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Machine learning models for water
safety enhancement
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Humans encounter both natural and artificial radiation sources, including cosmic rays, primordial
radionuclides, and radiation generated by human activities. These radionuclides can infiltrate the
human body through various pathways, potentially leading to cancer and genetic mutations. A study
was conducted using random sampling to assess the concentrations of radioactive isotopes and

heavy metals in mineral water from Iran, consumable at Arak City. Notably, specific radiation levels of
Ra-226 were not detected, whereas the concentrations of Th-232, K-40, and Cs-137 were found to be
below the thresholds established by the World Health Organization (WHO). The annual effective doses
derived from the consumption of bottled water were significantly lower than the limits set by the
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), thereby reducing
the risk of cancer. Furthermore, heavy metals such as lead and chromium were not present in the
samples, thereby contributing to the overall safety of the water. The Machine Learning (ML) models
employed in this study provided accurate predictions, ensuring reliability across various demographic
groups and reinforcing the robustness of the findings. Overall, the results suggest that consumable
mineral water consumption poses minimal health risks.

Keywords Mineral water, Water safety, Machine learning, Health risks, Radioactive isotopes, Potential
cancer risk

Water is crucial to human nutrition, with approximately 80% of waterborne diseases attributed to contamination®-2.
To mitigate disease risks and avoid high monitoring costs due to pollutants from population growth, industrial
expansion, and waste disposal, it is essential to prioritize the accessibility and affordability of clean drinking
water?,

The human body is exposed to both natural and artificial radiation. Natural radiation includes cosmic rays
and primordial radionuclides such as uranium, thorium, actinium, and potassium, which have long half-lives*.
Artificial radiation from human activities, such as nuclear testing and accidents, includes radionuclides such
as Cs-137 and Sr-90°. These substances can enter the body via inhalation, ingestion, and dermal absorption®.
Contaminated water can introduce internal radiation sources, leading to DNA and RNA damage and potentially
causing cancer and genetic mutations’. Industrial activities also introduce heavy metals like lead, chromium,
arsenic, and cadmium into the body through contaminated water, air, and food, accumulating in tissues and
bones®.

Underground water that interacts with geological formations and contaminants can have higher
concentrations of radioactive materials than surface water’. The global demand for bottled water has increased
by 31% due to economic and safety reasons!’. This study evaluated the specific activities of radioactive isotopes
and heavy metal levels in bottled water and compared them with WHO health standards and findings from other
countries.

Applying ML in the mineral water context involves innovative approaches to improve water quality,
treatment processes, and resource management. ML algorithms can analyze data from various sensors for
real-time monitoring of mineral water quality, which is essential for identifying contaminants and ensuring
compliance with safety regulations'!. ML models can enhance water treatment efficiency by forecasting optimal
operational parameters, thereby leading to improved impurity removal and resource efficiency. In addition,
ML can predict the maintenance needs of water treatment systems, thereby reducing downtime and ensuring
continuous functionality'!. In mineral processing, ML models can identify and assess the mineral composition
of water, which is crucial for achieving the desired mineral balance in bottled water. These applications highlight
ML transformative potential in the mineral water industry, particularly in terms of quality assurance, process
optimization, and sustainable water management!'2.

Tackling a regression problem involves predicting a continuous outcome variable based on one or more
predictor variables, which is common in fields such as finance, healthcare, and engineering. Accurate predictions
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require a structured approach, starting with an understanding of the data and relationships between variables
through exploratory data analysis (EDA)'3. Complex models such as polynomial regression, ridge regression,
and lasso regression can capture nonlinear relationships and handle multicollinearity. Model evaluation and
validation, such as cross-validation, ensures that the model generalizes well to unseen data, which enhances
reliability!.

The goal of this study is to apply sophisticated ML models to improve prediction precision in future studies.
The study also proposes recommendations for regulating radioactive isotopes and heavy metals in potable
water and advocates for longitudinal studies to assess the health effects of consuming mineral water with low
concentrations of radionuclides and heavy metals.

The paper is organized as follows: section “Materials and methods” details the materials, methods, and
formulations for measuring radioactive isotope activity levels and reviews various ML models to identify the
best regression model for predicting cancer risk. Section “Results and discussion” compares results from mineral
water samples in Arak City with those predicted by ML models, discussing the most effective methods and
cancer risk assessment. Finally, section “Summary and conclusion” summarizes the research findings.

Materials and methods

In this study, a random sampling technique was employed to assess the activity levels of the radioactive isotopes
Ra-226, Cs-137, K-40, and Th-232 in water sourced from the consumable mineral water of Arak City. The
investigation utilized commercially available mineral waters from the region. Initially, 15 samples of consumable
mineral water, branded as Surprise, Miwa, Aquafina, Versailles, Deserni, Zamzam, Akarso, Vata, Damavand,
Elham, Prolife, Kalis, Aqiq, Gohar, and Alis, were collected from local supermarkets in Arak. Each sample was
1.5 L of water to satisfy the measurement criteria. The samples were designated with coded identifiers WFR1-
WFR15, and 800 cc samples were transferred into Marinelli beaker containers thoroughly cleaned with distilled
water and alcohol. These Marinelli containers were then sealed with aquarium adhesive to eliminate any potential
air exchange with the external environment and to prevent the escape of radon gas. To achieve stable equilibrium
among the decay products, eight half-lives of the radon gas must elapse, which corresponds to a duration of
approximately 50 days, given that the half-life of radon is 7 days. Consequently, mineral water sampling was
scheduled to occur approximately 50 days after sealing'®.

