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Predicting wind speed simultaneously at multiple heights, particularly at 10 and 100 metres (m), 
presents unique challenges due to diverse influences. At lower altitudes, wind speed is significantly 
affected by surface factors including roughness, vegetation, and man-made structures, causing sharp 
fluctuations, while at higher altitudes, it is primarily influenced by atmospheric conditions, resulting in 
smoother flow patterns. Traditional models often require separate systems for each altitude, limiting 
their efficiency and accuracy. This study introduces the brain emotional learning based on basic and 
functional memories (BELBFM) model, inspired by adaptive emotional learning mechanisms in the 
mammalian brain, to predict wind speeds at both altitudes simultaneously. Using ERA5 reanalysis 
data, BELBFM effectively captures the nonlinear dynamics of wind behavior. Evaluation with data 
from the Persian Gulf demonstrates BELBFM’s high accuracy, enhancing predictive capabilities for 
applications in renewable energy and structural engineering. This unified model provides a robust and 
efficient solution for adaptive wind forecasting.

Keywords  Wind speed modeling, Brain emotional learning model, Basic memory, Functional memory, 
Machine learning

Wind speed modeling is crucial in meteorology, with significant applications in optimizing renewable energy, 
designing robust structures, and improving weather forecasting models1,2. Accurate prediction of wind speeds 
at altitudes of 10 and 100 m is essential for optimizing wind turbine performance, designing robust structures, 
and enhancing weather prediction models3,4.Despite advancements in the field, simultaneously predicting wind 
speeds at these two heights remains a challenging problem due to the distinct atmospheric dynamics involved5,6.

At 10 m, wind speed is heavily influenced by surface roughness and obstacles like buildings, trees, and terrain7. 
These factors create localized turbulence and variability, resulting in less predictable wind patterns. Conversely, 
at 100 m, wind speed is less affected by surface obstructions, leading to a more stable and consistent profile8,9. 
The differences in atmospheric conditions at these altitudes necessitate a modeling approach that considers the 
unique dynamics of each altitude.

Wind speed modeling at various heights has been explored using diverse methodologies, ranging from 
traditional numerical weather prediction (NWP) models to advanced machine learning techniques.

NWP models rely on physical principles and mathematical equations to simulate atmospheric processes10. 
Examples include widely used models such as WRF and ECMWF11,12. NWP models provide detailed and 
accurate forecasts but are computationally intensive, requiring extensive data sets and high computational 
power13,14. Despite their success in predicting wind speeds, their high computational cost limits flexibility and 
accessibility12,15.

Computational fluid dynamics (CFD) models are physics-based models simulate fluid flows and their 
interaction with surfaces, making them effective for studying wind behavior around complex structures like 
buildings and turbines16. While CFD models can capture detailed flow patterns and turbulence, they are 
computationally demanding and require specialized resources. They are typically limited to localized studies or 
specific scenarios17,18.

Machine learning (ML) techniques, such as artificial neural networks (ANN), support vector machines 
(SVM), and deep learning models, have gained popularity for modeling complex, nonlinear relationships in 
large datasets19,20. Deep learning models like CNNs and RNNs are particularly effective in identifying patterns in 
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wind speed data21,22. These ML models can adapt and improve over time, but they are computationally intensive 
and difficult to interpret23,24.

Hybrid approaches combining physics-based models with machine learning are also being explored. These 
models leverage the detailed understanding from NWP and CFD models along with the adaptability of ML 
techniques. While hybrid models can improve forecasting accuracy and reduce computational demands, they 
present challenges in integrating and balancing the different modeling approaches25,26.

Despite advancements in traditional and machine learning methods, predicting wind speeds at multiple 
heights continues to pose challenges. Traditional models like NWP and CFD are effective but computationally 
demanding and inflexible17,18.ML models, while promising, struggle to provide simultaneous predictions at 
multiple altitudes and often lack interpretability23,24. Hybrid models, which combine data-driven27 and physics-
based approaches, offer improved accuracy but still face challenges in efficiency and generalization across various 
conditions25,26. Thus, there is a need for a unified model capable of predicting wind speeds at both 10 and 100 m, 
leveraging advanced computing while addressing the limitations of current models.

To address these challenges, this study introduces the brain emotional learning based on basic and functional 
memories (BELBFM) model, inspired by the emotional learning mechanisms of the mammalian brain. BELBFM 
leverages basic and functional memories to create an adaptive framework for modeling wind behavior. By 
integrating inputs from sensory, thalamic, cortical, amygdala, and orbitofrontal components, the model captures 
the complexities of wind speed dynamics with enhanced accuracy and computational efficiency.

The contributions of this study are as follows:

•	 Unified dual-height modeling: BELBFM predicts wind speeds at both 10 and 100 m, addressing the distinct 
atmospheric dynamics at these heights.

•	 Innovative methodology: The model employs an ensemble learning framework, combining outputs from 
various memory units trained on layered wind speed data, optimized for performance.

•	 Efficient training: A correlation-based data pruning technique significantly reduces the training dataset, en-
hancing computational efficiency without compromising accuracy.

•	 Real-world applicability: The model demonstrates potential for applications in renewable energy manage-
ment, weather forecasting, and disaster preparedness.

By addressing the limitations of existing methods, BELBFM provides a novel solution for simultaneous wind 
speed prediction at multiple altitudes. The rest of the paper is structured as follows: Sect.  2 introduces the 
proposed model, Sect. 3 details its implementation, Sect. 4 presents the results, and Sect. 5 discusses the findings 
and concludes the study.

