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Humans encounter both natural and artificial radiation sources, including cosmic rays, primordial 
radionuclides, and radiation generated by human activities. These radionuclides can infiltrate the 
human body through various pathways, potentially leading to cancer and genetic mutations. A study 
was conducted using random sampling to assess the concentrations of radioactive isotopes and 
heavy metals in mineral water from Iran, consumable at Arak City. Notably, specific radiation levels of 
Ra-226 were not detected, whereas the concentrations of Th-232, K-40, and Cs-137 were found to be 
below the thresholds established by the World Health Organization (WHO). The annual effective doses 
derived from the consumption of bottled water were significantly lower than the limits set by the 
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), thereby reducing 
the risk of cancer. Furthermore, heavy metals such as lead and chromium were not present in the 
samples, thereby contributing to the overall safety of the water. The Machine Learning (ML) models 
employed in this study provided accurate predictions, ensuring reliability across various demographic 
groups and reinforcing the robustness of the findings. Overall, the results suggest that consumable 
mineral water consumption poses minimal health risks.
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Water is crucial to human nutrition, with approximately 80% of waterborne diseases attributed to contamination1,2. 
To mitigate disease risks and avoid high monitoring costs due to pollutants from population growth, industrial 
expansion, and waste disposal, it is essential to prioritize the accessibility and affordability of clean drinking 
water3.

The human body is exposed to both natural and artificial radiation. Natural radiation includes cosmic rays 
and primordial radionuclides such as uranium, thorium, actinium, and potassium, which have long half-lives4. 
Artificial radiation from human activities, such as nuclear testing and accidents, includes radionuclides such 
as Cs-137 and Sr-905. These substances can enter the body via inhalation, ingestion, and dermal absorption6. 
Contaminated water can introduce internal radiation sources, leading to DNA and RNA damage and potentially 
causing cancer and genetic mutations7. Industrial activities also introduce heavy metals like lead, chromium, 
arsenic, and cadmium into the body through contaminated water, air, and food, accumulating in tissues and 
bones8.

Underground water that interacts with geological formations and contaminants can have higher 
concentrations of radioactive materials than surface water9. The global demand for bottled water has increased 
by 31% due to economic and safety reasons10. This study evaluated the specific activities of radioactive isotopes 
and heavy metal levels in bottled water and compared them with WHO health standards and findings from other 
countries.

Applying ML in the mineral water context involves innovative approaches to improve water quality, 
treatment processes, and resource management. ML algorithms can analyze data from various sensors for 
real-time monitoring of mineral water quality, which is essential for identifying contaminants and ensuring 
compliance with safety regulations11. ML models can enhance water treatment efficiency by forecasting optimal 
operational parameters, thereby leading to improved impurity removal and resource efficiency. In addition, 
ML can predict the maintenance needs of water treatment systems, thereby reducing downtime and ensuring 
continuous functionality11. In mineral processing, ML models can identify and assess the mineral composition 
of water, which is crucial for achieving the desired mineral balance in bottled water. These applications highlight 
ML’s transformative potential in the mineral water industry, particularly in terms of quality assurance, process 
optimization, and sustainable water management12.

Tackling a regression problem involves predicting a continuous outcome variable based on one or more 
predictor variables, which is common in fields such as finance, healthcare, and engineering. Accurate predictions 
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require a structured approach, starting with an understanding of the data and relationships between variables 
through exploratory data analysis (EDA)13. Complex models such as polynomial regression, ridge regression, 
and lasso regression can capture nonlinear relationships and handle multicollinearity. Model evaluation and 
validation, such as cross-validation, ensures that the model generalizes well to unseen data, which enhances 
reliability14.

The goal of this study is to apply sophisticated ML models to improve prediction precision in future studies. 
The study also proposes recommendations for regulating radioactive isotopes and heavy metals in potable 
water and advocates for longitudinal studies to assess the health effects of consuming mineral water with low 
concentrations of radionuclides and heavy metals.

The paper is organized as follows: section  “Materials and methods” details the materials, methods, and 
formulations for measuring radioactive isotope activity levels and reviews various ML models to identify the 
best regression model for predicting cancer risk. Section “Results and discussion” compares results from mineral 
water samples in Arak City with those predicted by ML models, discussing the most effective methods and 
cancer risk assessment. Finally, section “Summary and conclusion” summarizes the research findings.