To investigate the heavy-metal concentration in mineral water samples using the inductively coupled plasma
technique, 10 cc of each sample was transferred into Falcon containers located in the central laboratory of Arak
University. The samples were subsequently pumped into an atomizer, from which they were injected into the ICP-
AES device. The plasma within the device reaches a temperature of 4000 °C, which facilitates the dissociation of
chemical bonds and results in light emission at various wavelengths. These wavelengths are then used to quantify
the heavy metal contents in the samples. To mitigate potential chemical interferences within the apparatus, three
appropriate emission lines were selected for each element, and each analysis was conducted in triplicate. Table 1
presents the characteristics of 15 consumable mineral water samples sourced from various cities, each exhibiting
distinct compositions, collected from supermarkets in Arak City.

Sample preparation

The gamma-ray spectrometry apparatus used in the nuclear laboratory at Arak University is designed to measure
the activity of radioactive nuclei with high-energy resolution. This system employs a Semiconductor and coaxial
HPGe p-type detector model 30,195 BSIGCD, which boasts a relative efficiency of 30% and is equipped with 4096
analyzer channels. The energy resolution of the Co-60 gamma line, characterized by energies of 1332.520 keV
and operating at a voltage of 3000 V, was recorded at 1.95 keV. The energy and efficiency calibrations in gamma
spectroscopy are conducted using a Cs-137 standard source with known specific activity, and the spectrometry
process is facilitated by IsrmB SI software. The signals produced in the detector are transmitted to the MCA8192
compact system via a pre-amplifier, where they are recorded in a sped format. Subsequently, WINHEX and
MATLAB software were employed to convert these files into the CHN format. Following this conversion, the
specific activities of radionuclides in environmental samples were assessed using GammaVision32 (EG&G
Ortec). To determine background radiation and ensure that the spectra are analyzed under consistent spatial
and temporal conditions, spectroscopy is performed in empty Marinelli containers, and the resulting data is
subtracted from the original spectrum?S.

In the central laboratory of Arak University, there exists an Inductively Coupled Plasma Atomic Emission
Spectrometry (ICP-AES) instrument, specifically the 9100 Quant Plasma model, manufactured in Germany.
This analytical technique is used for the detection of chemical elements in various samples. The device operates
using inductively coupled plasma to generate excited atoms and ions, which subsequently emit electromagnetic
radiation at characteristic wavelengths associated with specific elements. Plasma is a high-temperature source
of ionized gas, typically argon. The device is maintained in the temperature range of 6000 to 10,000 K using
inductive pairs of electric coils and operates at MHz frequencies. The absolute efficiency of the detector is
determined by Eq. (1) based on the recorded gamma-ray spectrum.

N;

s(%):ActxPn(Ei)xt

x 100, (1)

where ¢ represents the absolute efficiency of the detector, N, denotes the net count of the sub-peak corresponding
to the energy Ei, and Act refers to the specific radioactivity of the standard source measured in Bq/Kg.
Additionally, P_(E,) indicates the probability of photon emission at energy Ei, and t indicates the duration of the
spectrometry measurements, expressed in seconds.
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Factory location
Sample no. | Brand name | (in Iran) Mineral combinations
wirl Surprise Alborz, Baharestan Province Fluoride, calaum, p otg ssium, o
sulfate, magnesium, nitrate, and nitrite
. . Calcium, magnesium, fluoride, chloride,
wir2 Miwa Amol and Pleur springs nitrite, calcium carbonate, and soluble solids
wir3 Aquafina Tehran, km 10 special road Calclu{ln, magnesium, sodium,
potassium, and sulfate
Calcium, sodium, magnesium,
wird Versa Amol, Haraz Road nitrite, nitrate, sulfate, and fluoride
wir5 Desserny Tehran, Azadegan Highway SOd}um’ potassium, iron,
calcium, magnesium, and sulfates
wiré Zamzam Lorestan, Azna Chlpnde, magne§1um, lron,
sodium, and calcium
wir7 Akarso Astana, Anusha Calc1'um, magnesium, sodlum,
fluoride, solid solutions, calcium carbonate
wir8 Vata Ardabil, the Sablan mountain Calcn%m, magnesmm > fluoride, .
chloride, nitrate, nitrite, and sodium
wifr9 Damavand Damavand Mountain, Tehran, Iran | Calcium, magnesium, and sulfate
wirl0 Elham Hamedan, Faminin C}aICIum, magnesium, nitrite,
nitrate, and sodium
wirll Prolife Haraz Road Calcn{m, sodlum, b icarbonate,
chloride, and nitrite
wirl2 Kallis Lorestan, Cheshme Mahihole Calcium, magnesmm, soqlum,
sulfate, nitrate, and fluoride
wirl3 Aghigh Arak, Safidkhani foothills Calcj.lum, magnesium, nitrite,
sodium, bicarbonate, and nitrate
Calcium carbonate, soluble
wirl4 Gahar Lorestan-Astrankoh range solids, chloride, and nitrate
wifrl5 Alis Khorasan Razavi Calqum, magnesium, S°d‘““?’
calcium carbonate, and chloride

Table 1. Brief description of mineral water in Iran, consumable at Arak City.

Special activities of radioactive nuclei

The specific activity of samples is assessed using gamma rays from various isotopes. For the gamma lines of Pb-
214, which have an energy of 351.93 keV, and Bi-214, which have an energy of 609.31 keV, the specific activity is
determined alongside those of Th-232. The gamma line from Ac-228, which exhibited an energy of 911.21 keV
with an intensity of 28%, and another line at 338.32 keV with an emission percentage of 11%, was also analyzed.
Additionally, the specific activity of K-40 was evaluated using its gamma line at 1460.70 keV, whereas the gamma
line of Cs-137, with an energy of 661.66 keV, was employed for further assessment. The specific radioactivity of
these radioactive nuclei within the samples is given by

NetArea
(% )xBR(% ) xtxm

A= . x 100, 2)

where A denotes the specific activity of the sample expressed in Bq/kg. The term “Net Area” refers to the net
area beneath the peak, while ¢ signifies the absolute efficiency of the detector. Additionally, BR represents the
branching ratio expressed as a percentage, t indicates the sampling duration of the sample measured in seconds,
and m corresponds to the mass of the sample in kilograms”.