Methodology: brain emotional learning based on basic and functional memories 
(BELBFM)
Over the past three decades, a novel approach inspired by the mammalian brain’s emotional learning 
mechanisms has been developed for modeling and forecasting complex nonlinear systems28. Brain Emotional 
Learning-Based Models (BELMs) stem from neuroscience, psychology, AI, and computational modeling29. 
Psychologists like John Watson and neuroscientists such as Joseph LeDoux, who studied the amygdala’s role in 
fear conditioning, laid the groundwork for this field30. In 2001, Balkenius and Morén introduced a computational 
model of the interaction between the amygdala and orbitofrontal cortex in emotional conditioning as the first 
BELM31. This model laid the foundation for further advancements. In 2004, Lucas and his team introduced 
BELBIC (brain emotional learning-based intelligent controller)32, which was applied to domains such as 
washing machine control33 and dynamic system prediction34. Subsequent improvements enabled applications 
in intelligent control, prediction, and emotional learning. For instance, BELMs have been used for DC motor 
speed control35, earthquake prediction36, emotion recognition37,38, and Alzheimer’s diagnosis39. BELMs have 
also been integrated with other intelligent methods, such as fuzzy neural networks to enhance performance40. 
Recent developments include applications in humanoid robots41, active noise cancellation systems42, and time-
series prediction43. Hybrid models combining BELMs with deep learning and fuzzy techniques have further 
expanded their real-world applicability38,44. From simulating brain processes to addressing complex systems, 
BELMs have evolved into powerful tools for tackling increasingly sophisticated challenges when combined with 
modern AI techniques.

As mentioned before, various computational models have been inspired by the human brain. One of 
these important models is the amygdala-orbitofrontal subsystem model45. The amygdala-orbitofrontal 
subsystem, which is the main basis of many computational models, has a simple structure. As shown in Fig. 
1, this subsystem consists of four interconnected components: the sensory cortex, thalamus, amygdala, and 
orbitofrontal cortex. Sensory inputs are processed through the thalamus and sensory cortex before reaching the 
amygdala and orbitofrontal cortex. The amygdala generates emotional responses (E), while the orbitofrontal 
cortex modulates these responses based on feedback (REW) to refine decision-making and control in dynamic 
environments. Various architectures of the amygdala-orbitofrontal subsystem have been presented and used in 
above mentioned applications.

BELMs and their advancements represent a significant evolution in computational modeling, offering robust 
solutions for addressing complex, real-world challenges.

Building on BELM advancements, this paper suggests Brain Emotional Learning Based on Basic and 
Functional Memories (BELBFM) as a novel approach to the amygdala-orbitofrontal subsystem along with 
specialized memory for amygdala and orbitofrontal parts to model wind speeds simultaneously at 10 and 100 m. 
The architecture of the proposed model (depicted in Fig. 2) consists of five main components: Sensory input (SI), 
Thalamus (TH), Sensory cortex (SC), Amygdala (AMIG), and Orbitofrontal cortex (OFC).
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•	 SI: Receives and labels input signals (wind components u and v) for wind speeds at both 10 and 100 m.
•	 TH: Calculates wind speeds at both altitudes, then passes these results to the SC block. Additionally, it sends 

an output indicating the wind speed type (10 or 100 m) to the F unit in the AMIG.
•	 SC: Generates input-target vectors required for training, evaluation, and exploitation phases and sends them 

to both the OFC and AMIG blocks.

Fig. 2.  Architecture of the proposed BELBFM model, illustrating the five main components: Sensory 
input (SI), Thalamus (TH), Sensory cortex (SC), Amygdala (AMIG), and Orbitofrontal cortex (OFC). Each 
component is designed to process and integrate input data for wind speed prediction at multiple altitudes by 
utilizing both basic and functional memories. This architecture leverages emotional learning mechanisms to 
enhance prediction accuracy and adaptability.

 

Fig. 1.  The graphical description of amygdala orbitofrontal subsystem45.
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•	 OFC: Includes two basic memory units (O1 and O2) and two functional memory units (WO1 and WO2).
•	 AMIG: Contains a basic memory unit (A), a functional memory unit (WA), and a fusion unit (F). Basic mem-

ory units are trained with data from the SC block, while functional memory units store performance history 
based on error rates. The F unit integrates the results from the basic and functional memory units.

This architecture emulates emotional learning processes and aims to enhance wind speed prediction accuracy by 
combining diverse memory types and leveraging past performance.

BELBFM implementation
Main dataset
This study relies on atmospheric data obtained from the ERA5 reanalysis dataset. The ERA5 dataset, developed 
by the European centre for medium-range weather forecasts (ECMWF), provides a detailed picture of Earth’s 
atmosphere since 1940. This dataset, with a high resolution of 0.25 degrees and hourly updates, provides detailed 
atmospheric data that captures even small-scale wind variations, which are critical for precise forecasting. 
In the equatorial region, each grid cell represents an area of approximately 29 × 29 km46. The focus is on the 
u-component and v-component of wind speed at 10 and 100 m above ground level, measured in meters per 
second, to calculate surface wind speed.

Feature selection
In this study, a neighborhood-based approach for feature selection was employed, considering the influence of 
neighboring cells on wind speed at specific locations. The neighborhood-based pattern (NBP) ensures systematic 
data collection across the entire area, providing comprehensive spatial coverage of wind speeds.

To extract relevant features from the wind speed data, an effective NBP must be defined. As shown in 
Fig. 3, various cellular patterns, such as 3 × 3, 5 × 5, and 7 × 7, can be used to identify the appropriate features. 
Wind patterns often undergo significant variations over short distances due to topographical features such as 
mountains and valleys. Using larger cellular patterns (e.g., 7 × 7) gathers more information from neighboring 
points, enabling the model to better capture complex and extensive wind patterns that may influence wind speed 
at the central point. However, larger cellular patterns incur higher computational costs and longer processing 
times. Conversely, modeling with smaller grids (e.g., 3 × 3) offers lower computational costs and requires less 
processing time and resources. However, it may fail to capture spatial details effectively, reducing prediction 
accuracy.

