, soft rollback is on
average triggered only once per run, which is significantly less than the worst case scenario.

Set maximum number of agents N
Set stagnation criteria st
Produce % of the population P
Produce remaining agents by applying QRL
Separate agents in to simulated chimp colonies
while r < T do
Evaluate agent fitness
Use colony appropriate strategy to update ¢, f and m
for Each search agent a in P do
for each search agent s do
Determine appropriate search strategy
Update agent position
end for
end for
Check for stagnation
if Stagnation confirmed then
Apply soft rollback
else
Store solutions for soft rollback
end if
end while

Algorithm 2. ISA-ChOA optimizer pseudo code.

Experimental setup
The experiments in this study were conducted with a recent CICIoT2023 intrusion detection dataset*, publicly
accessible at https://www.unb.ca/cic/datasets/iotdataset-2023.html. This dataset was developed to evaluate
security analytics programs for practical IoT environments and includes 33 distinct attack variants executed
across an IoT topology of 105 devices. These attacks are categorized into seven types: DDoS, DoS, Recon, Web-
based, Brute Force, Spoofing, and Mirai. This allows for both binary classification (attack versus benign traffic)
and multiclass classification with either 8 classes (normal and each attack type) or 34 classes (normal and each
of the 33 individual attacks). Class dispersal of both binary and multiclass problems is showcased within Fig. 1.
This research addressed 8-class multiclass prediction task. The original dataset contains 1048575 samples. Due
to the immense size of the dataset and overwhelming computing requirements, it has been reduced to 20% of
the initial size, by performing stratifying of the target 8 classes to keep the imbalance among classes identical
to the original dataset. The resulting dataset contains 209715 samples, and is subsequently separated into 70%
training and 30% testing data. Models were validated by applying conventional ML metrics: accuracy, precision,
sensitivity, and F1-score.

Matthews correlation coefficient (MCC)® was opted as the objective function that requires maximization.
MCC represents an important indicator particularly when facing imbalanced datasets like CICIoT2023. The
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CICloT2023 loT binary - classes distribution CICI0T2023 IoT multiclass - classes distribution
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Fig. 1. CICIoT2023 class dispersal for binary and multiclass classification.

Hyperparameter | Lower bound | Upper bound
Learning rate 0.0001 0.003
Dropout 0.001 0.5

Epochs 10 30

CNN layers 1 2

Dense layers 1 2

Neurons per layer | 32 128

Table 1. Collection of CNN hyperparameters tuned in this study with their search restrictions.

Parameter Lower constraint | Upper constraint
Learning rate 0.001 0.100

Col sample by level (cbl) 0.05 1

Subsample 0.05 1

Iterations 50 100

Depth 1 5

Minimum data in leaf (mdl) | 1 5

Table 2. CatBoost set of optimized hyperparameters with search boundaries.

imbalance of the utilized dataset is indeed a challenge, however, it reflects a real-world situation, since most of
the real-life network traffic is not balanced. Thus, it is crucial that the proposed model should work properly with
highly imbalanced data. MCC value is established by utilizing the Equation (10). Moreover, the classification
error (which is defined by 1 — accuracy) was monitored across all simulations and acted as the indicator
function.

(TP x TN) — (FP x FN)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

(10)

here, TP corresponds to the true positive forecasts, TN represents the count of true negative predictions, FP is
the amount of false positive predictions, and finally, FN denotes the count of false negative classifications.

CNN set of hyperparameters was tuned within the premier tier of the introduced ML framework. The collection
of opted hyperparameters, along with search region limits for each parameter is presented in Table 1. Batch size
of 512 was used, with early stopping enabled.
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Parameter Lower constraint | Upper constraint
Learning rate 0.001 0.100

Number of leaves 24 80

Feature fraction 0.1 0.9

Bagging fraction 0.8 1

Max depth 5 30

Max bin 20 90

Minimum data in leaf 20 80

Minimum sum hessian in leaf | 0 100

Subsample 0.01 1

Table 3. LightGBM set of optimized hyperparameters with search boundaries.

CNN'’s intermediate outputs were wired to the framework’s second tier. This collection of outputs were stored
within CNN’s classifying activity for every sample in the dataset, and subsequently separated into another 70%
training and 30% testing split, which was fed to CatBoost and LightGBM structures throughout their respective
tuning processes. The hyperparameters’ collection of CatBoost opted for optimization procedure in this study
is showcased in Table 2. Likewise, LightGBM hyperparameters that were tuned are presented in Table 3. These
opted parameters are known to have the most influence on the model’s behavior.

The suggested ISA-ChOA metaheuristics was utilized for optimization, and comparative analysis with multiple
cutting-edge optimizers was performed. The set of contending algorithms comprised of elementary ChOA?!,
VNS, PSO%, BA®!, ABC*’, WOA®! and RSA?. The contending metaheuristics were separately implemented
for the sake of this research, with default configurations of control parameters that were recommended by their
respective creators. In case of CNN simulations, every metaheuristics used 8 individuals in the populace, with 5
iterations in each run and 5 separate executions, to account the randomness linked to the stochastic algorithms.
Similarly, for CatBoost and LightGBM tuning, metaheuristics used 10 individuals per populace, 10 iterations per
run and a total of 30 independent executions. For CNN tuning process the authors opted for smaller population
size and number of rounds, since CNN optimization requires considerably more computing resources. A
simulation framework flowchart is provided in Fig. 2

Results
This unit showcases the experimental findings from the conducted simulations. In multiclass simulations, the
superior outcomes for each category for all tables showing the simulation findings are emphasized in bold font.

Layer 1 CNN multiclass experiments

The simulation findings of the premier tier of the framework, where CNN was optimized with respect to the
fitness function (MCC) for multiclass classifying venture, are delivered within Table 4. The proposed ISA-ChOA
algorithm dispatched highest ranking results, by attaining the MCC of 0.691852 for the best run and 0.639513
in the worst execution, with mean and median scores of 0.639513 and 0.671254, respectively. On the opposite,
the superior stability indicated by the lowest deviation and variance scores was attained by WOA metaheuristics.
Despite respectful stability, however, WOA was considerably behind more advanced algorithms regarding other
metrics.

Indicator function (set as classification error outlay) results are outlined within Table 5. Once more, the
supremacy of the introduced ISA-ChOA metaheuristics may be observed, reflected in the best outcome of
0.137344. ISA-ChOA also outclassed other contending algorithms for the worst, mean and median scores, while
again the superior stability of the outcomes was exhibited by WOA metaheuristics.

Violin and swarm plots of the fitness function (MCC) for the multiclass classifying problem are presented
within Fig. 3. ISA-ChOA was not able to establish the highest stability of the results, nevertheless, other contenders
which obtained better stability of MCC across independent runs did not match the overall superior performance
of ISA-ChOA. This is also visible from the swarm plot graph, showing the diversity of the population within
the final round of the best execution. Supplementary visualizations of the outcomes are outlined within Fig. 4
through box and swarm plots of the indicator function.