Annvual effective dose
The annual effective dose derived from the ingestion of natural and artificial radionuclides in drinking water is
as follows:

AED = ZAi x DCF; x Cr. 3)

The annual effective dose (AED) is expressed in sieverts per year and is calculated using the specific radioactivity
of isotopes Ra-226, Th-232, K-40, and Cs-137 measured in units per liter (Bq/L). The dose conversion factor
(DCEF,) is defined in Sieverts per liter (Sv/Bq), and Cr represents the annual drinking water consumption for
infants, children, and adults (250, 350, and 730 L, respectivelylg. Table 2 lists the dose conversion values of the
core radioactive substances.

Potential cancer risk (ELCR)
To evaluate the potential cancer risk associated with drinking water consumption throughout an individual’s
lifetime, various methodologies
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DCEF, (Sv/Bq)
226Ra 232Th 40K 137(:s
2.8x1077 | 6.9%x1077 | 62x107° | 1.3x 1078

Table 2. Values of specific radiation conversion factor to dose.

Radioactive nuclei hing (mSv/Bq) | Guidance level (Bq/l)
26Ra 2.1x1074 0.5
232Th 2.3x1074 1.0
4K 6.2x107°° 22.1
137Cs 1.3x107° 10.0

Table 3. Guidance levels for radioactive nuclei in young adults’ drinking water.

ELCR = Rr X Dw X Far. (4)

The ELCR represents the lifetime cancer risk, and D denotes the annual effective dose for the specified age
group, which is measured in Sieverts annually. The F,  indicates the duration of the target age range in years, and
the R, which is quantified as 7.3 x 1072, corresponds to the risk associated with one per Sv*.

Radium equivalent activity (Raeq)
The total radioactivity can be determined using Eq. (5), which expresses it concerning the radium activity (Raeq)
as follows?®

Raecq = Agra+ 1.43 Amh + 0.077Axk. (5)

The specific activities of Ra-226, Th-232, and K-40 (denoted as A , A}, and A, respectively) were measured in
Bq/l. The internal risk indicators (H, ) and external risk indicators (H_,) were used to assess the risk of radiation
exposure associated with specific isotopes within the radon gas decay series. The values of Hex and Hin can be
derived from Egs. (6) and (7)*! as follows:

_Aga | Amy Ak

Hex = — < 1, 6
370 259 4810 ©)
= Dl B B @)
185 259 4810
Safe drinking water
To determine the surface area of the core guide, we used?%:
IDC
GL= ——M—MM—
(@ x hing) ’ (8)

where GL represents the guide level of the radioactive core in drinking water, measured in becquerels per liter.
IDC denotes the individual dose standard, established at 0.1 millisieverts per year. The variable q indicates the
annual water consumption of adults (730 L per year, while hing refers to the dose conversion factor expressed in
millisieverts. This factor was derived from the values associated with Becquerel (see Table 3).

To ensure the safety of drinking water, we implemented various measures.

Ci

The specific activity of the radioactive nuclei for the i-th radionuclide in drinking water is denoted Ci, while
GLi represents the guideline level for the i-th radionuclide, as derived from Eq. (8). It is established that specific
drinking water activities should not exceed a value of 1.

ML methods

A suitable regression model is essential for an effective analysis. Linear regression is one of the most
straightforward and commonly employed techniques, primarily because of its simplicity in application.
Furthermore, performance indicators such as Mean Squared Error (MSE) and R-squared, serve to measure
prediction precision. Ultimately, it is crucial to continuously enhance the model by adjusting hyperparameters
and integrating domain-specific insights, which improves performance. The refinement process is critical for
developing accurate and reliable models. A systematic methodology is essential when tackling a regression
problem to achieve precise and reliable outcomes. The main aim of this study was to predict AEDs and assess
ELCR. The following outlines the key steps of this research:
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(a) Data Collection: This step acquires all pertinent data required for analysis, ensuring its relevance and com-
prehensiveness. The data presented in sections “Sample preparation” to “Safe drinking water” are primarily
discussed in the results and discussion sections.

(b) Data Preprocessing: Data preprocessing is a fundamental step in ML because it helps improve the quality
of data and prepare them for modeling. In our dataset, there were no outliers or missing values. We used
the one-hot encoding method to convert categorical mineral water type and age group data into numerical
data.

(c) Data Splitting: The dataset was divided into a 70:30 ratio, with 70% allocated for training to learn and 30%
for testing to evaluate the performance of the model on previously unseen data.

(d) Model Selection: Various regression models, including ridge regression, Decision Tree (DT) Regression,
and Random Forest (RF) Regression, were evaluated to determine the most appropriate option. Below, each
model is presented with a concise description:

Ridge Regression: Ridge regression improves linear regression by addressing multicollinearity by adding a
regularization term to the ordinary least squares objective function. The L2 penalty reduces model complexity
by shrinking the coefficients toward zero. Ridge regression is particularly useful for handling multicollinearity,
which occurs when independent variables are highly correlated?.

DT Regression: DT regression employs a top-down, greedy-layer approach. The proposed method
progressively divides a dataset into increasingly smaller subsets while simultaneously constructing an associated
decision tree. The end product is a tree comprising decision and leaf nodes**.

