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Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse 
integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating 
sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen 
interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. 
Nevertheless, because IoT devices are often built with minimal hardware and are connected to the 
Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security 
problem for maintaining a secure infrastructure. Conventional security techniques have difficulty 
countering these evolving threats, highlighting the need for adaptive solutions powered by artificial 
intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the 
Metaverse. This study revolves around hybrid framework that combines convolutional neural networks 
(CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light 
gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for 
leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling 
the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-
world IoT network attacks dataset validates the proposed architecture’s efficacy in identification of 
the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three 
experiments were executed utilizing data open to public, where the top models attained a supreme 
accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable 
supplementary insights into the model’s decision-making process, supporting future data collection 
efforts and enhancing security of these systems.
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The Internet of Things (IoT) integrates together physical objects into the digital world, transforming how 
the users engage with both realities within the emerging and evolving landscape of the Metaverse1. IoT 
networks drive the development of novel virtual ecosystems across sectors like smart cities, healthcare and 
entertainment. Thanks to IoT, data is autonomously collected, processed, and shared without interruption2. 
The Metaverse enhances this connection by supporting immersive experiences, personalized interactions, and 
real-time decision-making3. Being a crucial part of the Metaverse, IoT leverages traditional networks into highly 
interconnected environments, promoting innovation and redefining user experiences by blending together real-
world interactions with virtual opportunities. Thus, one of the requirements is to provide reliable operation of 
these networks, along with high level of availability4.

Personal IoT networks, consisting of wearables, smart home systems, and AR/VR gadgets, provide users 
with unprecedented levels of convenience and control over their Metaverse experiences. These devices allow 
establishment of a tangible connection between an individual’s virtual environment or avatar and their physical 

1Singidunum University, 11000 Belgrade, Serbia. 2Innovation Centre, School of Electrical Engineering, University 
of Belgrade, 11000 Belgrade, Serbia. 3School of Electrical Engineering, University of Belgrade, 11000 Belgrade, 
Serbia. 4Faculty of Computer and Information Science, Mansoura University, Mansoura 35516, Egypt. 5Saveetha 
School of Engineering, SIMATS, Thandalam, Chennai, Tamilnadu 602105, India. 6Sinergija University, Bijeljina 
76300, Bosnia and Herzegovina. email: nbacanin@singidunum.ac.rs

OPEN

Scientific Reports |         (2025) 15:3555 1| https://doi.org/10.1038/s41598-025-88135-9

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-88135-9&domain=pdf&date_stamp=2025-1-28


surroundings, supporting more inherent and advanced management of virtual spaces. The swift expansion of 
IoT is propelling the evolution of the Metaverse, breaking the limits of connectivity and merging the physical 
and digital worlds into a smooth and immersive experience5,6.

However, this rapid expansion of IoT within the Metaverse faces significant challenges including protecting 
interconnected devices that handle sensitive user data, and mitigating real-time cyber threats that could disrupt 
immersive experiences7. Primarily, IoT devices in general are highly vulnerable to cyberattacks because of their 
limited processing capabilities and reliance on basic systems8,9. This vulnerability is even more critical within the 
Metaverse, where essential virtual and physical infrastructures are managed by interconnected systems. Potential 
malicious users may exploit these weaknesses and disrupt online healthcare services, cause financial losses in 
Metaverse commerce, or gain unauthorized access to personal data streams, smudging the thin line between 
virtual and real-world consequences. Therefore, innovative security frameworks are essential for ensuring a 
secure and immersive Metaverse experience for all users. These solutions must hit the balance between the 
lightweight architecture of IoT gadgets and robust security measures, like advanced encryption methods and 
real-time updates10–12.

The principal constraints of traditional security solutions may be summed up as the difficulty to keep up to 
date with dynamic and swiftly changing Metaverse environment. They are not adaptable enough to cancel out 
novel emerging threats like botnets attacks13, attempting to exploit the vulnerabilities of the complex correlations 
among the real and digital worlds within the Metaverse, as they are mostly designed to be reactive. On the other 
hand, cybersecurity solutions combined with artificial intelligence (AI) provide considerably more adaptable 
and data-driven defensive options14,15. AI-fueled solutions are capable of analyzing immense datasets in real-
time, allowing identification of trends and drifts in risk to prevent damage before it happens. This is vital for 
maintaining the robustness of the expanding Metaverse, providing users safe and continuous experience while 
they are exploring and producing new virtual contents.

Despite numerous advantages, AI faces some weaknesses as well. Primarily, inadequate quality of data, ill-
judged algorithms and incompetently chosen hyperparameter configurations. Consequently, models trained 
by inadequate quality datasets may result in unreliable outcomes, highlighting the necessity of high quality 
data for proper training. Alternatively, selection of the appropriate machine learning (ML) models is crucial, 
as various methods have tendency to perform unalike regarding of the challenge being solved and utilized 
dataset. Hyperparameters’ configuration, like number of layers, learning rate or dropout can additionally heavily 
impact the model’s performance, and must be carefully optimized to achieve optimal outcomes. Wolpert’s no 
free lunch (NFL) assumption16 discloses non-existance of all-round solution that works well for all classification 
challenges. As a result, models have to be selected and adapted to each specific task. Nevertheless, optimizing 
hyperparameters is broadly recognized as an NP-hard optimization challenge due to its inherent complexity. A 
key challenge for AI scientists is determining the appropriate hyperparameter configuration in such situations, 
as it is computationally infeasible. Conventional optimization algorithms regularly fall short in these scenarios, 
as they struggle to deliver the desired outcomes within a tolerable time frame. One potential answer is to utilize 
metaheuristics algorithms, capable to scan immense solution spaces to deliver approximate solutions. These 
methods are well-suited for addressing complex real-world challenges where finding exact answers is impractical.

This paper proposes a framework consisting of two levels, galvanized by the architecture explored in the 
previous research17. Convolutional neural network (CNN) is utilized in the primary layer of the architecture, 
and assigned the role to extract the features. As outlined by other relevant previous publications18–20, significant 
improvements in the performance of CNN can be introduced with replacement of the ultimate dense CNN’s 
layer by other classifiers like AdaBoost or XGBoost. Consequently, this study takes similar approach, by 
feeding the intercepted output of the final CNN’s data processing layer to the inputs of the second level of 
framework, where CatBoost and LightGBM classifiers are used for further improvement of the classification 
capability of the architecture, especially for high volume massive streams of data generated by Metaverse IoT 
networks, necessitating real time processing. Moreover, configuration of both levels of framework is optimized 
by metaheuristics algorithms, assigned to tune the hyperparameters of regarded models. This approach 
ensures achieving the finest possible outcomes of the proposed combined framework. Generally speaking, the 
proposed methodology maximizes the benefits provided by both deep learning and ensemble approaches, where 
metaheuristics algorithms warrant the proper configuration of models’ hyperparameters for achieving superior 
performance.

An altered version of chimp optimization algorithm (ChOA)21 was used in this research to tune the 
hyperparameters of both layers of the framework to ensure good performance. ChOA metaheuristics was selected 
after careful experimentation with different optimizers, since NFL16 elaborates that a ubiquitous optimizer that 
could deliver the best performance for all optimization problems does not exist. Despite the existence of other 
powerful optimizers like crayfish optimization algorithm (COA)22, red fox optimizer (RFO)23 and reptile search 
algorithm (RSA)24, elementary version of ChOA rallied astounding results over the smaller scale simulations, 
and it was consequently selected for auxiliary modifications that would allow reaching even more desirable 
outcomes for intrusion classification problem.

With respect to all presented facts, primary contributions of this research may be delineated along the 
following lines:

•	 A proposition of the novel two-level AI framework for enhancing Metaverse IoT network security.
•	 Framework comprised of combination of CNN and boosting ensemble classifiers to perform threat classifi-

cation in IoT networks.
•	 A proposition of a modified optimization metaheuristics tailored for the problem in hand, building upon the 

baseline ChOA, that was employed to tune the framework’s models.

Scientific Reports |         (2025) 15:3555 2| https://doi.org/10.1038/s41598-025-88135-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 The top-performance models were subjected to Explainable AI to establish the relative importance of the 
features and their effect on forecasts made by the system.This study is arranged in the following units. Section 
"Related works" puts forth the related works on this matter along with the utilized techniques’ foundations. 
Next section "Methods" delineates the baseline ChOA metaheuristics, and showcases the altered version of 
algorithm that was later employed in the experiments. The settings of the experimental environment required 
for reproducibility of the simulations are set forth in Section "Experimental setup", while simulation out-
comes of all simulations that were carried out are delineated and discussed in Section "Results". Ultimately, 
Section "Conclusion and future work" delivers the concluding remarks and suggests possible ways forward in 
the future research.

Related works
Conventional systems used for network protection, that revolve around firewall and blacklist solutions, have 
very constrained capabilities. They are not flexible enough, depending of the collection of rules and human 
interventions to adjust to the novel attacks. Moreover, they can only be upgraded with novel attacking patterns 
after the system was already breached. In other words, they are capable of responding to the events that have 
already happened in the past. This drawback makes conventional systems ineffective when encountering zero-
day attack and emerging menaces, leaving the networks vulnerable and open to sophisticated cyber-threats. 
Many approaches were used from early 2000s25, typically divided into intrusion detection systems (IDS) and 
intrusion prevention systems (IPS). Nowadays, a wide spectrum of tools is openly available for security of the 
systems, including firewall and antivirus applications, however, their restricted functionality leaves them open 
to novel types of threats.