Materials and methods
In this study, a random sampling technique was employed to assess the activity levels of the radioactive isotopes 
Ra-226, Cs-137, K-40, and Th-232 in water sourced from the consumable mineral water of Arak City. The 
investigation utilized commercially available mineral waters from the region. Initially, 15 samples of consumable 
mineral water, branded as Surprise, Miwa, Aquafina, Versailles, Deserni, Zamzam, Akarso, Vata, Damavand, 
Elham, Prolife, Kalis, Aqiq, Gohar, and Alis, were collected from local supermarkets in Arak. Each sample was 
1.5 L of water to satisfy the measurement criteria. The samples were designated with coded identifiers WFR1-
WFR15, and 800 cc samples were transferred into Marinelli beaker containers thoroughly cleaned with distilled 
water and alcohol. These Marinelli containers were then sealed with aquarium adhesive to eliminate any potential 
air exchange with the external environment and to prevent the escape of radon gas. To achieve stable equilibrium 
among the decay products, eight half-lives of the radon gas must elapse, which corresponds to a duration of 
approximately 50 days, given that the half-life of radon is 7 days. Consequently, mineral water sampling was 
scheduled to occur approximately 50 days after sealing15.

To investigate the heavy-metal concentration in mineral water samples using the inductively coupled plasma 
technique, 10 cc of each sample was transferred into Falcon containers located in the central laboratory of Arak 
University. The samples were subsequently pumped into an atomizer, from which they were injected into the ICP-
AES device. The plasma within the device reaches a temperature of 4000 °C, which facilitates the dissociation of 
chemical bonds and results in light emission at various wavelengths. These wavelengths are then used to quantify 
the heavy metal contents in the samples. To mitigate potential chemical interferences within the apparatus, three 
appropriate emission lines were selected for each element, and each analysis was conducted in triplicate. Table 1 
presents the characteristics of 15 consumable mineral water samples sourced from various cities, each exhibiting 
distinct compositions, collected from supermarkets in Arak City.

Sample preparation
The gamma-ray spectrometry apparatus used in the nuclear laboratory at Arak University is designed to measure 
the activity of radioactive nuclei with high-energy resolution. This system employs a Semiconductor and coaxial 
HPGe p-type detector model 30,195 BSIGCD, which boasts a relative efficiency of 30% and is equipped with 4096 
analyzer channels. The energy resolution of the Co-60 gamma line, characterized by energies of 1332.520 keV 
and operating at a voltage of 3000 V, was recorded at 1.95 keV. The energy and efficiency calibrations in gamma 
spectroscopy are conducted using a Cs-137 standard source with known specific activity, and the spectrometry 
process is facilitated by lsrmB SI software. The signals produced in the detector are transmitted to the MCA8192 
compact system via a pre-amplifier, where they are recorded in a sped format. Subsequently, WINHEX and 
MATLAB software were employed to convert these files into the CHN format. Following this conversion, the 
specific activities of radionuclides in environmental samples were assessed using GammaVision32 (EG&G 
Ortec). To determine background radiation and ensure that the spectra are analyzed under consistent spatial 
and temporal conditions, spectroscopy is performed in empty Marinelli containers, and the resulting data is 
subtracted from the original spectrum16.

In the central laboratory of Arak University, there exists an Inductively Coupled Plasma Atomic Emission 
Spectrometry (ICP-AES) instrument, specifically the 9100 Quant Plasma model, manufactured in Germany. 
This analytical technique is used for the detection of chemical elements in various samples. The device operates 
using inductively coupled plasma to generate excited atoms and ions, which subsequently emit electromagnetic 
radiation at characteristic wavelengths associated with specific elements. Plasma is a high-temperature source 
of ionized gas, typically argon. The device is maintained in the temperature range of 6000 to 10,000 K using 
inductive pairs of electric coils and operates at MHz frequencies. The absolute efficiency of the detector is 
determined by Eq. (1) based on the recorded gamma-ray spectrum.