To balance accuracy, complexity, and computational efficiency, larger grids can be utilized in a pruned 
manner. With a simple argument, it can be assumed that the cellular layers closer to the center of the pattern have 
the greatest effect on the central cell of the pattern. The cells located in the farther layers of the cellular network 
can be pruned alternately. This selection method ensures that the wind effect in this layer is distributed evenly, 
with a gradual decrease from the cells closer to the center to the more distant cells, while the information from 
the neighboring cells closer to the center, which have a stronger wind effect, remains prioritized.

In this study, a pruned 5 × 5 grid pattern is employed, as illustrated in     (Fig. 4). While a regular 5 × 5 pattern 
includes 25 features, the pruned version reduces this number to 17. Feature vectors based on this pruned pattern 
are constructed according to Eq. (1). In this equation, C1(i)

(t) indicates the value of wind speed in the middle cell 

at time t. The i indicates the position of C1(i)
(t) in the grid of database. C2(i)

(t) to CX
(i)
(t) represent the values of 

Fig. 3.  Cellular patterns for neighborhood-based feature selection. (a) is a 3 × 3 pattern, (b) is a 5 × 5 pattern, 
and (c) is a 7 × 7 pattern.
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wind speed in the neighboring cells of C1(i)
(t) in the neighborhood-based pattern. C1(i)

(t+1) indicates the value 
of wind speed in the middle cell at time t + 1 as the target.

	
F eature V ector

(i)
(t) :

{
Inputs = [C1(i)

(t), C2(i)
(t), . . . , C29(i)

(t)]
T arget = C1(i)

(t+1)
� (1)

Region and time range selection
The Persian Gulf (PG) is a shallow sea bordered by the mountainous coastlines of Iran and the flat shores of the 
Arabian Peninsula, with an average depth of only 35 m, reaching up to 180 m in the Northern part47. Positioned 
in a subtropical high-pressure zone, the PG experiences a dry climate characterized by low rainfall and high 
evaporation, making it particularly vulnerable to the impacts of climate change48. The PG’s climate is influenced 
by Mediterranean weather systems and the Indian monsoon, with two main seasons (summer and winter) and 
brief spring and fall transitions49,50.

One of the key climatic features of the PG is the presence of shamal winds. Shamal winds are a strong 
northwesterly wind that blows year-round, significantly affecting the region’s weather. These winds exhibit 
distinct patterns in summer and winter51. During late spring, low-pressure thermal systems form over southern 
Iran and Saudi Arabia, while a high-pressure ridge extends from the Mediterranean eastward, creating a pressure 
gradient that generates shamal winds. In winter (November to March), these winds, linked to mid-latitude 
weather systems, are stronger, reaching speeds of 15–20  m per second, leading to dust storms and reduced 
visibility. Winter shamal winds are more intense than those in summer, influencing the region’s precipitation-
evaporation balance50,52.

Given the distinct seasonal patterns of shamal winds and their significant climatic impact, the PG serves as 
an ideal location for this research. Figure 5 shows the PG region. Data from 2001 to 2020 for the PG region (23° 
to 31°N, 47° to 59°E) were used for training and testing sets, while data from 2021 to 2023 were employed to 
evaluate the model’s performance across different time periods and locations.

Fig. 4.  Selected features in the 5 × 5 grid used for generating the input vector.
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Train and test datasets generation
We retrieved U and V wind component data from the ERA5 dataset to calculate wind speed in meters per 
second. Using the neighborhood model described in the “Feature Selection” section, input-target vector pairs 
were extracted from the wind speed data. The initial training dataset consisted of approximately 350 million 
records for the PG region, spanning the years 2001 to 2020.

The large size of the training dataset presents a significant challenge for the modeling process. Record pruning 
is a technique designed to reduce the size of large training datasets by removing redundant records53. This 
approach involves analyzing feature vectors to identify and eliminate those that are highly correlated. Highly 
correlated feature vectors can introduce redundancy and provide little to no additional information to the 
model. By pruning these vectors, the dataset is refined to retain only the most informative and unique features.

In this study, a correlation-based pruning approach was employed, utilizing the Spearman correlation 
coefficient. This coefficient measures both the strength and direction of monotonic relationships between 
records, making it particularly suitable for identifying highly representative records within the dataset. The 
process is as follows:

	a)	� A threshold value between 0 and 1 is determined.
	b)	� The Spearman correlation coefficient of each record is calculated against the entire dataset.
	c)	� Records with a maximum absolute correlation coefficient value less than or equal to the threshold are re-

tained as training records, while the remaining records are designated as testing records.

To apply the record pruning technique, a threshold value of 0.55 for the Spearman correlation coefficient was 
determined through a trial-and-error approach. After the pruning process, the number of records in the training 
dataset was reduced from approximately 350 million to 242,628 records—less than 0.07% of the original dataset 
size. The reduced dataset was then used as the training dataset, while the remaining records were designated as 
the test dataset.

Additionally, to ensure the model’s robustness and generalizability, a separate test dataset was created 
using data from a different time period (2021 to 2023) that was excluded from the training dataset. Detailed 
descriptions of the training and test datasets are provided in (Table 1).

Model generation
Input labeling
Input signals are received in the SI block and labeled based on Eq.  (2), where SIS

(t) represents the wind 
components (u and v) corresponding to 10-meter and 100-meter speeds at time t.

Fig. 5.  Region of the persian gulf (23° to 31°N, 47° to 59°E).
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SIS
(t) :




v10(t)
u10(t)
v100(t)
u100(t)

� (2)

Wind speed calculation in TH block
In the TH block, using Eqs. (3), 10 and 100 m wind speeds are calculated from the labeled wind components.

