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Agriculture significantly impacts the global environment, contributing to greenhouse gas (GHG) 
emissions, air and water pollution, and biodiversity loss. As the global population grows and demands 
higher agricultural output, these environmental impacts are expected to intensify. Among global 
contributors, China, with its vast population and prominent agricultural sector, plays a leading role 
in GHG emissions. Understanding and mitigating these impacts in China is crucial for addressing 
broader global environmental challenges. To address these key issues, we conducted a study on the 
dynamic impact of agricultural key variables (agricultural land, fertilizer consumption, energy use 
for agriculture, agricultural value-added, forest land, livestock, fisheries, and crop production) on 
GHG emissions by utilizing the data from 1990 to 2020, and employed linear and non-linear linear 
autoregressive distributed lag (ARDL and NARDL) models. In the study, co-integration analysis 
confirms the long-run relationship between variables, and the long-term findings from the ARDL 
model reveal important insights, increased agricultural land use, fertilizer consumption, agricultural 
energy use, crop production, livestock production, and fishery production increases GHG emissions 
in China and GHG emissions can be reduced by increasing forest land in the long term. Furthermore, 
with the asymmetric NARDL regression applied to three key variables, the positive shock analysis 
results confirm that agricultural land use (AGL+), fertilizer consumption (FC+), and agricultural energy 
use (EUA+) can significantly contribute to long-term GHG emissions. However, adverse shocks to 
(AGL−), (FC−), and (EUA−) could significantly compress GHG emissions. These findings offer valuable 
implications for Chinese authorities’ focus on expanding forest land, using more renewable energy, and 
minimizing the usage of chemicals in agriculture. These measures can help to mitigate emissions while 
promoting sustainable agricultural practices.
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Agriculture continues to be the most susceptible sector to climate change globally as greenhouse gas (GHG) 
emissions from the agriculture sector significantly contribute to global warming, posing challenges to human 
survival and exacerbating food insecurity in both developed and developing countries1,2. The GHG emissions 
from agriculture pose severe difficulties for environmental degradation and create consequences for economies. 
Additionally, these GHG emissions contribute to climate change, reduce agricultural productivity, and disrupt 
food supply chains, especially in areas where agriculture is already vulnerable to such fluctuations3–5. In the 
agriculture sector, the principal sources of GHG emissions are nitrous oxide (N2O), methane (CH4), and carbon 
dioxide (CO2). The kind of N2O emissions predominantly arise from using nitrogen-based fertilizers, whereas 
CH4 is primarily emitted from intestinal fermentation in ruminant animals, including cattle. Furthermore, 
CO2 emissions result from the utilization of fossil fuels in agricultural machinery and transportation which are 
used for road and shipping agriculture products6. Agriculture contributes about 17% of the nation’s total GHG 
emissions in China. Notably, in 2020, the country’s overall GHG emissions were estimated at 12.3 billion tonnes 
of CO2 equivalent (GtCO2e), representing 27% of global emissions7.

Although the endeavors by international organizations to alleviate environmental repercussions and 
formulate different kinds of policies and strategies to diminish CO2 and GHG emissions from global as energy 
and agriculture-related emissions surged by 53.7 in the last three decades and reached 31.5 gigatons in the 
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previous of 20228. In this manner, a few countries including China adopted policies in agriculture to reduce 
GHG emissions from the agriculture sector9,10. In addition, at the conference held by the United Nations in 
Paris, China is one of nearly 200 countries that agreed to the Paris agreement on climate change (PACC) to 
control global warming within 1.5 °C and maintain it below 2 °C. After the Paris Agreement, China implemented 
significant policy reforms across agriculture, energy production, industry, transportation, and urban planning 
to address environmental degradation and mitigate climate risks, ensuring the nation’s long-term prosperity and 
becoming carbon neutral nation by 2060 (WDI 202211 and12). Furthermore, China has significantly advanced 
its renewable energy infrastructure during the post-Paris Agreement era, especially in wind and solar power, 
achieving an installed renewable capacity of around 1380 GW by the close of 202213. This energy transition 
has enabled projects in provinces such as Zhejiang, where specific laws advocate for low-carbon agricultural 
practices, enhance fertilizer efficiency, and promote sustainable farming methods to reduce GHG emissions in 
agriculture14.

Furthermore, China is an emerging economy and one of the world’s largest emitters of GHG as shown in 
(Fig. 1), accounting for almost 31% of global emissions, with an average growth of 15% over the past few decades, 
China’s carbon emissions reached 10.56 billion tons in 2020 (WDI 202211). However, regarding methods to 
mitigate carbon emissions, energy ranks foremost, as the energy utilized in agriculture is directly associated with 
GHG emissions. Fossil fuels and electricity are important components of new agricultural production, directly 
used in power machinery and indirectly used to synthesize nitrogen compounds15. In addition, many agriculture 
activities including irrigation, transportation, and operating machinery require energy, which releases GHG 
emissions into the environment16. China’s agriculture industry is becoming more dependent on fossil fuel-
based energy as energy consumption for agriculture is trending upward3,17. Initiatives to mitigate energy-related 
GHG emissions concentrate on shifting to renewable energy sources and improving energy efficiency. Adopting 
cleaner energy alternatives, including wind, solar, and hydropower, can significantly diminish emissions. 
Moreover, enhancing energy efficiency in structures and transportation helps in reducing total energy usage 
and emissions from agriculture18. Furthermore, China is reforming subsidies for energy usage such as irrigation, 
water use, pesticide production, and fertilizer production to support the country’s most impactful actions to 
reduce greenhouse gas (GHG) emissions and promote green growth (Zhang et al.19, WDI11).