	
ε (% ) = Ni

Act × Pn (Ei) × t
× 100,� (1)

where ε represents the absolute efficiency of the detector, Ni denotes the net count of the sub-peak corresponding 
to the energy Ei, and Act refers to the specific radioactivity of the standard source measured in Bq/Kg. 
Additionally, Pn(Ei) indicates the probability of photon emission at energy Ei, and t indicates the duration of the 
spectrometry measurements, expressed in seconds.
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Special activities of radioactive nuclei
The specific activity of samples is assessed using gamma rays from various isotopes. For the gamma lines of Pb-
214, which have an energy of 351.93 keV, and Bi-214, which have an energy of 609.31 keV, the specific activity is 
determined alongside those of Th-232. The gamma line from Ac-228, which exhibited an energy of 911.21 keV 
with an intensity of 28%, and another line at 338.32 keV with an emission percentage of 11%, was also analyzed. 
Additionally, the specific activity of K-40 was evaluated using its gamma line at 1460.70 keV, whereas the gamma 
line of Cs-137, with an energy of 661.66 keV, was employed for further assessment. The specific radioactivity of 
these radioactive nuclei within the samples is given by

	
A = NetArea

ε (% ) × BR (% ) × t × m
× 100,� (2)

where A denotes the specific activity of the sample expressed in Bq/kg. The term “Net Area” refers to the net 
area beneath the peak, while ε signifies the absolute efficiency of the detector. Additionally, BR represents the 
branching ratio expressed as a percentage, t indicates the sampling duration of the sample measured in seconds, 
and m corresponds to the mass of the sample in kilograms17.

Annual effective dose
The annual effective dose derived from the ingestion of natural and artificial radionuclides in drinking water is 
as follows:

	
AED =

∑
Ai × DCFi × Cr.� (3)

The annual effective dose (AED) is expressed in sieverts per year and is calculated using the specific radioactivity 
of isotopes Ra-226, Th-232, K-40, and Cs-137 measured in units per liter (Bq/L). The dose conversion factor 
(DCFi) is defined in Sieverts per liter (Sv/Bq), and Cr represents the annual drinking water consumption for 
infants, children, and adults (250, 350, and 730 L, respectively18. Table 2 lists the dose conversion values of the 
core radioactive substances.

Potential cancer risk (ELCR)
To evaluate the potential cancer risk associated with drinking water consumption throughout an individual’s 
lifetime, various methodologies

Sample no. Brand name
Factory location
(in Iran) Mineral combinations

wfr1 Surprise Alborz, Baharestan Province Fluoride, calcium, potassium, 
sulfate, magnesium, nitrate, and nitrite

wfr2 Miwa Amol and Pleur springs Calcium, magnesium, fluoride, chloride, 
nitrite, calcium carbonate, and soluble solids

wfr3 Aquafina Tehran, km 10 special road Calcium, magnesium, sodium,
 potassium, and sulfate

wfr4 Versa Amol, Haraz Road Calcium, sodium, magnesium,
 nitrite, nitrate, sulfate, and fluoride

wfr5 Desserny Tehran, Azadegan Highway Sodium, potassium, iron, 
calcium, magnesium, and sulfates

wfr6 Zamzam Lorestan, Azna Chloride, magnesium, iron, 
sodium, and calcium

wfr7 Akarso Astana, Anusha Calcium, magnesium, sodium, 
fluoride, solid solutions, calcium carbonate

wfr8 Vata Ardabil, the Sablan mountain Calcium, magnesium, fluoride,
 chloride, nitrate, nitrite, and sodium

wfr9 Damavand Damavand Mountain, Tehran, Iran Calcium, magnesium, and sulfate

wfr10 Elham Hamedan, Faminin Calcium, magnesium, nitrite, 
nitrate, and sodium

wfr11 Prolife Haraz Road Calcium, sodium, bicarbonate,
 chloride, and nitrite

wfr12 Kallis Lorestan, Cheshme Mahihole Calcium, magnesium, sodium,
 sulfate, nitrate, and fluoride

wfr13 Aghigh Arak, Safidkhani foothills Calcium, magnesium, nitrite, 
sodium, bicarbonate, and nitrate

wfr14 Gahar Lorestan–Astrankoh range Calcium carbonate, soluble 
solids, chloride, and nitrate

wfr15 Alis Khorasan Razavi Calcium, magnesium, sodium, 
calcium carbonate, and chloride

Table 1.  Brief description of mineral water in Iran, consumable at Arak City.
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	 ELCR = RF × DW × FAR.� (4)

The ELCR represents the lifetime cancer risk, and Dw denotes the annual effective dose for the specified age 
group, which is measured in Sieverts annually. The FAR indicates the duration of the target age range in years, and 
the RF, which is quantified as 7.3 × 10− 2, corresponds to the risk associated with one per Sv19.