RF Regression: RF Regression is an additive model that predicts outcomes by aggregating decisions from
multiple base models. Each base model is a DT, and the final output of the RF model is the combined result of
the DT. This method of using several models to enhance predictive accuracy is referred to as model ensemble®*.

(e) Model Training and Hyperparameter Tuning: The grid search method is used as a strategy to optimize the
hyperparameters of ML models to enhance performance. This approach specifies a range of potential values
for each hyperparameter, followed by an exhaustive evaluation of all possible combinations to identify the
most effective configuration for improving model performance. Table 4 presents the hyperparameter con-
figurations for three different models: Ridge, DT, and RF. These configurations were determined using a grid
search technique, thereby outlining the ideal hyperparameters for each model.

(f) Model Evaluation: The efficacy of the model was evaluated using various metrics, including the mean ab-
solute error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R?). The mean
absolute error (MAE) quantifies the disparity between the actual and forecasted values by computing the
average of the absolute differences throughout the dataset?.

MAE:M (10)
n

The RMSE is derived by computing the square root of the mean square error (MSE). The MSE quantifies the
disparity between the actual and predicted values by squaring the mean of the differences throughout the
dataset™.

Coefficient of Determination (R?): R? denotes the coefficient of determination, which serves as an indicator of

the degree to which the observed values align with the original values. The coefficient ranges from 0 to 1 and can

be interpreted as a percentage. A higher R? value indicates a superior model performance?.

(12)

(g) Selecting the Best Model and Result Interpretation:

Figure 1 presents a comparative analysis of the error metrics: MAE and RMSE across three ML models: RE
Decision Tree, and Ridge models. These metrics are critical for assessing the accuracy of regression models by

Model name alpha

Ridge regressor | 0.1

Model name n_estimators | max_depth | min_samples_split | min_samples_leaf
DT regressor - 10 2 2
RF regressor 50 10 2 1

Table 4. The hyperparameter configurations for three different models: Ridge, DT, and RE.
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Fig. 1. A comparative examination of two error metrics, specifically MAE and RMSE error metrics were
compared across three ML models: RF, Decision Tree, and ridge regression models.

quantifying the discrepancies between actual and predicted values. The MAE is represented by blue bars, and
it quantifies the average absolute deviation between the actual and predicted values, regardless of error signs.
A lower MAE typically indicates a more precise model. In this analysis, the RF model exhibits the lowest MAE,
indicating superior accuracy compared to the other models. In contrast, the Ridge model obtained the highest
MAE, indicating a greater degree of error in its predictions. The MAE of the DT model was marginally higher
than that of the RF model, reflecting its moderate performance in this context.

In contrast, the RMSE is illustrated with yellow bars and evaluates errors by assigning more penalties to larger
discrepancies, which involves squaring the errors. This metric is particularly sensitive to larger errors than the
MAE. The RF demonstrated the lowest RMSE, indicating high accuracy and reduced occurrence of significant
errors. The ridge model, which had the highest RMSE value, tended to have larger prediction errors than the
other models. Although the DT demonstrated a lower RMSE than the ridge, it still fell short of the accuracy
exhibited by RE. Overall, the chart indicates that the RF outperforms both the MAE and RMSE, highlighting its
effectiveness in minimizing prediction errors.

The R2 indices of the R? index between three different ML models are displayed in Fig. 2. The RE, DT, and
Ridge models were evaluated. The R? index, also known as the “coefficient of determination,” is a crucial indicator
used to assess the accuracy of regression models. This index showcases the amount of variance in the dependent
variables explained by independent variables. The closer the R? value is to 1, the better the model’s explanation of
the data variance. In the graph, the RF model, represented in blue, exhibited the highest R? value. This suggests
that this model is the most accurate in prediction. RF is a complex model that combines multiple decision trees,
which is typically employed in scenarios with complex data. RF can be used to identify correlations between
features.

The DT model (green curve) is less accurate than the RF model. This can be attributed to the simplicity
of the DT model, as it consists of a single tree rather than a combination of trees, as in the RE. Despite being
less accurate than the RE the DT model seems to outperform the Ridge model (red), which ranks last among
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Fig. 2. Comparative analysis of the R? index across three distinct ML models: RE, DT, and Ridge.

the three models. This comparison reveals that the more intricate RF model performs better on our data and
produces higher R? values.

After evaluating the performance of several regression models based on various metrics, we found that the
RF Regression model demonstrated the best results.

To assess the robustness of the results obtained from the proposed RF model, we evaluated the model
stability using two methods. First, we applied small noise (mean 0, standard deviation 0.01) to the test data
and compared the original R? with the perturbed R?. Both values remained consistent at 0.9, demonstrating
the model’s robustness and stability against minor input variations. These results suggest that the model can
reliably maintain its predictive power, which is crucial for real-world applications in which data often contain
small amounts of noise. Second, the bootstrap method was used to estimate the stability of the proposed model.
Given the limited dataset size, Cross-Validation (CV) often produces unstable and high-variance results because
the small subsets in each fold provide insufficient data for robust training and testing. This limitation can lead
to inaccurate model performance estimation. To address this issue, the bootstrap method was employed. The
proposed method repeatedly samples with replacement from the entire dataset, thereby allowing for optimal
use of limited data. In this study, the bootstrap procedure was repeated 100 times, enabling the calculation of
the mean and standard deviation of the performance metric R>. The results demonstrated a mean RZof 0.89
with a standard deviation of 0.08, indicating the model’s stability. Therefore, due to its ability to deliver a more
consistent and trustworthy evaluation, the bootstrap method was preferred over CV in this case.