One way to handle these novel types of threats that emerge each day revolves around integration of AI and 
IoT security applications. Generally speaking, AI couples seamlessly with IoT networks for different purposes as 
evidenced by numerous practical implementations26,27. The role of AI in this scenario is to enhance the security 
of IoT networks through identification of anomalous behavior in real time, where ML models are utilized to 
detect and classify possible threats from normal traffic. Hybrid ML solutions tailored specifically for IoT security 
challenge have been introduced by papers such as28, highlighting their superiority in threat detection across 
various IoT devices and architectures. More focused research, such as29, explored intrusion detection specifically 
within healthcare-related IoT networks, employing ML classifiers adjusted by hybrid metaheuristics techniques. 
While these studies showcased the significant potential of ML models, they also emphasized the challenges 
associated with selecting the appropriate hyperparameters, which is crucial to achieve optimal performance.

Optimizing the hyperparameters of ML models is essential for achieving optimal results and maximizing 
effectiveness, not only within cybersecurity but across various other fields. Poor tuning often leads to model 
failure and underperformance. A significant portion of recent research focuses on hyperparameters tuning 
for various ML structures utilizing metaheuristics algorithms30,31. This applies to the IoT intrusion detection 
problems as well, where hybrid approaches where ML models were tuned by metaheuristics delivered promising 
outcomes32,33.

Despite recent progress in this field, a significant research gap remains. While metaheuristics-tuned ML 
models have been explored to some extent for IoT networks and intrusion detection, the focus has primarily 
been on models like XGBoost and AdaBoost, with limited investigation into LightGBM tuning. Additionally, 
the two-level framework suggested within this research, which combines a CNN with CatBoost and LightGBM 
classifiers and uses metaheuristics techniques to tune both levels, has not been previously studied for the 
observed challenge. Furthermore, the dataset34 employed within the experiments, published in 2023, has yet to 
be thoroughly explored.

The remainder of this section yields brief background of the techniques utilized in this research, by providing 
basics of CNNs, CatBoost and LightGBM classifying models, followed by a short overview of metaheuristics 
approaches along with their prosperous applications.

Convolutional neural networks
Convolutional neural networks35 are famous of their image classification and object detection capabilities, but 
they also excel in other tasks. Inspirited by the mammal visual cortex structure, they follow similar layered 
architecture. Input data passes through all layers in a particular order, making use of transfer activation functions 
like ReLu, tanh and sigmoid for mapping of the non-linear output.

To construct a deep CNN, it is essential to include a convolutional layer along with nonlinear, pooling, and 
fully connected layers36. For the provided input data, multiple filters skid over the convolutional layer, producing 
an output as the sum of element-wise multiplication of each filter and the receptive field of the input data. This 
weighted sum is then placed as an element in the subsequent layer. Nonlinear layers primarily function to alter 
or constrain the output which is produced. Various nonlinear functions are available for use in CNNs, but ReLU 
remains one of the most widely employed options37. The pooling layer effectively shrinks the dimensionality of 
the input data. The most commonly used method, max pooling, selects the highest value within each pooling 
filter. Max pooling is highly regarded in the relevant literature for its efficacy, as it downsamples the input by 
approximately 75%, delivering significant outcomes. Fully connected layers execute the classification task.

Convolution operation, expressed by Eq. (1), manages processing of the inputs:

	 z
[l]
i,j,k = w

[l]
k x

[l]
i,j + b

[l]
k ,� (1)
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here, z[l]
i,j,k  corresponds to the output feature outcomes produced by k-th feature map on position i, j within l-th 

layer. The input located on i, j is marked as x, w denotes the filter set, while b describes the bias scores.

Following the convolution operation, activation is executed according to the Eq. (2):

	 g
[l]
i,j,k = g(z[l]

i,j,k)� (2)

here, g(·) describes non-linear operation administered to the outputs.

The outputs resolution is reduced by the pooling layers, that apply either average or max pooling in the majority 
of the practical applications. This procedure is expressed by Eq. (3).

	 y
[l]
i,j,k = pooling(g[l]

i,j,k).� (3)

here, y represents the pooling layer’s result.

Ultimately, dense layers perform the classifying task. For multi-labeled data, softmax layer executes classifying 
task, while for binary classification problems, the logistic (sigmoidal) layer is employed. As the epochs pass by, 
the network updates the weights and bias scores reducing the cross-entropy loss function in a gradient-descent 
manner38. This is mathematically expressed by Eq. (4).

	
H(p, q) = −

∑
x

p(x)ln(q(x))� (4)

where p and q each denote distribution defined over discrete parameter x.

Optimizing CNN’s hyperparameters is essential, as they greatly influence the network’s accuracy. Key 
hyperparameters encompass the count and size of kernels within every convolutional layer, learning rate, batch 
size, the count of convolutional and fully connected (dense) coats, weight regularization within dense coat, 
activation functions, dropout rate, and others. Since there is no universal solution for hyperparameter tuning 
procedure, a “trial and error” approach is often necessary.

CNNs are widely adopted in computer vision35, with recent advancements across areas such as facial 
recognition39, document analysis40, medical images classifying task and diagnostic support in general41. 
Additionally, CNNs also play an essential role in climate change analysis and extreme weather prediction42, 
among numerous other applications43,44.

CatBoost classification model
Handling categorical datasets poses a considerable challenge within machine learning. Often, substantial 
preprocessing or conversion is required prior to effectively use data in models. Categorical features are 
characterized by a set of distinct values known as categories that cannot be compared. One common approach 
for working with categorical features in boosted tree models is one-hot encoding45, where each category is 
represented by a novel binary feature. However, for features with large cardinality, this approach can synthesize 
an impractically large count of new features. A solution to this issue is to group categories into a limited count 
of clusters prior to applying one-hot encoding. One popular method for this is employing target statistics 
(TS)45, where each category is represented by its projected target value. Yandex scientists devised the CatBoost 
algorithm46 specifically to enhance the handling of categorical data compared to traditional approaches.

CatBoost adopts a more advantageous outlook inspirited by online learning frameworks, which process 
training samples sequentially over time, relying on a concept of ordering. In this method, TS for each instance 
are computed based solely on prior observations. To adapt this concept for traditional offline environments, 
CatBoost introduces a pseudo-time by creating a random permutation of the training samples. This allows the 
TS for each instance to be calculated with respect to all available historical data up to that point. Additionally, 
CatBoost employs a technique called ordered boosting, which prevents prediction shift, further leveraging 
the model’s reliability46. Catboost produces s + 1 discrete random permutations of the training dataset at the 
beginning. Here, σ0 is utilized to select the leaf scores bj  of the generated trees h(x) =

∑J

j=1 bjI{x∈Rj }, and 

the permutations σ1, ..., σs are used to establish tree structure (like internal nodes). Let the model training is 
performed employing I trees. There have to exist F I−1 of them exercised without the sample xk  if there exist 
unshifted residual rI−1(xk, yk). Instances cannot be used in training F I−1 since unbiased residuals are nec-
essary for all training samples. Nevertheless, it is possible to maintain a set of models that differ with respect 
to the samples included in their training process. To compute the residual for a particular example, a model 
trained without that example is utilized. This set of models can be constructed through application of the same 
ordering principle utilized for TS. The algorithm for this approach is showcased as follows: 
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Algorithm 1.  CatBoost ordered boosting procedure.

Within CatBoost, base estimators behave like oblivious decision trees, meaning that the same splitting 
criteria are applied across all tree levels. This structure considerably enhances execution speed for testing, creates 
balanced trees, reduces susceptibility to overfitting issue, and enables significant performance acceleration. The 
scores within the leaves in the ultimate model are established through the standard gradient boosting procedure, 
applied consistently across both modes, incorporating all constructed trees. Each training sample is mapped to 
specific leaves, such as leaf0(i), with the permutation σ0 utilized to calculate TS within this context. In testing 
phase, when the final model is applied to a novel example, TS values are calculated utilizing the entire training 
dataset.

As the count of categorical features within a dataset grows, the possible combinations increase exponentially, 
making it impractical to process them all. To address this, CatBoost uses a greedy approach to produce feature 
combinations. For each split in a tree, CatBoost combines all categorical features and their combinations 
previously employed in earlier splits of the current tree with all categorical features in the dataset.

LightGBM classification model
LightGBM (light gradient boosting machine)47 was introduced by Microsoft and made open-source. It is 
a gradient boosting framework designated for high performance and efficiency when dealing with immense 
datasets. It manages to achieve excellent performance thanks to a novel method labeled gradient-based one-side 
sampling (GOSS), that decreases the count of data samples while keeping the accuracy. Moreover, LightGBM 
also employs exclusive feature bundling (EFB) for combining the mutually exclusive attributes, effectively 
decreasing the data dimensionality and leveraging the computing efficacy. This pair of innovative procedures 
helps LightGBM to perform training faster in comparison to conventional boosting models, and efficiently 
handle immense datasets comprising of thousands and millions of samples and features.

LightGBM exhibited excellent performance in classification, regression and ranking challenges, and 
consequently has become popular choice for various ML-based applications that span from medicine48 and 
climate factors49, all the way to civil engineering50 and fault detection51. Moreover, innovative design provides 
support for parallel and distributed processing, allowing it to be scaled with great efficiency over several 
computing machines. The most commonly optimized LightGBM hyperparameters encompass the count of 
leaves in a tree (principal parameter to control the tree complexity), maximum depth and learning rate, among 
others. The model’s level of performance is significantly affected by proper choice of these values.

