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In the task of pavement distress recognition and classification, the complexity of the pavement 
environment, the small proportion of distresses in images, significant variation in distress scales, and 
the influence of features such as vehicles and traffic signs in the data make distress feature extraction 
challenging. This paper proposes a spectrum focus transformer (SFT) layer, which processes the signal 
spectrum and focuses on important frequency components. Initially, by thoroughly analyzing the 
frequency domain characteristics of image data, frequency value distribution information is obtained 
to achieve fine-tuning of different frequency components. Subsequently, frequency information and 
images are learned and weighted in the frequency domain, thereby enhancing the capability to capture 
pavement distress regions. Experiments conducted on the road pavement distress dataset revealed 
through heatmap analysis that distress regions received increased attention, achieving an accuracy of 
97.73%. This performance demonstrates a higher accuracy compared to other models.

With the rapid development of transportation infrastructure, pavement distress issues have become increasingly 
prominent, posing serious threats to traffic safety and road lifespan1. Traditional pavement distress detection 
methods primarily rely on manual inspections and periodic maintenance. These methods are not only inefficient 
and costly but also susceptible to human factors, leading to missed detections and false positives2–4. With the 
rapid advancement of technologies such as machine learning, the accuracy and efficiency of pavement distress 
detection can be improved, and detection costs can be reduced. Traditional machine learning algorithms, 
including support vector machines5 and random forests6, have been applied in pavement distress recognition. 
Currently, significant progress has been made in the application of deep learning for pavement distress detection. 
However, the varying sizes of different pavement distresses and complex backgrounds in images pose challenges. 
Researchers are working to improve deep learning algorithms for processing and analyzing pavement images to 
achieve automated distress recognition and classification.

For pavement distress recognition and classification, researchers proposed a two-step sequential automation 
process: detecting cracks in asphalt pavements and classifying their severity7. Due to the difficulty of collecting 
a large number of images with pavement distress, researchers introduced a novel few-shot pavement distress 
detection method based on metric learning. This method effectively learns new classes from a limited number 
of labeled samples and incorporates an attention mechanism to focus on the features required by the model8. 
However, the accuracy performance of the above-mentioned research is relatively poor. Given the complexity of 
pavement distress scenes, the researchers designed a target detection network named crackyolo9. The detection 
includes three types of common cracks found on rural roads: transverse cracks, longitudinal cracks, and alligator 
cracks. This network enhances crack localization and identification capabilities through custom convolutional 
and sampling operations, with the channel and spatial mixed attention mechanism introduced to enhance 
crack weight. However, this study has limitations, particularly in detecting targets in various scenarios, as well 
as efficiency issues. In Ref.10, the researchers utilized three-dimensional ground-penetrating radar and deep 
convolutional neural networks to achieve automatic classification of pavement distress. Liu et al.11 proposed a 
feature-enhanced multiscale vision transformer for road distress classification from ground penetrating radar 
images. The model used the feature-enhanced feature pyramid network and feature enrichment module to extract 
the distress better features on ground penetrating radar images. Although these studies focus on road distress 
classification from ground-penetrating radar images, their methods can also be extended to broader applications, 
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providing valuable insights for road distress fields. Yuan et al.12 proposed an innovative road distress classification 
model that capitalizes on sparse perception. Their method introduced a sparse feature extraction module using 
dilated convolution, tailored to capture and combine sparse features of different scales from the image. However, 
the model’s generalization ability and efficiency still leave room for improvement. In Ref.13, this study aimed to 
apply infrared thermography and deep learning to multiple -type pavement distress detection, providing a novel 
combined approach. However, the infrared image dataset is limited, which reduces its practical applicability. 
In Ref.14, researchers showed that an attention-based multi-scale convolutional neural network improved the 
automated classification of common distress and non-distress objects in pavement images, increasing robustness 
and further enhancing performance. One limitation of this study is that the approach provides a patch-level 
segmentation mask for pavement images, meaning that it only classifies small sections of the image, rather than 
providing a full-scale understanding of the entire pavement. Cai et al.15 conducted a comparison of the residual 
network(ResNet) with other classical models in terms of their effectiveness in classifying interlayer distresses in 
pavement. In comparison, the residual network demonstrated superior generalization performance. The various 
techniques proposed by the researchers have contributed to addressing road distress safety issues and have also 
opened up new avenues for further research.