	

T HS
(t) :




Speed_10(t) =
√

u102
(t) + v102

(t)

Speed_100(t) =
√

u1002
(t) + v1002

(t)

� (3)

Input-target vector generation
The SC block generates the input-target vectors needed for training and evaluation based on Fig. 4 and Eq. (4) 
to (6). Subsequently, SCO1

(t)  and SCO2
(t) ​ are sent to the OFC, and SCA

(t) is sent to the AMIG block. In these 
equations, the values of C i

t are equivalent to the wind speeds at the positions specified in (Fig. 4).

	
SCO1

(t) =
{

Input V ector : [C1
t , . . . , C17

t ]
T arget : C1

t+1

}
with Speed 10 data� (4)

	
SCO2

(t) =
{

Input V ector : [C1
t , . . . , C17

t ]
T arget : C1

t+1

}
with Speed 100 data� (5)

	
SCA

(t) =
{

Input V ector : [C1
t , . . . , C17

t ]
T arget : C1

t+1

}
with both Speed 10 and 100 data� (6)

Basic memory units generation
Multilayer neural network models were used to create the basic memory units, labeled O1, O2, and A. These 
models were trained with Train 1, Train 2, and Train 3 datasets, respectively (see Table 1). To achieve the best 
models, a range of hyperparameters was explored according to (Table  2). Additionally, Table  2 shows the 
hyperparameters of the best models for basic memories O1, O2, and A.

Hyperparameter Search range O1 basic memory model O2 basic memory model A masic memory model

Number of fully connected layers 1–3 2 3 2

Activation function ReLU, tanh, sigmoid, none Tanh ReLU Tanh

Standardize data Yes, no No Yes Yes

Regularization strength (lambda) 0 to 0.001 0.000152 0.0000350 0.000036

First layer size 1–300 150 200 120

Second layer size 1–300 100 150 80

Third layer size 1–300 N/A 50 N/A

Iteration Limit N/A 1000 1000 1000

Model evaluation method K-fold cross-validation (K = 5) K = 5 K = 5 K = 5

Optimizer Bayesian optimizer (BO), none BO BO BO

Table 2.  The range of searched hyperparameters and the architecture of the best models.

 

Region name Latitude longitude Date range Dataset name Speed range (m/s) The number of records Used data

Persian gulf

Lat:
23 to 31

1-Jan-01
to
31-Dec-20

Train 1 0.0030 to 16.6185 129,032 Wind speed 10 - pruned

Train 2 0.0017 to 32.3132 113,596 Wind speed 100 - pruned

Train 3 0.0017 to 32.3132 242,628 Wind speed 10 & 100 - pruned

1-Jan-01
to
31-Dec-20

Test 1 0.0004 to 25.9449 175,300,000 Wind speed 10 - remained

Long:
47 to 59

Test 2 0.0005 to 34.0515 175,300,000 Wind speed 100 - remained

Test 3 0.0004 to 34.0515 350,600,000 Wind speed 10 & 100 - remained

1-Jan-21
to
31-Dec-23

Test 4 0.0004 to 18.3023 26,277,000 Wind speed 10

Test 5 0.0011 to 23.0856 26,277,000 Wind speed 100

Test 6 0.0004 to 23.0856 52,554,000 Wind speed 10 & 100

Table 1.  Description of used datasets.
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Generation of functional memory units
Evaluating the performance of machine learning models is essential. In this research, we use several error 
metrics: Standard deviation of error (SDE), Mean square error (MSE), Root mean square error (RMSE), Mean 
absolute error (MAE), Mean absolute percentage error (MAPE), and coefficient of determination (R-squared, or 
R2). SDE measures the dispersion of errors between predicted and actual values. A lower SDE indicates better 
model accuracy and stability54. MSE is the average of squared differences between predicted and actual values, 
with smaller values indicating better accuracy. It is sensitive to outliers due to the squaring of errors55. RMSE 
is similar to MSE but represents the error in the same units as the data. It penalizes larger errors more heavily 
and provides an average measure of error56. MAE measures the average absolute difference between predicted 
and actual values. It is easy to interpret but less sensitive to large errors compared to RMSE57. MAPE expresses 
forecast accuracy as a percentage, which makes it easy to understand. A lower MAPE indicates better accuracy. 
It does not account for the direction of errors (over or under predictions)54,55. R2 is a statistical measure that 
represents the proportion of the variance in the dependent variable that can be predicted from the independent 
variables in a regression model. In other words, it indicates how well the independent variables explain the 
variability of the dependent variable. While a high R2 suggests a good fit, it does not necessarily mean the model 
is perfect or the best one. It is possible for a model to have a high R2 but still not be ideal due to overfitting, 
where the model becomes too complex for the data. For this reason, R2 alone is usually not sufficient to evaluate 
models58.

To evaluate the performance of basic memory units, these metrics (SDE, MAE, MSE, RMSE, and MAPE) are 
applied to wind speed data at heights of 10 m and 100 m. Performance coefficients (W) are calculated for each 
basic memory unit (O1, O2, and A) and are updated as the error metrics change, reflecting the predictive ability 
of each unit.

To calculate the values of the performance coefficients in the functional memory units WO1, WO2, and WA, 
the trained models {X} were evaluated with the data from the Test 1 and Test 2 datasets (see Table 1). Finally, the 
performance coefficients of the functional memories are calculated using Eq. (7) to (9), where ZS

X  is the value 
of the error metric {Z} for the basic memory unit {X} and wind speed {S}.

	
Y Si

Xj
= 1 −

(
ZSi

Xj

/
j=3∑
j=1

ZSi
Xj

)
� (7)

	
T Si

Xj
= min

X
(ZSi

X ) +
(

Y Si
Xj

− min
X

(Y Si
X )/max

X
(Y Si

X ) − min
X

(Y Si
X )

)
� (8)

	
W (Z)Si

Xj
= T Si

Xj

/
j=3∑
j=1

T Si
Xj

� (9)

According to equations (10) to (12), each functional memory unit holds ten performance coefficients. Table 5 
shows the values of the performance coefficients for functional memory units.