Stochastic optimizers
Metaheuristics optimization encompasses a set of algorithms aimed at discovering approximate resolutions 
for complex optimization challenges (NP-hard), which are impractical to solve exactly with administration of 
deterministic conventional mechanisms. Many of these methods take inspiration from natural events, such as 
evolution or collective behavioral patterns52. These are especially valuable to resolve large-scale, nonlinear, or 
unstructured problems where deterministic techniques fall short because of excessive resource requirements 
and/or infeasible time-frames53. Metaheuristics provide versatility and scale well, allowing them to explore a 
wide search domain while keeping the risk of becoming trapped in local optima at minimum. Despite they are 
not able to guarantee the establishment of the global optimal solution, they can discover near-optimal results 
in acceptable time. Swarm intelligence algorithms represent a subset of these optimization techniques, drawing 
inspiration from nature, where plain individuals can express complex and smart collective behavior. Due to 
their distributed nature, algorithms belonging to this group are particularly effective for tackling large, high-
dimensional optimization problems54,55.

Notable exemplars of metaheuristics approaches encompass conventional and broadly-respected algorithms 
such as particle swarm optimization (PSO)56, genetic algorithm (GA)57, variable neighborhood search (VNS)58, 
artificial bee colony (ABC)59, firefly algorithm (FA)60 and bat algorithm (BA)61. A considerable portion of 
more recent techniques were introduced in the last few years, such as COLSHADE62, crayfish optimization 
algorithm (COA)22, reptile search algorithm (RSA)24, red fox optimizer (RFO)23 and recently developed sinh 
cosh optimizer (SCHO)63. Methods belonging to this particular family of algorithms are well known as powerful 
optimizers, and as such were applied in practice in a broad range of application domains, like time series 
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forecasting64, software development17,65, healthcare31, cloud and edge computing systems66,67 and power grids 
tuning68. Moreover, the application of metaheuristics algorithms in the domain of AI models hyperparameters 
optimization can remarkably enhance their performance69, as evidenced by numerous preceding studies70–72. 
IoT networks were also leveraged with the application of metaheuristics optimization algorithms73, addressing 
challenges like data aggregation74, blockchain performance optimization75 and security76,77.

Methods
This unit commences by briefly introducing the concepts of the baseline chimp optimization algorithm, followed 
by its known constraints. After the limitations are discussed, this chapter offers a modified variant of the 
algorithm that improves the performance of the elementary version.

Baseline Chimp optimization algorithm
The chimp optimization algorithm (ChOA) belongs to the group of swarm intelligence metaheuristics 
techniques, and it was developed to emulate the hunt technique and collective behavioral patterns of a troop of 
chimpanzees21. In this approach, chimpanzees are divided into four key subgroups: attackers, chasers, holders, 
and callers, each contributing uniquely to enhance the optimization procedure. This collaborative approach aids 
the algorithm to maintain a balance betwixt exploration (search for novel areas) and exploitation (improving 
existing solutions).

In the baseline ChOA, the attacking group moves in line with their position update pattern, governed by Eq. 
(5):

	 Xattack = Xbest − A · |C · Xbest − X|� (5)

here, Xbest denotes the top-performing chimp location, while A and C correspond to the coefficient vectors 
dynamically adjusted within each round, empowering the exploration procedure.

Individuals belonging to the chasing pack Xchase update their positions as governed by Eq. (6):

	 Xchase = Xattack − B · |D · Xattack − X|� (6)

where B and D serve as control variables for maintaining the balance among exploration and exploitation phases.

The individuals belonging to the holder troop Xhold refresh their positions in line with Eq. (7):

	 Xhold = Xchase − E · |F · Xchase − X|� (7)

here, E and F serve as supplementary parameters that govern this update.

Finally, the individuals from caller troop Xcall preform position update according to the Eq. (8):

	 Xcall = Xhold − G · |H · Xhold − X|� (8)

here G and H have similar roles to A and C, ajdusted to the callers’ function of the optimization process.

By iteratively refining positions, ChOA leverages the collective intelligence of the different chimpanzee roles to 
solve complex optimization tasks, proving to be an efficient method for addressing high-dimensional search 
domains within a broad spectrum of real-world applications.

Altered ChOA
Notwithstanding excellent optimization characteristics of the relatively novel ChOA algorithm, thorough 
experiments on the CEC benchmark function collection78 exposed some areas of the algorithm that may be 
targeted for enhancements. These empirical experiments have showcased that the baseline ChOA could 
profit from the early bolster of the population diversity. Moreover, baseline algorithm’s converging speed and 
balance betwixt diversification and intensification stages could also be leveraged. With these opportunities for 
improvements in mind, several alterations are proposed in this study.

First added alteration targets boosting of the population diversity over the initialization stage, by incorporating 
the quasi-adaptive learning (QRL)79 procedure to the elementary ChOA. In the modified initialization stage, 
only a half of the solutions are synthesized by applying the conventional ChOA initialization process. Other half 
of solutions are synthesized with QRL mechanism to boost diversification in the early phase of the algorithm’s 
run. Novel solutions are synthesized as quasi-reflexive opposite individuals with respect to the Eq. 9.

	
Xqr

j = rnd

(
lbj + ubj

2 , xj

)
� (9)
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here, lbj +ubj

2  is the arithmetic mean for each parameter’s search limits, while rnd() represents an arbitrary 
selection procedure within the given boundaries.

Another modification that was implemented into the ChOA algorithm is the soft rollback mechanism, 
introduced by this study. If the algorithm stagnates in T/3 iterations (empirically established), where T is the 
maximum number of iterations, rollback of the entire population to the previous state is performed. Two novel 
control parameters were introduced to support this alteration, stagnation counter sc and stagnation threshold st. 
The initial values of these parameters are sc = 0 and st = T

3 . If there is no improvement in the current iteration, 
sc is incremented. If the value of sc reaches st, soft rollback is performed. Ultimately, elitism is also applied in the 
following way. When the rollback is performed, the best individual (having the best fitness value) is kept in the 
population, while the rest are produced by applying the proposed initialization described above.

Considering all included modifications, the novel algorithm was named iteration stagnation aware ChOA 
(ISA-ChOA), with the pseudo code given in Algorithm 2. It is also necessary to note that the ISA-ChOA utiliz-
es identical control parameters’ values and their update procedures as suggested by the authors of the baseline 
algorithm21. Regarding the complexity of the introduced algorithm, it is common to express it in terms of 
fitness function evaluations (FFEs), since it is the most expensive calculation during the metaheuristics algo-
rithm’s execution. Since soft rollback is executed after every three iterations (if the stagnation is confirmed), 
the complexity of ISA-ChOA algorithm is in the worst case scenario O(n) = N + N × T + (N − 1) × T/3
, where N is the count of solutions, while T is the count of iterations. However, in practice, soft rollback is on 
average triggered only once per run, which is significantly less than the worst case scenario. 

Algorithm 2.  ISA-ChOA optimizer pseudo code.

Experimental setup
The experiments in this study were conducted with a recent CICIoT2023 intrusion detection dataset34, publicly 
accessible at https://www.​unb.ca/cic/d​atasets/iotd​ataset-2023​.html. This dataset was developed to evaluate 
security analytics programs for practical IoT environments and includes 33 distinct attack variants executed 
across an IoT topology of 105 devices. These attacks are categorized into seven types: DDoS, DoS, Recon, Web-
based, Brute Force, Spoofing, and Mirai. This allows for both binary classification (attack versus benign traffic) 
and multiclass classification with either 8 classes (normal and each attack type) or 34 classes (normal and each 
of the 33 individual attacks). Class dispersal of both binary and multiclass problems is showcased within Fig. 1. 
This research addressed 8-class multiclass prediction task. The original dataset contains 1048575 samples. Due 
to the immense size of the dataset and overwhelming computing requirements, it has been reduced to 20% of 
the initial size, by performing stratifying of the target 8 classes to keep the imbalance among classes identical 
to the original dataset. The resulting dataset contains 209715 samples, and is subsequently separated into 70% 
training and 30% testing data. Models were validated by applying conventional ML metrics: accuracy, precision, 
sensitivity, and F1-score.

Matthews correlation coefficient (MCC)80 was opted as the objective function that requires maximization. 
MCC represents an important indicator particularly when facing imbalanced datasets like CICIoT2023. The 
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imbalance of the utilized dataset is indeed a challenge, however, it reflects a real-world situation, since most of 
the real-life network traffic is not balanced. Thus, it is crucial that the proposed model should work properly with 
highly imbalanced data. MCC value is established by utilizing the Equation (10). Moreover, the classification 
error (which is defined by 1 − accuracy) was monitored across all simulations and acted as the indicator 
function.

	
MCC = (T P × T N) − (F P × F N)√

(T P + F P )(T P + F N)(T N + F P )(T N + F N)
� (10)

here, TP corresponds to the true positive forecasts, TN represents the count of true negative predictions, FP is 
the amount of false positive predictions, and finally, FN denotes the count of false negative classifications.

CNN set of hyperparameters was tuned within the premier tier of the introduced ML framework. The collection 
of opted hyperparameters, along with search region limits for each parameter is presented in Table 1. Batch size 
of 512 was used, with early stopping enabled.

Parameter Lower constraint Upper constraint

Learning rate 0.001 0.100

Col sample by level (cbl) 0.05 1

Subsample 0.05 1

Iterations 50 100

Depth 1 5

Minimum data in leaf (mdl) 1 5

Table 2.  CatBoost set of optimized hyperparameters with search boundaries.

