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Simultaneous prediction of 10m
and 100m wind speeds using a
model inspired by brain emotional
learning

Alireza Hakimi™® & Parvin Ghafarian

Predicting wind speed simultaneously at multiple heights, particularly at 10 and 100 metres (m),
presents unique challenges due to diverse influences. At lower altitudes, wind speed is significantly
affected by surface factors including roughness, vegetation, and man-made structures, causing sharp
fluctuations, while at higher altitudes, it is primarily influenced by atmospheric conditions, resulting in
smoother flow patterns. Traditional models often require separate systems for each altitude, limiting
their efficiency and accuracy. This study introduces the brain emotional learning based on basic and
functional memories (BELBFM) model, inspired by adaptive emotional learning mechanisms in the
mammalian brain, to predict wind speeds at both altitudes simultaneously. Using ERA5 reanalysis
data, BELBFM effectively captures the nonlinear dynamics of wind behavior. Evaluation with data
from the Persian Gulf demonstrates BELBFM'’s high accuracy, enhancing predictive capabilities for
applications in renewable energy and structural engineering. This unified model provides a robust and
efficient solution for adaptive wind forecasting.

Keywords Wind speed modeling, Brain emotional learning model, Basic memory, Functional memory,
Machine learning

Wind speed modeling is crucial in meteorology, with significant applications in optimizing renewable energy,
designing robust structures, and improving weather forecasting models!2. Accurate prediction of wind speeds
at altitudes of 10 and 100 m is essential for optimizing wind turbine performance, designing robust structures,
and enhancing weather prediction models**.Despite advancements in the field, simultaneously predicting wind
speeds at these two heights remains a challenging problem due to the distinct atmospheric dynamics involved>®.

At 10 m, wind speed is heavily influenced by surface roughness and obstacles like buildings, trees, and terrain’.
These factors create localized turbulence and variability, resulting in less predictable wind patterns. Conversely,
at 100 m, wind speed is less affected by surface obstructions, leading to a more stable and consistent proﬁles’g.
The differences in atmospheric conditions at these altitudes necessitate a modeling approach that considers the
unique dynamics of each altitude.

Wind speed modeling at various heights has been explored using diverse methodologies, ranging from
traditional numerical weather prediction (NWP) models to advanced machine learning techniques.

NWP models rely on physical principles and mathematical equations to simulate atmospheric processes!’.
Examples include widely used models such as WRF and ECMWF!"2. NWP models provide detailed and
accurate forecasts but are computationally intensive, requiring extensive data sets and high computational
power!>4. Despite their success in predicting wind speeds, their high computational cost limits flexibility and
accessibility'>1°.

Computational fluid dynamics (CFD) models are physics-based models simulate fluid flows and their
interaction with surfaces, making them effective for studying wind behavior around complex structures like
buildings and turbines'é. While CFD models can capture detailed flow patterns and turbulence, they are
computationally demanding and require specialized resources. They are typically limited to localized studies or
specific scenarios!”:18,

Machine learning (ML) techniques, such as artificial neural networks (ANN), support vector machines
(SVM), and deep learning models, have gained popularity for modeling complex, nonlinear relationships in
large datasets'®??. Deep learning models like CNNs and RNNGs are particularly effective in identifying patterns in
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wind speed data?"?2. These ML models can adapt and improve over time, but they are computationally intensive
and difficult to interpret>>24,

Hybrid approaches combining physics-based models with machine learning are also being explored. These
models leverage the detailed understanding from NWP and CFD models along with the adaptability of ML
techniques. While hybrid models can improve forecasting accuracy and reduce computational demands, they
present challenges in integrating and balancing the different modeling approaches?>%.

Despite advancements in traditional and machine learning methods, predicting wind speeds at multiple
heights continues to pose challenges. Traditional models like NWP and CFD are effective but computationally
demanding and inflexible!”!8 ML models, while promising, struggle to provide simultaneous predictions at
multiple altitudes and often lack interpretability?>?*. Hybrid models, which combine data-driven?” and physics-
based approaches, offer improved accuracy but still face challenges in efficiency and generalization across various
conditions?>?°. Thus, there is a need for a unified model capable of predicting wind speeds at both 10 and 100 m,
leveraging advanced computing while addressing the limitations of current models.

To address these challenges, this study introduces the brain emotional learning based on basic and functional
memories (BELBFM) model, inspired by the emotional learning mechanisms of the mammalian brain. BELBFM
leverages basic and functional memories to create an adaptive framework for modeling wind behavior. By
integrating inputs from sensory, thalamic, cortical, amygdala, and orbitofrontal components, the model captures
the complexities of wind speed dynamics with enhanced accuracy and computational efficiency.

The contributions of this study are as follows:

« Unified dual-height modeling: BELBFM predicts wind speeds at both 10 and 100 m, addressing the distinct
atmospheric dynamics at these heights.

« Innovative methodology: The model employs an ensemble learning framework, combining outputs from
various memory units trained on layered wind speed data, optimized for performance.

« Efficient training: A correlation-based data pruning technique significantly reduces the training dataset, en-
hancing computational efficiency without compromising accuracy.

« Real-world applicability: The model demonstrates potential for applications in renewable energy manage-
ment, weather forecasting, and disaster preparedness.

By addressing the limitations of existing methods, BELBFM provides a novel solution for simultaneous wind
speed prediction at multiple altitudes. The rest of the paper is structured as follows: Sect. 2 introduces the
proposed model, Sect. 3 details its implementation, Sect. 4 presents the results, and Sect. 5 discusses the findings
and concludes the study.