Frequency domain analysis has long been a powerful tool in signal processing. Recently, applications 
integrating frequency analysis into deep learning have emerged. Yang et al.16 proposed a vibration-based 
method for identifying transverse cracks in asphalt pavements using a dual relative energy process with fast 
fourier transform(FFT) and discrete wavelet transform (DWT) for crack detection. In Ref.17, the authors applied 
wavelet transform and Radon neural networks, utilizing wavelet modulus calculations for pavement distress 
classification.

In Ref.18, the authors reconsidered global average pooling(GAP)from the frequency domain perspective. To 
address the limitation of insufficient feature information in existing channel attention methods, they extended 
GAP to a more general two-dimensional discrete cosine transform form, incorporating more frequency 
components to fully utilize the information. From this literature, we derived the idea of integrating frequency 
information from pavement distress data into the attention module. By applying FFT to transform the data into 
the frequency domain for analysis, we can obtain a global receptive field. This approach dynamically adjusts the 
frequency weights of the image, guiding the attention to focus on the most diagnostically significant frequency 
ranges, thereby enhancing the model’s ability to recognize pavement distresses. We named this design the 
spectral focus transformer (SFT). Using ResNet34 as the base framework, we integrated SFT into it for pavement 
distress recognition.

Methods
Dataset
The pavement distress dataset for the competition comes from the 2021 Global Open Data Application 
Innovation Competition. This dataset includes data captured by vehicle-mounted cameras, comprising a total 
of 14,000 pavement distress images. The training set provides annotated labels (distress types and bounding 
box locations), while the test set does not provide labels. In this study, to ensure consistency and simplify the 
classification task, we selected six distinct types of pavement distress from the training set, excluding images 
containing multiple distress types. These selected distress types are: Crack, Manhole, Net(Alligator Cracking), 
Pothole, Patch-Crack(Repaired Crack), and Patch-Net (Repaired Alligator Cracking). After data processing, a 
total of 5,325 images were obtained. The image annotation process was automated using the original dataset, 
and the dataset was then divided into training and validation sets in an 80:20 ratio. Table 1 provides the data 
distribution for different pavement distress categories.

Model structure
As shown in Fig. 1 , the framework of the proposed method consists of three main steps. Step one involves 
performing frequency domain processing on the input images to obtain spectral focus information. This 
information is incorporated into the Spectral Focus Transformer (SFT) as an additional input by computing the 
distribution of frequency values across intervals. Step two integrates SFT with ResNet34 for feature extraction. 
Both the input image information and the spectral focus information are fed into the neural network integrated 
with SFT. In the SFT, the frequency distribution information guides the model to focus on the important features 
of the image. Step three involves pavement distress classification. After feature extraction through the final 
residual block, global average pooling is used to reduce dimensions before inputting the data into the linear 
layer (i.e., the fully connected layer). Finally, the cross-entropy loss function automatically applies the softmax 

Class label Disease type Number

0 Crack 800

1 Manhole 2981

2 Net (alligator cracking) 123

3 Pothole 96

4 Patch-crack (repaired crack) 1120

5 Patch-Net (repaired alligator cracking) 205

Table 1.  Data category.
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function to calculate class probabilities, determining the pavement distress category. For additional details on 
the meanings of certain elements in the figure, please refer to the subsequent sections.