 

Hyperparameter Lower bound Upper bound

Learning rate 0.0001 0.003

Dropout 0.001 0.5

Epochs 10 30

CNN layers 1 2

Dense layers 1 2

Neurons per layer 32 128

Table 1.  Collection of CNN hyperparameters tuned in this study with their search restrictions.

 

Fig. 1.  CICIoT2023 class dispersal for binary and multiclass classification.
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CNN’s intermediate outputs were wired to the framework’s second tier. This collection of outputs were stored 
within CNN’s classifying activity for every sample in the dataset, and subsequently separated into another 70% 
training and 30% testing split, which was fed to CatBoost and LightGBM structures throughout their respective 
tuning processes. The hyperparameters’ collection of CatBoost opted for optimization procedure in this study 
is showcased in Table 2. Likewise, LightGBM hyperparameters that were tuned are presented in Table 3. These 
opted parameters are known to have the most influence on the model’s behavior.

The suggested ISA-ChOA metaheuristics was utilized for optimization, and comparative analysis with multiple 
cutting-edge optimizers was performed. The set of contending algorithms comprised of elementary ChOA21, 
VNS58, PSO56, BA61, ABC59, WOA81 and RSA24. The contending metaheuristics were separately implemented 
for the sake of this research, with default configurations of control parameters that were recommended by their 
respective creators. In case of CNN simulations, every metaheuristics used 8 individuals in the populace, with 5 
iterations in each run and 5 separate executions, to account the randomness linked to the stochastic algorithms. 
Similarly, for CatBoost and LightGBM tuning, metaheuristics used 10 individuals per populace, 10 iterations per 
run and a total of 30 independent executions. For CNN tuning process the authors opted for smaller population 
size and number of rounds, since CNN optimization requires considerably more computing resources. A 
simulation framework flowchart is provided in Fig. 2

Results
This unit showcases the experimental findings from the conducted simulations. In multiclass simulations, the 
superior outcomes for each category for all tables showing the simulation findings are emphasized in bold font.

Layer 1 CNN multiclass experiments
The simulation findings of the premier tier of the framework, where CNN was optimized with respect to the 
fitness function (MCC) for multiclass classifying venture, are delivered within Table 4. The proposed ISA-ChOA 
algorithm dispatched highest ranking results, by attaining the MCC of 0.691852 for the best run and 0.639513 
in the worst execution, with mean and median scores of 0.639513 and 0.671254, respectively. On the opposite, 
the superior stability indicated by the lowest deviation and variance scores was attained by WOA metaheuristics. 
Despite respectful stability, however, WOA was considerably behind more advanced algorithms regarding other 
metrics.

Indicator function (set as classification error outlay) results are outlined within Table 5. Once more, the 
supremacy of the introduced ISA-ChOA metaheuristics may be observed, reflected in the best outcome of 
0.137344. ISA-ChOA also outclassed other contending algorithms for the worst, mean and median scores, while 
again the superior stability of the outcomes was exhibited by WOA metaheuristics.

Violin and swarm plots of the fitness function (MCC) for the multiclass classifying problem are presented 
within Fig. 3. ISA-ChOA was not able to establish the highest stability of the results, nevertheless, other contenders 
which obtained better stability of MCC across independent runs did not match the overall superior performance 
of ISA-ChOA. This is also visible from the swarm plot graph, showing the diversity of the population within 
the final round of the best execution. Supplementary visualizations of the outcomes are outlined within Fig. 4 
through box and swarm plots of the indicator function.

Converging diagrams of both MCC and error rate, for every considered algorithm are outlined within Fig. 5, 
where it is clear that the proposed ISA-ChOA demonstrated superior convergence, and outclassed all contenders 
by establishing the best outcome of the fitness function. The same applies for the converging of the error rate 
(indicator), although it was not specified as the goal for tuning.

Table 6 sets forth a comprehensive evaluation of the top-performing CNN architectures for multiclass 
classifying challenge, tuned with all optimizers encompassed in comparative evaluation. Even optimized CNNs 
are frequently struggling to properly detect mirai and recon attacking patterns, which is evident from the 
provided results. Additionally, PSO-based CNN fails entirely to converge, with abysmal final accuracy. A couple 
of measurements should be considered for determining the optimal method, including precision, recall and 
f1-score per each class. Nevertheless, the greatest accuracy among all observed methods was achieved by the 
suggested ISA-ChOA CNN model, that outclassed other approaches with the final overall accuracy of 0.862656.

The best sets of CNN’s hyperparameter values determined with each regarded optimizer are put forth within 
Table 7, to provide support for subsequent replication studies. These values may help other scientists that seek 

Parameter Lower constraint Upper constraint

Learning rate 0.001 0.100

Number of leaves 24 80

Feature fraction 0.1 0.9

Bagging fraction 0.8 1

Max depth 5 30

Max bin 20 90

Minimum data in leaf 20 80

Minimum sum hessian in leaf 0 100

Subsample 0.01 1

Table 3.  LightGBM set of optimized hyperparameters with search boundaries.
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Algorithm Best Worst Mean Median Std Var

CNN-ISA-ChOA 0.691852 0.639513 0.671254 0.691852 0.028211 7.95E-04

CNN-ChOA 0.677421 0.634565 0.646993 0.641397 0.015474 2.39E-04

CNN-VNS 0.639245 0.633145 0.636067 0.636056 0.002561 6.56E-06

CNN-PSO 0.639819 0.634424 0.635993 0.634763 0.002054 4.22E-06

CNN-BA 0.635105 0.621941 0.629489 0.631148 0.004595 2.11E-05

CNN-ABC 0.635973 0.627362 0.633416 0.635611 0.003277 1.07E-05

CNN-WOA 0.636434 0.632404 0.633983 0.633352 0.001490 2.22E-06

CNN-RSA 0.638300 0.631014 0.634379 0.635692 0.002857 8.16E-06

Table 4.  Layer 1 CNN multiclass objective function scores over 30 simulations. Best obtained metrics are 
shown in bold style.

 

Fig. 2.  Proposed simulation framework flowchart.
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to recreate the experimental aftermaths on their own, as these CNN architectures achieved the outcomes shown 
and discussed within Table 6. Ultimately, additional visualizations in shape of PR curves and confusion matrix 
for the most suitable model (CNN-ISA-ChOA in this scenario) are outlined within Fig. 6.

The best performing CNN model architectures, and the “tapped” intermediate version are provided visually 
in Fig. 7, where it can be noted that 32 features were extracted by the CNN.

Layer 2 CatBoost multiclass experiments
The findings of the conducted simulations of the framework’s second tier, in terms of CatBoost tuning process 
with the MCC set as the fitness function for multiclass classifying venture, are showcased within Table 8. The 
suggested ISA-ChOA algorithm dispatched highest ranking results, by attaining the best MCC of 0.806747 for 
the best run with mean score of 0.805208. Moreover, ISA-ChOA shared the best results of worst and median 

Fig. 4.  Layer 1 CNN multiclass indicator function distribution and swarm diagrams.

 

Fig. 3.  Layer 1 CNN multiclass objective function distribution and swarm diagrams.

 

Algorithm Best Worst Mean Median Std Var

CNN-ISA-ChOA 0.137344 0.147135 0.141140 0.137344 0.005202 2.71E-05

CNN-ChOA 0.145736 0.149249 0.146973 0.146467 0.001286 1.65E-06

CNN-VNS 0.147675 0.149519 0.148610 0.148518 0.000935 8.74E-07

CNN-PSO 0.147119 0.149058 0.148527 0.149058 0.000763 5.82E-07

CNN-BA 0.148931 0.153668 0.151090 0.150362 0.001775 3.15E-06

CNN-ABC 0.148709 0.151776 0.149503 0.148709 0.001226 1.50E-06

CNN-WOA 0.148311 0.149901 0.149287 0.149424 0.000597 3.57E-07

CNN-RSA 0.147564 0.150314 0.149084 0.148661 0.001060 1.12E-06

Table 5.  Layer 1 CNN multiclass indicator function scores over 30 simulations. Best obtained metrics are 
shown in bold style.
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metrics with a couple of other oprimizers. On the opposite, the superior stability indicated by the lowest 
deviation and variance scores was attained by BA and RSA metaheuristics. Despite respectful stability, however, 
these algorithms were behind other optimizers regarding the remaining metrics.

Indicator function (set as classification error outlay) findings are outlined within Table 9. Once more, the 
supremacy of the introduced ISA-ChOA metaheuristics may be observed, reflected in the best outcome for 
classification error of 0.082222. ISA-ChOA also outclassed other contending algorithms for the mean score, and 
shared the best outcomes of worst and median metrics with several other optimizers, while the supreme stability 
of the outcomes was exhibited by baseline ChOA, BA and RSA metaheuristics.

Fig. 5.  Layer 1 CNN multiclass objective and indicator function convergence diagrams.

 

Scientific Reports |         (2025) 15:3555 12| https://doi.org/10.1038/s41598-025-88135-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Violin and swarm plots of the fitness function (MCC) for the multiclass classifying problem are presented 
within Fig. 8. ISA-ChOA was not able to establish the highest stability of the results, nevertheless, other contenders 
which obtained better stability of MCC across independent runs did not match the overall superior performance 
of ISA-ChOA. This is also visible from the swarm plot graph, showing the diversity of the population within 
the final round of the best execution. Supplementary visualizations of the outcomes are outlined within Fig. 9 
through box and swarm plots of the classification error rate.