Generally, the RF model demonstrated superior accuracy, robustness, and generalizability. As a result, the
random forest model was chosen to make the final predictions. By leveraging its ability to capture complex
patterns and relationships in the data, we can anticipate precise predictions for AED. Figure 3 summarizes the
step-by-step process of the proposed ML regression model.
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Fig. 3. Steps to construct the machine learning regression model.

Sample no. | Netarea | & BR |T m | **%Ra
wirl 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wir2 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wir3 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wird 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wir5 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wir6 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wir7 0 0.015127 | 0.46 | 86,400 | 0.8 | O
wir8 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wifr9 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wirl0 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wirll 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wirl2 0 0.015127 | 0.46 | 86,400 | 0.8 | O
wirl3 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wirl4 0 0.015127 | 0.46 | 86,400 | 0.8 | 0
wirl5 0 0.015127 | 0.46 | 86,400 | 0.8 | 0

Table 5. Summary of the special activity results of ?Ra related to all samples according to (Bg/l).

Results and discussion

The specific activities of the radioactive nuclei across all samples are presented in Tables 5, 6, 7 and 8, and Fig. 4 to
facilitate the comparative analysis of the specific activity results. The annual dose received, expressed in (uSv/y)
due to water consumption, is detailed for the three distinct age groups in Table 9. Figure 5 visual comparison of
the dose results. Additionally, data concerning cancer risk associated with water consumption among the same
three age groups are presented in Table 10, with Fig. 6 to enhance the comparative evaluation of cancer-related
outcomes. Furthermore, Table 11 presents results related to radium equivalent activity, internal and external risk
indices, and assessments of drinking water safety. A comparative analysis of the findings from this study and
those from other countries is presented in Table 12, complemented by a comparison chart in Fig. 7.

The specific activities of *°Ra are detailed in Table 5. By applying Eq. (2), it is established that the total sampling
duration for all specimens spans one day and night, totaling 86,400 s. The cumulative mass of the samples was
800 cc, equivalent to 0.8 kg. The branching ratio for ?2°Ra is estimated at 0.46, based on decay software analysis
of 21Bi, which has an energy of 609 keV. The calculated absolute efficiency of ??Ra a is 0.015127. The net level
for all samples was zero. Because the net level is a pivotal element for assessing specific activities, we conclude
that the specific activity level of 22°Ra across all samples is also zero.

The specific activities of 232Th are presented. Using Eq. (2), we determined that the total sampling duration
for all samples was one day, equivalent to 86400 s, with a total mass of 800 cc or 0.8 kg for each sample, as shown
in Table 6. The branching ratio of 23Th, calculated using Decay software for 228Ac at an energy level of 911 keV,
was estimated to be 0.28. The absolute yield for 23?Th is recorded as 0.011389. Among the samples, sample 7
exhibited the highest net activity (165), while sample 14 exhibited the lowest net activity ((0). Furthermore, the
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Sample no. | Netarea | & BR |T m | 2Th
wirl 61 0.011389 | 0.28 | 86,400 | 0.8 | 0.276
wir2 39 0.011389 | 0.28 | 86,400 | 0.8 | 0.176
wir3 53 0.011389 | 0.28 | 86,400 | 0.8 | 0.240
wird 66 0.011389 | 0.28 | 86,400 | 0.8 | 0.299
wir5 108 0.011389 | 0.28 | 86,400 | 0.8 | 0.489
wir6 117 0.011389 | 0.28 | 86,400 | 0.8 | 0.530
wir7 165 0.011389 | 0.28 | 86,400 | 0.8 | 0.748
wir8 55 0.011389 | 0.28 | 86,400 | 0.8 | 0.249
wir9 71 0.011389 | 0.28 | 86,400 | 0.8 | 0.322
wirl0 40 0.011389 | 0.28 | 86,400 | 0.8 | 0.181
wirll 40 0.011389 | 0.28 | 86,400 | 0.8 | 0.181
wirl2 99 0.011389 | 0.28 | 86,400 | 0.8 | 0.449
wirl3 78 0.011389 | 0.28 | 86,400 | 0.8 | 0.353
wirl4 0 0.011389 | 0.28 | 86,400 | 0.8 | 0.000
wirl5 37 0.011389 | 0.28 | 86,400 | 0.8 | 0.167

Table 6. Summary of report special activity results for 222Th related to all samples according to (Bg/l).

Sample no. | Netarea | & BR | T m | %K

wirl 309 0.008009 | 0.1 | 86,400 | 0.8 | 5.582
wir2 98 0.008009 | 0.1 | 86,400 | 0.8 | 1.770
wir3 4 0.008009 | 0.1 | 86,400 | 0.8 | 0.072
wird 19 0.008009 | 0.1 | 86,400 | 0.8 | 0.343
wir5 135 0.008009 | 0.1 | 86,400 | 0.8 | 2.438
wir6 84 0.008009 | 0.1 | 86,400 | 0.8 | 1.517
wir7 9 0.008009 | 0.1 | 86,400 | 0.8 | 0.162
wir8 0 0.008009 | 0.1 | 86,400 | 0.8 | 0.000
wir9 413 0.008009 | 0.1 | 86,400 | 0.8 | 7.460
wirl0 387 0.008009 | 0.1 | 86,400 | 0.8 | 6.991
wirll 148 0.008009 | 0.1 | 86,400 | 0.8 | 2.673
wirl2 47 0.008009 | 0.1 | 86,400 | 0.8 | 0.849
wirl3 82 0.008009 | 0.1 | 86,400 | 0.8 | 1.481
wirl4 0 0.008009 | 0.1 | 86,400 | 0.8 | 0.000
wirl5 12 0.008009 | 0.1 | 86,400 | 0.8 | 0.261

Table 7. Summary of report special activity results for “°K related to all samples according to (Bq/l).

highest specific activity of *Th was associated with sample 7, which was recorded at 0.748 Bq/L, whereas sample
14 had the lowest specific activity at zero.