Converging diagrams of both MCC and error rate, for every considered algorithm are outlined within Fig. 5,
where it is clear that the proposed ISA-ChOA demonstrated superior convergence, and outclassed all contenders
by establishing the best outcome of the fitness function. The same applies for the converging of the error rate
(indicator), although it was not specified as the goal for tuning.

Table 6 sets forth a comprehensive evaluation of the top-performing CNN architectures for multiclass
classifying challenge, tuned with all optimizers encompassed in comparative evaluation. Even optimized CNNs
are frequently struggling to properly detect mirai and recon attacking patterns, which is evident from the
provided results. Additionally, PSO-based CNN fails entirely to converge, with abysmal final accuracy. A couple
of measurements should be considered for determining the optimal method, including precision, recall and
fl-score per each class. Nevertheless, the greatest accuracy among all observed methods was achieved by the
suggested ISA-ChOA CNN model, that outclassed other approaches with the final overall accuracy of 0.862656.

The best sets of CNN’s hyperparameter values determined with each regarded optimizer are put forth within
Table 7, to provide support for subsequent replication studies. These values may help other scientists that seek
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Fig. 2. Proposed simulation framework flowchart.
Algorithm Best Worst Mean Median | Std Var
CNN-ISA-ChOA | 0.691852 | 0.639513 | 0.671254 | 0.691852 | 0.028211 | 7.95E-04
CNN-ChOA 0.677421 | 0.634565 | 0.646993 | 0.641397 | 0.015474 | 2.39E-04
CNN-VNS 0.639245 | 0.633145 | 0.636067 | 0.636056 | 0.002561 | 6.56E-06
CNN-PSO 0.639819 | 0.634424 | 0.635993 | 0.634763 | 0.002054 | 4.22E-06
CNN-BA 0.635105 | 0.621941 | 0.629489 | 0.631148 | 0.004595 |2.11E-05
CNN-ABC 0.635973 | 0.627362 | 0.633416 | 0.635611 | 0.003277 | 1.07E-05
CNN-WOA 0.636434 | 0.632404 | 0.633983 | 0.633352 | 0.001490 | 2.22E-06
CNN-RSA 0.638300 | 0.631014 | 0.634379 | 0.635692 | 0.002857 | 8.16E-06

Table 4. Layer 1 CNN multiclass objective function scores over 30 simulations. Best obtained metrics are
shown in bold style.
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CICloT2023 Metaverse loT multiclass L1 framework CNN - objective violin plot diagram

Algorithm Best Worst Mean Median | Std Var

CNN-ISA-ChOA | 0.137344 | 0.147135 | 0.141140 | 0.137344 | 0.005202 | 2.71E-05
CNN-ChOA 0.145736 | 0.149249 | 0.146973 | 0.146467 | 0.001286 | 1.65E-06
CNN-VNS 0.147675 | 0.149519 | 0.148610 | 0.148518 | 0.000935 | 8.74E-07
CNN-PSO 0.147119 | 0.149058 | 0.148527 | 0.149058 | 0.000763 | 5.82E-07
CNN-BA 0.148931 | 0.153668 | 0.151090 | 0.150362 | 0.001775 | 3.15E-06
CNN-ABC 0.148709 | 0.151776 | 0.149503 | 0.148709 | 0.001226 | 1.50E-06
CNN-WOA 0.148311 | 0.149901 | 0.149287 | 0.149424 | 0.000597 | 3.57E-07
CNN-RSA 0.147564 | 0.150314 | 0.149084 | 0.148661 | 0.001060 | 1.12E-06

Table 5. Layer 1 CNN multiclass indicator function scores over 30 simulations. Best obtained metrics are
shown in bold style.

CICIoT2023 Metaverse loT multiclass L1 framework CNN - objective swarm plot diversity
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Fig. 3. Layer 1 CNN multiclass objective function distribution and swarm diagrams.
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Fig. 4. Layer 1 CNN multiclass indicator function distribution and swarm diagrams.

to recreate the experimental aftermaths on their own, as these CNN architectures achieved the outcomes shown
and discussed within Table 6. Ultimately, additional visualizations in shape of PR curves and confusion matrix
for the most suitable model (CNN-ISA-ChOA in this scenario) are outlined within Fig. 6.

The best performing CNN model architectures, and the “tapped” intermediate version are provided visually
in Fig. 7, where it can be noted that 32 features were extracted by the CNN.

Layer 2 CatBoost multiclass experiments

The findings of the conducted simulations of the framework’s second tier, in terms of CatBoost tuning process
with the MCC set as the fitness function for multiclass classifying venture, are showcased within Table 8. The
suggested ISA-ChOA algorithm dispatched highest ranking results, by attaining the best MCC of 0.806747 for
the best run with mean score of 0.805208. Moreover, ISA-ChOA shared the best results of worst and median
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Fig. 5. Layer 1 CNN multiclass objective and indicator function convergence diagrams.

metrics with a couple of other oprimizers. On the opposite, the superior stability indicated by the lowest
deviation and variance scores was attained by BA and RSA metaheuristics. Despite respectful stability, however,

these algorithms were behind other optimizers regarding the remaining metrics.

Indicator function (set as classification error outlay) findings are outlined within Table 9. Once more, the
supremacy of the introduced ISA-ChOA metaheuristics may be observed, reflected in the best outcome for
classification error of 0.082222. ISA-ChOA also outclassed other contending algorithms for the mean score, and
shared the best outcomes of worst and median metrics with several other optimizers, while the supreme stability

of the outcomes was exhibited by baseline ChOA, BA and RSA metaheuristics.
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Table 7. Layer 1 CNN multiclass optimized CNN model parameter selections.