Converging diagrams of both MCC and error rate, for every considered algorithm are outlined within Figs. 
10 and 11, where it is clear that the proposed ISA-ChOA demonstrated superior convergence, and outclassed all 
contenders by establishing the best outcome of the fitness function. The same applies for the converging of the 
error rate (indicator), although it was not targeted as the goal for tuning.

Table 10 sets forth a comprehensive analysis of the top-performing CatBoost architectures for multiclass 
classifying challenge, tuned with all optimizers encompassed in comparative evaluation. Even optimized 
CatBoost models are frequently struggling to properly detect mirai and recon attacking patterns, which is 
evident from the provided results. A couple of measurements should be considered for determining the optimal 
method, including precision, recall and f1-score per each class. Nevertheless, the greatest accuracy among all 

Method

Learning

Dropout Epochs

Layers Layers Neurons Neurons Neurons Neurons

Rate CNN Dense CNN L1 CNN L2 Dense L1 Dense L2

CNN-ISA-
ChOA 2.16e-03 1.07e-03 30 1 1 128 N/A 50 N/A

CNN-ChOA 2.69e-03 8.03e-03 25 2 2 120 92 82 40

CNN-VNS 3.00e-03 2.47e-01 30 1 2 111 N/A 128 106

CNN-PSO 2.03e-03 3.71e-02 27 2 2 59 125 40 91

CNN-BA 3.00e-03 5.00e-01 30 2 2 92 32 128 122

CNN-ABC 2.55e-03 3.03e-01 29 1 1 128 N/A 70 N/A

CNN-WOA 3.00e-03 1.79e-01 27 1 1 128 N/A 79 N/A

CNN-RSA 3.00e-03 7.33e-02 30 1 1 128 N/A 77 N/A

Table 7.  Layer 1 CNN multiclass optimized CNN model parameter selections.

 

Approach Metric Benign Brute force DDoS DoS Mirai Recon Spoofing Web Accuracy Macro avg Weighted avg

CNN-ISA-ChOA

Precision 0.721480 0.922479 0.623072 0.792727 0.000000 1.000000 0.840000 0.999433 0.862656 0.737399 0.868015

Recall 0.955752 0.901860 0.682524 0.457023 0.000000 0.052632 0.570136 0.991840 0.862656 0.576471 0.862656

f1-score 0.822255 0.912053 0.651444 0.579787 0.000000 0.100000 0.679245 0.995622 0.862656 0.592551 0.863891

CNN-ChOA

Precision 0.777710 0.922179 0.597816 0.668235 0.000000 1.000000 0.692053 0.992705 0.854264 0.706337 0.861855

Recall 0.874064 0.890072 0.683626 0.595388 0.000000 0.105263 0.630468 0.995498 0.854264 0.596797 0.854264

f1-score 0.823077 0.905841 0.637848 0.629712 0.000000 0.190476 0.659826 0.994099 0.854264 0.605110 0.857149

CNN-VNS

Precision 0.773058 0.853032 0.790274 0.619617 0.000000 0.000000 0.717391 0.999717 0.852325 0.594136 0.844698

Recall 0.867257 0.981511 0.291028 0.542977 0.000000 0.000000 0.647059 0.992684 0.852325 0.540314 0.852325

f1-score 0.817453 0.912773 0.425398 0.578771 0.000000 0.000000 0.680412 0.996188 0.852325 0.551374 0.825186

CNN-PSO

Precision 0.023349 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.023349 0.002919 0.000545

Recall 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.023349 0.125000 0.023349

f1-score 0.045632 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.023349 0.005704 0.001065

CNN-BA

Precision 0.696793 0.863293 0.699412 0.886076 0.000000 0.000000 0.909605 0.995781 0.851069 0.631370 0.838487

Recall 0.976174 0.962979 0.360272 0.440252 0.000000 0.000000 0.485671 0.996061 0.851069 0.527676 0.851069

f1-score 0.813156 0.910415 0.475573 0.588235 0.000000 0.000000 0.633235 0.995921 0.851069 0.552067 0.831613

CNN-ABC

Precision 0.745338 0.864658 0.685934 0.762658 0.000000 1.000000 0.844828 0.998024 0.851291 0.737680 0.837092

Recall 0.952349 0.959727 0.369455 0.505241 0.000000 0.105263 0.591252 0.994654 0.851291 0.559743 0.851291

f1-score 0.836222 0.909715 0.480244 0.607818 0.000000 0.190476 0.695652 0.996336 0.851291 0.589558 0.833337

CNN-WOA

Precision 0.721278 0.861107 0.715427 0.682065 0.000000 0.000000 0.921788 1.000000 0.851689 0.612708 0.839058

Recall 0.953029 0.967345 0.345394 0.526205 0.000000 0.000000 0.497738 0.992122 0.851689 0.535229 0.851689

f1-score 0.821114 0.911139 0.465874 0.594083 0.000000 0.000000 0.646425 0.996045 0.851689 0.554335 0.830837

CNN-RSA

Precision 0.728610 0.860137 0.728834 0.711429 0.000000 0.000000 0.821739 0.999434 0.852436 0.606273 0.839980

Recall 0.910143 0.970161 0.339150 0.522013 0.000000 0.000000 0.570136 0.992966 0.852436 0.538071 0.852436

f1-score 0.809322 0.911842 0.462898 0.602177 0.000000 0.000000 0.673197 0.996189 0.852436 0.556953 0.830910

Support 1469 45812 10889 477 32 19 663 3554

Table 6.  Layer 1 CNN multiclass comprehensive metrics for best tuned models.
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observed methods was achieved by the suggested ISA-ChOA CatBoost model, that outclassed other approaches 
with the final overall accuracy of 0.917778.

The best sets of CatBoost’s hyperparameter values determined with each regarded optimizer are put forth 
within Table 11, to provide support for possible subsequent replication experiments. These values may help 
other scientists that seek to recreate the experimental aftermaths on their own, as these CatBoost architectures 
achieved the outcomes shown and discussed within Table 10. Ultimately, additional visualization in shape of 
confusion matrix for the most suitable model (CNN-CB-ISA-ChOA in this scenario) is outlined within Fig. 12.

Fig. 6.  Layer 1 CNN multiclass Best performing CNN-ISA-ChOA optimized model confusion matrix and PR 
diagram.
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Algorithm Best Worst Mean Median Std Var

CNN-CB-ISA-ChOA 0.806747 0.804912 0.805208 0.804912 0.000607 3.68E-07

CNN-CB-ChOA 0.804912 0.804912 0.804912 0.804912 0.000000 0.00E-00

CNN-CB-VNS 0.804912 0.804076 0.804808 0.804912 0.000277 7.65E-08

CNN-CB-PSO 0.805425 0.804912 0.804981 0.804912 0.000168 2.83E-08

CNN-CB-BA 0.804912 0.804912 0.804912 0.804912 0.000000 0.00E-00

CNN-CB-ABC 0.805256 0.791713 0.799831 0.802300 0.005020 2.52E-05

CNN-CB-WOA 0.805361 0.804912 0.805064 0.804912 0.000198 3.91E-08

CNN-CB-RSA 0.804912 0.804912 0.804912 0.804912 0.000000 0.00E-00

Table 8.  Layer 2 CatBoost multiclass objective function scores over 30 simulations. Best obtained metrics are 
shown in bold style.

 

Fig. 7.  The best performing CNN model, and the “tapped” version of the network where the output layers are 
intercepted.
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Layer 2 LightGBM multiclass experiments
The findings of the conducted simulations of the framework’s second tier, in terms of LightGBM tuning process 
with the MCC set as the fitness function for multiclass classifying venture, are showcased within Table 12. The 
suggested ISA-ChOA algorithm dispatched supreme level of outcomes for all observed metrics, by attaining 
the best MCC of 0.996207 for the best run, 0.985756 for the worst execution, with mean and median outcomes 

Fig. 9.  Layer 2 CatBoost multiclass indicator score distribution and swarm diagrams.

 

Fig. 8.  Layer 2 CatBoost multiclass objective score distribution and swarm diagrams.

 

Algorithm Best Worst Mean Median Std Var

CNN-CB-ISA-ChOA 0.082222 0.082953 0.082840 0.082953 2.40E-04 5.78E-08

CNN-CB-ChOA 0.082953 0.082953 0.082953 0.082953 0.00E-00 0.00E-00

CNN-CB-VNS 0.082953 0.083382 0.083007 0.082953 1.42E-04 2.01E-08

CNN-CB-PSO 0.082890 0.082953 0.082943 0.082953 2.09E-05 4.38E-10

CNN-CB-BA 0.082953 0.082953 0.082953 0.082953 0.00E-00 0.00E-00

CNN-CB-ABC 0.082890 0.088469 0.085093 0.084050 2.06E-03 4.26E-06

CNN-CB-WOA 0.082921 0.082953 0.082921 0.082953 5.27E-05 2.78E-09

CNN-CB-RSA 0.082953 0.082953 0.082953 0.082953 0.00E-00 0.00E-00

Table 9.  Layer 2 CatBoost multiclass indicator function scores over 30 simulations. Best obtained metrics are 
shown in bold style.
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of 0.991700 and 0.993378. Moreover, in this experiment, ISA-ChOA obtained the superior stability as well, 
indicated by the lowest deviation and variance scores of 0.003788 and 0.000014, respectively.

