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Strabismus, or eye misalignment, is a common condition affecting individuals of all ages. Early 
detection and accurate classification are essential for proper treatment and avoiding long-term 
complications. This research presents a new deep-learning-based approach for automatically 
identifying and classifying strabismus from facial images. The proposed methodology leverages 
Convolutional Neural Networks (CNNs) to achieve high accuracy in both binary (strabismus vs. 
normal) and multi-class (eight-class deviation angle for esotropia and exotropia) classification tasks. 
The dataset for binary classification consisted of 4,257 facial images, including 1,599 normal cases 
and 2,658 strabismus cases, while the multi-class classification involved 480 strabismic and 142 non-
strabismic images. These images were labeled based on ophthalmologist measurements using the 
Alternate Prism Cover Test (APCT) or the Modified Krimsky Test (MK). Five-fold cross-validation was 
employed, and performance was evaluated using sensitivity, accuracy, F1-score, and recall metrics. The 
proposed deep learning model achieved an accuracy of 86.38% for binary classification and 92.7% for 
multi-class classification. These results demonstrate the potential of our approach to assist healthcare 
professionals in early strabismus detection and treatment planning, ultimately improving patient 
outcomes.

Strabismus is defined as the misalignment of the eyes when looking at an object1. It is commonly considered a 
visual impairment mostly affecting children with a prevalence ranging from 0.14–5.65%2, and approximately 
2–5% of individuals in general population3. Horizontal strabismus, including esotropia and exotropia, is the 
most common type. Strabismus is the primary cause of amblyopia and reduced visual function, as well as a 
significant contributor to decreased binocular vision, greatly affecting the quality of life of preschool children. 
Prompt establishment of binocular alignment can enhance long-term vision and sensorimotor results4–6. 
manual measurement of ocular deviaton can be time-consuming and relies on the professional’s expertise and 
the patients commitment to cooperate. On the other hand, there is a scarcity of pediatric ophthalmologists who 
are able to accurately evaluate strabismic children. The alternate prism cover test (APCT) is considered the most 
accurate method for the angle of deviations, although it is time-consuming and has an interexaminer variance of 
5 to 10 prism diopters (PD)7. Alternative approaches, such as the Hirschberg and Krimsky tests, result in far more 
variable results even when conducted by skilled strabismologists. Choi et al. found that even professionals in 
strabismus underestimated or overestimated by a minimum of 10 prism diopters when using the Hirschberg and 
Krimsky tests8. Artificial intelligence (AI) has slowly transformed healthcare in the past few years. AI, a field of 
computer science, seeks to develop intelligent machines capable of tasks similar to human-like visual perception 
and speech recognition. Recent advancements in AI and deep learning have led to significant development in 
diagnostic technology, providing valuable insights into eye diseases such as cataract, glaucoma, and diabetic 
retinopathy9–12. The deep learning system automatically identifies visual patterns by utilizing representation-
learning techniques with several layers of conceptualization, eliminating the requirement for human feature 
engineering by training on extensive datasets of labeled pictures. The impressive performance of Deep Learning 
(DL) in detecting ocular diseases from various types of images like slit lamp photography and ultra-widefield 
fundus images indicates a significant opportunity for DL to offer a dependable resource to assist in diagnosing, 
assessing, and planning surgeries for strabismus13,14. Karaaslan et al. explored using deep learning and image 
processing to automatically perform the Hirschberg test for strabismus detection. Their algorithm achieved an 
accuracy of 90% or higher for both eyes in measuring the degree of strabismus in 88 patients. While a slight 
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margin of error existed due to the 2D nature of the images, the results suggest this approach could potentially be 
used for broader strabismus screening15. Considering the significant global prevalence of strabismus, it is crucial 
to accurately detect and assess the condition, especially in cases where patients may be uncooperative or when the 
necessary tools or expertise are lacking. Therefore, this paper introduces deep learning methods designed to detect 
referable horizontal strabismus in primary gaze photos captured during a clinical evaluation. The performance 
of the deep learning model was assessed by testing the algorithms on an external dataset. Recognizing this 
potential, our study presents a novel approach for automated strabismus detection and classification using deep 
learning analysis of facial images. The primary contribution of this study is the development of a deep learning-
based model for the identification and categorization of strabismus. This approach offers a scalable and objective 
alternative that has the potential to enhance the accuracy and accessibility of diagnostics. The objective of this 
investigation is to create an automated system for the classification of strabismus into two categories: normal 
and strabismus. Furthermore, the system assesses the extent of misalignment and classifies it according to prism 
diopter measurements, thereby enabling a multi-class classification framework. The proposed methodology is 
designed to address the limitations of traditional diagnostic methods, including their reliance on specialized 
knowledge and the time-consuming nature of their procedures, by leveraging advancements in deep learning.