Methodology: brain emotional learning based on basic and functional memories
(BELBFM)

Over the past three decades, a novel approach inspired by the mammalian brain’s emotional learning
mechanisms has been developed for modeling and forecasting complex nonlinear systems?®. Brain Emotional
Learning-Based Models (BELMs) stem from neuroscience, psychology, Al, and computational modeling®.
Psychologists like John Watson and neuroscientists such as Joseph LeDoux, who studied the amygdala’s role in
fear conditioning, laid the groundwork for this field*. In 2001, Balkenius and Morén introduced a computational
model of the interaction between the amygdala and orbitofrontal cortex in emotional conditioning as the first
BELM?3!. This model laid the foundation for further advancements. In 2004, Lucas and his team introduced
BELBIC (brain emotional learning-based intelligent controller)®?, which was applied to domains such as
washing machine control®* and dynamic system prediction®. Subsequent improvements enabled applications
in intelligent control, prediction, and emotional learning. For instance, BELMs have been used for DC motor
speed control®’, earthquake prediction®, emotion recognition®”, and Alzheimer’s diagnosis®*. BELMs have
also been integrated with other intelligent methods, such as fuzzy neural networks to enhance performance®.
Recent developments include applications in humanoid robots?!, active noise cancellation systems??, and time-
series prediction®’. Hybrid models combining BELMs with deep learning and fuzzy techniques have further
expanded their real-world applicability*®*. From simulating brain processes to addressing complex systems,
BELM:s have evolved into powerful tools for tackling increasingly sophisticated challenges when combined with
modern AT techniques.

As mentioned before, various computational models have been inspired by the human brain. One of
these important models is the amygdala-orbitofrontal subsystem model*>. The amygdala-orbitofrontal
subsystem, which is the main basis of many computational models, has a simple structure. As shown in Fig.
1, this subsystem consists of four interconnected components: the sensory cortex, thalamus, amygdala, and
orbitofrontal cortex. Sensory inputs are processed through the thalamus and sensory cortex before reaching the
amygdala and orbitofrontal cortex. The amygdala generates emotional responses (E), while the orbitofrontal
cortex modulates these responses based on feedback (REW) to refine decision-making and control in dynamic
environments. Various architectures of the amygdala-orbitofrontal subsystem have been presented and used in
above mentioned applications.

BELMs and their advancements represent a significant evolution in computational modeling, offering robust
solutions for addressing complex, real-world challenges.

Building on BELM advancements, this paper suggests Brain Emotional Learning Based on Basic and
Functional Memories (BELBFM) as a novel approach to the amygdala-orbitofrontal subsystem along with
specialized memory for amygdala and orbitofrontal parts to model wind speeds simultaneously at 10 and 100 m.
The architecture of the proposed model (depicted in Fig. 2) consists of five main components: Sensory input (SI),
Thalamus (TH), Sensory cortex (SC), Amygdala (AMIG), and Orbitofrontal cortex (OFC).
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Fig. 1. The graphical description of amygdala orbitofrontal subsystem*®.
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Fig. 2. Architecture of the proposed BELBFM model, illustrating the five main components: Sensory

input (SI), Thalamus (TH), Sensory cortex (SC), Amygdala (AMIG), and Orbitofrontal cortex (OFC). Each
component is designed to process and integrate input data for wind speed prediction at multiple altitudes by
utilizing both basic and functional memories. This architecture leverages emotional learning mechanisms to
enhance prediction accuracy and adaptability.

o SI: Receives and labels input signals (wind components u and v) for wind speeds at both 10 and 100 m.

« TH: Calculates wind speeds at both altitudes, then passes these results to the SC block. Additionally, it sends
an output indicating the wind speed type (10 or 100 m) to the F unit in the AMIG.

 SC: Generates input-target vectors required for training, evaluation, and exploitation phases and sends them
to both the OFC and AMIG blocks.

Scientific Reports | (2025) 15:4304 | https://doi.org/10.1038/s41598-025-88295-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

« OFC: Includes two basic memory units (O1 and O2) and two functional memory units (WO1 and WO?2).

« AMIG: Contains a basic memory unit (A), a functional memory unit (WA), and a fusion unit (F). Basic mem-
ory units are trained with data from the SC block, while functional memory units store performance history
based on error rates. The F unit integrates the results from the basic and functional memory units.

This architecture emulates emotional learning processes and aims to enhance wind speed prediction accuracy by
combining diverse memory types and leveraging past performance.

BELBFM implementation

Main dataset

This study relies on atmospheric data obtained from the ERA5 reanalysis dataset. The ERA5 dataset, developed
by the European centre for medium-range weather forecasts (ECMWF), provides a detailed picture of Earth’s
atmosphere since 1940. This dataset, with a high resolution of 0.25 degrees and hourly updates, provides detailed
atmospheric data that captures even small-scale wind variations, which are critical for precise forecasting.
In the equatorial region, each grid cell represents an area of approximately 29 x 29 km*®. The focus is on the
u-component and v-component of wind speed at 10 and 100 m above ground level, measured in meters per
second, to calculate surface wind speed.

Feature selection

In this study, a neighborhood-based approach for feature selection was employed, considering the influence of
neighboring cells on wind speed at specific locations. The neighborhood-based pattern (NBP) ensures systematic
data collection across the entire area, providing comprehensive spatial coverage of wind speeds.

To extract relevant features from the wind speed data, an effective NBP must be defined. As shown in
Fig. 3, various cellular patterns, such as 3x3, 5x5, and 7x7, can be used to identify the appropriate features.
Wind patterns often undergo significant variations over short distances due to topographical features such as
mountains and valleys. Using larger cellular patterns (e.g., 7x7) gathers more information from neighboring
points, enabling the model to better capture complex and extensive wind patterns that may influence wind speed
at the central point. However, larger cellular patterns incur higher computational costs and longer processing
times. Conversely, modeling with smaller grids (e.g., 3x3) offers lower computational costs and requires less
processing time and resources. However, it may fail to capture spatial details effectively, reducing prediction
accuracy.