Indicator function (set as classification error outlay) findings are outlined within Table 13. Once again, 
the supremacy of the proposed ISA-ChOA metaheuristics may be noted, reflected in the best outcome for 
classification error of 0.001653. ISA-ChOA also outclassed other contending algorithms for the worst, mean 
and median metrics. The supreme stability of the outcomes was exhibited by ISA-ChOA metaheuristics as well.

Violin and swarm plots of the fitness function (MCC) for the multiclass classifying problem are presented 
within Fig. 13. ISA-ChOA was able to establish the highest stability of the results, while other contenders which 
obtained good stability of MCC across independent runs did not match the overall superior performance of ISA-

Fig. 10.  Layer 2 CatBoost multiclass objective convergence diagrams.
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ChOA. This is also visible from the swarm plot graph, showing the diversity of the population within the final 
round of the best execution. Supplementary visualizations of the outcomes are outlined within Fig. 14 through 
box and swarm plots of the classification error rate.

Converging diagrams of both MCC and error rate, for every considered algorithm are outlined within Figs. 
15 and 16, where it is clear that the proposed ISA-ChOA demonstrated superior convergence, and outclassed all 
contenders by establishing the best outcome of the fitness function. The same applies for the converging of the 
error rate (indicator), although it was not targeted as the goal for tuning.

Fig. 11.  Layer 2 CatBoost multiclass indicator convergence diagrams.
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Table 14 sets forth a comprehensive analysis of the top-performing CatBoost architectures for multiclass 
classifying challenge, tuned with all optimizers encompassed in comparative evaluation. Even optimized 
CatBoost models are frequently struggling to properly detect mirai and recon attacking patterns, which is evident 
from the provided results. A couple of measurements should be considered for determining the optimal method, 
including precision, recall and f1-score per each class. Nevertheless, the greatest accuracy among all observed 
methods was achieved by the suggested ISA-ChOA LightGBM model, that outclassed other approaches with the 
final overall accuracy of 0.998346.

The best sets of LightGBM’s hyperparameter values determined with each regarded optimizer are put forth 
within Table 15, to provide support for possible subsequent replication experiments. These values may help 
other scientists that seek to recreate the experimental aftermaths on their own, as these CatBoost architectures 
achieved the outcomes shown and discussed within Table 14. Ultimately, additional visualization in shape of 
confusion matrix for the most suitable model (CNN-LGBM-ISA-ChOA in this scenario) is outlined within Fig. 
17.

Comparison with state of the art classifcaiton models
To demonstrate the improvements attained by utilizing the introduced optimization framework, a comparative 
analysis between several baseline classifiers is included. Commonly used as well as relatively recent models 
have all been evaluated including decision trees82, random forests83, KNN84, XGBoost85, AdaBoost86, baseline 

Approach lr cbl Subsample Iterations Depth mdl

CNN-CB-ISA-ChOA 9.96E-02 8.42E-01 5.00E-02 100 5 3

CNN-CB-ChOA 1.00E-01 3.09E-01 1.00E-00 100 5 2

CNN-CB-VNS 1.00E-01 5.00E-02 1.00E-00 100 5 2

CNN-CB-PSO 9.89E-02 2.33E-01 6.99E-01 97 5 4

CNN-CB-BA 1.00E-01 7.37E-01 1.00E-00 100 5 2

CNN-CB-ABC 9.91E-02 9.79E-01 5.64E-01 100 5 4

CNN-CB-WOA 9.89E-02 5.33E-01 6.50E-02 100 5 1

CNN-CB-RSA 1.00E-01 1.98E-01 1.00E-00 100 5 3

Table 11.  Best CatBoost model parameter selections made by each optimizer.

 

Approach Metric Benign Brute force DDoS DoS Mirai Recon Spoofing Web Accuracy Macro avg Weighted avg

CNN-CB-ISA-ChOA

Precision 0.717203 0.935205 0.845409 0.785953 0.000000 1.000000 0.890306 0.999433 0.917778 0.771689 0.916141

Recall 0.956433 0.968480 0.721187 0.492662 0.000000 0.368421 0.526395 0.991840 0.917778 0.628177 0.917778

f1-score 0.819720 0.951552 0.778372 0.605670 0.000000 0.538462 0.661611 0.995622 0.917778 0.668876 0.914704

CNN-CB-ChOA

Precision 0.718670 0.934240 0.844639 0.788591 0.000000 1.000000 0.885787 0.999433 0.917047 0.771420 0.915312

Recall 0.956433 0.968480 0.716962 0.492662 0.000000 0.368421 0.526395 0.991840 0.917047 0.627649 0.917047

f1-score 0.820678 0.951052 0.775581 0.606452 0.000000 0.538462 0.660360 0.995622 0.917047 0.668526 0.913872

CNN-CB-VNS

Precision 0.718670 0.934240 0.844639 0.788591 0.000000 1.000000 0.885787 0.999433 0.917047 0.771420 0.915312

Recall 0.956433 0.968480 0.716962 0.492662 0.000000 0.368421 0.526395 0.991840 0.917047 0.627649 0.917047

f1-score 0.820678 0.951052 0.775581 0.606452 0.000000 0.538462 0.660360 0.995622 0.917047 0.668526 0.913872

CNN-CB-PSO

Precision 0.719674 0.936015 0.837123 0.807971 0.000000 1.000000 0.889447 0.999433 0.917110 0.773708 0.915512

Recall 0.961198 0.966253 0.726880 0.467505 0.000000 0.368421 0.533937 0.991277 0.917110 0.626934 0.917110

f1-score 0.823084 0.950894 0.778116 0.592297 0.000000 0.538462 0.667295 0.995338 0.917110 0.668186 0.914201

CNN-CB-BA

Precision 0.718670 0.934240 0.844639 0.788591 0.000000 1.000000 0.885787 0.999433 0.917047 0.771420 0.915312

Recall 0.956433 0.968480 0.716962 0.492662 0.000000 0.368421 0.526395 0.991840 0.917047 0.627649 0.917047

f1-score 0.820678 0.951052 0.775581 0.606452 0.000000 0.538462 0.660360 0.995622 0.917047 0.668526 0.913872

CNN-CB-ABC

Precision 0.714792 0.935303 0.841486 0.802867 0.000000 1.000000 0.882952 0.998867 0.917110 0.772033 0.915495

Recall 0.960517 0.967519 0.722013 0.469602 0.000000 0.368421 0.523379 0.991840 0.917110 0.625411 0.917110

f1-score 0.819634 0.951138 0.777185 0.592593 0.000000 0.538462 0.657197 0.995341 0.917110 0.666444 0.914034

CNN-CB-WOA

Precision 0.719084 0.936053 0.837017 0.807273 0.000000 1.000000 0.889447 0.999149 0.917079 0.773503 0.915486

Recall 0.961879 0.966232 0.726789 0.465409 0.000000 0.368421 0.533937 0.991277 0.917079 0.626743 0.917079

f1-score 0.822947 0.950903 0.778018 0.590426 0.000000 0.538462 0.667295 0.995198 0.917079 0.667906 0.914165

CNN-CB-RSA

Precision 0.718670 0.934240 0.844639 0.788591 0.000000 1.000000 0.885787 0.999433 0.917047 0.771420 0.915312

Recall 0.956433 0.968480 0.716962 0.492662 0.000000 0.368421 0.526395 0.991840 0.917047 0.627649 0.917047

f1-score 0.820678 0.951052 0.775581 0.606452 0.000000 0.538462 0.660360 0.995622 0.917047 0.668526 0.913872

Support 1469 45812 10889 477 32 19 663 3554

Table 10.  Layer 2 CatBoost multiclass comprehensive metrics for best tuned models.
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CatBoost46 and LGBM models as well as a simple multilayer perception (MLP)87 models. The results of this 
comparative analysis are provided in detail in Table 16. The introduced hybrid framework shows clear advantages 
over other contemporary optimizers.

Statistical analysis and the best models interpretation
When conducting comparative simulations between optimizers several angles need to be considered when 
discerning a conclusion. Comparisons in terms of objective function scores are often insufficient to draw a 
definitive conclusion. Therefore statistical evaluations are conducted to establish if an attained improvement 
is significant. Two approaches can be taken when comparing metaheuristics, parametric and non-parametric 
testing. To ensure parametric tests can be safely applied a set of criteria needs to be fulfilled88. These include the 

Algorithm Best Worst Mean Median Std Var

CNN-LGBM-ISA-ChOA 0.996207 0.985756 0.991700 0.993378 0.003788 0.000014

CNN-LGBM-ChOA 0.984145 0.945072 0.969630 0.969792 0.010915 0.000119

CNN-LGBM-VNS 0.990692 0.956404 0.979813 0.984732 0.012299 0.000151

CNN-LGBM-PSO 0.991862 0.937973 0.961005 0.958011 0.016631 0.000277

CNN-LGBM-BA 0.977663 0.929784 0.953932 0.957025 0.014720 0.000217

CNN-LGBM-ABC 0.973858 0.937252 0.960740 0.965956 0.012290 0.000151

CNN-LGBM-WOA 0.986708 0.945238 0.966248 0.967594 0.015793 0.000249

CNN-LGBM-RSA 0.986708 0.917790 0.967001 0.978231 0.022495 0.000506

Table 12.  Layer 2 LightGBM multiclass objective function scores over 30 simulations. Best obtained metrics 
are shown in bold style.