While the shift to bio-energy mitigates a substantial fraction of emissions; nonetheless, agricultural practices, 
especially the application of chemical fertilizers, continue to be a significant source of GHG emissions20,21. The 
manufacturing, shipping, and applying fertilizers emit considerable quantities of N₂O22. Approximately 58.6% 
of GHG emissions from fertilizer (synthetic nitrogen fertilizer) originate from soil processes. Crops typically 
absorb only about half of the applied nitrogen fertilizer, while the remainder leaches into water systems or 
volatilizes into the atmosphere23. Mitigating these emissions from agriculture practices is important for actual 
climate action. Measures must be implemented to recognize and reduce fertilizer-related emissions within 
comprehensive climate policies. By employing modern fertilizer applications, agriculture may reduce emissions 
from agriculture without affecting productivity and food security16,24. Similarly, emissions from agricultural 
production contribute to climate issues18,25,26. Globally, over the past 2 decades, agricultural activities account 
for 10–14% of total global GHG emissions (FAOSTAT27). Despite this, In the last 40 years, China’s cultivated 
acreage has diminished from 117 million hectares to 116 million hectares, while grain production has risen from 
321 to 664 million tons (NBS28). Overall, crop production substantially contributes to GHG emissions, mainly 
through land usage changes such as deforestation. To reduce GHG from field crops, different types of strategies 
will be adopted, including incorporating low carbon footprint crop types, modifying cropping techniques, and 
enhancing crop residue management within agricultural frameworks29,30.

Furthermore, we do not ignore the crucial role of livestock in agriculture which significantly contributes to 
GHG emissions31,32. However, the animals and poultry industry releases 710 million tons of emissions. Total 
global GHG of about 18% comes from livestock and their byproducts33. In the last two eras, global livestock 
consumption has enlarged sharply because of population growth and the luxury of life. Specifically, the 
consumption of meat has increased by 56.59%. It will increase livestock GHG emissions34. In China’s case, the 
demand for milk, meat, eggs, and other livestock-derived goods surged, positioning China as one of the top meat 
consumption markets globally. Thus, the significant enlargement of livestock highlights that it is one of the main 
pillars of GHG emission contributors from the agriculture sector35–37. Along with the livestock industry, the 
fisheries industry also contributes to GHG emissions38. The enlargement of the fish industry has been creating 
more global environmental issues, such as water pollution, Land use changes, eutrophication, and increased 
GHG emissions39,40. Moreover, Blanchard et al.41, suggested that to continue demand for aquatic products, it 
is essential to identify the strong association within and across the goals of aquaculture, fisheries, and GHG 
emissions.

Another main issue behind the expansion of GHG emissions worldwide is the increasing rate of deforestation. 
Forests cover 31% of the world’s land area (4.06 billion). Deforestation and forest degradation are the second 
largest contributors to emissions, after fossil fuels42. Degradation may result from illicit logging, land conversion 
for farming, and urban expansion, which release sequestered carbon into the atmosphere. China lost primary 
forest over 81,500 hectares, representing a 4.7% decline from 2001 to 202143. The deterioration of forests adversely 
affects GHG emissions, as compromised forests can release significant quantities of CO2, hindering sequestration 
initiatives. In order to reduce future GHG emissions, it will be essential to enhance forest protection measures, 
promote environmentally friendly practices, and ensure significant planting activities23,44–46.

Currently, many researchers focused on agricultural variables such as crop production, land expansion, 
fisheries, forestry, and animal husbandry, utilizing panel data and time series to estimate their trends and 
contributions to GHG emissions, global warming, and climate change46–50. Despite extensive studies on the 
determinants of GHG emissions in the agricultural sector, a considerable gap persists. Numerous investigations 
have neglected essential influencing components, neglecting to incorporate them into a cohesive framework. 
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This exclusion constrains our comprehension of the intricate processes influencing agricultural emissions and 
hinders the formulation and execution of specific mitigation solutions. China, a leading agricultural country and 
a significant contributor to global GHG emissions, represents a crucial subject for examination. The extensive 
terrain and varied agricultural methods pose distinct problems and opportunities for customized mitigation 

Fig. 1.  expresses the distribution of GHG emissions worldwide and specifically within China. (a) illustrates 
the eight leading nations’ GHG emissions in 2022. (b) illustrates global sectoral emissions, whereas (c) 
concentrates on agriculture emissions worldwide. (d) depicts the composition of China’s GHG emissions in 
2018, while (e) emphasizes the distribution of GHG emissions from Chinese agriculture in 2022. The figure 
is based on authors’ calculations using data from different sources (the World Bank, OECD, and Statista data 
web).
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techniques. A comprehensive assessment of agricultural GHG emissions in China is crucial for effectively 
tackling the interconnected challenges of agriculture, food security, and climate change.

Our study builds on this foundation by addressing critical gaps and providing fresh and deep insights into the 
interplay between agricultural land, fertilizer consumption, energy usage, forest and crop production, livestock, 
and fisheries, and their impact on GHG emissions from Chinese agriculture. This research is particularly relevant 
given the urgent need to understand and mitigate the agricultural sector’s role in climate change, making it a 
valuable contribution to the existing body of knowledge.

In the study, we used time series data from 1990 to 2020, which is essential for a comprehensive analysis 
of the impact of Chinese agricultural practices on GHG emissions. Furthermore, utilizing this dataset offers 
an extensive overview of trends and changes over three decades, facilitating a thorough examination of the 
relationship between agricultural practices and emissions levels. Researchers and policymakers can derive 
insights from historical trends, evaluate existing initiatives, and formulate future policies to reduce emissions 
effectively. The study utilized a sophisticated econometric model known as the non-linear autoregressive 
distributed lag (NARDL) cointegration technique. Most study efforts have predominantly investigated the linear 
correlations between agricultural indicators and environmental degradation. Thus, there is a significant lack 
of research examining the non-linear interactions that may exist between these agricultural parameters and 
ecological degradation.

Overall, this study differs from previous research in three distinct ways, and it has the potential to advance 
both literature and policymaking significantly. Firstly, this study represents a groundbreaking effort to shed 
light on the connection between agricultural components and GHG emissions. It is unique in its approach 
to examining the impact of farming factors on GHG emissions from China’s agriculture sector. In this study, 
we investigated the influence of several novel factors, previously unexplored in China’s agricultural industry, 
including the crop and fisheries production index, livestock production index, and fertilizer consumption. 
Secondly, we employ multiple unit root tests, NARDL tests, and diagnostic procedures to check the accuracy 
of our outcomes. Lastly, our findings will offer novel insights on benchmarking agricultural management, 
prioritizing mitigation strategies, and the role of agriculture in attaining overall GHG emissions objectives. This 
study elucidates the framework of food security and sustainability.

The subsequent sections of this work are organized as follows: Section “Review of relevant studies” examines 
the current literature on the subject, emphasizing significant discoveries and deficiencies. Section “Methodology” 
outlines the research methodology, detailing the data collection, analytical processes, and results discussion. 
Section “Conclusion and policy implications” concludes with a review of the results, elucidating their relevance 
in the context of prior research and their implications for future inquiry.