To balance accuracy, complexity, and computational efficiency, larger grids can be utilized in a pruned
manner. With a simple argument, it can be assumed that the cellular layers closer to the center of the pattern have
the greatest effect on the central cell of the pattern. The cells located in the farther layers of the cellular network
can be pruned alternately. This selection method ensures that the wind effect in this layer is distributed evenly,
with a gradual decrease from the cells closer to the center to the more distant cells, while the information from
the neighboring cells closer to the center, which have a stronger wind effect, remains prioritized.

In this study, a pruned 5 x 5 grid pattern is employed, as illustrated in ~ (Fig. 4). While a regular 5 x 5 pattern
includes 25 features, the pruned version reduces this number to 17. Feature vectors based on this pruned pattern

are constructed according to Eq. (1). In this equation, C' 18; indicates the value of wind speed in the middle cell

at time t. The i indicates the position of C 18 in the grid of database. 028; to CX Eg represent the values of

C

Fig. 3. Cellular patterns for neighborhood-based feature selection. (a) is a 3 x 3 pattern, (b) is a 5x 5 pattern,
and (c) is a 7 x 7 pattern.
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Fig. 4. Selected features in the 5x 5 grid used for generating the input vector.

wind speed in the neighboring cells of C 18; in the neighborhood-based pattern. C'1

(©)
(t+1)

indicates the value

of wind speed in the middle cell at time £+ I as the target.

, Inputs = [C1),c29 . 29"
Feature Vectorgg : p [ (t)(i) ) (t>] 1)
Target = Cl(tﬂ)

Region and time range selection

The Persian Gulf (PG) is a shallow sea bordered by the mountainous coastlines of Iran and the flat shores of the
Arabian Peninsula, with an average depth of only 35 m, reaching up to 180 m in the Northern part*’. Positioned
in a subtropical high-pressure zone, the PG experiences a dry climate characterized by low rainfall and high
evaporation, making it particularly vulnerable to the impacts of climate change®. The PG’s climate is influenced
by Mediterranean weather systems and the Indian monsoon, with two main seasons (summer and winter) and
brief spring and fall transitions**°.

One of the key climatic features of the PG is the presence of shamal winds. Shamal winds are a strong
northwesterly wind that blows year-round, significantly affecting the region’s weather. These winds exhibit
distinct patterns in summer and winter®!. During late spring, low-pressure thermal systems form over southern
Iran and Saudi Arabia, while a high-pressure ridge extends from the Mediterranean eastward, creating a pressure
gradient that generates shamal winds. In winter (November to March), these winds, linked to mid-latitude
weather systems, are stronger, reaching speeds of 15-20 m per second, leading to dust storms and reduced
visibility. Winter shamal winds are more intense than those in summer, influencing the region’s precipitation-
evaporation balance®®>?,

Given the distinct seasonal patterns of shamal winds and their significant climatic impact, the PG serves as
an ideal location for this research. Figure 5 shows the PG region. Data from 2001 to 2020 for the PG region (23°
to 31°N, 47° to 59°E) were used for training and testing sets, while data from 2021 to 2023 were employed to
evaluate the model’s performance across different time periods and locations.
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Fig. 5. Region of the persian gulf (23° to 31°N, 47° to 59°E).

Train and test datasets generation

We retrieved U and V wind component data from the ERA5 dataset to calculate wind speed in meters per
second. Using the neighborhood model described in the “Feature Selection” section, input-target vector pairs
were extracted from the wind speed data. The initial training dataset consisted of approximately 350 million
records for the PG region, spanning the years 2001 to 2020.

The large size of the training dataset presents a significant challenge for the modeling process. Record pruning
is a technique designed to reduce the size of large training datasets by removing redundant records®. This
approach involves analyzing feature vectors to identify and eliminate those that are highly correlated. Highly
correlated feature vectors can introduce redundancy and provide little to no additional information to the
model. By pruning these vectors, the dataset is refined to retain only the most informative and unique features.

In this study, a correlation-based pruning approach was employed, utilizing the Spearman correlation
coefficient. This coefficient measures both the strength and direction of monotonic relationships between
records, making it particularly suitable for identifying highly representative records within the dataset. The
process is as follows:

a) A threshold value between 0 and 1 is determined.

b) The Spearman correlation coefficient of each record is calculated against the entire dataset.

¢) Records with a maximum absolute correlation coefficient value less than or equal to the threshold are re-
tained as training records, while the remaining records are designated as testing records.

To apply the record pruning technique, a threshold value of 0.55 for the Spearman correlation coefficient was
determined through a trial-and-error approach. After the pruning process, the number of records in the training
dataset was reduced from approximately 350 million to 242,628 records—less than 0.07% of the original dataset
size. The reduced dataset was then used as the training dataset, while the remaining records were designated as
the test dataset.

Additionally, to ensure the model’s robustness and generalizability, a separate test dataset was created
using data from a different time period (2021 to 2023) that was excluded from the training dataset. Detailed
descriptions of the training and test datasets are provided in (Table 1).

Model generation
Input labeling
Input signals are received in the SI block and labeled based on Eq. (2), where ST th) represents the wind

components (u and v) corresponding to 10-meter and 100-meter speeds at time t.
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Region name | Latitude longitude | Date range | Dataset name | Speed range (m/s) | The number of records | Used data
1Jan-01 Train 1 0.0030 to 16.6185 129,032 Wind speed 10 - pruned
Lat: to Train 2 0.0017 to 32.3132 113,596 Wind speed 100 - pruned
23t031 31-Dec20 Frin3 0.0017 to 32.3132 242,628 Wind speed 10 & 100 - pruned
1Jan-01 Test 1 0.0004 to 25.9449 | 175,300,000 Wind speed 10 - remained
Persian gulf to Test 2 0.0005 to 34.0515 175,300,000 Wind speed 100 - remained
31-Dec20 Frogts 0.0004 to 34.0515 | 350,600,000 Wind speed 10 & 100 - remained
ong Ljanar | Test4 0.0004 to 18.3023 | 26,277,000 Wind speed 10
to Test 5 0.0011 to 23.0856 26,277,000 Wind speed 100
31-Dec23 Frete 0.0004 to 23.0856 | 52,554,000 Wind speed 10 & 100

Table 1. Description of used datasets.