	

W O1t =


 W

(ST DEO1
S10)

t W
(MAEO1

S10)
t W

(MSEO1
S10)

t W
(RMSEO1

S10)
t W

(MAP EO1
S10)

t

W
(ST DEO1

S100)
t W

(MAEO1
S100)

t W
(MSEO1

S100)
t W

(RMSEO1
S100)

t W
(MAP EO1

S100)
t


� (10)

	

W O2t =


 W

(ST DEO2
S10)

t W
(MAEO2

S10)
t W

(MSEO2
S10)

t W
(RMSEO2

S10)
t W

(MAP EO2
S10)

t

W
(ST DEO2

S100)
t W

(MAEO2
S100)

t W
(MSEO2

S100)
t W

(RMSEO2
S100)

t W
(MAP EO2

S100)
t


� (11)

	

W At =


 W

(ST DEA
S10)

t W
(MAEA

S10)
t W

(MSEA
S10)

t W
(RMSEA

S10)
t W

(MAP EA
S10)

t

W
(ST DEA

S100)
t W

(MAEA
S100)

t W
(MSEA

S100)
t W

(RMSEA
S100)

t W
(MAP EA

S100)
t


� (12)

Fusion of the results
In Eq. (9), each performance coefficient is constrained between zero and one, and the sum of the performance 
coefficients for each error metric {Z} and wind speed {S} equals one. This approach allows for separately 
calculating the combined outputs of the basic and functional memory units based on each error metric and 
wind speed. The model’s final output, represented by the F unit in the AMIG block, for each input with wind 
speed {S} at time t is calculated by averaging these combined outputs, as shown in equations (13) through (18).

	 F
(ST DES)
t = O1t*W O1(ST DEO1

S )
t + O2t*W O2(ST DEO2

S )
t + At*W A

(ST DEA
S )

t
� (13)

	 F
(MAES)
t = O1t*W O1(MAEO1

S )
t + O2t*W O2(MAEO2

S )
t + At*W A

(MAEA
S )

t
� (14)

	 F
(MSES)
t = O1t*W O1(MSEO1

S )
t + O2t*W O2(MSEO2

S )
t + At*W A

(MSEA
S )

t
� (15)

	 F
(RMSES)
t = O1t*W O1(RMSEO1

S )
t + O2t*W O2(RMSEO2

S )
t + At*W A

(RMSEA
S )

t
� (16)
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	 F
(MAP ES)
t = O1t*W O1(MAP EO1

S )
t + O2t*W O2(MAP EO2

S )
t + At*W A

(MAP EA
S )

t
� (17)

	 F S
t = (F (ST DES)

t + F
(MAES)
t + F

(MSES)
t + F

(RMSES)
t + F

(MAP ES)
t )/5� (18)

The process outlined in equations (13) through (18) to generate the final model output is summarized in Eq. (19):

	
F S

t =
(∑

O1t*W O1S
t +

∑
O2t*W O2S

t +
∑

At*W AS
t

)
/5� (19)

Model exploitation
After the training phase, the model advances to deployment. During deployment, similar to training, the 
input signal passes through the SI and TH blocks before reaching the SC block. However, with new data for 
predictions, the SC block processes a single feature vector, as described in Eq. (20).

	 SCt = Input V ector :
[
C1

t , . . . , C17
t

]
� (20)

The feature vector SCt is then sent to the basic memory units O1, O2, and A, and the outputs of these units are 
forwarded to the F unit. In the F unit, the final result is computed using Eq. (18) or Eq. (19).

Brief overview of the BELBFM components and interactions
Table 3 provides a brief description of the BELBFM blocks and units, along with their role, inputs and outputs. 
Furthermore, to better understand how the BELBFM model works, the following pseudo-code is provided:

•	 Input: U10, V10, U100, V100 (wind components at 10 and 100 m heights).
•	 Output: Predicted wind speeds (S10, S100).

Initial preparation

	a)	� Define the study region and time range.
	b)	� Select the grid-based database with wind speed data (e.g., ERA5 with hourly updates).
	c)	� Define a neighborhood-based pattern to generate feature vectors (e.g., a 5 × 5 grid).

Feature extraction

	a)	� Load the ERA5 reanalysis dataset.
	b)	� Extract the U and V wind components at 10 and 100 m heights.
	c)	� Generate labeled input signals in SI block (U10, V10, U100, V100).
	d)	� Calculate wind speed at both altitudes in TH block.
	e)	� Extract input-target vectors based on defined neighborhood-based pattern in SC block.

Model training

	a)	� Split input-target vectors to generate train and test datasets:

	i.	� Create train and test datasets based on a correlation-based pruning approach.
	ii.	� Generate extra test datasets for evaluation of the final model.

	b)	� Train basic memory units:

Block Equation Unit Role Inputs Output

Sensory input
(SC) (2) – Receives and labels input signals V10, U10, V100, U100 SIS

t

Thalamus
(TH) (3) – Generates wind speed values SIS

t T HS
t

Sensory cortex (SC) (4) to (6) – Generates and distributes input-target vectors T HS
t SCO1

t , SCO2
t , SCA

t

Orbitofrontal cortex
(OFC)

MLP model O1 Basic memory unit trained on 10 m wind speed data SCO1
t O1t

MLP model O2 Basic memory unit trained on 100 m wind speed data SCO2
t O2t

(10) WO1 Functional memory associated with O1 Z
(O1,S)
t

W O1t

(11) WO2 Functional memory associated with O2 Z
(O2,S)
t

W O2t

Amygdala
(AMIG)

MLP model A Basic memory unit trained on both 10 and 100 m wind speed data SCA
t At

(12) WA Functional memory associated with A Z
(A,S)
t

W At

(18) or (19) F Fuses the results to generate the final output of the model O1t , O2t , At

W O1t , W O2t , W At
F S

t

Table 3.  Description of BELBFM Components and their interactions.
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	 i.	� O1: Train on 10 m wind speed data (S10).
	ii.	� O2: Train on 100 m wind speed data (S100).
	iii.	� A: Train on combined wind speed data from both heights (S10 and S100).
	c)	� Optimize hyperparameters for each unit model (e.g., layer size, activation functions).