Method of data collection
The study followed the guidelines of the Helsinki Declaration and received approval from the Tehran University 
of Medical Sciences Institutional Review Board for the use of anonymized images (IR.TUMS.RARABIH.
REC.1401.032). The dataset for multi-class classification of eye deviation angles was collected using a specific 
protocol. Informed consent was obtained from all subjects or their legal guardians for participation in the 
current study. Also, informed consent was obtained from all subjects or their legal guardians for publication of 
images in an online open-access publication.

Imaging distance
Since the target distance, which refers to the distance between the camera with the fixation target and the patient, 
can impact the amount of deviation, this study determined the optimum imaging distance to be between 35 and 
50 cm. Previous studies and data collection methods (such as camera, virtual reality headset, smartphone, eye 
tracker, etc.) have reported an optical imaging distance ranging from 35 cm to one meter14,16–20.

Stability of subject’s position in front of the camera
To ensure improved image results, it is important for the subject’s head to be positioned straight towards the 
camera. A chin-rest was utilized to maintain the stability of the subject’s head.

Definition of the target
During the data collection process, Subjects focused on the white Canon logo on the camera, ensuring corneal 
reflexes in both eyes. All participants received strabismic ocular evaluation including the alternate prism-cover 
test (APCT) conducted by an experienced pediatric ophthalmologist (M.S), which served as the gold standard 
for the type and angle of horizontal strabismus (esotropia or exotropia). APCT was the benchmark for assessing 
ocular misalignment. The patients are first categorized in esotropia and exotropia, and then in four measurement 
groups. The multi-class categorization method classified eye deviation ranges into four groups (0–20 PD, 20–40 
PD, 40–60 PD, and 60> ), each with two types (esotropia or exotropia), resulting in eight classes (classes 0–3 
for exotropia and 4–7 for esotropia). Full-face photographs were taken using a Canon EOS 7D Mark II camera. 
Every photo has a set resolution of 5472 × 3648 pixels. Images were gathered from participants with and without 
strabismus across all age and gender groups. 480 subjects with strabismus and 142 individuals without strabismus 
were recruited. For accurate deviation assessment, a camera-to-subject setup was determined based on previous 
published studies including cameras, VR headsets, and other devices. Subject positioning was maintained using 
a chin rest that allowed for steady head placement, with the option to alter the height for youngsters. A graded 
tape in millimeters (served as a scale) attached over the forehead rest made accurate image analysis possible. .

The collected data were labeled and underwent a review and cleaning process, during which mistakes were 
corrected and low-quality or inaccurate photos were eliminated. Photos taken during the COVID-19 epidemic 
while wearing masks were not used because they interfered with facial identification. Only individuals who had 
a direct gaze toward the target were included, and deviations were assessed according to their gaze direction 
(Fig. 1).

Participants with both vertical and horizontal abnormalities were excluded from the study. The images 
were preprocessed to serve as input for training the neural network, which aimed to identify horizontal eye 
misalignment and measure the degree of strabismus. Face detection is the initial and crucial stage in any facial 
processing system. Face recognition aims to recognize all facial components inside a picture, irrespective of 
varying ambient factors and facial appearances. However, challenges in face recognition can result in decreased 
accuracy and speed. Initially, to identify eye deviation, it is crucial to ascertain the eyes’ location and extract these 
regions utilizing a reliable and accurate method. Dlib was utilized in this study to identify and isolate the ocular 
regions. Dlib is a library that enables the utilization of computer vision and machine learning methodologies. 
Although Dlib is primarily based on C++, it is compatible with other languages such as Python. Face landmark 
detection, a solution built using the Dlib library, was employed21. An input image of a whole face is processed to 
generate an array of facial characteristics ranging from 1 to 68. The coordinates of indexes 37 to 46 in this array 
are utilized to extract the eye region (Figs. 2 and 3).