Hyperparameter Search range O1 basic memory model | O2 basic memory model | A masic memory model
Number of fully connected layers | 1-3 2 3 2
Activation function ReLU, tanh, sigmoid, none Tanh ReLU Tanh
Standardize data Yes, no No Yes Yes
Regularization strength (lambda) | 0 to 0.001 0.000152 0.0000350 0.000036
First layer size 1-300 150 200 120
Second layer size 1-300 100 150 80
Third layer size 1-300 N/A 50 N/A
Iteration Limit N/A 1000 1000 1000
Model evaluation method K-fold cross-validation (K=5) | K=5 K=5 K=5
Optimizer Bayesian optimizer (BO), none | BO BO BO
Table 2. The range of searched hyperparameters and the architecture of the best models.
v IO(t)
u10
SIS - v100(8> )
u1004)

Wind speed calculation in TH block
In the TH block, using Egs. (3), 10 and 100 m wind speeds are calculated from the labeled wind components.
Speed_10,,, = , /ul0?, + v10?
THZqz) : (®) () (®) 3)

Speed_100(,) = | /u100%, + v1002,

Input-target vector generation
The SC block generates the input-target vectors needed for training and evaluation based on Fig. 4 and Eq. (4)
to (6). Subsequently, S 08)1 and 56’8)2 are sent to the OFC, and SC’S) is sent to the AMIG block. In these

equations, the values of C} are equivalent to the wind speeds at the positions specified in (Fig. 4).

. 1 17
SChy = { I;Zg;e‘;cicgg (G- G } with Speed 10 data (4)
. 1 17
508)2 = { I;Zg;;fcgg'l (G- ] } with Speed 100 data (5)
. 1 17
SCh) = { I;gf;gf ecgﬂ (Ces-- G } with both Speed 10 and 100 data ©)

Basic memory units generation

Multilayer neural network models were used to create the basic memory units, labeled O1, O2, and A. These
models were trained with Train 1, Train 2, and Train 3 datasets, respectively (see Table 1). To achieve the best
models, a range of hyperparameters was explored according to (Table 2). Additionally, Table 2 shows the
hyperparameters of the best models for basic memories O1, O2, and A.
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Generation of functional memory units

Evaluating the performance of machine learning models is essential. In this research, we use several error
metrics: Standard deviation of error (SDE), Mean square error (MSE), Root mean square error (RMSE), Mean
absolute error (MAE), Mean absolute percentage error (MAPE), and coefficient of determination (R-squared, or
R2). SDE measures the dispersion of errors between predicted and actual values. A lower SDE indicates better
model accuracy and stability>*. MSE is the average of squared differences between predicted and actual values,
with smaller values indicating better accuracy. It is sensitive to outliers due to the squaring of errors®. RMSE
is similar to MSE but represents the error in the same units as the data. It penalizes larger errors more heavily
and provides an average measure of error®®. MAE measures the average absolute difference between predicted
and actual values. It is easy to interpret but less sensitive to large errors compared to RMSE®”. MAPE expresses
forecast accuracy as a percentage, which makes it easy to understand. A lower MAPE indicates better accuracy.
It does not account for the direction of errors (over or under predictions)®**. R2 is a statistical measure that
represents the proportion of the variance in the dependent variable that can be predicted from the independent
variables in a regression model. In other words, it indicates how well the independent variables explain the
variability of the dependent variable. While a high R2 suggests a good fit, it does not necessarily mean the model
is perfect or the best one. It is possible for a model to have a high R2 but still not be ideal due to overfitting,
where the model becomes too complex for the data. For this reason, R2 alone is usually not sufficient to evaluate
models®.

To evaluate the performance of basic memory units, these metrics (SDE, MAE, MSE, RMSE, and MAPE) are
applied to wind speed data at heights of 10 m and 100 m. Performance coefficients (W) are calculated for each
basic memory unit (O1, O2, and A) and are updated as the error metrics change, reflecting the predictive ability
of each unit.

To calculate the values of the performance coefficients in the functional memory units WO1, WO2, and WA,
the trained models {X} were evaluated with the data from the Test 1 and Test 2 datasets (see Table 1) Finally, the
performance coefficients of the functional memories are calculated using Eq. (7) to (9), where Z% is the value
of the error metric {Z} for the basic memory unit {X} and wind speed {S}.

j=3
Si _ S; S
YX]‘ =1- ZX.7 Z ZX.7 )
T3 = min(Z3) + (Y8 — min(Y3)/maa(Y) - min(v3)) ®)
-
W(2)Y =T [ > T3 (9)

According to equations (10) to (12), each functional memory unit holds ten performance coeflicients. Table 5
shows the values of the performance coeflicients for functional memory units.

o1
Con Wt(STDESIO) W(JVIAESIO) Wt(MSEgllo) W(RMSEgllo) Wt(ZWAPEgllo) 10
T W(STDEMOO) (MABG ) (MSEGy) RMSE MAPE
t W W ( 3100) Wt( smn)
- Wt(STDEém W(MAngO) Wt(MSngo) W(RAISESLO) Wt(MAPngO) an
T W(STDEsmo) (MABGE,,) (MSESTy,) (RMSE ) (MAPEQE)
f W, W, 5100 Wt S$100
W(STDESm) W(MAEsm) (MSEsm) (RMSER,) (MAPEZ,) 1
WA, = t t W, W, (12)
) W(STDESNU) (MAEG, ) (MSEsmu) (RMSEZ o) (MAPES )
A Wt Wt Wt 5100 Wt 5100

Fusion of the results

In Eq. (9), each performance coeflicient is constrained between zero and one, and the sum of the performance
coefficients for each error metric {Z} and wind speed {S} equals one. This approach allows for separately
calculating the combined outputs of the basic and functional memory units based on each error metric and
wind speed. The model’s final output, represented by the F unit in the AMIG block, for each input with wind
speed {S} at time t is calculated by averaging these combined outputs, as shown in equations (13) through (18).