Spectrum focus block
FFT is an efficient and rapid algorithm for domain conversion. As a discrete Fourier transform algorithm, it was 
first introduced by Cooley and Tukey in 196519. FFT facilitates the conversion of images between the Fourier 
(i.e., frequency) domain and the spatial domain. Spectral domain transformation is performed by updating all 
pixels simultaneously, enabling FFT to help the model extend its receptive field to cover all pixels in the image, 
thereby achieving a global receptive field and enhancing the information correlation among all pixels.

The key component of the model is the frequency domain processing section, called the Spectrum Focus 
Block(SF Block). As shown in Fig. 2, the frequency domain processing involves two inputs: an Height*Width 
(HxW) matrix and a 1x16 array. It ultimately returns two outputs: one is the result matrix after frequency domain 
processing, and the other is the frequency array containing the number of frequency elements.

The process to obtain the freq array involves performing an FFT operation on the input matrix along the 
width dimension to obtain its frequency domain representation. Subsequently, the fast fourier transform 
frequency array generator operation is carried out to obtain the corresponding frequency values. Then, in the 
internal frequency counting operation, the frequency range is divided into 16 equally spaced intervals, and the 
number of frequency elements in each interval is computed. This results in the freq array.

The calculation of the result matrix involves applying the FFT operation to the input matrix. The input array 
is then normalized, and both results are passed into the interval frequency modulation process. Specifically, the 
process involves taking the matrix transformed into the frequency domain and obtaining values corresponding 
to the divided frequency intervals. These values are then multiplied element-wise with the normalized array 
to achieve the final result. The modulation is done along the final dimension, which is the width dimension, 
ensuring that only the elements in the corresponding intervals are modified. The modified Fourier coefficients 
are then subjected to an inverse FFT (IFFT) operation, and the real part of the inverse-transformed result is 
extracted to obtain the result matrix.

Fig. 2.  SF block.

 

Fig. 1.  Overview of the overall method.
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Spectrum focus transformer
The channel attention mechanism works by assigning weights to each feature channel, thereby emphasizing 
or suppressing the importance of information from different channels20. Drawing on the principles of channel 
attention mechanisms, we designed the SFT, which integrates elements of channel attention and frequency 
domain processing to create a frequency domain attention mechanism. This mechanism dynamically adjusts 
feature responses by learning the weights of historical frequency domain channels. This attention mechanism 
allows the network to focus on the most diagnostically significant frequency intervals, thereby enhancing the 
model’s ability to identify pavement defects.

As shown in Fig. 3, feature extraction that includes frequency information is achieved through two 
applications of the SF Block. In the figure, FA and RM represent the two output results of the SF Block from Fig. 
2: the frequency array and the result matrix, respectively.

Let the input feature map matrix with dimensions HxW be denoted as X, and let the input random array with 
dimensions 1x16 be denoted as R. After processing through the SF Block, only the FA output is selected to obtain 
the frequency value distribution information, denoted as F. The formula for this process is as follows:

	 F = F As(SF (X, R))� (1)

Where s represents the selection symbol.

After obtaining the frequency value distribution information F, feature extraction, nonlinear transformation, 
and feature mapping of the frequency domain information are performed using three 1x1 convolutions and 
two ReLU activation functions (as shown in Step 1 of Fig. 1, SFTConv layer). This process generates a frequency 
domain representation Q that is compatible with the input image. The feature map X and the frequency domain 
representation Q are then reintroduced into the SF Block for further processing. This time, only the RM output 
result is selected to obtain the final feature extraction map, denoted as Y. The calculation formula for this process 
is as follows:

	 Q = w3 ∗ r(w2 ∗ r(w1 ∗ F)) � (2)

	 Y = RMs(SF (Q, X)) � (3)

Among them, w1, w2, w3 represent the weights of the first, second, and third convolutional layers respectively, 
and r represents the RELU activation function.