Review of relevant studies
In this literature review, we examine to clarify the many pathways through which agricultural activities 
contribute to GHG emissions and evaluate the efficacy of mitigation options by reviewing the body of current 
literature and scholarly research. A crucial objective in the fight against environmental change is to reduce GHG 
emissions from agriculture. The long-term consequences of GHG emissions are taken into consideration by51, 
which suggests that the capacity of agricultural systems to generate food and other agricultural products is 
anticipated to be negatively impacted for some time by changes in climatic patterns and conditions. Like other 
fields, agriculture exhibits various features regarding GHG emissions and energy use52. However, the GHG 
emissions from livestock, agriculture, and fisheries are significantly greater than those from traditionally high-
emission and highly resource-intensive sectors53,54. In addition, most of the greenhouse emissions arise from 
crop cultivation and animal grazing55,56 and supplementary use of chemicals in agriculture, especially synthetic 
nitrogen fertilizer. After fertilizer is applied, microbial activity in the soil releases nitrogen oxide. Sustainable 
agricultural techniques are essential to reduce these emissions and advance climate-smart agriculture. These 
approaches include conservation agriculture and fertilizer optimization57.

In the context of China, a study was conducted (Rehaman et al.58) by using the granger causality (GC) 
test and Vector Autoregressive (VAR) model covering the timeframe from 1990–2017. A study showed the 
substantial influence of CO2 emissions on agricultural variables in China. The study’s conclusions emphasized 
the intricate connections between carbon dioxide emissions and important agricultural variables such as 
temperature, rainfall, animal output, and crop productivity. While encouraging economic growth and energy 
efficiency, it is imperative to focus on the significance of GHG emissions6,49,59. Salari et al.60 analyzed the 
impact of globalization, renewable energy usage, and agricultural output on the environmental footprints in 
developing countries and employed a panel quantile regression model. Their results discovered that the use 
of renewable energy meaningfully increased the footprint, particularly at higher quantiles. Agricultural total 
output exhibited a significant positive association with the ecological footprint at median quantiles, highlighting 
its role in environmental pressures. For sustainable development, the consumption of energy is crucial to meet 
the stability of the country. Ref.61 examined the correlation among energy consumption, economic growth, and 
green emissions in the agriculture sector of China. According to their assessments based on the environmental 
kuznets curve (EKC) model, the hypothesis for China’s main grain-producing areas and its impact on emissions, 
the use of time series data and various econometric models, such as the ARDL model and GC test, reveal both 
short- and long-run negative impacts of agricultural energy consumption on carbon emissions. Additionally, 
there is a unidirectional correlation between agricultural energy use, emissions, and economic development, and 
growth and carbon emissions from agriculture are influenced by a bidirectional causal relationship.

Nevertheless, the issue of agriculture-based emissions is challenging for nations (Mielcareket al.62, Dar 
et al.63). To tackle this issue, Ref.64 conducted a study on empirical-based to highlight the linkages between 
agricultural productivity, crop production, and the influence of fertilizer consumption on emissions in Nepal. 
This study showed how agricultural productivity, fertilizer, and crop output positive and negative shocks affected 
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Nepal’s emissions between 1965–2018. According to the results of the NARDL model, the land area used for crop 
production increased emissions in the long run, while crop productivity has no discernible impact on emissions, 
on the other hand, fertilizer consumption in the agriculture of Nepal is linked to both short- and long-term 
emissions increases. Conversely, a strong positive correlation between GHG emissions and climate was found by 
(Bhatti et al.65) in their study that GHG emissions will rise globally66, and decrease GHG emissions globally due 
to the loss of crops (Nalley et al.67).

Fertilizer use in agriculture has increased as a result of the need to boost crop yields and satisfy food 
demand for the growing rapidly population68. Conversely, farmers’ overuse of fertilizer may negatively affect 
the environment, including GHG emissions like CO2 and N2O. A particularly strong GHG with a significant 
potential for global warming contributes to climate change by using excessive in N2O the field. Ref. discussed 
the relationship between the different types of fertilizer (K2O, and K2O per unit) impact on GHG emissions, the 
results showed that increasing one percent of nitrous oxide contributes 47.71% of the overall GHG emissions. 
In contrast, calcium superphosphate, ammonium bicarbonate, and potassium chloride fertilizers emit less 
emissions. But another study conducted by69 on Chinese data, urged that synthetic nitrogen fertilizer significantly 
contributes to emissions of GHG. Additionally, a fresh study was conducted by70 on GHG emissions and 
fertilizer management. The results proved that fertilizer management applications in agriculture are important 
for food security and reducing emissions from agriculture. Wrong fertilizer management and practices, such as 
inefficient use, and overapplication may increase GHG as evidenced by71.

Previous and some current studies illustrated the correlation between forestry and GHG emissions72,73, one 
major factor of the world’s GHG emissions is the deterioration of forests as highlighted by74. It is very important 
to understand the deep relationship between forest degradation and GHG emissions. A study conducted by75, is 
based on an empirical estimation of GHG emissions and forest degradation in 27 developing countries and 2.2 
billion hectares of forest land from 1998 to 2017. As per the study estimation, 2.1 billion tonnes of emissions were 
annually predicted to be emitted from forests, with 53% from the collection of lumber, 30% from the extraction 
of wood fuel, and 17% from forest fires. Deforestation contributes 25% of all emissions from deforestation and 
forest degradation. Another study was conducted by (Houghton et al., 2012) on net emissions from degradation 
and deforestation in the tropics, and the study data was collected from 1990 to 2010. The study results show that 
60 to 90% of the emissions of forests come from deforestation, the main reason for deforestation is agriculture as 
people shift forest land permanently and cut the forest plantations to harvest crops for food.

The existing literature studies have furnished insights into the importance of GHG emissions and agriculture 
practices. Still, there remains a notable research gap in understanding the specific importance of emerging GHG 
emissions from agriculture in China. However, China’s agriculture emits more GHG gas emissions than other 
nations’ agriculture sectors. So far, no empirical studies have been conducted on the joint effect of agricultural 
land, energy use, fertilizer use, crop production, livestock production, fisheries production, agricultural value-
added, and forestry area on GHG emissions in China.