FOTPES) — 014w 0175 4 024w 0255 4 4k alSTPPE) (13)
FOAES) Z 01w o1 4 02, w02MAPEY) g, A APE) (14)
FM9E9) — o1,4w 01975 4 024w 02 M) 1 g e 4(M5F5) (15)

FEMSES) _ 012w 0175 | 09, s 02 MY g sy ARMEPE) (16)
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MAPEG!) MAPEG?) MAPE%) (17)

Ft<MAPES) _ Olt*W01t( + OQt*WO2t( + At*WAS

FS = (Ft(STDES) I Ft(]\/[AES) I Ft(MSEs) I Ft(RIMSES) i Ft(J\/IAPES))/5 (18)
The process outlined in equations (13) through (18) to generate the final model output is summarized in Eq. (19):

FS = (Z 014WOIf + 3 020W02 +3 Aﬁ‘WAf) /5 (19)

Model exploitation

After the training phase, the model advances to deployment. During deployment, similar to training, the
input signal passes through the SI and TH blocks before reaching the SC block. However, with new data for
predictions, the SC block processes a single feature vector, as described in Eq. (20).

SC: = Input Vector : [Ctl, . ,C,,”] (20)

The feature vector SC'; is then sent to the basic memory units O1, 02, and A, and the outputs of these units are
forwarded to the F unit. In the F unit, the final result is computed using Eq. (18) or Eq. (19).

Brief overview of the BELBFM components and interactions
Table 3 provides a brief description of the BELBFM blocks and units, along with their role, inputs and outputs.
Furthermore, to better understand how the BELBFM model works, the following pseudo-code is provided:

« Input: U10, V10, U100, V100 (wind components at 10 and 100 m heights).
o Output: Predicted wind speeds (S10, S100).

Initial preparation

a) Define the study region and time range.
b) Select the grid-based database with wind speed data (e.g., ERA5 with hourly updates).
¢) Define a neighborhood-based pattern to generate feature vectors (e.g., a 55 grid).

Feature extraction

a) Load the ERAS5 reanalysis dataset.

b) Extract the U and V wind components at 10 and 100 m heights.

¢) Generate labeled input signals in SI block (U10, V10, U100, V100).

d) Calculate wind speed at both altitudes in TH block.

e) Extract input-target vectors based on defined neighborhood-based pattern in SC block.

Model training
a) Split input-target vectors to generate train and test datasets:

i. Create train and test datasets based on a correlation-based pruning approach.
ii. Generate extra test datasets for evaluation of the final model.

b) Train basic memory units:

Block Equation Unit | Role Inputs Output
(Ssegory input (2) - Receives and labels input signals V10, U10, V100, U100 SI?
Thalamus 3 G s wind speed val s s
(TH) (3) - enerates wind speed values STy TH;
Sensory cortex (SC) | (4) to (6) - Generates and distributes input-target vectors TH tS SC to L sc ?2, SC f

MLP model | O1 Basic memory unit trained on 10 m wind speed data SCtO1 O1;

- o . 02

Orbitofrontal cortex MLP model | 02 Basic memory unit trained on 100 m wind speed data SCs 02,
(OFC) (10) WOI1 | Functional memory associated with O1 Z;O 1,5) WO1;

(11) WO?2 | Functional memory associated with O2 ZEOZS) WO2;

MLP model | A Basic memory unit trained on both 10 and 100 m wind speed data SC;‘ Ay
Amygdala (12) WA | Functional memory associated with A Zf(A '5) WA
(AMIG) £

O1y, 024, Ay

(18)or (19) | F

s
Fuses the results to generate the final output of the model WOl,, WO2,, WA, Fy

Table 3. Description of BELBFM Components and their interactions.
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Operating system | Windows 10

Software MATLAB R2023b

Processor Intel(R) Core (TM) i5-6400 CPU @ 2.70 GHz
Installed RAM 16G DDR4

System type 64-bit operating system, x64-based processor

Main hard disk SSD 128G

Table 4. Specifications of software and hardware used for modeling process.

Functional memory | WO1 wo2 WA

Wind speed S10 S100 S10 S100 S10 S100
W(SDE) 0.4529 | 0.4387 | 0.3869 | 0.3838 | 0.1602 | 0.1775
W(MAE) 0.4857 | 0.4387 | 0.3717 | 0.4136 | 0.1425 | 0.1477
W(MSE) 0.4932 | 0.4555 | 0.3894 | 0.3975 | 0.1173 | 0.1470
W(RMSE) 0.4563 | 0.4332 | 0.3809 | 0.3904 | 0.1628 | 0.1763
W(MAPE) 0.3380 | 0.3325 | 0.3248 | 0.3410 | 0.3372 | 0.3265

Table 5. Values of performance coefficients of functional memory units.

i. OI: Train on 10 m wind speed data (S10).
ii. O2: Train on 100 m wind speed data (S100).
iii. A: Train on combined wind speed data from both heights (510 and S100).
¢) Optimize hyperparameters for each unit model (e.g., layer size, activation functions).