Approach Metric Benign | Brute force | DDoS Do$S Mirai Recon Spoofing | Web Accuracy | Macro avg | Weighted avg
Precision | 0.721480 | 0.922479 0.623072 | 0.792727 | 0.000000 | 1.000000 | 0.840000 | 0.999433 | 0.862656 | 0.737399 0.868015
CNN-ISA-ChOA | Recall 0.955752 | 0.901860 0.682524 | 0.457023 | 0.000000 | 0.052632 | 0.570136 | 0.991840 | 0.862656 | 0.576471 0.862656
fl-score | 0.822255 | 0.912053 0.651444 | 0.579787 | 0.000000 | 0.100000 | 0.679245 | 0.995622 | 0.862656 | 0.592551 0.863891
Precision | 0.777710 | 0.922179 0.597816 | 0.668235 | 0.000000 | 1.000000 | 0.692053 | 0.992705 | 0.854264 | 0.706337 0.861855
CNN-ChOA Recall 0.874064 | 0.890072 0.683626 | 0.595388 | 0.000000 | 0.105263 | 0.630468 | 0.995498 | 0.854264 | 0.596797 0.854264
fl-score | 0.823077 | 0.905841 0.637848 | 0.629712 | 0.000000 | 0.190476 | 0.659826 | 0.994099 | 0.854264 | 0.605110 0.857149
Precision | 0.773058 | 0.853032 0.790274 | 0.619617 | 0.000000 | 0.000000 | 0.717391 | 0.999717 | 0.852325 | 0.594136 0.844698
CNN-VNS Recall 0.867257 | 0.981511 0.291028 | 0.542977 | 0.000000 | 0.000000 | 0.647059 | 0.992684 | 0.852325 | 0.540314 0.852325
fl-score | 0.817453 | 0.912773 0.425398 | 0.578771 | 0.000000 | 0.000000 | 0.680412 | 0.996188 | 0.852325 | 0.551374 0.825186
Precision | 0.023349 | 0.000000 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.023349 | 0.002919 0.000545
CNN-PSO Recall 1.000000 | 0.000000 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.023349 | 0.125000 0.023349
fl-score | 0.045632 | 0.000000 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.023349 | 0.005704 0.001065
Precision | 0.696793 | 0.863293 0.699412 | 0.886076 | 0.000000 | 0.000000 | 0.909605 | 0.995781 | 0.851069 | 0.631370 0.838487
CNN-BA Recall 0.976174 | 0.962979 0.360272 | 0.440252 | 0.000000 | 0.000000 | 0.485671 | 0.996061 | 0.851069 | 0.527676 0.851069
fl-score | 0.813156 | 0.910415 0.475573 | 0.588235 | 0.000000 | 0.000000 | 0.633235 | 0.995921 | 0.851069 | 0.552067 0.831613
Precision | 0.745338 | 0.864658 0.685934 | 0.762658 | 0.000000 | 1.000000 | 0.844828 | 0.998024 | 0.851291 | 0.737680 0.837092
CNN-ABC Recall 0.952349 | 0.959727 0.369455 | 0.505241 | 0.000000 | 0.105263 | 0.591252 | 0.994654 | 0.851291 | 0.559743 0.851291
fl-score | 0.836222 | 0.909715 0.480244 | 0.607818 | 0.000000 | 0.190476 | 0.695652 | 0.996336 | 0.851291 | 0.589558 0.833337
Precision | 0.721278 | 0.861107 0.715427 | 0.682065 | 0.000000 | 0.000000 | 0.921788 | 1.000000 | 0.851689 | 0.612708 0.839058
CNN-WOA Recall 0.953029 | 0.967345 0.345394 | 0.526205 | 0.000000 | 0.000000 | 0.497738 | 0.992122 | 0.851689 | 0.535229 0.851689
fl-score | 0.821114 | 0.911139 0.465874 | 0.594083 | 0.000000 | 0.000000 | 0.646425 | 0.996045 | 0.851689 | 0.554335 0.830837
Precision | 0.728610 | 0.860137 0.728834 | 0.711429 | 0.000000 | 0.000000 | 0.821739 | 0.999434 | 0.852436 | 0.606273 0.839980
Recall 0.910143 | 0.970161 0.339150 | 0.522013 | 0.000000 | 0.000000 | 0.570136 | 0.992966 | 0.852436 | 0.538071 0.852436
CNNRSA fl-score | 0.809322 | 0.911842 0.462898 | 0.602177 | 0.000000 | 0.000000 | 0.673197 | 0.996189 | 0.852436 | 0.556953 0.830910
Support | 1469 45812 10889 477 32 19 663 3554
Table 6. Layer 1 CNN multiclass comprehensive metrics for best tuned models.
Learning Layers | Layers | Neurons | Neurons | Neurons | Neurons
Method Rate Dropout | Epochs | CNN | Dense | CNNL1 | CNNL2 | DenseLl | Dense L2
g?g:s"" 2.16e-03 | 1.07e-03 | 30 1 1 128 N/A 50 N/A
CNN-ChOA | 2.69¢-03 | 8.03e-03 |25 2 2 120 92 82 40
CNN-VNS 3.00e-03 | 2.47e-01 | 30 1 2 111 N/A 128 106
CNN-PSO 2.03e-03 | 3.71e-02 | 27 2 2 59 125 40 91
CNN-BA 3.00e-03 | 5.00e-01 | 30 2 2 92 32 128 122
CNN-ABC | 2.55e-03 |3.03e-01 |29 1 1 128 N/A 70 N/A
CNN-WOA | 3.00e-03 | 1.79e-01 |27 1 1 128 N/A 79 N/A
CNN-RSA 3.00e-03 | 7.33e-02 | 30 1 1 128 N/A 77 N/A

Violin and swarm plots of the fitness function (MCC) for the multiclass classifying problem are presented
within Fig. 8. ISA-ChOA was not able to establish the highest stability of the results, nevertheless, other contenders
which obtained better stability of MCC across independent runs did not match the overall superior performance
of ISA-ChOA. This is also visible from the swarm plot graph, showing the diversity of the population within
the final round of the best execution. Supplementary visualizations of the outcomes are outlined within Fig. 9
through box and swarm plots of the classification error rate.

Converging diagrams of both MCC and error rate, for every considered algorithm are outlined within Figs.
10 and 11, where it is clear that the proposed ISA-ChOA demonstrated superior convergence, and outclassed all
contenders by establishing the best outcome of the fitness function. The same applies for the converging of the
error rate (indicator), although it was not targeted as the goal for tuning.

Table 10 sets forth a comprehensive analysis of the top-performing CatBoost architectures for multiclass
classifying challenge, tuned with all optimizers encompassed in comparative evaluation. Even optimized
CatBoost models are frequently struggling to properly detect mirai and recon attacking patterns, which is
evident from the provided results. A couple of measurements should be considered for determining the optimal
method, including precision, recall and fl-score per each class. Nevertheless, the greatest accuracy among all
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diagram.

observed methods was achieved by the suggested ISA-ChOA CatBoost model, that outclassed other approaches
with the final overall accuracy of 0.917778.

The best sets of CatBoost’s hyperparameter values determined with each regarded optimizer are put forth
within Table 11, to provide support for possible subsequent replication experiments. These values may help
other scientists that seek to recreate the experimental aftermaths on their own, as these CatBoost architectures
achieved the outcomes shown and discussed within Table 10. Ultimately, additional visualization in shape of
confusion matrix for the most suitable model (CNN-CB-ISA-ChOA in this scenario) is outlined within Fig. 12.
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Fig. 7. The best performing CNN model, and the “tapped” version of the network where the output layers are
intercepted.