Evaluate basic memory units and update functional memory weights

	a)	� Calculate performance using error metrics (e.g., SDE, MAE, and MAPE) for O1, O2, and A.
	b)	� Update functional memory weights (WO1, WO2, WA) based on error metrics.

Fusion of results

	a)	� Combine outputs from the basic and functional memory units using:

	i.	� Weighted sum (preferred method).
	ii.	� Simple mean (optional).

Model exploitation

	a)	� Process new input data through SI, TH, and SC blocks and O1, O2, and A units.
	b)	� Predict final wind speeds (S10, S100) using the fusion mechanism (F unit).

Output results

	a)	� Validate model predictions against the test dataset.
	b)	� Evaluate performance using error metrics to ensure accuracy and reliability.

Results
The modeling and testing processes were performed on a desktop computer with specifications outlined in 
(Table 4). Hyperparameter optimization took approximately 5 h, while the final model training completed in 
just 3 min.

During the training phase, three basic memory units, O1, O2, and A, were trained using data from the Train 
1, Train 2, and Train 3 datasets, respectively. The trained models were evaluated on the Test 1 and Test 2 datasets 
to determine the performance coefficients of functional memories WO1, WO2, and WA, as shown in (Table 5). 
The final model was created by combining the outputs of the basic memory units and functional memories.

To assess the effectiveness of functional memories in the final model, the F unit used both weighted and 
simple mean methods, as shown in Eq. (21).

	 F S
t = (O1t + O2t + At) /3� (21)

During deployment, the final model was tested using data from Test 3, Test 4, Test 5, and Test 6. Table 6 displays 
results from tests with the basic memory units (O1, O2, and A) using Test 1, Test 2, Test 4, and Test 5.

Key findings include the following:

Functional memory WO1 WO2 WA

Wind speed S10 S100 S10 S100 S10 S100

W(SDE) 0.4529 0.4387 0.3869 0.3838 0.1602 0.1775

W(MAE) 0.4857 0.4387 0.3717 0.4136 0.1425 0.1477

W(MSE) 0.4932 0.4555 0.3894 0.3975 0.1173 0.1470

W(RMSE) 0.4563 0.4332 0.3809 0.3904 0.1628 0.1763

W(MAPE) 0.3380 0.3325 0.3248 0.3410 0.3372 0.3265

Table 5.  Values of performance coefficients of functional memory units.

 

Operating system Windows 10

Software MATLAB R2023b

Processor Intel(R) Core (TM) i5-6400 CPU @ 2.70 GHz

Installed RAM 16G DDR4

System type 64-bit operating system, x64-based processor

Main hard disk SSD 128G

Table 4.  Specifications of software and hardware used for modeling process.
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•	 Model O1, trained on 10-meter wind speed data, demonstrates cross-height predictive capability by effec-
tively predicting 100 m wind speed. Similarly, O2, trained on 100-meter data, performs well in predicting 
10-meter wind speed.

•	 Model A, trained on both 10-meter and 100-meter data, shows better accuracy in predicting 10 m speeds.
•	 The models generally exhibit lower error metrics with recent data (2021–2023) compared to earlier periods 

(2001–2020), suggesting improved performance with newer data.
•	 O1 consistently outperforms O2 and A, indicating that predicting wind speeds at higher altitudes (100 m) is 

more complex than at lower altitudes (10 m), requiring advanced data integration.

Table 7 evaluates the performance of the BELBFM model in predicting wind speeds at both 10 and 100 m, using 
six statistical error metrics (SDE, MAE, MSE, RMSE, MAPE, and R2) across two time periods: 2001–2020 and 
2021–2023. The analysis includes three basic memory units (O1, O2, A) and two combination methods (Simple 
Mean and Weighted Sum).

Key insights:

•	 Training phase (2001–2020, Train 3): Model A, trained on both heights, achieves the lowest MAPE (27.841), 
indicating superior accuracy over models O1 and O2.

•	 Test phase (2001–2020, Test 3): The Weighted Sum method outperforms the Simple Mean across all error 
metrics, indicating enhanced accuracy by leveraging additional information from the base models.

•	 Test phase (2021–2023, Test 6): In this recent data period, the Weighted Sum method once again outper-
forms the Simple Mean, demonstrating lower error metrics across the board and confirming the model’s 
adaptability to recent data and consistency in predictive accuracy.

Furthermore, to evaluate the performance of the BELBFM model, its results were compared with those of other 
regression models. For this purpose, several regression models were trained using the Train 3 dataset (2001–
2020) and evaluated with the Test 6 dataset (2021–2023) using the Regression Learner Toolbox in MATLAB 
R2023R software. Table 8 compares the performance of BELBFM with that of these models. An analysis of the 

Dataset name (see Table 1) Date range Model name SDE MAE MSE RMSE MAPE R2

Train 3
2001

To
2020

O1 0.4998 0.3541 0.2498 0.4998 28.1905 0.9706

O2 0.5039 0.3587 0.2540 0.5040 29.1273 0.9693

A 0.5041 0.3570 0.2541 0.5041 27.8410 0.9608

Test 3
2001

To
2020

O1 0.6135 0.4578 0.3880 0.6159 23.5236 0.9326

O2 0.6161 0.4597 0.3915 0.6183 23.5786 0.9313

A 0.6254 0.4668 0.4034 0.6274 23.5849 0.9301

F - simple mean 0.6142 0.4582 0.3887 0.6161 28.2645 0.9384

F - weighted sum 0.6111 0.4560 0.3849 0.6133 23.4960 0.9413

Test 6
2021

To
2023

O1 0.6005 0.4497 0.3714 0.6028 23.8688 0.9398

O2 0.6029 0.4516 0.3745 0.6050 23.9426 0.9353

A 0.6120 0.4581 0.3858 0.6138 23.9049 0.9324

F - simple mean 0.6011 0.4500 0.3718 0.6029 28.3507 0.9401

F - weighted sum 0.5981 0.4480 0.3683 0.6002 23.8424 0.9506

Table 7.  Results of the BELBFM model on train and test datasets.