Evaluate basic memory units and update functional memory weights

a) Calculate performance using error metrics (e.g., SDE, MAE, and MAPE) for O1, 02, and A.
b) Update functional memory weights (WO1, WO2, WA) based on error metrics.

Fusion of results
a) Combine outputs from the basic and functional memory units using:

i. Weighted sum (preferred method).
ii. Simple mean (optional).

Model exploitation

a) Process new input data through SI, TH, and SC blocks and O1, 02, and A units.
b) Predict final wind speeds (S10, S100) using the fusion mechanism (F unit).

Output results

a) Validate model predictions against the test dataset.
b) Evaluate performance using error metrics to ensure accuracy and reliability.

Results
The modeling and testing processes were performed on a desktop computer with specifications outlined in
(Table 4). Hyperparameter optimization took approximately 5 h, while the final model training completed in
just 3 min.

During the training phase, three basic memory units, O1, O2, and A, were trained using data from the Train
1, Train 2, and Train 3 datasets, respectively. The trained models were evaluated on the Test 1 and Test 2 datasets
to determine the performance coefficients of functional memories WO1, WO2, and WA, as shown in (Table 5).
The final model was created by combining the outputs of the basic memory units and functional memories.

To assess the effectiveness of functional memories in the final model, the F unit used both weighted and
simple mean methods, as shown in Eq. (21).

FP = (01, + 02 + A;) /3 (21)

During deployment, the final model was tested using data from Test 3, Test 4, Test 5, and Test 6. Table 6 displays
results from tests with the basic memory units (O1, O2, and A) using Test 1, Test 2, Test 4, and Test 5.
Key findings include the following:
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Model name | Date range | Dataset name (see Table 1) | SDE MAE |MSE | RMSE | MAPE | R2
Test 1 0.5474 | 0.4113 | 0.3063 | 0.5500 | 24.5537 | 0.9542
2001 to 2020
o1 Test 2 0.6796 | 0.5043 | 0.4697 | 0.6818 | 22.4935 | 0.9398
Test 4 0.5371 | 0.4049 | 0.2947 | 0.5395 | 24.8345 | 0.9498
2021 to 2023
Test 5 0.6640 | 0.4945 | 0.4481 | 0.6660 | 22.9031 | 0.9412
Test 1 0.5500 | 0.4143 | 0.3100 | 0.5528 | 24.8149 | 0.9537
2001 to 2020
oo Test 2 0.6821 | 0.5051 | 0.4729 | 0.6837 | 22.3423 | 0.9334
Test 4 0.5396 | 0.4079 | 0.2982 | 0.5423 | 25.1265 | 0.9567
2021 to 2023
Test 5 0.6661 | 0.4953 | 0.4507 | 0.6677 | 22.7587 | 0.9401
Test 1 0.5591 | 0.4204 | 0.3199 | 0.5612 | 24.5703 | 0.9536
2001 to 2020
A Test 2 0.6918 | 0.5132 | 0.4869 | 0.6937 | 22.5995 | 0.9325
Test 4 0.5486 | 0.4135 | 0.3078 | 0.5505 | 24.8277 | 0.9548
2021 to 2023
Test 5 0.6754 | 0.5027 | 0.4639 | 0.6771 | 22.9822 | 0.9378
Table 6. Test results of the basic memory units.
Dataset name (see Table 1) | Date range | Model name SDE MAE |MSE | RMSE | MAPE | R2
2001 01 0.4998 | 0.3541 | 0.2498 | 0.4998 | 28.1905 | 0.9706
Train 3 To | O2 0.5039 | 0.3587 | 0.2540 | 0.5040 | 29.1273 | 0.9693
2020 A 0.5041 | 0.3570 | 0.2541 | 0.5041 | 27.8410 | 0.9608
01 0.6135 | 0.4578 | 0.3880 | 0.6159 | 23.5236 | 0.9326
2001 02 0.6161 | 0.4597 | 0.3915 | 0.6183 | 23.5786 | 0.9313
Test 3 To | A 0.6254 | 0.4668 | 0.4034 | 0.6274 | 23.5849 | 0.9301
202
020 F - simple mean | 0.6142 | 0.4582 | 0.3887 | 0.6161 | 28.2645 | 0.9384
F - weighted sum | 0.6111 | 0.4560 | 0.3849 | 0.6133 | 23.4960 | 0.9413
01 0.6005 | 0.4497 | 0.3714 | 0.6028 | 23.8688 | 0.9398
2021 02 0.6029 | 0.4516 | 0.3745 | 0.6050 | 23.9426 | 0.9353
Test 6 To | A 0.6120 | 0.4581 | 0.3858 | 0.6138 | 23.9049 | 0.9324
202
023 F - simple mean | 0.6011 | 0.4500 | 0.3718 | 0.6029 | 28.3507 | 0.9401
F - weighted sum | 0.5981 | 0.4480 | 0.3683 | 0.6002 | 23.8424 | 0.9506

Table 7. Results of the BELBFM model on train and test datasets.

o Model Ol, trained on 10-meter wind speed data, demonstrates cross-height predictive capability by effec-

tively predicting 100 m wind speed. Similarly, O2, trained on 100-meter data, performs well in predicting
10-meter wind speed.

Model A, trained on both 10-meter and 100-meter data, shows better accuracy in predicting 10 m speeds.
The models generally exhibit lower error metrics with recent data (2021-2023) compared to earlier periods
(2001-2020), suggesting improved performance with newer data.

Ol consistently outperforms O2 and A, indicating that predicting wind speeds at higher altitudes (100 m) is
more complex than at lower altitudes (10 m), requiring advanced data integration.