CNN-CB-ISA-ChOA | 0.806747 | 0.804912 | 0.805208 | 0.804912 | 0.000607 | 3.68E-07
CNN-CB-ChOA 0.804912 | 0.804912 | 0.804912 | 0.804912 | 0.000000 | 0.00E-00
CNN-CB-VNS 0.804912 | 0.804076 | 0.804808 | 0.804912 | 0.000277 | 7.65E-08
CNN-CB-PSO 0.805425 | 0.804912 | 0.804981 |0.804912 | 0.000168 | 2.83E-08
CNN-CB-BA 0.804912 | 0.804912 | 0.804912 | 0.804912 | 0.000000 | 0.00E-00
CNN-CB-ABC 0.805256 | 0.791713 | 0.799831 | 0.802300 | 0.005020 | 2.52E-05
CNN-CB-WOA 0.805361 | 0.804912 | 0.805064 |0.804912 | 0.000198 | 3.91E-08
CNN-CB-RSA 0.804912 | 0.804912 | 0.804912 | 0.804912 | 0.000000 | 0.00E-00

Table 8. Layer 2 CatBoost multiclass objective function scores over 30 simulations. Best obtained metrics are
shown in bold style.
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Algorithm Best Worst Mean Median | Std Var

CNN-CB-ISA-ChOA | 0.082222 | 0.082953 | 0.082840 | 0.082953 | 2.40E-04 | 5.78E-08
CNN-CB-ChOA 0.082953 | 0.082953 | 0.082953 | 0.082953 | 0.00E-00 | 0.00E-00
CNN-CB-VNS 0.082953 | 0.083382 | 0.083007 |0.082953 | 1.42E-04 | 2.01E-08
CNN-CB-PSO 0.082890 | 0.082953 | 0.082943 | 0.082953 | 2.09E-05 | 4.38E-10
CNN-CB-BA 0.082953 | 0.082953 | 0.082953 | 0.082953 | 0.00E-00 | 0.00E-00
CNN-CB-ABC 0.082890 | 0.088469 | 0.085093 |0.084050 | 2.06E-03 | 4.26E-06
CNN-CB-WOA 0.082921 | 0.082953 | 0.082921 | 0.082953 | 5.27E-05 | 2.78E-09
CNN-CB-RSA 0.082953 | 0.082953 | 0.082953 | 0.082953 | 0.00E-00 | 0.00E-00

Table 9. Layer 2 CatBoost multiclass indicator function scores over 30 simulations. Best obtained metrics are
shown in bold style.

CICloT2023 Metaverse loT multiclass L2 framework CNN-CB - objective violin plot diagram

CICloT2023 Metaverse loT multiclass L2 framework CNN-CB - objective swarm plot diversity
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CICloT2023 Metaverse loT multiclass L2 framework CNN-CB - error box plot diagram
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Fig. 9. Layer 2 CatBoost multiclass indicator score distribution and swarm diagrams.

Layer 2 LightGBM multiclass experiments

The findings of the conducted simulations of the framework’s second tier, in terms of LightGBM tuning process
with the MCC set as the fitness function for multiclass classifying venture, are showcased within Table 12. The
suggested ISA-ChOA algorithm dispatched supreme level of outcomes for all observed metrics, by attaining
the best MCC of 0.996207 for the best run, 0.985756 for the worst execution, with mean and median outcomes
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of 0.991700 and 0.993378. Moreover, in this experiment, ISA-ChOA obtained the superior stability as well,
indicated by the lowest deviation and variance scores of 0.003788 and 0.000014, respectively.

Indicator function (set as classification error outlay) findings are outlined within Table 13. Once again,
the supremacy of the proposed ISA-ChOA metaheuristics may be noted, reflected in the best outcome for
classification error of 0.001653. ISA-ChOA also outclassed other contending algorithms for the worst, mean
and median metrics. The supreme stability of the outcomes was exhibited by ISA-ChOA metaheuristics as well.

Violin and swarm plots of the fitness function (MCC) for the multiclass classifying problem are presented
within Fig. 13. ISA-ChOA was able to establish the highest stability of the results, while other contenders which
obtained good stability of MCC across independent runs did not match the overall superior performance of ISA-
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Fig. 11. Layer 2 CatBoost multiclass indicator convergence diagrams.

ChOA. This is also visible from the swarm plot graph, showing the diversity of the population within the final
round of the best execution. Supplementary visualizations of the outcomes are outlined within Fig. 14 through
box and swarm plots of the classification error rate.

Converging diagrams of both MCC and error rate, for every considered algorithm are outlined within Figs.
15 and 16, where it is clear that the proposed ISA-ChOA demonstrated superior convergence, and outclassed all
contenders by establishing the best outcome of the fitness function. The same applies for the converging of the
error rate (indicator), although it was not targeted as the goal for tuning.
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Approach Metric Benign | Brute force | DDoS Do$S Mirai Recon Spoofing | Web Accuracy | Macro avg | Weighted avg
Precision | 0.717203 | 0.935205 0.845409 | 0.785953 | 0.000000 | 1.000000 | 0.890306 | 0.999433 | 0.917778 | 0.771689 0.916141
CNN-CB-ISA-ChOA | Recall 0.956433 | 0.968480 0.721187 | 0.492662 | 0.000000 | 0.368421 | 0.526395 | 0.991840 | 0.917778 | 0.628177 0.917778
fl-score | 0.819720 | 0.951552 0.778372 | 0.605670 | 0.000000 | 0.538462 | 0.661611 | 0.995622 | 0.917778 | 0.668876 0.914704
Precision | 0.718670 | 0.934240 0.844639 | 0.788591 | 0.000000 | 1.000000 | 0.885787 | 0.999433 | 0.917047 | 0.771420 0.915312
CNN-CB-ChOA Recall 0.956433 | 0.968480 0.716962 | 0.492662 | 0.000000 | 0.368421 | 0.526395 | 0.991840 | 0.917047 | 0.627649 0.917047
fl-score | 0.820678 | 0.951052 0.775581 | 0.606452 | 0.000000 | 0.538462 | 0.660360 | 0.995622 | 0.917047 | 0.668526 0.913872
Precision | 0.718670 | 0.934240 0.844639 | 0.788591 | 0.000000 | 1.000000 | 0.885787 | 0.999433 | 0.917047 | 0.771420 0.915312
CNN-CB-VNS Recall 0.956433 | 0.968480 0.716962 | 0.492662 | 0.000000 | 0.368421 | 0.526395 | 0.991840 | 0.917047 | 0.627649 0.917047
fl-score | 0.820678 | 0.951052 0.775581 | 0.606452 | 0.000000 | 0.538462 | 0.660360 | 0.995622 | 0.917047 | 0.668526 0.913872
Precision | 0.719674 | 0.936015 0.837123 | 0.807971 | 0.000000 | 1.000000 | 0.889447 | 0.999433 | 0.917110 | 0.773708 0.915512
CNN-CB-PSO Recall 0.961198 | 0.966253 0.726880 | 0.467505 | 0.000000 | 0.368421 | 0.533937 | 0.991277 | 0.917110 | 0.626934 0.917110
fl-score | 0.823084 | 0.950894 0.778116 | 0.592297 | 0.000000 | 0.538462 | 0.667295 | 0.995338 | 0.917110 | 0.668186 0.914201
Precision | 0.718670 | 0.934240 0.844639 | 0.788591 | 0.000000 | 1.000000 | 0.885787 | 0.999433 | 0.917047 | 0.771420 0.915312
CNN-CB-BA Recall 0.956433 | 0.968480 0.716962 | 0.492662 | 0.000000 | 0.368421 | 0.526395 | 0.991840 | 0.917047 | 0.627649 0.917047
fl-score | 0.820678 | 0.951052 0.775581 | 0.606452 | 0.000000 | 0.538462 | 0.660360 | 0.995622 | 0.917047 | 0.668526 0.913872
Precision | 0.714792 | 0.935303 0.841486 | 0.802867 | 0.000000 | 1.000000 | 0.882952 | 0.998867 | 0.917110 | 0.772033 0.915495
CNN-CB-ABC Recall 0.960517 | 0.967519 0.722013 | 0.469602 | 0.000000 | 0.368421 | 0.523379 | 0.991840 | 0.917110 | 0.625411 0.917110
fl-score | 0.819634 | 0.951138 0.777185 | 0.592593 | 0.000000 | 0.538462 | 0.657197 | 0.995341 | 0.917110 | 0.666444 0.914034
Precision | 0.719084 | 0.936053 0.837017 | 0.807273 | 0.000000 | 1.000000 | 0.889447 | 0.999149 | 0.917079 | 0.773503 0.915486
CNN-CB-WOA Recall 0.961879 | 0.966232 0.726789 | 0.465409 | 0.000000 | 0.368421 | 0.533937 | 0.991277 | 0.917079 | 0.626743 0.917079
fl-score | 0.822947 | 0.950903 0.778018 | 0.590426 | 0.000000 | 0.538462 | 0.667295 | 0.995198 | 0.917079 | 0.667906 0.914165
Precision | 0.718670 | 0.934240 0.844639 | 0.788591 | 0.000000 | 1.000000 | 0.885787 | 0.999433 | 0.917047 | 0.771420 0.915312
Recall 0.956433 | 0.968480 0.716962 | 0.492662 | 0.000000 | 0.368421 | 0.526395 | 0.991840 | 0.917047 | 0.627649 0.917047
CNN-CB-RSA fl-score | 0.820678 | 0.951052 0.775581 | 0.606452 | 0.000000 | 0.538462 | 0.660360 | 0.995622 | 0.917047 | 0.668526 0.913872
Support | 1469 45812 10889 477 32 19 663 3554