Most computer vision systems tend to perform better with a higher volume of data. However, acquiring 
additional data can often be challenging and costly. To address this limitation, data augmentation techniques 
were employed to enhance efficiency and achieve a balanced distribution of data across different classes. 
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Specifically, the augmentation methods included shifting, changing brightness levels, and adding Gaussian noise 
to artificially expand the dataset. These techniques not only increased the volume of data but also introduced 
variability, enabling the model to generalize better across different scenarios. As shown in Table  1, ocular 
deviation was classified into eight ranges based on the degree of eye deviation.

The evaluation metrics of the models are as follows: Recall = TP / (TP + FN), Precision = TP / (TP + FP), and 
F1 = (2 × TP) / (2 × (TP + FP + FN)). Precision is a metric used to evaluate the accuracy of a model’s positive 
predictions. It is calculated by dividing the number of true positives (correct positive predictions) by the sum 
of true positives and false positives (incorrect positive predictions). In simpler terms, precision reflects how 
often the model is correct when it predicts a positive outcome23. “Sensitivity” (also called recall or the true 
positive rate) refers to a test’s ability to correctly identify individuals with strabismus as positive. The “F1score(F-
measure)” is a suitable criterion for evaluating the accuracy of the test because it considers both precision and 
recall together. This criterion is one in the best case and zero in the worst case24.

Development of the algorithm
Binary and multi-class classification
Two datasets, one containing normal data and the other containing strabismus data, are utilized for 
classification. There are a total of 4257 data sets, consisting of 1599 normal photos and 2658 strabismus images 
(for binary classification) and 480 strabismic and 142 normal (for multi-class classification) labeled based on 
ophthalmologist diagnosis. In this research, we utilized a fully connected (FC) layer as the main classifier to 
translate the extracted features into output classes. The FC layer, a fundamental component of neural network 
architectures, is characterized by its dense connections, where every neuron in one layer links to all neurons in 
the subsequent layer. This architecture allows for complex representations of the data, enabling the model to 
effectively learn intricate patterns and relationships within the dataset25. Additionally, ResNet101 network was 
employed for the purpose of two-class and multi-class classification, utilizing skip connections (also known 
as shortcut connections) to mitigate the vanishing gradient problem and facilitate the training of very deep 
networks. On the other hand, ResNet101 is well-suited for both two-class and multi-class classification tasks 
due to its ability to preserve feature information across layers and maintain efficient gradient flow. These skip 
connections allow the model to learn deeper representations, leading to enhanced classification accuracy and 
robustness. We also tested different parameter settings, including learning rates, batch sizes, and optimization 
algorithms, to guarantee optimal performance26.

Fig. 1.  A full-face photographs obtained from a patient with right esotropia. (A part of the image has been 
deleted to comply with ethics).
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The proposed method’s flowchart is shown in Fig. 4. The backbone architecture of ResNet is used for feature 
extraction, followed by the utilization of the global average pooling layer to transform the output into a vector. 
A hidden dense layer (fully connected) with 128 neurons and the hyperbolic tangent activation function was 
applied, along with a dropout of 0.5 probability for regularization. The final layer is a dense output layer with 
2 neurons for binary classification or 8 neurons for multi-class classification, utilizing the Softmax activation 

Fig. 3.  The algorithm and input of the neural network for extracting the eye region are as follows: (a) a 
protocol was adhered to capture the full-face image: (b) face detection was performed using the Dlib tool; (c) 
the Dlib tool was employed for landmarking purposes; and (d) the eye region was extracted.

 

Fig. 2.  Sixty-eight facial landmark detectors that have been previously trained using the iBUG 300-W dataset. 
Each numeral symbolizes a specific facial feature. To extract the eye area, index numbers from 37 to 48 are 
considered22.
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function. The model employed the categorical cross-entropy loss function, which combines Softmax activation 
with Cross-Entropy loss, for classification. The adaptive momentum (ADAM) optimizer was utilized with an 
initial learning rate of 0.001, and the model was trained with 200 epochs. The network takes as input the eye 
region with dimensions of 300 × 75 × 3. After extracting features, the data is fed into the global average pooling 
(GAP) block for classification. In the final layer of the network, two neurons are used for binary classification, 
while eight neurons are used for multi-class classification, depending on the application.

Results
Following the data pre-processing steps outlined in the Methodology section, the dataset containing 4,257 
images was randomly split into training and testing sets at an 80/20 ratio. The ResNet101 deep learning (DL) 
model was employed for binary classification, aiming to distinguish between individuals with and without 
strabismus based on facial image analysis.