 

Model name Date range Dataset name (see Table 1) SDE MAE MSE RMSE MAPE R2

O1

2001 to 2020
Test 1 0.5474 0.4113 0.3063 0.5500 24.5537 0.9542

Test 2 0.6796 0.5043 0.4697 0.6818 22.4935 0.9398

2021 to 2023
Test 4 0.5371 0.4049 0.2947 0.5395 24.8345 0.9498

Test 5 0.6640 0.4945 0.4481 0.6660 22.9031 0.9412

O2

2001 to 2020
Test 1 0.5500 0.4143 0.3100 0.5528 24.8149 0.9537

Test 2 0.6821 0.5051 0.4729 0.6837 22.3423 0.9334

2021 to 2023
Test 4 0.5396 0.4079 0.2982 0.5423 25.1265 0.9567

Test 5 0.6661 0.4953 0.4507 0.6677 22.7587 0.9401

A

2001 to 2020
Test 1 0.5591 0.4204 0.3199 0.5612 24.5703 0.9536

Test 2 0.6918 0.5132 0.4869 0.6937 22.5995 0.9325

2021 to 2023
Test 4 0.5486 0.4135 0.3078 0.5505 24.8277 0.9548

Test 5 0.6754 0.5027 0.4639 0.6771 22.9822 0.9378

Table 6.  Test results of the basic memory units.
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table highlights the superior performance of BELBFM compared to the alternative models. Notably, BELBFM 
achieves the lowest RMSE (0.6002) and MAE (0.4480), along with the highest R2 value (0.9506), indicating its 
exceptional ability to explain variance in wind speed data. In contrast, models such as Neural Networks and 
Gaussian Process Regression show comparatively higher error rates and lower predictive accuracy.

Discussion and conclusion
The BELBFM model represents a significant advancement in wind speed prediction, utilizing an innovative 
ensemble learning methodology that outperforms traditional approaches such as numerical weather prediction 
(NWP) and computational fluid dynamics (CFD). By integrating outputs from memory units trained on distinct 
wind speed data layers with optimized performance coefficients, BELBFM achieves superior predictive accuracy. 
Its emotionally-inspired learning principles effectively capture the inherent nonlinearities of atmospheric 
processes, facilitating reliable wind speed forecasts across diverse conditions.

A notable contribution of this study is BELBFM’s dual-height wind speed modeling capability, predicting 
wind speeds at both 10 and 100  m. This feature provides a comprehensive understanding of wind behavior 
across critical altitudes, crucial for applications in renewable energy optimization, climate modeling, and 

Model type Model hyperparameters RMSE MAE R2

BELBFM See Table 3 0.6002 0.4480 0.9506

Neural network Preset: narrow neural network | number of fully connected layers: 1 | first layer size: 10 | activation: ReLU | iteration limit: 1000 | 
Regularization (lambda) = 0 | standardize data: yes 0.6189 0.4599 0.9202

Neural network Preset: medium neural network | number of fully connected layers: 1 | first layer size: 25 | activation: ReLU | iteration limit: 1000 | 
regularization (lambda) = 0 | standardize data: yes 0.6196 0.4598 0.9201

Neural network Preset: wide neural network | number of fully connected layers: 1 | first layer size: 100 | activation: ReLU | iteration limit: 1000 | 
regularization (lambda) = 0 | standardize data: yes 0.6316 0.4687 0.9179

Neural network Preset: bilayered neural network | number of fully connected layers: 2 | first layer size: 10 | second layer size: 10 | activation: ReLU | 
iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes 0.6182 0.4589 0.9203

Neural network Preset: trilayered neural network | number of fully connected layers: 3 | first layer size: 10 | second layer size: 10 | third layer size: 10 | 
activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes 0.6176 0.4590 0.9204

Ensemble Preset: boosted trees | minimum leaf size: 8 | number of learners: 30 | learning rate: 0.1 0.6497 0.4886 0.9145

Ensemble Preset: bagged trees | minimum leaf size: 8 | number of learners: 30 0.6238 0.4631 0.9193

Kernel Preset: SVM kernel | learner: SVM | number of expansion dimensions: auto | regularization strength (lambda): auto | kernel scale: 
auto | epsilon: auto | standardize data: yes | iteration limit: 1000 1.0608 0.6068 0.8091

Kernel Preset: least squares regression kernel | learner: least squares kernel | number of expansion dimensions: auto | regularization strength 
(lambda): auto | kernel scale: auto | epsilon: auto | standardize data: yes | iteration limit: 1000 0.9393 0.5891 0.8460

Gaussian process 
regression

Preset: rational quadratic GPR | basic function: constant | kernel function: rational quadratic | use isotropic kernel: yes | kernel scale: 
automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes 0.6231 0.4618 0.9195

Gaussian process 
regression

Preset: squared exponential GPR | basic function: constant | kernel function: squared exponential | use isotropic kernel: yes | kernel 
scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes 0.6183 0.4588 0.9203

Gaussian process 
regression

Preset: 5/2 GPR | basic function: constant | kernel function: matem 5/2 | use isotropic kernel: yes | kernel scale: automatic | signal 
standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes 0.6207 0.4598 0.9199