Radium equivalent activity (Raeq)
The total radioactivity can be determined using Eq. (5), which expresses it concerning the radium activity (Raeq) 
as follows20

	 Raeq = ARa + 1.43 ATh + 0.077AK.� (5)

The specific activities of Ra-226, Th-232, and K-40 (denoted as ARa, ATh, and AK, respectively) were measured in 
Bq/l. The internal risk indicators (Hin) and external risk indicators (Hex) were used to assess the risk of radiation 
exposure associated with specific isotopes within the radon gas decay series. The values of Hex and Hin can be 
derived from Eqs. (6) and (7)21 as follows:

	
Hex = ARa

370 + ATh

259 + AK

4810 ⩽ 1,� (6)

	
Hin = ARa

185 + ATh

259 + AK

4810 ⩽ 1.� (7)

Safe drinking water
To determine the surface area of the core guide, we used22:

	
GL = IDC

(q × hing) ,� (8)

where GL represents the guide level of the radioactive core in drinking water, measured in becquerels per liter. 
IDC denotes the individual dose standard, established at 0.1 millisieverts per year. The variable q indicates the 
annual water consumption of adults (730 L per year, while hing refers to the dose conversion factor expressed in 
millisieverts. This factor was derived from the values associated with Becquerel (see Table 3).

To ensure the safety of drinking water, we implemented various measures.

	
SFW =

∑ Ci
GLi

⩽ 1 .� (9)

The specific activity of the radioactive nuclei for the i-th radionuclide in drinking water is denoted Ci, while 
GLi represents the guideline level for the i-th radionuclide, as derived from Eq. (8). It is established that specific 
drinking water activities should not exceed a value of 1.

ML methods
A suitable regression model is essential for an effective analysis. Linear regression is one of the most 
straightforward and commonly employed techniques, primarily because of its simplicity in application. 
Furthermore, performance indicators such as Mean Squared Error (MSE) and R-squared, serve to measure 
prediction precision. Ultimately, it is crucial to continuously enhance the model by adjusting hyperparameters 
and integrating domain-specific insights, which improves performance. The refinement process is critical for 
developing accurate and reliable models. A systematic methodology is essential when tackling a regression 
problem to achieve precise and reliable outcomes. The main aim of this study was to predict AEDs and assess 
ELCR. The following outlines the key steps of this research:

Radioactive nuclei hing (mSv/Bq) Guidance level (Bq/l)
226Ra 2.1 × 10− 4 0.5
232Th 2.3 × 10− 4 1.0
40K 6.2 × 10− 6 22.1
137Cs 1.3 × 10− 5 10.0

Table 3.  Guidance levels for radioactive nuclei in young adults’ drinking water.

 

DCFi (Sv/Bq)
226Ra 232Th 40K 137Cs

2.8 × 10− 7 6.9 × 10− 7 6.2 × 10− 9 1.3 × 10− 8

Table 2.  Values of specific radiation conversion factor to dose.
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	(a)	� Data Collection: This step acquires all pertinent data required for analysis, ensuring its relevance and com-
prehensiveness. The data presented in sections “Sample preparation” to “Safe drinking water” are primarily 
discussed in the results and discussion sections.

	(b)	� Data Preprocessing: Data preprocessing is a fundamental step in ML because it helps improve the quality 
of data and prepare them for modeling. In our dataset, there were no outliers or missing values. We used 
the one-hot encoding method to convert categorical mineral water type and age group data into numerical 
data.

	(c)	� Data Splitting: The dataset was divided into a 70:30 ratio, with 70% allocated for training to learn and 30% 
for testing to evaluate the performance of the model on previously unseen data.