 

Fig. 12.  Layer 2 CatBoost multiclass Best performing CNN-ISA-ChOA optimized model confusion matrix.
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independence of runs, a condition fulfilled by conduction individual optimizations using independent random 
seeds; Homoscedasticity, that is carrying out the Levene’s test89, and with all conditions for the conducted 
situations attaining a p-value of 0.62, this condition can be considered fulfilled as well; Normality for the attained 
scores must also be confirmed using the Shapiro-Wilk90 test with p-values presented in Table 17. With p-values 

Fig. 14.  Layer 2 LightGBM multiclass indicator score distribution and swarm diagrams.

 

Fig. 13.  Layer 2 LightGBM multiclass objective score distribution and swarm diagrams.

 

Algorithm Best Worst Mean Median Std Var

CNN-LGBM-ISA-ChOA 0.001653 0.006199 0.003614 0.002885 0.001648 2.71E-06

CNN-LGBM-ChOA 0.006898 0.023810 0.013188 0.013121 0.004723 2.23E-05

CNN-LGBM-VNS 0.004053 0.018914 0.008774 0.006644 0.005331 2.84E-05

CNN-LGBM-PSO 0.003544 0.026846 0.016910 0.018215 0.007193 5.17E-05

CNN-LGBM-BA 0.009712 0.030406 0.019975 0.018644 0.006359 4.04E-05

CNN-LGBM-ABC 0.011365 0.027180 0.017033 0.014782 0.005308 2.82E-05

CNN-LGBM-WOA 0.005786 0.023730 0.014649 0.014075 0.006835 4.67E-05

CNN-LGBM-RSA 0.005786 0.035461 0.014299 0.009465 0.009690 9.39E-05

Table 13.  Layer 2 LightGBM multiclass objective function scores over 30 simulations. Best obtained metrics 
are shown in bold style.
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not meeting the established criteria, normality cannot be confirmed, as the use of parametric test cannot be 
considered justified.

With the required normality condition not fulfilled non-parametric testing is applied to establish a further 
comparison. The Wilcoxon signed-rank test91 is applied, and the ISA-ChOA algorithm is compared with other 
algorithms included in the comparative simulations and the p-value scores are presented in Table 18. As the 
significance threshold of α = 0.05 is not exceeded, the outcomes attained in the comparative analysis can be 
considered statistically significant.

Fig. 15.  Layer 2 LightGBM multiclass objective convergence diagrams.
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Interpretation of the best performing models
In modern AI research model classifications are without a doubt important. However, the contributing factors 
that allow a model to determine the class of a certain sample can also provide valuable feedback on a model 
decisions. Feature importance can help highlight hidden biases in the data as well as help reduce input and 
collected features for future research. While models are often treated by researchers as a black box, by leveraging 
advanced model interpretation tools, information on feature importances as well as their impact on classification 
can be computed.

Explainable AI (XAI) methods aim to make ML models significantly more transparent, interpretable, and 
trustworthy. XAI techniques help stakeholders comprehend how models determine decisions, increasing trust 

Fig. 16.  Layer 2 LightGBM multiclass indicator convergence diagrams.
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and aiding in regulatory compliance along with ethical AI considerations, which is vital in security applications92. 
XAI can help users understand which features are critical for predictions, enabling domain experts to validate 
the model’s logic and performance. Finally, this process may aid in feature engineering by highlighting useful 
attributes and de-emphasizing redundant ones.

A notable contribution in terms of feature importance is the development and application of Shapely additive 
explanations (SHAP)93 techniques. Based on game theory concepts SHAP analysis can help highlight feature 
importance on the global as well as local level. SHAP interpretations on a global scale are presented in Fig. 18, 
while per class interpretations are provided in swarm diagrams for each of the 7 glasses in Fig. 19. Additionally, 
it is important to note that SHAP analysis did not indicate any significant bias toward specific classes associated 
with certain features.

Conclusion and future work
Integrating the Metaverse with IoT is crucial, since IoT devices deliver real-time data and enable smooth 
connection betwixt the physical and virtual realms. Nevertheless, since attacks on IoT systems have become 
increasingly sophisticated, conventional security systems have struggled to keep up. Consequently, adaptive 
AI-driven methods were investigated to more appropriate tackle the challenges of today’s IoT infrastructure 
and create safe environment for users. Effective AI models must manage intricate data correlations and remain 

Approach rounds max_depth Leaves mcw ff bf msg λ L1 λ L2 lr

CNN-LGBM-ISA-ChOA 296 9 42 5 8.62E-01 5.15E-01 1.00E-02 1.14E-01 5.52E-01 5.83E-01

CNN-LGBM-ChOA 300 9 45 8 6.73E-01 8.39E-01 2.17E-02 4.88E-03 0.00E+00 3.77E-01

CNN-LGBM-VNS 300 9 45 5 2.90E-01 8.45E-01 1.51E-02 0.00E-00 1.73E+00 5.78E-01

CNN-LGBM-PSO 287 7 41 5 3.91E-01 9.48E-01 1.06E-03 0.00E-00 1.25E+00 9.00E-01

CNN-LGBM-BA 263 7 45 9 9.00E-01 9.67E-01 1.00E-03 1.31E+00 1.12E+00 5.26E-01

CNN-LGBM-ABC 212 10 33 5 6.59E-01 7.87E-01 1.00E-01 0.00E-00 3.52E-01 7.29E-01

CNN-LGBM-WOA 300 9 28 7 9.00E-01 5.00E-01 2.94E-02 1.12E-02 1.53E+00 6.22E-01

CNN-LGBM-RSA 277 8 45 11 6.13E-01 5.06E-01 1.14E-03 0.00E-00 1.99E-01 6.89E-01

Table 15.  Best LightGBM model parameter selections made by each optimizer.

 

Approach Metric Benign Brute force DDoS DoS Mirai Recon Spoofing Web Accuracy Macro avg Weighted avg

CNN-LGBM-ISA-ChOA

Precision 0.998639 0.998647 0.996685 1.000000 0.968750 0.900000 0.998489 1.000000 0.998346 0.982651 0.998347

Recall 0.999319 0.999214 0.994306 1.000000 0.968750 0.947368 0.996983 0.999718 0.998346 0.988207 0.998346

f1-score 0.998979 0.998930 0.995494 1.000000 0.968750 0.923076 0.997735 0.999859 0.998346 0.985353 0.998346

CNN-LGBM-ChOA

Precision 0.992563 0.993864 0.987433 0.997895 0.925926 1.000000 0.995475 1.000000 0.993102 0.986644 0.993082

Recall 0.999319 0.997053 0.974102 0.993711 0.781250 0.842105 0.995475 1.000000 0.993102 0.947877 0.993102

f1-score 0.995929 0.995456 0.980722 0.995798 0.847458 0.914286 0.995475 1.000000 0.993102 0.965641 0.993077

CNN-LGBM-VNS

Precision 0.997283 0.996513 0.992415 0.993711 1.000000 1.000000 0.990991 1.000000 0.995947 0.996364 0.995942

Recall 0.999319 0.998210 0.985306 0.993711 0.875000 0.894737 0.995475 1.000000 0.995947 0.967720 0.995947

f1-score 0.998300 0.997361 0.988848 0.993711 0.933333 0.944444 0.993228 1.000000 0.995947 0.981153 0.995939

CNN-LGBM-PSO

Precision 0.998638 0.996970 0.992888 1.000000 0.968750 0.947368 0.995482 1.000000 0.996456 0.987512 0.996452

Recall 0.997958 0.998319 0.987235 1.000000 0.968750 0.947368 0.996983 1.000000 0.996456 0.987077 0.996456

f1-score 0.998298 0.997644 0.990053 1.000000 0.968750 0.947368 0.996232 1.000000 0.996456 0.987293 0.996452

CNN-LGBM-BA

Precision 0.966822 0.992328 0.985598 0.945720 0.681818 0.000000 0.976923 0.998312 0.990288 0.818440 0.989932

Recall 0.991831 0.996595 0.967857 0.949686 0.468750 0.000000 0.957768 0.998593 0.990288 0.791385 0.990288

f1-score 0.979167 0.994457 0.976647 0.947699 0.555556 0.000000 0.967251 0.998453 0.990288 0.802404 0.990078

CNN-LGBM-ABC

Precision 0.977242 0.990826 0.978133 0.984816 0.892857 1.000000 0.977307 1.000000 0.988635 0.975148 0.988595

Recall 0.993873 0.994892 0.961245 0.951782 0.781250 0.894737 0.974359 0.999719 0.988635 0.943982 0.988635

f1-score 0.985488 0.992855 0.969616 0.968017 0.833333 0.944444 0.975831 0.999859 0.988635 0.958680 0.988593

CNN-LGBM-WOA

Precision 0.994565 0.995188 0.990070 0.993737 0.920000 0.666666 0.985031 0.997471 0.994214 0.942841 0.994161

Recall 0.996596 0.997643 0.979704 0.997904 0.718750 0.421053 0.992459 0.998875 0.994214 0.887873 0.994214

f1-score 0.995580 0.996414 0.984860 0.995816 0.807018 0.516129 0.988730 0.998172 0.994214 0.910340 0.994167

CNN-LGBM-RSA

Precision 0.990553 0.995253 0.990166 0.995798 0.676471 0.000000 0.990950 0.998033 0.994214 0.829653 0.993916

Recall 0.999319 0.997664 0.980163 0.993711 0.718750 0.000000 0.990950 0.999156 0.994214 0.834964 0.994214

f1-score 0.994917 0.996457 0.985139 0.994753 0.696970 0.000000 0.990950 0.998594 0.994214 0.832223 0.994059

Support 1469 45812 10889 477 32 19 663 3554

Table 14.  Layer 2 LightGBM multiclass comprehensive metrics for best tuned models.
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adaptable to evolving conditions. Achieving optimal results also required careful choice of algorithms and 
hyperparameter tuning. This study proposed a two-tier hybrid architecture that combines CNN with sophisticated 
ML classifiers, CatBoost and LightGBM. Metaheuristics techniques were employed to enhance performance, 
optimize the models, and refine parameter selection. Utilizing a realistic dataset, the framework was evaluated 
through comparative analysis, targeting multi-class classification to identify various types of attacks against IoT 
systems. A custom-altered optimizer was developed particularly for this study, resulting in the best-performing 
models, which attained a supreme accuracy level of 99.83% for multi-class classification. Afterwards, a rigorous 
statistical analysis outlined significant enhancements in comparison to the baseline metaheuristics and other 
contenting optimizers. Lastly, explainable AI method SHAP was employed on the best-performing model for 
understanding the significance of each feature and model’s decision making process.