Table 10. Layer 2 CatBoost multiclass comprehensive metrics for best tuned models.

Approach Ir cbl Subsample | Iterations | Depth | mdl
CNN-CB-ISA-ChOA | 9.96E-02 | 8.42E-01 | 5.00E-02 100 5 3
CNN-CB-ChOA 1.00E-01 | 3.09E-01 | 1.00E-00 100 5 2
CNN-CB-VNS 1.00E-01 | 5.00E-02 | 1.00E-00 100 5 2
CNN-CB-PSO 9.89E-02 | 2.33E-01 | 6.99E-01 97 5 4
CNN-CB-BA 1.00E-01 | 7.37E-01 | 1.00E-00 100 5 2
CNN-CB-ABC 9.91E-02 | 9.79E-01 | 5.64E-01 100 5 4
CNN-CB-WOA 9.89E-02 | 5.33E-01 | 6.50E-02 100 5 1
CNN-CB-RSA 1.00E-01 | 1.98E-01 | 1.00E-00 100 5 3

Table 11. Best CatBoost model parameter selections made by each optimizer.

Table 14 sets forth a comprehensive analysis of the top-performing CatBoost architectures for multiclass
classifying challenge, tuned with all optimizers encompassed in comparative evaluation. Even optimized
CatBoost models are frequently struggling to properly detect mirai and recon attacking patterns, which is evident
from the provided results. A couple of measurements should be considered for determining the optimal method,
including precision, recall and fl-score per each class. Nevertheless, the greatest accuracy among all observed
methods was achieved by the suggested ISA-ChOA Light GBM model, that outclassed other approaches with the
final overall accuracy of 0.998346.

The best sets of LightGBM’s hyperparameter values determined with each regarded optimizer are put forth
within Table 15, to provide support for possible subsequent replication experiments. These values may help
other scientists that seek to recreate the experimental aftermaths on their own, as these CatBoost architectures
achieved the outcomes shown and discussed within Table 14. Ultimately, additional visualization in shape of
confusion matrix for the most suitable model (CNN-LGBM-ISA-ChOA in this scenario) is outlined within Fig.
17.

Comparison with state of the art classifcaiton models

To demonstrate the improvements attained by utilizing the introduced optimization framework, a comparative
analysis between several baseline classifiers is included. Commonly used as well as relatively recent models
have all been evaluated including decision trees®?, random forests®*, KNN®, XGBoost®>, AdaBoost®®, baseline
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Fig. 12. Layer 2 CatBoost multiclass Best performing CNN-ISA-ChOA optimized model confusion matrix.

Algorithm Best Worst Mean Median | Std Var

CNN-LGBM-ISA-ChOA | 0.996207 | 0.985756 | 0.991700 | 0.993378 | 0.003788 | 0.000014
CNN-LGBM-ChOA 0.984145 | 0.945072 | 0.969630 | 0.969792 | 0.010915 | 0.000119
CNN-LGBM-VNS 0.990692 | 0.956404 | 0.979813 | 0.984732 | 0.012299 | 0.000151
CNN-LGBM-PSO 0.991862 | 0.937973 | 0.961005 | 0.958011 | 0.016631 | 0.000277
CNN-LGBM-BA 0.977663 | 0.929784 | 0.953932 | 0.957025 | 0.014720 | 0.000217
CNN-LGBM-ABC 0.973858 | 0.937252 | 0.960740 | 0.965956 | 0.012290 | 0.000151
CNN-LGBM-WOA 0.986708 | 0.945238 | 0.966248 | 0.967594 | 0.015793 | 0.000249
CNN-LGBM-RSA 0.986708 | 0.917790 | 0.967001 | 0.978231 | 0.022495 | 0.000506

Table 12. Layer 2 LightGBM multiclass objective function scores over 30 simulations. Best obtained metrics
are shown in bold style.

CatBoost’® and LGBM models as well as a simple multilayer perception (MLP)¥” models. The results of this
comparative analysis are provided in detail in Table 16. The introduced hybrid framework shows clear advantages
over other contemporary optimizers.

Statistical analysis and the best models interpretation

When conducting comparative simulations between optimizers several angles need to be considered when
discerning a conclusion. Comparisons in terms of objective function scores are often insufficient to draw a
definitive conclusion. Therefore statistical evaluations are conducted to establish if an attained improvement
is significant. Two approaches can be taken when comparing metaheuristics, parametric and non-parametric
testing. To ensure parametric tests can be safely applied a set of criteria needs to be fulfilled®®. These include the
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Algorithm Best Worst Mean Median | Std Var

CNN-LGBM-ISA-ChOA | 0.001653 | 0.006199 | 0.003614 | 0.002885 | 0.001648 | 2.71E-06
CNN-LGBM-ChOA 0.006898 | 0.023810 | 0.013188 | 0.013121 | 0.004723 | 2.23E-05
CNN-LGBM-VNS 0.004053 | 0.018914 | 0.008774 | 0.006644 | 0.005331 | 2.84E-05
CNN-LGBM-PSO 0.003544 | 0.026846 | 0.016910 | 0.018215 | 0.007193 | 5.17E-05
CNN-LGBM-BA 0.009712 | 0.030406 | 0.019975 | 0.018644 | 0.006359 | 4.04E-05
CNN-LGBM-ABC 0.011365 | 0.027180 | 0.017033 | 0.014782 | 0.005308 | 2.82E-05
CNN-LGBM-WOA 0.005786 | 0.023730 | 0.014649 | 0.014075 | 0.006835 | 4.67E-05
CNN-LGBM-RSA 0.005786 | 0.035461 | 0.014299 | 0.009465 | 0.009690 | 9.39E-05

Table 13. Layer 2 LightGBM multiclass objective function scores over 30 simulations. Best obtained metrics
are shown in bold style.