The ResNet34 structure integrated with spectrum focus transformer
The experiment chooses to use the ResNet34 model as the basic framework structure21. The proposed SFT is 
integrated into this framework, referred to as the SFT layer. The detailed structure of Step 2 in Fig. 1 is shown 
in Fig. 4, which represents the overall model of ResNet-34 with SFT. The SFT layer is integrated between the 
Batch Norm layer and the Max Pool layer, following the initial convolution operation. This integration allows for 
immediate enrichment of the original feature maps with spectral information, enabling the network to prioritize 
and refine frequency components crucial for visual pattern recognition. This is beneficial for more advanced 
feature learning in subsequent network layers.

Results
Experimental details
The experimental framework version used is PaddlePaddle 3.0.0beta0, Python 3.10.10, with the runtime 
environment including a Tesla V100 GPU, 32 GB of RAM, a 4-core CPU, and 32 GB of video memory. During 
training, Cross-Entropy Loss is used as the criterion to measure the difference between the model’s output 

Fig. 3.  SFT.
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probability distribution and the true label distribution. The Adam optimizer is chosen for model parameter 
optimization, with a learning rate set to 0.001. The number of epochs is set to 100, and the batch size is set to 32.

Test results
As shown in Fig. 5, the model reaches stability around the 45th epoch, with an accuracy of approximately 96%. 
After training for 100 epochs, the accuracy on the test set reaches 97.73%, with a loss of about 0.1374. This 
performance is considered excellent for the recognition and classification tasks of different pavement defects in 
complex background road surface data.

T-Distributed Stochastic Neighbor Embedding(T-SNE) is a nonlinear dimensionality reduction technique 
used to visualize high-dimensional data by mapping it into a lower-dimensional space two-dimensional(2D) 
or three-dimensional(3D) while preserving relationships between similar data points. In our study, we applied 
T-SNE to visualize the clustering of different distress classes, helping us assess how well the model separates 
them. Figure 6 is the 2D visualization of T-SNE features, corresponding to step three of Fig. 1, and Fig. 7 shows 
the confusion matrix of pavement distress classification results . Analysis of the two figures shows that the model 
performs well for both multi-sample and few-sample categories. Using T-SNE technology22 for dimensionality 
reduction and visualization of the original and feature-extracted data, it is clear that the scattered original data 
points become more concentrated into distinct clusters after feature extraction.

Ablation experiments
We conducted several ablation experiments to evaluate the effectiveness of the SFT layer. Specifically, we 
compared the following models:ResNet-34, the baseline model without any attention mechanism; ResNet-34 
with SE Attention, the model enhanced with Squeeze-and-Excitation (SE) attention; and ResNet-34 with SFT, 
the model enhanced with the proposed Spectrum Focus Transformer (SFT) layer. Table 2 shows the results 
of Accuracy, Weighted average F1-score, Weighted average Recall, and Weighted average Average Precision 
obtained after evaluating each model after 100 epochs of training23.

Through the analysis of the results from the ablation experiments, it is evident that the inclusion of SFT 
significantly enhances performance. The SE attention module also has a positive effect. Specifically, the ResNet-34 
model with SFT shows an accuracy improvement of 0.98% compared to the ResNet-34 model without SFT.

Fig. 5.  Loss and accuracy of training and testing.

 

Fig. 4.  Model structure of ResNet34 with SFT.
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Model Accuracy F1-score Recall Precision

Resnet34 0.9675 0.9650 0.9651 0.9858

Resnet34+SE 0.9724 0.9653 0.9657 0.9861

Resnet34+SFT 0.9773 0.9679 0.9680 0.9937

Table 2.  Ablation experiments.

 

Fig. 7.  Confusion matrix.