Methodology
Data and source
This research focuses on China, which produces the most GHG gases and is also the country leading the world 
in agricultural production and consumption because of its high population. Depending on data accessibility and 
analytical clarity, we selected 1990–2020 yearly statistical data from two different sources. This period is essential 
for examining the impact of several elements in Chinese agriculture on the environment, particularly GHG 
emissions. This period encompasses notable transformations in agricultural methodologies, the integration 
of advanced technologies, variations in agricultural output, and the corresponding effects on climate change. 
Comprehending these processes is crucial for assessing China’s agriculture sector’s overall sustainability and 
environmental impact.

The statistical data for GHG emissions, crop production, forest area, livestock index, agricultural value-
added, fisheries index, and agricultural land expansion originated from “World Bank Development” (WDI, 
202476). GHG statistics in millions of tons (Mt) of carbon dioxide equivalent (CO2e). Entities such as the World 
Bank employ this measurement methodology to standardize the effects of different GHGs according to their 
capacity to exacerbate global warming. The data on agricultural land expansion, measured in square kilometers 
(sq.km), reflects the growth of land allocated for farming. Additionally, the data on fertilizer input, measured in 
kilograms (kg) per hectare of arable land, evaluates the intensity of fertilizer application in terms of agricultural 
productivity. The study accounts for data on livestock and crop production in international dollars. It represents 
the comprehensive performance of the agriculture sector. The data of Agricultural value-added is evaluated 
as a percentage of agriculture in national GDP (% of GDP), this measure underscores the agricultural sector’s 
economic worth to the wider economy. Furthermore, forestry land area quantified in (sq.km), statistic denotes 
the entire expanse of forestry land, which is crucial for comprehending the effects of forestry on biodiversity and 
climate change. In addition, fisheries production data quantified in metric tons, assesses the number of fishes 
produced, offering insights into the sustainability and health of aquatic resources. for this study, the data for 
energy used in agriculture is extracted from the National Bureau of Statistics of China (NBSC, 2024), this data is 
measured in hundred million kilowatt-hours (100 million kwh). The further variables overview, definitions, and 
descriptive statistics are given in (Table 1).

Explained variable: greenhouse gas (GHG) emissions
We use GHG emissions as the dependent variable in this study, indicating the environmental consequences 
of agricultural practices17,77,78. Comprehending GHG emissions is essential, as agriculture substantially 
contributes to global emissions, influenced by elements like crop cultivation, energy consumption, agricultural 
value addition, fertilizer application, land management practices, fisheries production, and livestock farming. 
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This study seeks to clarify the impact of agricultural factors on GHG emissions,this emphasis is essential for 
formulating successful mitigation methods, especially in significant agricultural economies such as China, 
where reconciling food production with environmental sustainability is a fundamental challenge. However, 
mitigating GHG emissions is crucial for decreasing the carbon footprint and for securing long-term agricultural 
sustainability against evolving climate conditions.

Regressors and control variables
This study incorporates numerous independent variables to explain the factors influencing GHG emissions 
in agriculture. We added the energy consumption variables in agriculture, which is a significant factor, as 
technology, irrigation pumps, and other energy-intensive techniques increase carbon emissions, we used the 
energy consumption in agriculture variable as it comprehensively signifies the energy dynamics within the 
agricultural sector, including both renewable and non-renewable sources. By focusing on this variable, we aim 
to capture the broader impact of energy consumption on GHG emissions in agriculture. By comprehending 
and enhancing the correlation between fertilizer application and emissions, we included fertilizer as a regressor 
variable in the study. The research identifies fertilizer consumption as a main predictor variable, associating it 
with GHG emissions via mechanisms of nitrogen management, soil health, and agricultural practices however, 
the agriculture land area variable as an independent plays a crucial role, indicating the environmental impact 
of transforming forests, grasslands, or other natural ecosystems into agricultural land, an action that emits 
significant quantities of GHG into the upper atmosphere we may discern practical solutions for mitigating GHG 
emissions in agriculture, fostering sustainability, and bolstering food security. Furthermore, we included a list 
of variables as control variables in our study to find their impact on GHG emissions. The crop production 
variable as the control variable shows primary concern, as it substantially impacts emissions via land use 
changes, irrigation practices, and residue from crop disposal. In the study, we employ agricultural value-added 
to highlight agriculture’s economic production on GHG emissions, as it is crucial for evaluating the alignment 
or discord between economic growth objectives and environmental sustainability goals. In the study, we added 
fisheries and livestock production as regressor variables in the analysis due to their significant contribution to 
GHG emissions. Nevertheless, deforestation and afforestation in the forestry sector can directly or indirectly 
influence GHG emissions. To address this important aspect within agriculture, we included forest areas in our 
study to examine their contribution to greenhouse gas emissions.

Overall, many research scholars have explored the factors selected in this research before in the context of 
GHG emissions from agriculture. For instance, crop production and fertilizer consumption were studied by, 
fisheries production was analyzed by79,80, land use change and forestry were explored by (Nobel et al., 2020;81,46), 
livestock production studied by46,55,82,83 and energy used in agriculture analyzed by48,65. Overall, the mentioned 
studies provide a basis for incorporating these variables into our analysis to enhance our understanding of their 
influence on GHG emissions.

Model development
The productivity of crops doesn’t affect emission concentrations, land area used for crop production triggers 
higher emissions, whereas increased fertilizer usage increases CO2 emission levels in Nepal64. While energy use 
in agriculture can lead to environmental degradation, enhancing the value of agriculture can elevate Vietnam’s 
environmental quality from both long-term and short-term viewpoints (Raihan et al.46). The above studies 
linearly investigated the impact of agricultural indicators (crop yield, land use, fertilizer use, and agricultural 
energy consumption) on environmental degradation. This research follows the above studies and reveals the 
non-linear effects of agricultural indicators (crop yield, land use, fertilizer use, consumption of energy for 
agriculture, forestry area, and agricultural value-added) on GHG emissions. Thus, the following econometric 
model developed in this study represents GHG emissions as a function of selected variables:

	 GHG = f (AGL, F C, EUA, CP I, LP I, F P, AV T, F L)� (1)

Further, (Eq. 1) is elaborated in the following form:

Variable overview Descriptive statistics

Variables Identifiers Classification Units Source Time Mean Std.dev Max Min

Greenhouse gas emissions GHG Dependent (Mt of CO2 equivalent) WDI-world bank (2024) (1990 to 2020) 15.743 12.488 18.991 10.991

Agricultural land AGL Independent (% of land WDI-world bank (1990 to 2020) 5.043 2.016 6.064 1.008

Fertilizer consumption FC Independent (Kg per hectare of arable land) WDI-world bank (1990 to 2020) 7.838 1.241 8.141 0.326

Energy used in agriculture EUA Independent (10 billion kwh) NBSC, database (1990 to 2020) 6.709 4.279 7.259 2.273

Crop production index CPI Control (2014–2016 = 100) WDI-world bank (1990 to 2020) 4.266 2.313 5.679 2.694

Livestock production index LPI Control (2014–2016 = 100) WDI-world bank (1990 to 2020) 5.274 3.349 7.611 0.410

Fisheries production FP Control (Metric tons) WDI-world bank (1990 to 2020) 16.428 9.228 17.627 1.719

Agriculture value added AVA Control (% of GDP) WDI-world bank (1990 to 2020) 4.546 3.400 6.280 0.953

Forest production FL Control (Sq.km) WDI-world bank (1990 to 2020) 14.44 11.104 20.603 03.267

Table 1.  Variable’s definition, classification, and descriptive statistics.

 

Scientific Reports |         (2025) 15:5314 6| https://doi.org/10.1038/s41598-025-88159-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 GHGt = ϑ0 + ϑ1AGLt + ϑ2F Ct + ϑ3EUAt + ϑ4CP It + ϑ5LP It + +ϑ6F P t + ϑ7AV T t + ϑ8F Lt + µt� (2)

where GHG, AGL, LFC, EUA, CPI, PI, FP, AVT, FL show the greenhouse gas emissions, agricultural land, 
fertilizer consumption, energy use for agriculture, crop production, livestock production, fisheries production, 
agricultural value-added, and forestry area, respectively. While the “t” in each parameter represents the time 
measurement and ϑ1 − ϑ4 reveals the long-term effects of the independent factors on the response variable.

Furthermore, to examine the asymmetric effects, we focused on three critical variables (AGL, FC, and EUA), 
due to their substantial impact on GHG emissions. The (Eq.  3) employs a logarithmic transformation and 
differentiates between positive and negative variations in these variables to more accurately reflect their influence:

	

lGHGt = αt + γt + δ1lAGF −
t + δ2lAGF +

t + δ3lF C−
t + δ4lF C+

t + δ5lEUA−
t + δ6lEAU+

t

+ δ7lCP It + δ8lLP It + δ9LF Pt + δ10lAV Tt + δ11lF Lt + µt
� (3)

where l indicates the logarithmic transformation, α represents the intercept, γ expresses the trend effects,  
δ1toδ11 shows the variable’s coefficients, and µ indicates the error term at time t.

In addition, to examine the effects of the independent variables on GHG emissions, this study follows the 
methodology of64, and (Mujtaba & Jena84) to employ the NARDL techniques. This technique is an advanced 
econometric technique that was developed by Shin et al.85. This econometric method allows us to decompose 
the selected explanatory variables (agricultural land, fertilizer consumption, and energy used in agriculture) into 
their positive (lAGL+

t ; lF C+
t ; lEUA+

t ) and negative (lAGL−
t ; lF C−

t ; lEUA−
t ) components, as illustrated 

below:

	
lAGL+

t =
∑t

i=1
∆lAGL+

t + =
∑t

i=1
max (∆lAGLi, 0)� (4)

	
lAGL−

t =
∑t

i=1
∆lAGL−

t + =
∑t

i=1
min(∆lAGLi, 0)� (5)

	
lF C+

t =
∑t

i=1
∆lF C+

t + =
∑t

i=1
max (∆lF Ci, 0)� (6)

	
lF C−

t =
∑t

i=1
∆lF C+

t + =
∑t

i=1
min (∆lF Ci, 0)� (7)

	
lEUA+

t =
∑t

i=1
∆lEUA+

t + =
∑t

i=1
max (∆lEUAi, 0)� (8)

	
lEUA−

t =
∑t

i=1
∆lEUA−

t + =
∑t

i=1
min (∆lEUAi, 0)� (9)

The NARDL model is formulated using (Eq. 4 to 9) to incorporate both positive and negative shocks. Thus, the 
asymmetric model can be estimated according to the farmwork defined in Eq. (3).

	

∆lGHGt = β0 +
r∑

i=1

β1i∆lGHGt−1 +
r∑

i=1

β2i∆lAGL+
t−1 +

r∑
i=1

β3i∆lAGL−
t−1 +

r∑
i=1

β4i∆lFC+
t−1 +

r∑
i=1

β5i∆lFC−
t−1

+
r∑

i=1

β6i∆lEUA+
t−1 +

r∑
i=1

β7i∆lEUA−
t−1 +

r∑
i=1

β8i∆lCPIt−1 +
r∑

i=1

β9i∆lLPIt−1

r∑
i=1

β9i1 ∆lFPt−1

+
r∑

i=1

β10i∆AVAt−1 +
r∑

i=1

β11i∆FL−
t−1 + α1GHGt−1 + α+

2 AGLt−1 + α−
3 AGLt−1 + α+

4 FCt−1

+ α−
5 lFCt−1 + α+

6 lAEUt−1 + α−
7 lAEUt−1 + α8lCPIt−1 + α9lLPIt−1 + α11lFPt−1 + α12lAVAt−1

+ α13lFLt−1 + µt

� (10)

Likewise, to examine the short-run asymmetries using the Wald test in the context of both long- and short-run 
assessments. Here’s how present the ECM representation:

	

∆lGHGt =
r∑

i=1

δ1i∆GHGt−1 +
r∑

i=1

δ+
2i∆lAGL+

t−1 + δ−
2i∆lAGL−

t−1) +
r∑

i=1

δ+
3i∆lFC+

t−1 + δ−
3i∆lFC−

t−1)

+
r∑

i=1

δ+
4i∆lEUA+

t−1 + δ−
4i∆lEUA−

t−1) +
r∑

i=1

δ+
5i∆lCPIt−1 +

r∑
i=1

δ+
5i∆lLPIt−1 +

r∑
i=1

δ+
7i∆lFPt−1

+
r∑

i=1

δ+
8i∆lAVAt−1 +

r∑
i=1

δ+
9i∆lFlt−1δECMt−1 + µt

� (11)
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Result and discussion
Unit root test
To avoid errors in annual time series data analysis, the augmented dickey-fuller (ADF), phillips-perron (PP), 
and kwiatkowski-phillips-schmidt-shin (KPSS) unit root tests are applied to check the stationarity of the series 
to ensure that none of the underlying variables is stationary or integrated at I (2). The ADF and PP unit root 
test results in (Table 2). Confirm that GHG, FC, CPI, LPI, FP, and FL are non-stationary in levels but become 
stationary after first differencing. Furthermore, AGL for both ADF and PP tests remained stationary at the 1(0) 
level. In contrast, all underlying variables are stationary at the level except lnLPI and lnFL in KPSS unit root 
analysis.