CICloT2023 Metaverse loT multiclass L2 framework CNN-LGBM - objective violin plot diagram CICloT2023 Metaverse loT multiclass L2 framework CNN-LGBM - objective swarm plot diversity
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Fig. 13. Layer 2 LightGBM multiclass objective score distribution and swarm diagrams.

CICIoT2023 Metaverse loT multiclass L2 framework CNN-LGBM - error box plot diagram CICloT2023 Metaverse loT multiclass L2 framework CNN-LGBM - error swarm plot diversity
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Fig. 14. Layer 2 LightGBM multiclass indicator score distribution and swarm diagrams.

independence of runs, a condition fulfilled by conduction individual optimizations using independent random
seeds; Homoscedasticity, that is carrying out the Levene’s test®®, and with all conditions for the conducted
situations attaining a p-value of 0.62, this condition can be considered fulfilled as well; Normality for the attained
scores must also be confirmed using the Shapiro-Wilk® test with p-values presented in Table 17. With p-values
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Fig. 15. Layer 2 LightGBM multiclass objective convergence diagrams.

not meeting the established criteria, normality cannot be confirmed, as the use of parametric test cannot be
considered justified.

With the required normality condition not fulfilled non-parametric testing is applied to establish a further
comparison. The Wilcoxon signed-rank test! is applied, and the ISA-ChOA algorithm is compared with other
algorithms included in the comparative simulations and the p-value scores are presented in Table 18. As the
significance threshold of a = 0.05 is not exceeded, the outcomes attained in the comparative analysis can be
considered statistically significant.
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Fig. 16. Layer 2 LightGBM multiclass indicator convergence diagrams.

Interpretation of the best performing models
In modern Al research model classifications are without a doubt important. However, the contributing factors
that allow a model to determine the class of a certain sample can also provide valuable feedback on a model
decisions. Feature importance can help highlight hidden biases in the data as well as help reduce input and
collected features for future research. While models are often treated by researchers as a black box, by leveraging
advanced model interpretation tools, information on feature importances as well as their impact on classification
can be computed.

Explainable AI (XAI) methods aim to make ML models significantly more transparent, interpretable, and
trustworthy. XAI techniques help stakeholders comprehend how models determine decisions, increasing trust
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Approach Metric Benign | Brute force | DDoS Do$S Mirai Recon Spoofing | Web Accuracy | Macro avg | Weighted avg
Precision | 0.998639 | 0.998647 0.996685 | 1.000000 | 0.968750 | 0.900000 | 0.998489 | 1.000000 | 0.998346 | 0.982651 0.998347
CNN-LGBM-ISA-ChOA | Recall 0.999319 | 0.999214 0.994306 | 1.000000 | 0.968750 | 0.947368 | 0.996983 | 0.999718 | 0.998346 | 0.988207 0.998346
fl-score | 0.998979 | 0.998930 0.995494 | 1.000000 | 0.968750 | 0.923076 | 0.997735 | 0.999859 | 0.998346 | 0.985353 0.998346
Precision | 0.992563 | 0.993864 0.987433 | 0.997895 | 0.925926 | 1.000000 | 0.995475 | 1.000000 | 0.993102 | 0.986644 0.993082
CNN-LGBM-ChOA Recall 0.999319 | 0.997053 0.974102 | 0.993711 | 0.781250 | 0.842105 | 0.995475 | 1.000000 | 0.993102 | 0.947877 0.993102
fl-score | 0.995929 | 0.995456 0.980722 | 0.995798 | 0.847458 | 0.914286 | 0.995475 | 1.000000 | 0.993102 | 0.965641 0.993077
Precision | 0.997283 | 0.996513 0.992415 | 0.993711 | 1.000000 | 1.000000 | 0.990991 | 1.000000 | 0.995947 | 0.996364 0.995942
CNN-LGBM-VNS Recall 0.999319 | 0.998210 0.985306 | 0.993711 | 0.875000 | 0.894737 | 0.995475 | 1.000000 | 0.995947 | 0.967720 0.995947
fl-score | 0.998300 | 0.997361 0.988848 | 0.993711 | 0.933333 | 0.944444 | 0.993228 | 1.000000 | 0.995947 | 0.981153 0.995939
Precision | 0.998638 | 0.996970 0.992888 | 1.000000 | 0.968750 | 0.947368 | 0.995482 | 1.000000 | 0.996456 | 0.987512 0.996452
CNN-LGBM-PSO Recall 0.997958 | 0.998319 0.987235 | 1.000000 | 0.968750 | 0.947368 | 0.996983 | 1.000000 | 0.996456 | 0.987077 0.996456
fl-score | 0.998298 | 0.997644 0.990053 | 1.000000 | 0.968750 | 0.947368 | 0.996232 | 1.000000 | 0.996456 | 0.987293 0.996452
Precision | 0.966822 | 0.992328 0.985598 | 0.945720 | 0.681818 | 0.000000 | 0.976923 | 0.998312 | 0.990288 | 0.818440 0.989932
CNN-LGBM-BA Recall 0.991831 | 0.996595 0.967857 | 0.949686 | 0.468750 | 0.000000 | 0.957768 | 0.998593 | 0.990288 | 0.791385 0.990288
fl-score | 0.979167 | 0.994457 0.976647 | 0.947699 | 0.555556 | 0.000000 | 0.967251 | 0.998453 | 0.990288 | 0.802404 0.990078
Precision | 0.977242 | 0.990826 0.978133 | 0.984816 | 0.892857 | 1.000000 | 0.977307 | 1.000000 | 0.988635 | 0.975148 0.988595
CNN-LGBM-ABC Recall 0.993873 | 0.994892 0.961245 | 0.951782 | 0.781250 | 0.894737 | 0.974359 | 0.999719 | 0.988635 | 0.943982 0.988635
fl-score | 0.985488 | 0.992855 0.969616 | 0.968017 | 0.833333 | 0.944444 | 0.975831 | 0.999859 | 0.988635 | 0.958680 0.988593
Precision | 0.994565 | 0.995188 0.990070 | 0.993737 | 0.920000 | 0.666666 | 0.985031 | 0.997471 | 0.994214 | 0.942841 0.994161
CNN-LGBM-WOA Recall 0.996596 | 0.997643 0.979704 | 0.997904 | 0.718750 | 0.421053 | 0.992459 | 0.998875 | 0.994214 | 0.887873 0.994214
fl-score | 0.995580 | 0.996414 0.984860 | 0.995816 | 0.807018 | 0.516129 | 0.988730 | 0.998172 | 0.994214 | 0.910340 0.994167
Precision | 0.990553 | 0.995253 0.990166 | 0.995798 | 0.676471 | 0.000000 | 0.990950 | 0.998033 | 0.994214 | 0.829653 0.993916
Recall 0.999319 | 0.997664 0.980163 | 0.993711 | 0.718750 | 0.000000 | 0.990950 | 0.999156 | 0.994214 | 0.834964 0.994214
CNN-LGBM-RSA fl-score | 0.994917 | 0.996457 0.985139 | 0.994753 | 0.696970 | 0.000000 | 0.990950 | 0.998594 | 0.994214 | 0.832223 0.994059
Support | 1469 45812 10889 477 32 19 663 3554
Table 14. Layer 2 LightGBM multiclass comprehensive metrics for best tuned models.
Approach rounds | max_depth | Leaves | mew | ff bf msg ALl AL2 Ir
CNN-LGBM-ISA-ChOA | 296 9 42 5 8.62E-01 | 5.15E-01 | 1.00E-02 | 1.14E-01 | 5.52E-01 | 5.83E-01
CNN-LGBM-ChOA 300 9 45 8 6.73E-01 | 8.39E-01 | 2.17E-02 | 4.88E-03 | 0.00E+00 | 3.77E-01
CNN-LGBM-VNS 300 9 45 5 2.90E-01 | 8.45E-01 | 1.51E-02 | 0.00E-00 | 1.73E+00 | 5.78E-01
CNN-LGBM-PSO 287 7 41 5 3.91E-01 | 9.48E-01 | 1.06E-03 | 0.00E-00 | 1.25E+00 | 9.00E-01
CNN-LGBM-BA 263 7 45 9 9.00E-01 | 9.67E-01 | 1.00E-03 | 1.31E+00 | 1.12E+00 | 5.26E-01
CNN-LGBM-ABC 212 10 33 5 6.59E-01 | 7.87E-01 | 1.00E-01 | 0.00E-00 | 3.52E-01 | 7.29E-01
CNN-LGBM-WOA 300 9 28 7 9.00E-01 | 5.00E-01 | 2.94E-02 | 1.12E-02 | 1.53E+00 | 6.22E-01
CNN-LGBM-RSA 277 8 45 11 6.13E-01 | 5.06E-01 | 1.14E-03 | 0.00E-00 | 1.99E-01 | 6.89E-01