Gaussian process 
regression

Preset: Exponential GPR | basic function: constant | kernel function: exponential | use isotropic kernel: yes | kernel scale: automatic | 
signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes 0.6265 0.4663 0.9188

Efficient linear Preset: efficient linear least square | linear: least square | regularization: auto | regularization strength (lambda): auto | relative 
coefficient tolerance (beta tolerance) 0.0001 0.6193 0.4600 0.9201

Efficient linear Preset: efficient linear SVM | linear: SVM | regularization: auto | regularization strength (lambda): auto | relative coefficient tolerance 
(beta tolerance) 0.0001 | epsilon: auto 0.6213 0.4611 0.9198

SVM Preset: linear SVM | kernel function: linear | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes 0.6216 0.4612 0.9197

SVM Preset: quadratic SVM | kernel function: quadratic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize 
data: yes 0.6242 0.4659 0.9193

SVM Preset: cubic SVM | kernel function: cubic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes 1.6897 0.8844 0.5416

SVM Preset: fine gaussian SVM | kernel function: gaussian | kernel scale: 1 | box constraint: automatic | epsilon: auto | standardize data: 
yes 1.1782 0.6509 0.7689

SVM Preset: medium gaussian SVM | kernel function: gaussian | kernel scale: 4.1 | box constraint: automatic | epsilon: auto | standardize 
data: yes 0.6446 0.4646 0.9155

SVM Preset: coarse gaussian SVM | kernel function: gaussian | kernel scale: 16 | box constraint: automatic | epsilon: auto | standardize 
data: yes 0.6216 0.4611 0.9197

Tree Preset: fine tree | minimum leaf size: 4 | surrogate decision splits: off 0.7658 0.5737 0.8903

Tree Preset: medium tree | minimum leaf size: 12 | surrogate decision splits: off 0.6985 0.5235 0.9049

Tree Preset: coarse tree | minimum leaf size: 36 | surrogate decision splits: off 0.6574 0.4892 0.9130

Linear regression Preset: linear | terms: linear | robust optional: off 0.6193 0.4601 0.9201

Linear regression Preset: interactions linear | terms: interactions | robust optional: off 0.6198 0.4603 0.9201

Linear regression Preset: robust linear | terms: linear | robust optional: on 0.6211 0.4609 0.9198

Stepwise linear 
regression Preset: stepwise linear | initial terms: linear | upper bound on terms: interactions | maximum number of steps: 1000 0.6198 0.4603 0.9201

Table 8.  Results of the BELBFM model vs. known regression models on the test dataset (test 6).
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weather forecasting. The model’s flexible regression approach, based on a neighborhood feature set, minimizes 
computational demands and improves accuracy by prioritizing the most relevant data points, setting it apart 
from conventional time series models.

Performance metrics underscore the model’s predictive power. Despite the challenges of predicting wind 
speeds at 100  m due to numerous influencing factors, BELBFM’s dual-height modeling effectively utilizes 
10-meter data for accurate 100-meter predictions, and vice versa. Model A, which integrates data from both 
heights, demonstrates high accuracy in predicting 10-meter wind speeds. Its consistent performance across 
two periods (2001–2020 and 2021–2023) suggests strong adaptability to new data while mitigating concerns 
about overfitting. Furthermore, the Weighted Sum method consistently outperforms the Simple Mean method, 
enhancing predictive accuracy across diverse datasets.

Comparative analysis with other well-known regression models, as detailed in Table 8, highlights BELBFM’s 
superiority. It achieves the lowest RMSE and MAE values and the highest R2, underscoring its exceptional ability 
to explain variance in wind speed data effectively.

BELBFM’s correlation-based data pruning technique is another valuable feature, reducing the training dataset 
to less than 0.07% of its original size while retaining representative samples. This efficient process accelerates the 
modeling workflow without compromising prediction quality, making the model particularly suitable for real-
time applications in renewable energy management, weather forecasting, and disaster preparedness.

The model also demonstrates computational efficiency. By leveraging a pruned 5 × 5 grid during feature 
selection, BELBFM significantly reduces the number of processed features. The feature selection phase has a 
time complexity of O(n·k), while the training phase for each memory unit’s multilayer perceptron (MLP) has 
a complexity of O(T·L·N2), where n is the number of data points, k the neighboring cells, T the number of 
iterations, L the number of layers, and N the neurons per layer. Spearman correlation-based pruning further 
reduces computational demands, achieving a complexity of O(n2), thereby drastically reducing the dataset size 
to 0.07%. These optimizations ensure both accuracy and efficiency, completing hyperparameter tuning within 
five hours and model training in under three minutes on standard hardware.

Despite its strengths, the model’s reliance on ERA5 data may introduce variability in performance, contingent 
upon the quality and resolution of the input data. Further research is needed to validate BELBFM’s effectiveness 
across diverse regions and incorporate additional atmospheric variables for refined predictions. Enhancing 
adaptability to real-time data and changing weather conditions could further expand its utility.

The novelty of BELBFM lies in its innovative architecture and methodological advancements. By integrating 
basic and functional memory units with adaptive emotional learning mechanisms, the model effectively 
captures the nonlinear and dynamic nature of atmospheric processes. Its dual-height predictive capability 
addresses a critical gap in simultaneous wind speed modeling at varying altitudes, providing enhanced utility 
for renewable energy optimization and climate modeling. The incorporation of correlation-based data pruning 
ensures computational efficiency, setting BELBFM apart as a practical solution for real-time applications. This 
framework underscores the transformative potential of brain-inspired learning methods in advancing wind 
speed prediction and related meteorological applications.

In conclusion, BELBFM exemplifies the potential of emotionally-inspired learning models to advance 
meteorological research. Its performance, adaptability, and efficiency open promising opportunities for 
deployment across wind energy forecasting and broader environmental fields.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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