Table 7 lists the special activity values for “°K. Using Eq. (2), it is determined that the total sampling duration
for all samples amounts to one day and night, equivalent to 86,400 s. The total mass of all samples was 800 cc
(0.8 kg. The branching ratio for “°K was computed using decay software, yielding an energy value of 1460 keV
and an estimated branching ratio of 0.1. The absolute efficiency for “°K was calculated as 0.008009. Among the
samples, sample 9 exhibited the highest net level (413), while sample 14 exhibited the lowest net level (zero). The
most significant specific activity for “°K was associated with sample 9, which measured 7.460 becquerels per liter,
whereas sample 14 had the lowest specific activity, recorded as zero.

Table 8 lists the specific activities of 1’Cs. Utilizing Eq. (2), it is determined that the total sampling duration
for all samples is one day, equivalent to 86,400 s, with a total mass of 800 cc or 0.8 kg for each sample. The
branching ratio of 1*’Cs was estimated to be 0.94 based on an energy level of 661.66 keV using decay software.
The absolute efficiency for *’Cs is recorded at 0.0139. Among the samples, sample 7 exhibited the highest net
level (134), while sample 14 exhibited the lowest net level (0). The specific activity of !3’Cs was highest in sample
7, with a value of 0.148 becquerels per liter, whereas sample 14 had the lowest specific activity, recorded as zero.

The data presented in Fig. 4 indicate that the mineral water samples exhibited the highest levels of radioactivity
associated with the elements 4°K, 232Th, and '3"Cs. The concentration of 22°Ra was recorded as zero across all
samples, which is significant given that 98.5% of radiation-related damage is attributed to ?2°Ra. Consequently,
the concentration of radium emerges as a critical parameter for mineral water factories seeking licensure from
the Ministry of Health.
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N K40

HTh232
Cs137

W Ra226

O = N W s U OO N

l K40

lTh232 0 2767 0.1768 0 2405| 0 2994 0.49 O 5308 O 7486 0. 2495 0. 3221 0. 1815 0.1815 0 4491 0 3539

Sample no. | Net area | € BR |T m | ¥Cs
wirl 35 0.0139 | 0.94 | 86,400 | 0.8 | 0.038
wir2 60 0.0139 | 0.94 | 86,400 | 0.8 | 0.066
wir3 30 0.0139 | 0.94 | 86,400 | 0.8 | 0.033
wird 30 0.0139 | 0.94 | 86,400 | 0.8 | 0.033
wir5 17 0.0139 | 0.94 | 86,400 | 0.8 | 0.018
wir6 65 0.0139 | 0.94 | 86,400 | 0.8 | 0.071
wir7 134 0.0139 | 0.94 | 86,400 | 0.8 | 0.148
wir8 62 0.0139 | 0.94 | 86,400 | 0.8 | 0.068
wir9 1 0.0139 | 0.94 | 86,400 | 0.8 | 0.001
wirlo 55 0.0139 | 0.94 | 86,400 | 0.8 | 0.060
wirll 34 0.0139 | 0.94 | 86,400 | 0.8 | 0.037
wirl2 61 0.0139 | 0.94 | 86,400 | 0.8 | 0.067
wirl3 13 0.0139 | 0.94 | 86,400 | 0.8 | 0.014
wirl4 0 0.0139 | 0.94 | 86,400 | 0.8 | 0.000
wirl5 70 0.0139 | 0.94 | 86,400 | 0.8 | 0.077

Table 8. Summary of special activity results from !¥’Cs related to all samples according to (Bq/l).

ACT(Bq/I)

L,J,-.I.L,LL Ll ——

wfrl | wfr2 ‘ wirs | wira | wirs | wis | wf7 | ws | wiro | wfrio| wiri1 | wéri2 [ w13 | weria | wins|
5 5822 1.7704 0 0723| O 3432 2 4388 1.5175 O 1626 0 |7.461 6 9913 26737 O 8491 1 a814| 0 02168‘
0.1679

0
Cs137 |o. 0388 0.0664|0.0332|0.0332(0.0188| 0.072 |0. 1484 0.0687|0.0011/0.0609|0.0376|0.0675/0.0144| 0 |0.0775
'm Ra226 0 0 \ o (o o o 0 0 o 0 0 0 0 0

0

Fig. 4. The amounts of special activity??’Ra. 1°K. 232Th and '*’Cs in the samples.

The information provided in Table 8 reveals that the annual effective dose for infants ranged from zero (as
observed in sample 14) to 0.130 microsieverts (as recorded in sample 7. Additionally, the maximum effective
dose was lower than the observed dose in infants. The annual effective dose for the pediatric population ranged
from zero microsieverts, noted in sample 14, to 0.182 microsieverts (n=7). Moreover, the maximum effective
dose for children, as indicated by UNSCEAR, is also comparatively lower. Lastly, the annual effective dose for the
pediatric age group ranged from zero microsieverts (associated with sample 14) to 379 microsieverts (associated
with sample 7. Furthermore, the peak effective dose for children remains below the UNSCEAR threshold.

Figure 5 compares the dosages received by infants, children, and adults. The annual consumption of drinking
water is 730 L for adults, 350 L for children, and 250 L for infants. Consequently, the dosage received by each age
group decreased in the following order: adults, children, and infants. The highest doses for all three age groups
were associated with sample 7.

The data presented in Table 10 indicate that the cancer risk factor for newborns ranges from 0 to 71,010~ 6
demonstrating variability. The cancer risk coefficient for the same age group spans from 0 to 99,5107, also
exhibiting variability. Additionally, the cancer risk coefficient for infants, within the range of 0-2070, is on the
order of 105, highlighting its variable nature.