Table 15. Best LightGBM model parameter selections made by each optimizer.

and aiding in regulatory compliance along with ethical A considerations, which is vital in security applications®2.

XAI can help users understand which features are critical for predictions, enabling domain experts to validate
the model’s logic and performance. Finally, this process may aid in feature engineering by highlighting useful
attributes and de-emphasizing redundant ones.

A notable contribution in terms of feature importance is the development and application of Shapely additive
explanations (SHAP)* techniques. Based on game theory concepts SHAP analysis can help highlight feature
importance on the global as well as local level. SHAP interpretations on a global scale are presented in Fig. 18,
while per class interpretations are provided in swarm diagrams for each of the 7 glasses in Fig. 19. Additionally,
it is important to note that SHAP analysis did not indicate any significant bias toward specific classes associated
with certain features.

Conclusion and future work

Integrating the Metaverse with IoT is crucial, since IoT devices deliver real-time data and enable smooth
connection betwixt the physical and virtual realms. Nevertheless, since attacks on IoT systems have become
increasingly sophisticated, conventional security systems have struggled to keep up. Consequently, adaptive
Al-driven methods were investigated to more appropriate tackle the challenges of today’s IoT infrastructure
and create safe environment for users. Effective AI models must manage intricate data correlations and remain
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Fig. 17. Layer 2 LightGBM multiclass Best performing CNN-ISA-ChOA optimized model confusion matrix.

adaptable to evolving conditions. Achieving optimal results also required careful choice of algorithms and
hyperparameter tuning. This study proposed a two-tier hybrid architecture that combines CNN with sophisticated
ML classifiers, CatBoost and LightGBM. Metaheuristics techniques were employed to enhance performance,
optimize the models, and refine parameter selection. Utilizing a realistic dataset, the framework was evaluated
through comparative analysis, targeting multi-class classification to identify various types of attacks against IoT
systems. A custom-altered optimizer was developed particularly for this study, resulting in the best-performing
models, which attained a supreme accuracy level of 99.83% for multi-class classification. Afterwards, a rigorous
statistical analysis outlined significant enhancements in comparison to the baseline metaheuristics and other
contenting optimizers. Lastly, explainable AI method SHAP was employed on the best-performing model for
understanding the significance of each feature and model’s decision making process.

The methodology introduced in this study yielded a couple of benefits, notably achieving enhanced optimizer’s
performance over contemporary algorithms. FrameworK’s two-tier architecture outperformed baseline CNNs
while keeping computational demands within acceptable levels. For practical implementations, the suggested
system might be deployed on IoT nodes for traffic management, requests processing, and mitigation of network-
wide assaults. In the context of the Metaverse, this approach could improve general device safety, promoting
trust and reinforcing the integration of virtual and physical domains. This advanced system could also support
real-time attack detection in IoT by processing high-dimensional, streaming data, identifying anomalies, and
mitigating threats promptly.