The methodology introduced in this study yielded a couple of benefits, notably achieving enhanced optimizer’s 
performance over contemporary algorithms. Framework’s two-tier architecture outperformed baseline CNNs 
while keeping computational demands within acceptable levels. For practical implementations, the suggested 
system might be deployed on IoT nodes for traffic management, requests processing, and mitigation of network-
wide assaults. In the context of the Metaverse, this approach could improve general device safety, promoting 
trust and reinforcing the integration of virtual and physical domains. This advanced system could also support 
real-time attack detection in IoT by processing high-dimensional, streaming data, identifying anomalies, and 
mitigating threats promptly.

Although showcased study achieved promising results, some limitations still remain. The comparative 
evaluations included just a small selection of optimizing algorithms, and optimizations were executed with a 
relatively small population sizes and number of iterations. Thus, future work aims to tackle these constraints 
if supplementary computing resources become available. Expanding the pool of optimization algorithms and 
conducting evaluations with larger population sizes and iterations could provide more robust insights and 
even stronger conclusions. Additionally, the altered metaheuristics described here could be further applied to 
address other pressing challenges, enhancing performance and equipping scientists with improved tools for 
hyperparameter optimization of ML models. The application of the developed methods in real-time or streaming 
environments, where data evolves continuously, represents another promising avenue for development.

Fig. 17.  Layer 2 LightGBM multiclass Best performing CNN-ISA-ChOA optimized model confusion matrix.
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ISA-ChOA vs. others ChOA VNS PSO BA ABC WOA RSA

Layer 1 CNN 0.029 0.035 0.023 0.018 0.029 0.034 0.025

Layer 2 CB 0.035 0.029 0.025 0.044 0.037 0.035 0.028

Layer 2 LGBM 0.029 0.037 0.032 0.038 0.035 0.024 0.039

Table 18.  Wilcoxon signed-rank test scores forecasting experiments.

 

Approach ISA-ChOA ChOA VNS PSO BA ABC WOA RSA

Layer 1 CNN 0.028 0.036 0.029 0.041 0.024 0.028 0.032 0.041

Layer 2 CB 0.034 0.031 0.033 0.027 0.032 0.027 0.033 0.023

Layer 2 LGBM 0.029 0.031 0.032 0.037 0.029 0.031 0.024 0.029

Table 17.  Shapiro-Wilk scores for forecasting experiments for normality condition evaluation.

 

Approach Metric Benign Brute force DDoS DoS Mirai Recon Spoofing Web Accuracy Macro avg Weighted avg

CNN-ISA-ChOA

Precision 0.721480 0.922479 0.623072 0.792727 0.000000 1.000000 0.840000 0.999433 0.862656 0.737399 0.868015

Recall 0.955752 0.901860 0.682524 0.457023 0.000000 0.052632 0.570136 0.991840 0.862656 0.576471 0.862656

f1-score 0.822255 0.912053 0.651444 0.579787 0.000000 0.100000 0.679245 0.995622 0.862656 0.592551 0.863891

CNN-CB-ISA-ChOA

Precision 0.717203 0.935205 0.845409 0.785953 0.000000 1.000000 0.890306 0.999433 0.917778 0.771689 0.916141

Recall 0.956433 0.968480 0.721187 0.492662 0.000000 0.368421 0.526395 0.991840 0.917778 0.628177 0.917778

f1-score 0.819720 0.951552 0.778372 0.605670 0.000000 0.538462 0.661611 0.995622 0.917778 0.668876 0.914704

CNN-LGBM-ISA-ChOA

Precision 0.998639 0.998647 0.996685 1.000000 0.968750 0.900000 0.998489 1.000000 0.998346 0.982651 0.998347

Recall 0.999319 0.999214 0.994306 1.000000 0.968750 0.947368 0.996983 0.999718 0.998346 0.988207 0.998346

f1-score 0.998979 0.998930 0.995494 1.000000 0.968750 0.923076 0.997735 0.999859 0.998346 0.985353 0.998346

Decision Tree:

Precision 0.905971 0.999782 0.999449 0.790850 0.500000 0.250000 0.799419 0.999718 0.993340 0.780649 0.993354

Recall 0.898570 0.999913 0.999265 0.761006 0.593750 0.210526 0.829563 0.999156 0.993340 0.786469 0.993340

f1-score 0.902256 0.999847 0.999357 0.775641 0.542857 0.228571 0.814212 0.999437 0.993340 0.782772 0.993339

Random Forest

Precision 0.887280 0.999411 0.999908 0.837379 0.500000 0.000000 0.839204 0.999718 0.993928 0.757862 0.993424

Recall 0.959156 0.999869 0.998714 0.723270 0.031250 0.000000 0.826546 0.998593 0.993928 0.692175 0.993928

f1-score 0.921819 0.999640 0.999311 0.776153 0.058824 0.000000 0.832827 0.999155 0.993928 0.698466 0.993506

KNN

Precision 0.733920 0.932715 0.813870 0.676471 0.000000 0.666667 0.734310 0.997182 0.909592 0.694392 0.906557

Recall 0.908781 0.961015 0.709156 0.530398 0.000000 0.105263 0.529412 0.995498 0.909592 0.592440 0.909592

f1-score 0.812044 0.946653 0.757913 0.594595 0.000000 0.181818 0.615250 0.996339 0.909592 0.613076 0.906777

XGBoost

Precision 0.905161 0.999804 0.999724 0.880460 0.944444 1.000000 0.869832 1.000000 0.995279 0.949928 0.995289

Recall 0.955071 0.999935 0.999173 0.802935 0.531250 0.210526 0.856712 1.000000 0.995279 0.794450 0.995279

f1-score 0.929447 0.999869 0.999449 0.839912 0.680000 0.347826 0.863222 1.000000 0.995279 0.832466 0.995147

AdaBoost

Precision 0.741230 0.855708 0.935484 0.115854 0.089286 0.000000 0.580952 0.230851 0.691107 0.443671 0.822392

Recall 0.992512 0.836899 0.002663 0.199161 0.156250 0.000000 0.092006 0.982836 0.691107 0.407791 0.691107

f1-score 0.848661 0.846199 0.005311 0.146492 0.113636 0.000000 0.158854 0.373883 0.691107 0.311630 0.660863

CatBoost

Precision 0.880832 0.999585 0.999632 0.800000 0.200000 0.666667 0.826284 1.000000 0.993420 0.796625 0.992997

Recall 0.950987 0.999716 0.998898 0.687631 0.031250 0.105263 0.825038 0.998875 0.993420 0.699707 0.993420

f1-score 0.914566 0.999651 0.999265 0.739572 0.054054 0.181818 0.825660 0.999437 0.993420 0.714253 0.993052

LightGBM

Precision 0.755736 0.989259 0.998032 0.588372 0.050847 0.021739 0.544910 0.976068 0.975952 0.615621 0.976088

Recall 0.695031 0.997184 0.978143 0.530398 0.093750 0.052632 0.549020 0.963984 0.975952 0.607518 0.975952

f1-score 0.724113 0.993206 0.987988 0.557883 0.065934 0.030769 0.546957 0.969989 0.975952 0.609605 0.975943

MLP precision 0.805572 0.998886 0.993402 0.715347 0.075000 0.068966 0.767658 0.993545 0.987745 0.677297 0.987784

recall 0.905378 0.998145 0.995500 0.605870 0.093750 0.105263 0.622926 0.996061 0.987745 0.665362 0.987745

f1-score 0.852564 0.998515 0.994450 0.656073 0.083333 0.083333 0.687760 0.994801 0.987745 0.668854 0.987581

Support 1469 45812 10889 477 32 19 663 3554

Table 16.  Detail metrics comparison between proposed framework models and state of the art baseline 
classifiers.
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Fig. 18.  Best performing model feature importance diagram.
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Fig. 19.  Best performing model per class feature importance swarm diagrams.
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Data availibility
The original dataset used in this study is freely available via URL: https://www.unb.ca/cic/datasets/index.html 
Reduced dataset used in the experiments is available via URL: ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​​b​.​c​o​m​​/​p​​r​​o​f​z​​i​v​k​o​v​i​c​/​C​I​C​I​o​T​2​0​2​3​_​I​o​
T​_​I​n​t​r​u​s​i​o​n​_​r​e​d​u​c​e​d​​
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