	(d)	� Model Selection: Various regression models, including ridge regression, Decision Tree (DT) Regression, 
and Random Forest (RF) Regression, were evaluated to determine the most appropriate option. Below, each 
model is presented with a concise description:

Ridge Regression: Ridge regression improves linear regression by addressing multicollinearity by adding a 
regularization term to the ordinary least squares objective function. The L2 penalty reduces model complexity 
by shrinking the coefficients toward zero. Ridge regression is particularly useful for handling multicollinearity, 
which occurs when independent variables are highly correlated23.

DT Regression: DT regression employs a top-down, greedy-layer approach. The proposed method 
progressively divides a dataset into increasingly smaller subsets while simultaneously constructing an associated 
decision tree. The end product is a tree comprising decision and leaf nodes24.

RF Regression: RF Regression is an additive model that predicts outcomes by aggregating decisions from 
multiple base models. Each base model is a DT, and the final output of the RF model is the combined result of 
the DT. This method of using several models to enhance predictive accuracy is referred to as model ensemble24.

	(e)	� Model Training and Hyperparameter Tuning: The grid search method is used as a strategy to optimize the 
hyperparameters of ML models to enhance performance. This approach specifies a range of potential values 
for each hyperparameter, followed by an exhaustive evaluation of all possible combinations to identify the 
most effective configuration for improving model performance. Table 4 presents the hyperparameter con-
figurations for three different models: Ridge, DT, and RF. These configurations were determined using a grid 
search technique, thereby outlining the ideal hyperparameters for each model.

	(f)	� Model Evaluation: The efficacy of the model was evaluated using various metrics, including the mean ab-
solute error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R²). The mean 
absolute error (MAE) quantifies the disparity between the actual and forecasted values by computing the 
average of the absolute differences throughout the dataset25.

	
MAE =

∑
i
|yi − ŷ|
n

� (10)

The RMSE is derived by computing the square root of the mean square error (MSE). The MSE quantifies the 
disparity between the actual and predicted values by squaring the mean of the differences throughout the 
dataset25.

	

RMSE =
√

1
n

∑
i

(yi − ŷ)2
� (11)

Coefficient of Determination (R2): R2 denotes the coefficient of determination, which serves as an indicator of 
the degree to which the observed values align with the original values. The coefficient ranges from 0 to 1 and can 
be interpreted as a percentage. A higher R2 value indicates a superior model performance25.

	
R2 = 1 −

∑
i
(yi − ŷ)2

∑
i
(yi − ȳ)2 � (12)

	(g)	� Selecting the Best Model and Result Interpretation:

Figure 1 presents a comparative analysis of the error metrics: MAE and RMSE across three ML models: RF, 
Decision Tree, and Ridge models. These metrics are critical for assessing the accuracy of regression models by 

Model name alpha

Ridge regressor 0.1

Model name n_estimators max_depth min_samples_split min_samples_leaf

DT regressor – 10 2 2

RF regressor 50 10 2 1

Table 4.  The hyperparameter configurations for three different models: Ridge, DT, and RF.
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quantifying the discrepancies between actual and predicted values. The MAE is represented by blue bars, and 
it quantifies the average absolute deviation between the actual and predicted values, regardless of error signs. 
A lower MAE typically indicates a more precise model. In this analysis, the RF model exhibits the lowest MAE, 
indicating superior accuracy compared to the other models. In contrast, the Ridge model obtained the highest 
MAE, indicating a greater degree of error in its predictions. The MAE of the DT model was marginally higher 
than that of the RF model, reflecting its moderate performance in this context.

In contrast, the RMSE is illustrated with yellow bars and evaluates errors by assigning more penalties to larger 
discrepancies, which involves squaring the errors. This metric is particularly sensitive to larger errors than the 
MAE. The RF demonstrated the lowest RMSE, indicating high accuracy and reduced occurrence of significant 
errors. The ridge model, which had the highest RMSE value, tended to have larger prediction errors than the 
other models. Although the DT demonstrated a lower RMSE than the ridge, it still fell short of the accuracy 
exhibited by RF. Overall, the chart indicates that the RF outperforms both the MAE and RMSE, highlighting its 
effectiveness in minimizing prediction errors.