 

Fig. 6.  T-SNE visualization. (a) Original data. (b) Model feature extraction results.
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Next, Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves were plotted to observe 
the performance of the model, as shown in Figs. 8 and 9 . Additionally, F1-scores for each class at a threshold 
of 0.5 were visualized in Fig. 10. The analysis reveals that the ROC curve AUC values for all classes in our 
model exceed 0.99, demonstrating excellent discrimination performance. However, the PR curves show that 
the average precision (AP) values for class 2 and class 3 are slightly lower compared to other classes. The ROC 
curves perform better than the PR curves, suggesting that the model is encountering class imbalance issues. 
Therefore, the F1-score bar chart was included to assess the performance across different classes, providing a 
clearer view of the model’s ability to handle class imbalance.By comparing the bar chart, we observe that our 

Fig. 10.  The F1-score bar chart. (a) Resnet34. (b) Resnet34+SE. (c) Resnet34+SFT.

 

Fig. 9.  The Precision-Recall curve. (a) Resnet34. (b) Resnet34+SE. (c) Resnet34+SFT.

 

Fig. 8.  The ROC curve. (a) Resnet34. (b) Resnet34+SE. (c) Resnet34+SFT.
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model performs more evenly across classes24,25. To ensure that the improvement in our model’s performance is 
not due to random fluctuations, we performed Bootstrap analysis26. By resampling 1000 times, we obtained the 
Bootstrap F1-score mean for the three ablation models as follows: 0.9650, 0.9653, and 0.9681, respectively. These 
results indicate that the improvements are effective and not random.

Feature map visualization
We visualized the frequency domain processing of feature maps by comparing images processed with FFT and 
those guided by frequency information, as shown in Fig. 11a,b. To facilitate observation, the images used FFTshift 
to move the low-frequency components to the center of the spectrum. Analysis of the image results shows that in 
the spectrum before frequency domain processing, the bright areas representing amplitude are concentrated in 
the central low-frequency part, indicating that low-frequency signals are predominant. This matches the original 
image information. After processing, it was observed that the energy in the amplitude spectrum spreads towards 
higher frequencies, indicating that high-frequency information, such as edge details, has been enhanced. This 
is consistent with the information in the original image. In the phase spectrum, we found that while the shape 
did not change significantly, the color distribution became more concentrated and clearer. This suggests that the 
processing method also enhanced the phase information, making structural details and edges in the image more 
prominent27,28. Figure 11c displays the feature maps of various channels after SFT processing, reflecting that 
image features are extracted with guidance from different frequency distribution information.

To observe the model’s attention distribution on the input image, we used the Class Activation Mapping 
(CAM) visualization technique29. The generated CAM maps are overlaid on the original image, with adjusted 
transparency to visually demonstrate the areas of focus for the model. This visualization was performed for 
models incorporating SE and SFT. As shown in the results of Fig. 12, SFT focuses more intently on the disease-
affected regions compared to SE, where the areas of attention are more concentrated. Due to the complexity of 
the background, both methods inevitably are influenced by background features. However, it can be observed 
that SFT is less affected by the background than SE.

Comparative experiment
We conducted a simple comparative experiment using the pavement damage dataset, comparing it with other 
commonly used classification models, including ResNet5021, DenseNet, and MobileNet30,31. All three models 
achieved high accuracy through techniques such as transfer learning. The results are shown in Table 3. In this 
study, we innovatively introduced the SFT frequency domain processing module, which effectively guides the 
model to focus more on pavement damage recognition by integrating additional frequency information, thereby 
further improving the model’s accuracy. The proposed model is approximately 81.3MB in size, similar to the 
model before modification, achieving improved accuracy with fewer parameters.

In practical applications, this model can be integrated with unmanned devices, in-vehicle systems, or 
road monitoring systems. Captured pavement images can be processed by the model for pavement damage 
identification and classification. This approach helps to alleviate the burden of manual inspection through 
automation and intelligent means32,33.

Fig. 11.  Feature map and spectrogram. (a) Before frequency domain processing. (b) After frequency domain 
processing. (c) Feature maps of each channel in SFT feature extraction.
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Discussion
Pavement distress classification plays a crucial role in road maintenance and protection. In this paper, we propose 
the integration of an SFT into ResNet34 for pavement distress classification, and validate the effectiveness of the 
model through a series of experiments.