As shown in Table 2, the model achieved an overall accuracy of 86.38%, demonstrating its ability to correctly 
classify individuals into the two defined categories. Additionally, the model exhibited a balanced performance 

Accuracy F1-score Recall Precision

Test data 0.8638 0.8639 0.8638 0.86413

Table 2.  The evaluation metrics (%) for binary classification of data using the ResNet101 network.

 

Fig. 4.  The network structure of ResNet for binary or multi-class classifications is as follows: the ocular regions 
are provided to the ResNet backbone to extract appropriate features. Depending on the categorization type 
(binary or multi-class), the last layer of the network consists of either two or eight neurons.

 

Class numbers Type of strabismus Degree of eye deviation (PD) Original data Augmented data

0

Exotropia

0–20 50 110

1 20–40 133 133

2 40–60 54 145

3 60> 34 135

4

Esotropia

0–20 23 125

5 20–40 42 105

6 40–60 32 108

7 60> 25 124

Table 1.  Classifying strabismus cases based on the type of eye deviation. The class number for images has been 
assigned based on the type of strabismus (Exotropia, Esotropia), divided into 20 PD categories. Additionally, 
the number of images in each class was determined before and after data augmentation.
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across various evaluation metrics, including F1-score: 0.8639, Recall: 0.8638 (Sensitivity), and Precision: 0.8641. 
These results suggest that the model can effectively distinguish between individuals with and without strabismus 
based on facial image analysis, achieving a high degree of accuracy and demonstrating a good balance between 
precision and sensitivity in identifying positive cases.

The performance of the binary classification model is depicted in Fig.  5. The confusion matrix provides 
valuable insights into the accuracy of our model in correctly classifying strabismus and normal cases.

Resnet deep learning model was also used for multi-class classification to categorize strabismus into eight 
classes using facial image analysis. The classifications presumably correspond to four class of exotropia and four 
class of esotropia, ranging from 0 to 20 prism diopters to greater than 60 prism diopters.

The evaluation criteria for multi-class classification using the DL model achieved a precision of 89.51%, an 
F1-score of 91.08%, and an accuracy of 92.7%, as indicated in Table 3.

Considering Fig. 6, the predicted correct diagnosis for class one (the deviation between 20 and 40) and four 
(the deviation between 0 and 20 PD) are 73% and 86%, which is the lowest rate of correct diagnosis compared to 
other classes. When the degree of eye deviation is minimal (less than 30 prism diopters), even the measurement 
of the strabismus angle in clinical examinations varies by a maximum of ten prism diopters. Therefore, detecting 
eye deviation in minor deviations becomes challenging. In such cases, within class 1, 18% of individuals with 
deviations ranging from 20 to 40 were mistakenly categorized into class 0 (0 to 20 prism diopters). actually, no 
additional data augmentation (shifts, brightness changes, or noise addition) has been applied to the class one 
data. Also, classes three, six, five and seven demonstrate a network performance of over 90% accuracy, indicating 
strong performance of the ResNet model in deviations exceeding 50 prism diopters.

Discussion
Early identification and precise categorization of strabismus are critical for initiating appropriate treatment and 
avoiding long-term consequences such as amblyopia (lazy eye) and abnormal binocular vision development. The 
standard method of strabismus diagnosis relies on ophthalmologists’ direct evaluations using techniques such as 
the cover test and prism cover test (PCT). These methods need expert hands and cooperation of the patients, and 
so are subjected to inter-examiner variability, as well as hardships in examining non-cooperative patients and 
smaller children in particular. This underscores the need for objective, automated, and user-friendly methods for 
screening of strabismus and categorization4–6.This study investigates the potential of deep learning approaches 
to meet this crucial demand. We introduced a novel technique that uses convolutional neural networks (CNNs) 
to scan face photos and automatically detect and categorize strabismus. Our results are encouraging, with the 
model reaching an accuracy of 86.38% for binary classification (strabismus vs. normal) and 92.7% for multi-class 
classification. These findings demonstrate the potential of our deep learning architecture for strabismus diagnosis. 

Classifier Accuracy F1- score Recall Precision

Fully connected 0.927083 0.910853 0.927083 0.895181

Table 3.  The ReseNet’s performance percentage with fully connected layers for classifying strabismus images 
into multiple classes.