Figure 6 illustrates the comparative risk of cancer among the analyzed samples, including adults, infants, and
children. This assessment was influenced by the critical AED variable. Notably, the effective dose received was
correlated with a decreased cancer risk among the following age groups: adults, children, and infants.
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- Infants | Children | Adult
Sample no. | AED AED AED
wirl 56.4 78.9 165
wir2 33.3 46.6 97
wir3 41.6 58.3 122
wird 53.2 74.5 155
wir5 88.2 123.0 258
wiré 94.0 132.0 275
wir7 130.0 182.0 379
wir8 43.2 60.4 126
wir9 67.1 94.0 196
wirl0 42.2 59.2 123
wirll 35.5 49.7 104
wirl2 87.6 123.0 256
wirl3 63.2 88.5 185
wirl4 0.0 0.0 0
wirl5 29.4 41.1 85
Average 57.6 80.7 168

Table 9. Annual dose for infants, children, and adults based on uSv/y.

AED(uSv/y)

400
350 +
300 -
250 +
200
150
100

5°1.11[ll[1[11[[ o

wfrl | wfr2 | wfr3 | wfrd | wfrS | wfré | wfr7 | wfr8 | wfro | wfrl0 | wfrll | wfrl2 | wfri3 | wfrid | wfrlS

Winfants | 56.4 | 333 | 416 | 532 | 882 | 94 | 130 | 432 | 67.1 | 422 | 355 | 876 | 632 | 0 | 294 |
|mchildren| 789 | 46.6 | 583 | 745 | 123 | 132 | 182 | 604 | 94 | 592 | 497 | 123 | 885 | 0 | 411 |
adut | 165 | 97 | 122 | 155 | 258 | 275 | 379 | 126 | 196 | 123 | 104 | 256 | 185 | 0 | 85 |

o

Fig. 5. Comparison of the received dose among infants, children, and adults.

The equivalent radium activity is presented as an average of 0.61, in Table 11. The internal and external
indelibilities are consistent, attributable to the uniform specific activity of radium-226, resulting in identical
and low values. Furthermore, the analysis indicates that the water safety levels across all samples are below one,
suggesting that there is no significant health risk associated with these findings.

To facilitate the comparison of the findings of this study, Table 12 presents the specific activity results of
radioactive nuclei in bottled water from various countries. The outcomes of this investigation align well with
those reported in other countries and the values established by international organizations. Consequently, it
can be inferred that the radiation levels in the bottled water consumed by Arak residents do not pose any health
risks. As illustrated in Fig. 7, except for Malaysia and Nigeria, the levels of radioactive nuclei activity in all other
countries fell below the thresholds established by the World Health Organization. Furthermore, research on
bottled water consumption in Arak City, Iran, indicates that the presence of radioactive nuclei does not represent
a risk to human health.

This illustration presents the Actual versus Predicted chart for the RF model applied to the regression analysis.
A chart serves as a valuable tool for juxtaposing the model’s predicted values against the actual observed values,
thereby facilitating the assessment of the regression model’s efficacy. In this representation, points that align
closely with the 45-degree line indicate that the model’s predictions are nearly equivalent to the actual values.
A significant number of points clustered around this line, particularly at the lower end of the X-axis, suggesting
a high level of accuracy in this region. The minimal dispersion of most points on the chart indicates that the
RF model effectively captured the complexities of the data and produced reliable predictions. Nevertheless, a
few points deviating from the diagonal line may reflect specific characteristics of the data that warrant further
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- Infants | Children | Adult
Sample no. | ELCR | ELCR ELCR
Rank 107° 107° 107°
wirl 309 432 901
wir2 182 255 533
wir3 228 319 665
wird 291 408 850
wir5 483 676 1410
wiré 515 721 1500
wir7 710 995 2070
wir8 236 331 690
wir9 368 514 1070
wirl0 231 324 676
wirll 194 272 567
wirl2 480 672 1400
wirl3 346 485 1010
wirl4 0.00 0 0.00
wifrl5 161 225 470
Average 316 442 922

Table 10. Risk factors for cancer in infants, children, and adults.

ELCRx10®
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Fig. 6. Comparison of cancer risk among adults, infants, and children.

investigation. Overall, this chart demonstrates that the RF model has excelled in this regression task, achieving
commendable accuracy in its predictions of actual values.

Figure 8 displays the actual and predicted values for the RF model used in our regression analysis. This chart
is a useful tool for comparing the model’s predicted values with the actual observed values, making it easier to
evaluate the effectiveness of the regression model. The plot shows the actual values on the horizontal axis and the
predicted values on the horizontal axis. Each point on the plot represents a specific data pair, where the actual
value is compared to the predicted value.

In this representation, points that closely align with the 45-degree line indicate that the model’s predictions
are nearly equivalent to the actual values. Notably, a significant number of points were clustered around this
line, particularly at the lower end of the X-axis, suggesting a high level of accuracy in this region. The low
scatter in most parts of this image shows that the RF model can accurately predict complex representations.
However, a few points deviating from the diagonal line may reflect specific data characteristics that warrant
further investigation. Overall, this chart demonstrates that the RF model has excelled in this regression task,
achieving commendable accuracy in its predictions of actual values.