In the test results, we used the t-SNE visualization of the pavement distress classification, which provides 
valuable insights into the clustering performance of the proposed model. Observing the results before and after 
the clustering, it is clear that the data points corresponding to different distress categories are well-separated, 
with minimal overlap between clusters. This indicates that the model has successfully learned distinct features 
for each type of distress, leading to clear and consistent classification. The effective clustering also suggests 
that the learned representations are robust and that the model is capable of distinguishing between various 
distress types with high accuracy. Combining the results with the confusion matrix, we observe that Class 1 
and Class 5 show the highest accuracy, performing the best among all classes. This indicates that the model has 
a particularly strong ability to classify these distress types. The confusion matrix also reveals that while certain 
distress categories are easier to classify, others show some misclassification, highlighting areas for further model 
improvement.

In the ablation study, we compared the results using ROC curves, PR curves, and F1-score bar charts. The PR 
curves, particularly for certain classes (such as class 2 and class 3), revealed noticeable performance discrepancies, 
indicating the presence of class imbalance within the dataset. In the presence of class imbalance within the data, 
the F1-score serves as a more comprehensive evaluation metric. To this end, we included bar charts illustrating 
the F1-score performance across different classes. The results demonstrate that our model achieves more 
balanced performance across all categories, with notable improvements, highlighting the effectiveness of the 
proposed method in pavement distress classification. We also performed Bootstrap analysis on the three ablation 
models to ensure that the improvements were not due to random fluctuations. After 1000 resampling iterations, 
the Bootstrap F1-score means confirmed that the performance gains are statistically reliable and not random.

In the feature map visualization experiment, we compared the results of the feature maps before and after 
frequency domain processing. The results indicate that incorporating frequency information enhances high-
frequency and phase details, thereby improving edge details and other fine-grained features of the image. 
Additionally, by comparing the heatmaps generated by SE and SFT models, we observed that both models are 
influenced by background information. However, our proposed model demonstrates a stronger focus on the 
distress areas, with reduced sensitivity to background noise. This suggests that our model provides more reliable 
guidance for pavement distress classification.

Conclusion
In this paper, we propose an SFT method that incorporates frequency distribution information and then 
integrates it into the ResNet34 model specifically for pavement damage classification. This approach achieved an 
accuracy of 97.73% on the pavement damage dataset.

Model DenseNet Resnet50 MobileNet Resnet34+SFT

Accuracy 97.00% 97.45% 97.67% 97.73%

Table 3.  Comparison results.

 

Fig. 12.  Heatmaps. (a) Original images. (b) SE heatmaps. (c) SFT heatmaps.
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Ablation experiments were conducted to compare ResNet34 with SFT against ResNet34 and ResNet34 with 
SE. The effectiveness of the SFT method was validated through evaluation metrics such as ROC curves, PR 
curves and F1-score bar chart.Visualized spectral and heatmaps were produced. The spectral diagrams of SFT 
were compared before and after processing in the frequency domain. Compared the feature heatmaps with 
added SE attention and those with added SFT. Both comparisons demonstrated that SFT plays a guiding role 
in focusing on road surface defect features.Comparative experiments were conducted with several common 
classification models to validate the effectiveness of the proposed model.

In future work, we plan to collect training data from more complex scenarios and apply transfer learning to 
reduce training complexity and optimize the model for better pavement damage classification.

Data availability
The data sources used in this article have been specified within the content. It can be accessed at ​h​t​t​p​s​:​/​/​a​i​s​t​u​d​i​
o​.​b​a​i​d​u​.​c​o​m​/​d​a​t​a​s​e​t​d​e​t​a​i​l​/​2​9​6​9​2​5​​​​​. If you want to request the complete dataset and code, please email the ​c​o​r​r​e​
s​p​o​n​d​i​n​g author.
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