 

Fig. 5.  The evaluation of the deep learning model. (a) The confusion matrix. (b) the model’s performance in 
terms of accuracy across training epochs. Each epoch signifies a complete cycle through the dataset during the 
model training phase.
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The accuracy of our model in both binary and multi-class classification tasks demonstrates its effectiveness 
in diagnosing strabismus and distinguishing between various severities and types. This feature is particularly 
useful in situations where access to specialized ophthalmological expertise or standard diagnostic equipment is 
limited. For instance, the model can be integrated into telemedicine platforms or mobile applications, enabling 
preliminary strabismus screening in remote areas or resource- constrained settings. Moreover, the ability to 
distinguish between exotropia and esotropia, two major types of strabismus with distinct treatment methods, 
might enhance the therapeutic value of this method by guiding appropriate treatment selections. Furthermore, 
the model’s precision of 89.51% demonstrates its capacity to reduce false-positive detections, which can be 
critical in avoiding needless referrals and diagnostic procedures. This feature is especially significant given the 
possible psychological and emotional strain associated with misdiagnosis and needless therapies, particularly in 
children. It is vital to recognize the limitations of this study. First, the study used a retrospective dataset obtained 
from a single center, which may have introduced selection bias and limited the findings’ generalizability.

Recent studies have employed various deep learning techniques for strabismus detection and classification. 
For instance, Lixia Lou et al.27, Jiewei Lu et al.28, Jaehan Joo et al.29 and Ce Zheng et al.14 used neural networks to 
extract the eye region in their works, taking advantage of the high-level feature-learning capabilities possessed 
by these models. On the other hand, this study uses Dlib for extracting the eye region because it is easy to 
use, fast, and requires fewer computations. While Neural networks have improved accuracy and robustness 
in dealing with variability; Dlib provides a quick and lightweight substitute that does not require significant 
training and datasets, making it appropriate for resource-constrained applications. Jaehan Joo et al.29 suggested 
a generative model-based data augmentation technique to overcome the challenges of severe data scarcity in 
designing a deep learning-based automatic strabismus detection system. They used a generative model based 
on StyleGAN2-ADA to develop the system and evaluated the strabismus classification performance using two 
classifiers. ResNet-50 with 85.71% accuracy and ResNeXt101 with 87.75% accuracy, without data augmentation 
(using 900 images of normal eyes and 896 images of strabismic eyes). In contrast, the binary classification task 
in the current study was not augmented with data, and our model attained an accuracy of 86.38%. Further 
validation on a broader and more varied population across various institutions is required to determine the 

Fig. 6.  The confusion matrix of the ResNet101 network for eight-class classification. The horizontal axis 
indicates the predicted class by the network, and the vertical axis indicates the true class of the strabismus 
images. Classes zero to three represent images with exotropia, while classes four to seven represent images with 
esotropia.
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model’s generalizability and resilience in real-world clinical settings. Second, while the model achieved great 
accuracy, it is crucial to note that it is not designed to replace the experience of ophthalmologists. Instead, it is 
envisioned as a complementary tool to help with early identification and informed clinical decision-making. In 
addition, ethical issues related to data security and privacy as well as any biases in the training set need to be 
properly taken into account while developing and deploying a model. In summary, this study reveals another 
fascinating possibility for automated strabismus identification and classification employing facial photo analysis 
through deep learning-based algorithms. The model demonstrated exceptional performance in binary and 
multi-class classification tasks, accurately identifying strabismus and distinguishing between distinct categories 
and degrees of severity. Additional study and development are required to overcome the stated limitations and 
ensure the beneficial and responsible application of this technology in clinical practice. Finally, the effective 
incorporation of such deep learning models has the potential to transform strabismus diagnosis by enabling 
early identification, improved treatment planning, and ultimately, better patient outcomes.

In Table 4, we conducted a comparative literature review and analysis of numerous studies that employed 
deep learning to detect and classify strabismus. In addition to the diverse datasets employed for training 
and validation objectives, the comparative analysis in Table  4 provides a comprehensive overview of the 
methodologies employed, ranging from CNNs to more complex architectures.