Correlation analysis
In the study, we conducted a correlation analysis (Table 3) and the correlation results indicate significant 
relationships among variables impacting GHG emissions. lnGHG has a strong positive correlation with lnFC, 
and lnAVA shows a strong negative correlation with lnGHG, highlighting that efficiency and sustainable practices 
can reduce emissions. While lnAGL has a moderate positive correlation with lnGHG, it plays a less critical role. 
Overall, the findings emphasize the role of efficiency and controlled resource use in mitigating emissions.

The findings of the bound test for cointegration
Table 4 shows information about the NARDL bounds testing method for cointegrating relationships between 
variables. The bounds test F-statistic (7.998) is greater than the upper bound, which confirms the existence of a 
long-run relationship between the underlying variables.

NARDL and ARDL model findings
After confirming the cointegration relationship between the series of variables, the ARDL and NARDL models 
were used to unveil the impact of agricultural land, fertilizer consumption, agricultural energy, crop production, 
agricultural added value, fishery production, forestland and livestock production on GHG emissions. The 
results in Table 5 show that all explanatory variables with positive shocks have considerable and significant 
effects on GHG emissions. The correlation between agricultural land with positive shock (AGL+) and GHGs 
is substantial and positive, suggesting that agricultural land has a non-linear progressive influence on GHG 
emissions. Over the long term, every 1% expansion of agricultural land is associated with a significant increase 
in GHG emissions of 0.187%. On the other hand, agricultural land has a greater negative impact on GHGs. For 
every 1% reduction in agricultural land, GHG emissions can be significantly reduced by 0.316%. The results of 
the progressive impact of agricultural land on GHG emissions are consistent with19,46. Likewise, expanding the 
use of agricultural fertilizers could significantly increase GHG emissions. However, reducing fertilizer use can 

Variables lnGHG lnAGL lnFC lnEUA lnCPI lnLPI lnFP lnAVA lnFL

lnGHG 1

lnAGL 0.563* 1

lnFC 0.940*** 0.462 1

lnEUA 0.759*** 0.498* 0.868*** 1

lnCPI 0.880*** 0.446 0.847*** 0.768*** 1

lnLPI 0.916*** 0.301 0.847*** 0.877*** 0.660*** 1

lnFP 0.646** −0.070 0.790*** 0.577** 0.736** 0.881*** 1

lnAVA −0.980*** −0.479 −0.928*** −0.974*** −0.891*** −0.744*** −0.694*** 1

lnFL 0.780*** 0.475 0.30*** 0.860*** 0.756*** 0.740*** 0.687*** −0.894*** 1

Table 3.  Results of correlation analysis. (*p < 0.05, **p < 0.01, ***p < 0.001).

 

Variables

ADF PP KPSS

Level First difference Level First difference Level First difference

lnGHG 1.149 −6.665*** 0.962 −6.666*** 0.707*** 0.131*

lnAGL −6.646*** −6.033*** 1.924 −5.991*** 0.295*** 0.142**

lnFC −0.235 −5.099*** −2.027*** −4.936*** 0.658*** 0.152**

lnEUA −0.919 −4.559*** −1.654 −6.511*** 0.727*** 0.094

lnCPI 0.561 −7.641*** 3.88 −8.685*** 0.723*** 0.189**

lnLPI −2.507 −7.126*** −24.054 −5.367*** 0.677*** 0.126

lnFP 2.383 −4.089*** −4.977 −5.835*** 0.452*** 0.109***

lnAVA −0.809 −6.061*** −1.712 −7.671*** 0.729*** 0.500***

lnFL −1.775 −5.851*** −3.358** −5.853*** 0.732*** 0.150

Table 2.  Results of unit root test. *p < 0.10, **p < 0.05, **p < 0.01.
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significantly condense emissions. A 1% increase in fertilizer consumption is associated with a 0.463% increase in 
GHGs. On the other hand, a 1% reduction in fertilizer consumption can significantly reduce GHG emissions by 
0.092%. The results of the nonlinear asymptotic association between fertilizer consumption and GHG emissions 
are consistent with those46,86, and contrary to those47,87. The current findings suggest that increased use of 
chemical fertilizers in the agricultural sector may increase GHG emissions and lead to long-term environmental 
degradation. To sustain farms and reduce pollution, the excessive use of chemical fertilizers and pesticides 
in agriculture must be reduced70. In addition, the Chinese government should develop environmentally 
sustainable fertilizers to reduce GHG and increase crop yields88. Furthermore, the analysis results show that 
there is also a positive correlation between agricultural energy consumption and GHG emissions. For every 1% 
increase in agricultural energy consumption, GHG emissions will increase by 0.242%, for every 1% reduction 
in agricultural energy use, GHG emissions can be significantly reduced by 0.762%. The positive link between 
energy consumption and GHG emissions reflects China’s heavy reliance on fossil fuels, especially coal, which 
makes it a major contributor to global CO2 emissions. Reducing this impact requires transitioning to renewable 
energy and improving energy efficiency. This result is consistent with the results of89–91. Livestock production, 
crop production index, and fishery production also have significant positive correlations with GHG emissions. 
A 1% increase in the crop production index and fishery will lead to a significant increase in GHG emissions 
of 0.044 and 0.491% respectively. The positive correlation between crop and livestock production and GHG 
emissions is influenced by emissions generated during livestock digestion and manure management, as well 
as the soil management strategies employed in crop production. Adopting sustainable agriculture techniques 
is crucial for mitigating these emissions. 4692,93 support our results on the significant and favorable correlation 
of crop production, fisheries, and livestock production with GHG emissions. In addition, there is a significant 
positive correlation between agricultural value-added (AVA) and GHG emissions. For every 1% increase in 
agricultural value added, GHG emissions will significantly increase by 0.345%.94,95 support this result, as 
agriculture value added positively impacts GHG emissions because higher production often involves activities 