Table 13 compares the actual and predicted AECL and ECLR. The samples were divided into three groups:
Infants, Children, and Adults. The table includes columns for FAR (75 for all samples), RF (0.073 for all
samples), and CR (ranging from 0.00264 to 0.00401). These values are small decimals, indicating some form
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Sample no. | Ra, g |Hee |H, |SFW
wirl 0.82 | 0.002 | 0.002 | 0.72
wir2 0.38 | 0.001 | 0.001 | 0.38
wir3 0.34 | 0.001 | 0.001 | 0.41
wird 0.45 |0.001 | 0.001 | 0.52
wir5 0.88 |0.002 | 0.002 | 0.93
wir6 0.87 | 0.002 | 0.002 | 0.96
wir7 1.08 |0.002 | 0.002 | 1.28
wir8 0.35 | 0.001 | 0.001 | 0.42
wir9 1.03 | 0.002 | 0.002 | 0.87
wirl0 0.79 10.002 | 0.002 | 0.62
wirll 0.46 | 0.001 | 0.001 | 0.42
wirl2 0.70 |0.001 | 0.001 | 0.79
wirl3 0.62 | 0.001 | 0.001 | 0.66
wirl4 0.00 | 0.000 | 0.00 |0.00
wirl5 0.25 | 0.001 | 0.001 | 0.29
Average 0.61 | 0.001 | 0.001 | 0.62

Table 11. Risk indicators for mineral water samples consumed in Arak City.

Country | ?Ra 22Th 40K 137CS Source
Ttaly 0.10 0.03 - - 2
Poland | 0.34 0.32 - - 2
Algeria | 0.14 0.05 <0.07-2.19 |- 2
Nigeria | 15.50 7.04 34.08 - »
Slovenia | 0.03 0.01 - - 30
Malaysia | 3.30 3.39 2531 - 31
Romania | 0.45 - 1.28 - 2
Australia | 0.22 0.23 - - 3
Tiirkiye | 0.70 1.20 14.80 - 3

Iraq 0.029-3.017 | 0.025-2.326 | 4.706-161.56 | 0.040-0.953 | *
Iran 0.00 0.31 2.10 0.04 This research
WHO 0.50 1.00 22.10 10.00 %

Table 12. Comparison of the obtained results with those from other countries according to (Bq/l).

40
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™ 226Ra 01 034 | 0.14 [ 155 [ 0.03 [ 33 045 0.22 0.7 [} 0s
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Fig. 7. Comparison of the specific activities of the radioactive cores in the mineral waters of this study with

those of other countries.

of measurement or calculation. This table compares the predicted results of our prediction model with actual

values across various age categories.

Figure 9 presents a summary of the feature’s importance chart. The CR feature had the highest level of
importance, indicating its crucial role in the model analysis. The “Adults” feature ranked second most significant,
demonstrating a considerable effect. Mineral water types 7, 6, and 5 also had notable importance although less
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Fig. 8. Actual versus predicted values in the RF regression.
Sample no. | Age Category | FAR | RF CR Actual AED | Actual ELCR | Predicted AED | Predicted ELCR
wfr3 Infants 75 | 0.073 |0.000228 | 0.000042 0.000228 0.000040 0.000220
wfr5 Infants 75 |0.073 | 0.000483 | 0.000088 0.000483 0.000078 0.000425
wfrll Infants 75 |0.073 | 0.000194 | 0.000035 0.000194 0.000034 0.000185
wfr12 Infants 75 |0.073 | 0.000480 | 0.000088 0.000480 0.000072 0.000393
wfré Children 75 |0.073 | 0.009871 | 0.000132 0.000721 0.000123 0.000672
wfrll Children 75 |0.073 |0.003726 | 0.000050 0.000272 0.000061 0.000335
wfrl3 Children 75 |0.073 | 0.006640 | 0.000089 0.000485 0.000096 0.000528
wirl4 Children 75 |0.073 | 0.000000 | 0.000000 0.000000 0.000011 0.000061
wfrl5 Children 75 |0.073 | 0.003086 | 0.000041 0.000225 0.000061 0.000335
wrl Adults 75 |0.073 | 0.000901 | 0.000165 0.000901 0.000158 0.000863
wfr2 Adults 75 ]0.073 |0.000533 | 0.000097 0.000533 0.000110 0.000601
wfr8 Adults 75 |0.073 | 0.000690 | 0.000126 0.000690 0.000130 0.000710
wfr9 Adults 75 |0.073 |0.001073 | 0.000196 0.001073 0.000170 0.000930
wfrl2 Adults 75 |0.073 | 0.001401 | 0.000256 0.001401 0.000238 0.001301
Table 13. Comparison of actual AECL and ECLR with predicted AECL and ECLR.
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Fig. 9. A summary of feature importance.

than CR and Adults. On the other hand, features related to infants and children were moderately important
compared to the other features. This figure highlights the features that have the greatest influence on our model
analysis.

Summary and conclusion

In all mineral water samples, special Ra-226 radiation levels were absent. The average Th-232, K-40, and Cs-
137 concentrations were 0.311, 2.104, and 0.049 Bq/], respectively, all below the WHO thresholds. The annual
effective doses from bottled water consumption were 57.6 pSv/y for infants, 80.7 uSv/y for children, and 168
uSv/y for adults, which were significantly lower than the UNSCEAR limit of 1000 uSv/y. The cancer incidence
coeflicients were 316 for infants, 442 for children, and 922 for adults, indicating a cancer risk of 922 x 107° for
a 75-year-old. Hex and Hin values ranged from 0 to 0.002, indicating no health risk. The radium equivalent
activity values ranged from 0 to 1.08, aligning with global averages, with the highest level observed in the WFR7
sample. Heavy elements such as Cd, Hg, Sn, Pb, and As were detected at zero mg/L. The RF model’s performance
was validated by comparing actual and predicted values, demonstrating its reliability across different age groups
and enhancing the study’s robustness.

Data availability
All data generated or analyzed during this study is included in this published article.
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