Conclusions
In conclusion, the application of deep learning in detecting and classifying eye deviation disorder, specifically 
strabismus, has shown tremendous promise in revolutionizing the field of ophthalmology. We have achieved 
impressively precise binary classification by using whole face image analysis to identify if a person has an eye 
abnormality or is healthy.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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Authors Year Methodology summary Neural network used Evaluation metrics

Jaehan Joo 
et al.29 2024

This work introduces a generative data augmentation method via StyleGAN2-ADA for 
improving strabismus classification performance in situations of limited available data. The 
authors investigate the performances of two different classifiers and compare the newly 
generated data with classic augmentation techniques.

StyleGAN2-ADA for 
data generation and 
ResNet50 ResNext101 
for classification tasks.

The accuracy:
Without augmentation and 
generated data addition:
ResNet-50 = 85.71%
ResNext101 = 87.75%

Ce Zheng 
et al.30 2024

The study collected 479 strabismus surgery videos that were segmented manually into 3345 
clips representing eight surgical steps.
Two hybrid deep learning (DL) algorithms were considered: a Recurrent Neural Networks 
(RNN)-based model and a Transformer-based model.

Used a Convolutional 
Neural Network 
(CNN) followed by 
RNN layers (specifically 
Gated Recurrent Units) 
and a pre-trained 
DenseNet for feature 
extraction, utilizing a 
Transformer architecture 
for classification.

Accuracy:
Transformer-based model: 0.96
RNN-based model: 0.83
Precision:
Transformer-based model: 0.90–1.00
RNN-based model: 0.75–0.94
F1-score:
Transformer-based model: 0.93–1.00
RNN-based model: 0.78–0.92.

Dawen Wu 
et al.31 2024

The study aimed at building an artificial intelligence platform embodied as a mobile app 
for the screening and management of strabismus. The model used primary gaze photos, 
including 6,194 images with corneal light reflection: 2,938 exotropia, 1,415 esotropia, 739 
vertical deviation, and 1,562 orthotropy, sourced from two independent datasets covering 
a wide age range. The Visual Transformer (ViT_16_224) architecture was implemented to 
process the visual information. The AI model was evaluated using 5-fold cross-validation 
and subsequently tested on a separate independent dataset.

Visual Transformer 
(VIT_16_224)

The AI model obtained the following 
results in the internal validation set: 
Precision 0.941, Accuracy 0.980, 
Specificity 0.979, F1-Score 0.951, 
and the independent test set:
Accuracy :0.967, Precision :0.980, 
Specificity :0.970, F1-Score :0.975,

Ayesha 
Jabbar et 
al.32

2024

This work presents a new method for the diagnosis of strabismus by combining a Federated 
Convolutional Neural Network (FedCNN) and eXtreme Gradient Boosting (XGBoost). The 
new method utilizes eye-tracking data, namely Gaze deviation (GaDe) images, to improve 
the diagnosis accuracy of strabismus. It consists of recording ocular movements, generating 
GaDe images, and applying CNN and XGBoost for feature extraction and classification.

Convolutional Neural 
Network (CNN) and 
Federated Convolutional 
Neural Network 
(FedCNN).

The model’s accuracy rate of 95.2%.

Rashid 
Amin et 
al.33

2022
The study made use of deep learning algorithms in the detection of strabismus and other 
eye-related ailments. The methodology included image acquisition, region of interest 
extraction, extraction of features, and classification

ResNet50 and VGG16.
The study reported an accuracy of 
92% for the ResNet50 model and 
79% for the VGG16 model.

Yena 
Christina 
Kang et 
al.34

2022
An automated algorithm measures ocular deviation in strabismus patients using nine 
cardinal gaze positions. It uses deep learning and image processing techniques, including 
data collection, preprocessing, and training a U-Net convolutional neural network.

The deep learning 
model used the U-Net 
architecture to segment 
the limbus and sclera.

the Dice Similarity Coefficient 
(DSC) for segmenting the limbus 
was 95.71%, while the DSC for 
segmenting the sclera was 96.88%.

Jiewei Lu 
et al.28 2018

An end-to-end framework for automatic strabismus identification called RF-CNN was 
created by the researchers. There were two primary processes in the process: first, each 
image’s eye regions were segmented; second, deep neural networks were used to classify the 
segmented eye regions.

RF-CNN
The study reported 93.89% as 
accuracy, 93.30 as sensitivity and 
96.17% as specificity

Table 4.  The table presents a review of several investigations using deep learning-based approaches for the 
detection and classification of strabismus.
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