Variables
Model: lnGHG/lnAGL+, lnAGL−, lnFC+, lnFC−,
lnEUA+, lnEUA−, lnCPI, lnLPI, lnAVA, lnFL

Model: lnGHG/lnAGL, lnFC,
lnEUA, lnCPI, lnLPI, lnAVA, lnFL

ln AGL+
t−1 0.187* (0.009) 0.256* (0.002)

ln AGL−
t−1 −0.316* (-0.001) –

lnF C+
t−1 0.463* (0.009) 0.244* (0.003)

Ln F C−
t−1 −0.092* (-0.005) –

ln CP It−1 0.044* (0.003) 0.329* (0.002)

ln EUA+
t−1 0.242* (0.002) 0.243* (0.008)

ln EUA−
t−1 −0.762* (-0.008) –

lnLPIt-1 0.491** (0.025) 0.314* (0.000)

lnAVAt-1 0.345* (0.003) 0.428** (0.021)

lnFL 0.825* (0.000) 0.632*** (0.061)

Constant −4.192* (0.009) −5.437* (0.001)

Diagnostica test

R2 0.973 0.932

Adj R2 0.722 0.792

DW-statistics 1.848 1.343

Normality test 0.854 (0.344) 0.345 (0.202)

LM test 0.841 (0.467) 0.491 (0.428)

ARCH 0.269 (0.293) 0.206 (0.144)

Table 5.  Long-run linear and nonlinear consequences of relationships. The values in the parenthesis show the 
probability of the parameters. *p < 0.10, **p < 0.05, **p < 0.01.

 

Dep. var AIC lag F-statistics Result

lnGHG/lnAGL, lnFC, lnEUA, lnCPI, lnLPI, lnAVA, lnFL (Linear) 2 7.897* Co-integration

lnGHG/lnAGL+, lnAGL−, lnFC+, lnFC−, lnCPI, (Non-linear)

lnEUA+, lnEUA−, lnLPI, lnAVA, lnFL 2 8.099* Co-integration

Asymptotic critical values, Narayan (2005) I(0) I(1)

1% 4.594 5.904

5% 3.328 4.620

10% 2.608 3.922

Table 4.  ARDL and NARDL bound test result. *p < 0.10, **p < 0.05, **p < 0.01.
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like livestock farming and fertilizer use, which release greenhouse gases. This highlights the importance of 
adopting sustainable farming practices, but96 contradict it as mentioned that GHG can be reduced by adopting 
sustainable and advanced farming methods as high agriculture value added enough to support such practices. 
Furthermore, in the long run, forest land has a significant negative correlation with GHG emissions, with every 
1% increase in forest land associated with a 0.825% decrease in GHG emissions. This result supports the results 
of43,46,97. Increased investment in forests could reduce China’s GHG emissions, and using forests for farming is 
one possible way to control emissions.

Diagnostic test results are shown at the end of the (Table 5), reflecting that the model is robust and consistent. 
The R-squared and adjusted R-squared values present a reliable and significant model fit because the input 
variables are explained by variation. The results of LM and Jarque–Bera tests prove that the variables in the 
model are normally distributed and there is no serial correlation. This model does not have heteroscedasticity 
and fits the Ramsey function form well.

The results of asymmetric causality
Table 6 shows the short-term symmetric and asymmetric adjustment results, reflecting those positive shocks to 
agricultural land, energy use in agriculture, and fertility consumption can significantly contribute to greenhouse 
gas emissions. Negative shocks to agricultural land, energy use in agriculture, and fertility consumption can 
significantly reduce GHG emissions. Likewise, agriculture value addition can also significantly promote GHG 
emissions. However, crop production, livestock production, and forest land can significantly reduce emissions in 
the short term. The error correction mechanism (ECM) coefficient is −0.266, indicating that short-term shocks 
can be recovered at an annual growth rate of 26%.

Dynamic multiplier findings
The dynamic multiplier plots in Fig. 3, 4, and 5 support the results of the asymmetric analysis of long- and 
short-term correlations between agricultural land use, fertility use, agricultural energy use, and GHG emissions. 
A positive shock to the agricultural land can significantly promote GHG emission, while a negative shock to 
the agricultural land can reduce GHG emission, which supports the AGL dynamic multiplier graph, as shown 
in (Fig. 2), short-run inequality adjusts to equilibrium after about two years. Likewise, the asymmetry in the 
association between fertility consumption and GHG emission is also supported by the FC dynamic multiplier 
plot in (Fig. 3). A positive shock to the partial sum of FC can increase emissions, while a negative shock to the 
partial sum of FC can reduce GHG emissions, which can be observed in the FC dynamic multiplier plot. The 
dynamic multiplier diagram of energy use in agriculture also supports the long-term asymmetric relationship 
between energy use in agriculture and GHG emissions. The dynamic multiplier plot of the energy use in 
agriculture in (Fig. 4) verifies the result that positive shocks to the sum of EUA can increase GHG emissions, 
while a negative shock to the sum of EUA can condense GHG emissions.

In addition, to test the stability of the model, the recursive cumulative sum of squares (CUSUM) and recursive 
residual cumulative sum of squares (CUSUMSQ) tests were also used. The blue line in both plots represents the 

Variables

Model: lnGHG/lnAGL+, 
lnAGL−, lnFC+, lnFC−,
lnEUA+, lnEUA−, lnCPI, 
lnLPI, lnAVA, lnFL

Model: lnGHG/lnAGL, lnFC,
lnEUA, lnCPI, lnLPI, lnAVA, lnFL

ln AGL+
t−1 0.353* (0.006) 0.316* (0.004)

ln AGL−
t−1 −0.047* (0.006) –

ln F C+
t−1 0.450* (0.003) 0.354* (0.003)

ln F C−
t−1 −0.657* (0.009) –

ln CP It−1 −0.498* (00.4) 0.439* (0.002)

ln EUA+
t−1 0.860* (0.000) 0.463* (0.008)

ln EUA−
t−1 −0.512* (0.002) –

lnLPIt-1 −0.351** (0.030) 0.304* (0.004)

lnAVAt-1 0.345* (0.003) 0.439** (0.021)

lnFL −0.541* (0.069) 0.602*** (0.061)

ECTt-1 0.266 (0.000) 0.417* (0.008)

Diagnostica test

R2 0.803 0.462

Adj R2 0.832 0.402

DW-statistics 1.878 1.474

Normality test 0.654 (0.534) 0.109 (0.123)

LM test 0.431 (0.141) 0.189 (0.114)

ARCH 0.261 (0.133) 0.268 (0.193)

Table 6.  Short-run variable coefficient elasticity results. The values in the parenthesis (Prob.) show the 
probability of the parameters. *p < 0.10, **p < 0.05, **p < 0.01.
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Fig. 2.  Dynamic multipliers for agriculture land.