Table 7 evaluates the performance of the BELBFM model in predicting wind speeds at both 10 and 100 m, using
six statistical error metrics (SDE, MAE, MSE, RMSE, MAPE, and R2) across two time periods: 2001-2020 and
2021-2023. The analysis includes three basic memory units (O1, O2, A) and two combination methods (Simple
Mean and Weighted Sum).

Key insights:

Training phase (2001-2020, Train 3): Model A, trained on both heights, achieves the lowest MAPE (27.841),
indicating superior accuracy over models O1 and O2.

Test phase (2001-2020, Test 3): The Weighted Sum method outperforms the Simple Mean across all error
metrics, indicating enhanced accuracy by leveraging additional information from the base models.

Test phase (2021-2023, Test 6): In this recent data period, the Weighted Sum method once again outper-
forms the Simple Mean, demonstrating lower error metrics across the board and confirming the models
adaptability to recent data and consistency in predictive accuracy.

Furthermore, to evaluate the performance of the BELBFM model, its results were compared with those of other
regression models. For this purpose, several regression models were trained using the Train 3 dataset (2001-
2020) and evaluated with the Test 6 dataset (2021-2023) using the Regression Learner Toolbox in MATLAB
R2023R software. Table 8 compares the performance of BELBFM with that of these models. An analysis of the
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Model type Model hyperparameters RMSE | MAE | R2
BELBFM See Table 3 0.6002 | 0.4480 | 0.9506
Neural network | Preset: narrow neural network | numb§r of fully connected layers: 1 | first layer size: 10 | activation: ReLU | iteration limit: 1000 | 0.6189 | 0.4599 | 0.9202
Regularization (lambda) =0 | standardize data: yes
Neural network | Preset: medlum neural network | num!;)er of fully connected layers: 1 | first layer size: 25 | activation: ReLU | iteration limit: 1000 | 0.6196 | 0.4598 | 0.9201
regularization (lambda) = 0 | standardize data: yes
Neural network | FTeset: Wld? neural network | number f’f fully connected layers: 1 | first layer size: 100 | activation: ReLU | iteration limit: 1000 | 0.6316 | 0.4687 | 0.9179
regularization (lambda) = 0 | standardize data: yes
Neural network | Preset: bilayered neural network | number of fully connected layers: 2 | first layer size: 10 | second layer size: 10 | activation: ReLU | | o < o5 | 0 4589 | 0.9203
iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes
Preset: trilayered neural network | number of fully connected layers: 3 | first layer size: 10 | second layer size: 10 | third layer size: 10 |
Neural network activation: ReLU | iteration limit: 1000 | regularization (lambda) = 0 | standardize data: yes 0.6176 | 04590 | 0.9204
Ensemble Preset: boosted trees | minimum leaf size: 8 | number of learners: 30 | learning rate: 0.1 0.6497 | 0.4886 | 0.9145
Ensemble Preset: bagged trees | minimum leaf size: 8 | number of learners: 30 0.6238 | 0.4631 | 0.9193
Kernel Preset: SYM kernel | learner: .SVM | numbe'r of expansion dimensions: auto | regularization strength (lambda): auto | kernel scale: 1.0608 | 0.6068 | 0.8091
auto | epsilon: auto | standardize data: yes | iteration limit: 1000
Preset: least squares regression kernel | learner: least squares kernel | number of expansion dimensions: auto | regularization strength
Kernel (lambda): auto | kernel scale: auto | epsilon: auto | standardize data: yes | iteration limit: 1000 0.9393 | 0.5891 | 0.8460
Gaussian process | Preset: rational quadratic GPR | basic function: constant | kernel function: rational quadratic | use isotropic kernel: yes | kernel scale:
. e Lo Sl R . g . 0.6231 | 0.4618 | 0.9195
regression automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes
Gaussian process | Preset: squared exponential GPR | basic function: constant | kernel function: squared exponential | use isotropic kernel: yes | kernel
X S o P . . S . 0.6183 | 0.4588 | 0.9203
regression scale: automatic | signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes
Gaussian process | Preset: 5/2 GPR | basic function: constant | kernel function: matem 5/2 | use isotropic kernel: yes | kernel scale: automatic | signal
X L e . . S . 0.6207 | 0.4598 | 0.9199
regression standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes
Gaussian process | Preset: Exponential GPR | basic function: constant | kernel function: exponential | use isotropic kernel: yes | kernel scale: automatic |
. . o e X . R . 0.6265 | 0.4663 | 0.9188
regression signal standard deviation: automatic | sigma: automatic | standardize data: yes | optimize numeric parameters: yes
Efficient linear Preset: efficient linear least square | linear: least square | regularization: auto | regularization strength (lambda): auto | relative 0.6193 | 0.4600 | 0.9201
coefficient tolerance (beta tolerance) 0.0001
Efficient linear Preset: efficient linear SVM [llnear: SVM | regularization: auto | regularization strength (lambda): auto | relative coefficient tolerance 0.6213 | 0.4611 | 0.9198
(beta tolerance) 0.0001 | epsilon: auto
SVM Preset: linear SVM | kernel function: linear | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes | 0.6216 | 0.4612 | 0.9197
SVM g;f:.e;ecsluadratlc SVM | kernel function: quadratic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize 0.6242 | 0.4659 | 0.9193
SVM Preset: cubic SVM | kernel function: cubic | kernel scale: automatic | box constraint: automatic | epsilon: auto | standardize data: yes | 1.6897 | 0.8844 | 0.5416
SVM 5;‘5655& fine gaussian SVM | kernel function: gaussian | kernel scale: 1 | box constraint: automatic | epsilon: auto | standardize data: 11782 | 0.6509 | 0.7689
SVM E;f:e;:el:edlum gaussian SVM | kernel function: gaussian | kernel scale: 4.1 | box constraint: automatic | epsilon: auto | standardize 0.6446 | 0.4646 | 0.9155
SVM g;f:.e;:ecsoarse gaussian SVM | kernel function: gaussian | kernel scale: 16 | box constraint: automatic | epsilon: auto | standardize 0.6216 | 0.4611 | 0.9197
Tree Preset: fine tree | minimum leaf size: 4 | surrogate decision splits: off 0.7658 | 0.5737 | 0.8903
Tree Preset: medium tree | minimum leaf size: 12 | surrogate decision splits: off 0.6985 | 0.5235 | 0.9049
Tree Preset: coarse tree | minimum leaf size: 36 | surrogate decision splits: off 0.6574 | 0.4892 | 0.9130
Linear regression | Preset: linear | terms: linear | robust optional: off 0.6193 | 0.4601 | 0.9201
Linear regression | Preset: interactions linear | terms: interactions | robust optional: off 0.6198 | 0.4603 | 0.9201
Linear regression | Preset: robust linear | terms: linear | robust optional: on 0.6211 | 0.4609 | 0.9198
f;;[rj ;A;si(e)rllmear Preset: stepwise linear | initial terms: linear | upper bound on terms: interactions | maximum number of steps: 1000 0.6198 | 0.4603 | 0.9201