Although showcased study achieved promising results, some limitations still remain. The comparative
evaluations included just a small selection of optimizing algorithms, and optimizations were executed with a
relatively small population sizes and number of iterations. Thus, future work aims to tackle these constraints
if supplementary computing resources become available. Expanding the pool of optimization algorithms and
conducting evaluations with larger population sizes and iterations could provide more robust insights and
even stronger conclusions. Additionally, the altered metaheuristics described here could be further applied to
address other pressing challenges, enhancing performance and equipping scientists with improved tools for
hyperparameter optimization of ML models. The application of the developed methods in real-time or streaming
environments, where data evolves continuously, represents another promising avenue for development.
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Approach Metric Benign | Brute force | DDoS Do$S Mirai Recon Spoofing | Web Accuracy | Macro avg | Weighted avg
Precision | 0.721480 | 0.922479 0.623072 | 0.792727 | 0.000000 | 1.000000 | 0.840000 | 0.999433 | 0.862656 | 0.737399 0.868015
CNN-ISA-ChOA Recall 0.955752 | 0.901860 0.682524 | 0.457023 | 0.000000 | 0.052632 | 0.570136 | 0.991840 | 0.862656 | 0.576471 0.862656
fl-score | 0.822255 | 0.912053 0.651444 | 0.579787 | 0.000000 | 0.100000 | 0.679245 | 0.995622 | 0.862656 | 0.592551 0.863891
Precision | 0.717203 | 0.935205 0.845409 | 0.785953 | 0.000000 | 1.000000 | 0.890306 | 0.999433 | 0.917778 | 0.771689 0.916141
CNN-CB-ISA-ChOA Recall 0.956433 | 0.968480 0.721187 | 0.492662 | 0.000000 | 0.368421 | 0.526395 | 0.991840 | 0.917778 | 0.628177 0.917778
fl-score | 0.819720 | 0.951552 0.778372 | 0.605670 | 0.000000 | 0.538462 | 0.661611 | 0.995622 | 0.917778 | 0.668876 0.914704
Precision | 0.998639 | 0.998647 0.996685 | 1.000000 | 0.968750 | 0.900000 | 0.998489 | 1.000000 | 0.998346 | 0.982651 0.998347
CNN-LGBM-ISA-ChOA | Recall 0.999319 | 0.999214 0.994306 | 1.000000 | 0.968750 | 0.947368 | 0.996983 | 0.999718 | 0.998346 | 0.988207 0.998346
fl-score | 0.998979 | 0.998930 0.995494 | 1.000000 | 0.968750 | 0.923076 | 0.997735 | 0.999859 | 0.998346 | 0.985353 0.998346
Precision | 0.905971 | 0.999782 0.999449 | 0.790850 | 0.500000 | 0.250000 | 0.799419 | 0.999718 | 0.993340 | 0.780649 0.993354
Decision Tree: Recall 0.898570 | 0.999913 0.999265 | 0.761006 | 0.593750 | 0.210526 | 0.829563 | 0.999156 | 0.993340 | 0.786469 0.993340
fl-score | 0.902256 | 0.999847 0.999357 | 0.775641 | 0.542857 | 0.228571 | 0.814212 | 0.999437 | 0.993340 | 0.782772 0.993339
Precision | 0.887280 | 0.999411 0.999908 | 0.837379 | 0.500000 | 0.000000 | 0.839204 | 0.999718 | 0.993928 | 0.757862 0.993424
Random Forest Recall 0.959156 | 0.999869 0.998714 | 0.723270 | 0.031250 | 0.000000 | 0.826546 | 0.998593 | 0.993928 | 0.692175 0.993928
fl-score | 0.921819 | 0.999640 0.999311 | 0.776153 | 0.058824 | 0.000000 | 0.832827 | 0.999155 | 0.993928 | 0.698466 0.993506
Precision | 0.733920 | 0.932715 0.813870 | 0.676471 | 0.000000 | 0.666667 | 0.734310 | 0.997182 | 0.909592 | 0.694392 0.906557
KNN Recall 0.908781 | 0.961015 0.709156 | 0.530398 | 0.000000 | 0.105263 | 0.529412 | 0.995498 | 0.909592 | 0.592440 0.909592
fl-score | 0.812044 | 0.946653 0.757913 | 0.594595 | 0.000000 | 0.181818 | 0.615250 | 0.996339 | 0.909592 | 0.613076 0.906777
Precision | 0.905161 | 0.999804 0.999724 | 0.880460 | 0.944444 | 1.000000 | 0.869832 | 1.000000 | 0.995279 | 0.949928 0.995289
XGBoost Recall 0.955071 | 0.999935 0.999173 | 0.802935 | 0.531250 | 0.210526 | 0.856712 | 1.000000 | 0.995279 | 0.794450 0.995279
fl-score | 0.929447 | 0.999869 0.999449 | 0.839912 | 0.680000 | 0.347826 | 0.863222 | 1.000000 | 0.995279 | 0.832466 0.995147
Precision | 0.741230 | 0.855708 0.935484 | 0.115854 | 0.089286 | 0.000000 | 0.580952 | 0.230851 | 0.691107 | 0.443671 0.822392
AdaBoost Recall 0.992512 | 0.836899 0.002663 | 0.199161 | 0.156250 | 0.000000 | 0.092006 | 0.982836 | 0.691107 | 0.407791 0.691107
fl-score | 0.848661 | 0.846199 0.005311 | 0.146492 | 0.113636 | 0.000000 | 0.158854 | 0.373883 | 0.691107 | 0.311630 0.660863
Precision | 0.880832 | 0.999585 0.999632 | 0.800000 | 0.200000 | 0.666667 | 0.826284 | 1.000000 | 0.993420 | 0.796625 0.992997
CatBoost Recall 0.950987 | 0.999716 0.998898 | 0.687631 | 0.031250 | 0.105263 | 0.825038 | 0.998875 | 0.993420 | 0.699707 0.993420
fl-score | 0.914566 | 0.999651 0.999265 | 0.739572 | 0.054054 | 0.181818 | 0.825660 | 0.999437 | 0.993420 | 0.714253 0.993052
Precision | 0.755736 | 0.989259 0.998032 | 0.588372 | 0.050847 | 0.021739 | 0.544910 | 0.976068 | 0.975952 | 0.615621 0.976088
LightGBM Recall 0.695031 | 0.997184 0.978143 | 0.530398 | 0.093750 | 0.052632 | 0.549020 | 0.963984 | 0.975952 | 0.607518 0.975952
fl-score | 0.724113 | 0.993206 0.987988 | 0.557883 | 0.065934 | 0.030769 | 0.546957 | 0.969989 | 0.975952 | 0.609605 0.975943
MLP precision 0.805572 | 0.998886 | 0.993402 0.715347 | 0.075000 | 0.068966 | 0.767658 | 0.993545 | 0.987745 | 0.677297 | 0.987784
recall 0.905378 | 0.998145 | 0.995500 0.605870 | 0.093750 | 0.105263 | 0.622926 | 0.996061 | 0.987745 | 0.665362 | 0.987745
fl-score 0.852564 | 0.998515 | 0.994450 0.656073 | 0.083333 | 0.083333 | 0.687760 | 0.994801 | 0.987745 | 0.668854 | 0.987581
Support | 1469 45812 10889 477 32 19 663 3554

Table 16. Detail metrics comparison between proposed framework models and state of the art baseline

classifiers.
Approach ISA-ChOA | ChOA | VNS | PSO | BA ABC | WOA | RSA
Layer 1 CNN | 0.028 0.036 | 0.029 | 0.041 | 0.024 | 0.028 | 0.032 | 0.041
Layer 2 CB 0.034 0.031 |0.033 | 0.027 | 0.032 | 0.027 | 0.033 |0.023
Layer 2 LGBM | 0.029 0.031 |0.032 | 0.037 | 0.029 | 0.031 |0.024 |0.029

Table 17. Shapiro-Wilk scores for forecasting experiments for normality condition evaluation.

ISA-ChOA vs. others | ChOA | VNS | PSO | BA ABC | WOA | RSA
Layer 1 CNN 0.029 |0.035 | 0.023 | 0.018 | 0.029 | 0.034 | 0.025
Layer 2 CB 0.035 |0.029 |0.025 | 0.044 | 0.037 | 0.035 | 0.028
Layer 2 LGBM 0.029 |0.037 |0.032 | 0.038 | 0.035 | 0.024 | 0.039

Table 18. Wilcoxon signed-rank test scores forecasting experiments.
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Fig. 18. Best performing model feature importance diagram.
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Fig. 19. Best performing model per class feature importance swarm diagrams.
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Data availibility
The original dataset used in this study is freely available via URL: https://www.unb.ca/cic/datasets/index.html
Reduced dataset used in the experiments is available via URL: https://github.com/profzivkovic/CICI0oT2023_Io
T_Intrusion_reduced
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