 

Fig. 3.  Dynamic multipliers for fertilizer consumption.
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residual values, while the red line represents the confidence level. (Fig. 5) shows the CUSUM and CUSUMSQ 
plots for the linear model at the 5% significance level, where the CUSUM and CUSUMSQ plots for the nonlinear 
model are shown in (Fig.  6). The sample data for the selected variables lie within the range, supporting the 
stability of the model.

Conclusion and policy implications
China is an emerging economy and one of the world’s largest emitters of GHGs, accounting for nearly 31% of 
global emissions. The agricultural sector, energy, and fertilizer use in agriculture are the main reasons for the 
increase in GHG emissions in China. To this end, this study used ARDL and NARDL techniques to empirically 
reveal the impact of agricultural land, fertilizer consumption, energy used in agriculture, livestock production 
index, crop production index, and fisheries production on China’s emissions from 1990 to 2020. The NARDL 
results indicate that with positive shock result of agriculture land to GHG emission is substantial and shows 
positive co-relation, it reveals that agriculture land has a non-linear progressive influence on emissions. On 
the other hand, negative shocks to agricultural land have a greater negative impact on the emissions of China. 
Likewise, expanding the use of agricultural fertilizers could significantly increase GHG emissions, and reducing 
fertilizer use can significantly condense emissions in the case of China. There is also a positive relationship 
between agricultural energy consumption and GHG emissions. The lower the energy use in agriculture, the 
lower the GHG emissions. Livestock production, crop production, and fishery production also have significant 
positive correlations with GHG emissions. The findings of the study also proved a significant positive correlation 
between AVA and GHG emission in the long run, forest land has a significant negative correlation with GHG 
emissions. The primary focus of the study is to investigate the effects of escalating GHG emissions from 
agricultural activities and promote sustainable practices in Chinese agriculture.

We propose some policy recommendations based on the study’s outcome as China’s agricultural sector 
heavily depends on practices such as excessive use of synthetic fertilizers, monoculture farming, and intensive 
livestock production, all of which contribute substantially to GHG emissions. This study recommends that 
policymakers in China strengthen the “green agricultural development practical action plan” by prioritizing the 
transition to sustainable farming practices. Efforts should focus on reducing dependence on chemical fertilizers 
and pesticides, aiming to mitigate their environmental impact and lower GHG emissions. Second, the country’s 
agricultural departments should implement a dual-control action plan that monitors both carbon emissions 
and energy consumption in the agriculture sector. This approach aims to reduce emissions while maintaining 
energy security, aligning with China’s broader sustainable development goals. In addition to this, energy 
consumption in China’s agriculture is considered an important source of GHG emissions. Converting fossil 
fuel energy to renewable energy will help achieve China’s long-term GHG emissions reduction goals. Third, 
to promote sustainable agriculture and reduce emissions, policymakers should encourage crop rotation and 

Fig. 4.  Dynamic multipliers for energy use in agriculture.
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diversification to enhance soil health and reduce dependency on chemical fertilizers. Additionally, conservation 
tillage practices should be promoted to sequester carbon in the soil and lower energy consumption. Finally, 
the Chinese government should adopt strong environmental and climate change policies and also prioritize 
forestland expansion, which can help maintain environmental quality and promote the development of a green 
economy. Implementing these guidelines will enable the agricultural sector to achieve substantial reductions in 
GHG emissions while fostering sustainable practices that enhance both environmental health and agricultural 
output.

Study limitations and future directions
This study has explored the strong dynamic relationship between agricultural land, fertilizer consumption, 
energy used in agriculture, livestock production, crop production, and fisheries production on China’s GHG 
emissions. Hence, this study identifies some limitations and future directions This research work only expresses 
the long-term nonlinear effects of land use in agriculture, fertilizer consumption, and agricultural energy use 
in Chinese agriculture on GHG emissions. Therefore, in the next step of research, it is important to study the 
nonlinearity impact of other variables, such as forest land, livestock production index, crop production index, 
and fisheries production on GHG emissions, because these all are main variables in agriculture and they have 
a direct and indirect contribution to carbon emissions. The total amount of fertilizers and pesticides should be 
analyzed to understand their significant impact on sustainable agricultural production and total agricultural 
GHG emissions. This study considers energy used in agriculture but needs to measure renewable and non-
renewable energy in Chinese agriculture. In the future, separate intercorrelated estimates are needed for 
agricultural land use and GHG emissions, renewable and non-renewable energy use and GHG emissions in 
agriculture; crop, livestock, and fishery production and GHG emissions; and forest land and GHG emissions.

Fig. 5.  CUSUM for linear model.
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Data availability
The data we used for our analysis are available publicly from reputable sources. Data on GHG emission in 
China, agriculture land, fertilizer consumption, crop production index, livestock production index, fisheries 
production, agriculture value-added, and forest land data were obtained from the World Development Indica-
tors (WDI) of World Bank (​h​t​t​p​s​:​​/​/​d​a​t​a​​b​a​n​k​.​w​​o​r​l​d​b​a​​n​k​.​o​r​​g​/​s​o​u​r​​c​e​/​w​o​r​​l​d​-​d​e​v​​e​l​o​p​m​e​n​t​-​i​n​d​i​c​a​t​o​r​s). The data 
on energy used in Chinese agriculture is sourced from the National Bureau of Statistics of China (NBSC) at 
https://www.stats.gov.cn. You can find these datasets online and obtain them for validation and further research.
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