Table 8. Results of the BELBFM model vs. known regression models on the test dataset (test 6).

table highlights the superior performance of BELBFM compared to the alternative models. Notably, BELBFM
achieves the lowest RMSE (0.6002) and MAE (0.4480), along with the highest R2 value (0.9506), indicating its
exceptional ability to explain variance in wind speed data. In contrast, models such as Neural Networks and
Gaussian Process Regression show comparatively higher error rates and lower predictive accuracy.

Discussion and conclusion
The BELBFM model represents a significant advancement in wind speed prediction, utilizing an innovative
ensemble learning methodology that outperforms traditional approaches such as numerical weather prediction
(NWP) and computational fluid dynamics (CFD). By integrating outputs from memory units trained on distinct
wind speed data layers with optimized performance coefficients, BELBFM achieves superior predictive accuracy.
Its emotionally-inspired learning principles effectively capture the inherent nonlinearities of atmospheric
processes, facilitating reliable wind speed forecasts across diverse conditions.

A notable contribution of this study is BELBFM’s dual-height wind speed modeling capability, predicting
wind speeds at both 10 and 100 m. This feature provides a comprehensive understanding of wind behavior
across critical altitudes, crucial for applications in renewable energy optimization, climate modeling, and
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weather forecasting. The model’s flexible regression approach, based on a neighborhood feature set, minimizes
computational demands and improves accuracy by prioritizing the most relevant data points, setting it apart
from conventional time series models.

Performance metrics underscore the model’s predictive power. Despite the challenges of predicting wind
speeds at 100 m due to numerous influencing factors, BELBFM’s dual-height modeling effectively utilizes
10-meter data for accurate 100-meter predictions, and vice versa. Model A, which integrates data from both
heights, demonstrates high accuracy in predicting 10-meter wind speeds. Its consistent performance across
two periods (2001-2020 and 2021-2023) suggests strong adaptability to new data while mitigating concerns
about overfitting. Furthermore, the Weighted Sum method consistently outperforms the Simple Mean method,
enhancing predictive accuracy across diverse datasets.

Comparative analysis with other well-known regression models, as detailed in Table 8, highlights BELBFM’s
superiority. It achieves the lowest RMSE and MAE values and the highest R?, underscoring its exceptional ability
to explain variance in wind speed data effectively.

BELBFM’s correlation-based data pruning technique is another valuable feature, reducing the training dataset
to less than 0.07% of its original size while retaining representative samples. This efficient process accelerates the
modeling workflow without compromising prediction quality, making the model particularly suitable for real-
time applications in renewable energy management, weather forecasting, and disaster preparedness.

The model also demonstrates computational efficiency. By leveraging a pruned 5x5 grid during feature
selection, BELBFM significantly reduces the number of processed features. The feature selection phase has a
time complexity of O(n-k), while the training phase for each memory unit’s multilayer perceptron (MLP) has
a complexity of O( T-L-N?), where #n is the number of data points, k the neighboring cells, T the number of
iterations, L the number of layers, and N the neurons per layer. Spearman correlation-based pruning further
reduces computational demands, achieving a complexity of O(n?), thereby drastically reducing the dataset size
to 0.07%. These optimizations ensure both accuracy and efficiency, completing hyperparameter tuning within
five hours and model training in under three minutes on standard hardware.

Despite its strengths, the model’s reliance on ERA5 data may introduce variability in performance, contingent
upon the quality and resolution of the input data. Further research is needed to validate BELBFM’s effectiveness
across diverse regions and incorporate additional atmospheric variables for refined predictions. Enhancing
adaptability to real-time data and changing weather conditions could further expand its utility.

The novelty of BELBFM lies in its innovative architecture and methodological advancements. By integrating
basic and functional memory units with adaptive emotional learning mechanisms, the model effectively
captures the nonlinear and dynamic nature of atmospheric processes. Its dual-height predictive capability
addresses a critical gap in simultaneous wind speed modeling at varying altitudes, providing enhanced utility
for renewable energy optimization and climate modeling. The incorporation of correlation-based data pruning
ensures computational efficiency, setting BELBFM apart as a practical solution for real-time applications. This
framework underscores the transformative potential of brain-inspired learning methods in advancing wind
speed prediction and related meteorological applications.

In conclusion, BELBFM exemplifies the potential of emotionally-inspired learning models to advance
meteorological research. Its performance, adaptability, and efficiency open promising opportunities for
deployment across wind energy forecasting and broader environmental fields.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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