The R2 indices of the R2 index between three different ML models are displayed in Fig. 2. The RF, DT, and 
Ridge models were evaluated. The R2 index, also known as the “coefficient of determination,” is a crucial indicator 
used to assess the accuracy of regression models. This index showcases the amount of variance in the dependent 
variables explained by independent variables. The closer the R2 value is to 1, the better the model’s explanation of 
the data variance. In the graph, the RF model, represented in blue, exhibited the highest R2 value. This suggests 
that this model is the most accurate in prediction. RF is a complex model that combines multiple decision trees, 
which is typically employed in scenarios with complex data. RF can be used to identify correlations between 
features.

The DT model (green curve) is less accurate than the RF model. This can be attributed to the simplicity 
of the DT model, as it consists of a single tree rather than a combination of trees, as in the RF. Despite being 
less accurate than the RF, the DT model seems to outperform the Ridge model (red), which ranks last among 

Fig. 1.  A comparative examination of two error metrics, specifically MAE and RMSE error metrics were 
compared across three ML models: RF, Decision Tree, and ridge regression models.
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the three models. This comparison reveals that the more intricate RF model performs better on our data and 
produces higher R2 values.

After evaluating the performance of several regression models based on various metrics, we found that the 
RF Regression model demonstrated the best results.

To assess the robustness of the results obtained from the proposed RF model, we evaluated the model 
stability using two methods. First, we applied small noise (mean 0, standard deviation 0.01) to the test data 
and compared the original R2 with the perturbed R2. Both values remained consistent at 0.9, demonstrating 
the model’s robustness and stability against minor input variations. These results suggest that the model can 
reliably maintain its predictive power, which is crucial for real-world applications in which data often contain 
small amounts of noise. Second, the bootstrap method was used to estimate the stability of the proposed model. 
Given the limited dataset size, Cross-Validation (CV) often produces unstable and high-variance results because 
the small subsets in each fold provide insufficient data for robust training and testing. This limitation can lead 
to inaccurate model performance estimation. To address this issue, the bootstrap method was employed. The 
proposed method repeatedly samples with replacement from the entire dataset, thereby allowing for optimal 
use of limited data. In this study, the bootstrap procedure was repeated 100 times, enabling the calculation of 
the mean and standard deviation of the performance metric R2. The results demonstrated a mean R2of 0.89 
with a standard deviation of 0.08, indicating the model’s stability. Therefore, due to its ability to deliver a more 
consistent and trustworthy evaluation, the bootstrap method was preferred over CV in this case.

Generally, the RF model demonstrated superior accuracy, robustness, and generalizability. As a result, the 
random forest model was chosen to make the final predictions. By leveraging its ability to capture complex 
patterns and relationships in the data, we can anticipate precise predictions for AED. Figure 3 summarizes the 
step-by-step process of the proposed ML regression model.

Fig. 2.  Comparative analysis of the R2 index across three distinct ML models: RF, DT, and Ridge.
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Results and discussion
The specific activities of the radioactive nuclei across all samples are presented in Tables 5, 6, 7 and 8, and Fig. 4 to 
facilitate the comparative analysis of the specific activity results. The annual dose received, expressed in (µSv/y) 
due to water consumption, is detailed for the three distinct age groups in Table 9. Figure 5 visual comparison of 
the dose results. Additionally, data concerning cancer risk associated with water consumption among the same 
three age groups are presented in Table 10, with Fig. 6 to enhance the comparative evaluation of cancer-related 
outcomes. Furthermore, Table 11 presents results related to radium equivalent activity, internal and external risk 
indices, and assessments of drinking water safety. A comparative analysis of the findings from this study and 
those from other countries is presented in Table 12, complemented by a comparison chart in Fig. 7.

The specific activities of 226Ra are detailed in Table 5. By applying Eq. (2), it is established that the total sampling 
duration for all specimens spans one day and night, totaling 86,400 s. The cumulative mass of the samples was 
800 cc, equivalent to 0.8 kg. The branching ratio for 226Ra is estimated at 0.46, based on decay software analysis 
of 214Bi, which has an energy of 609 keV. The calculated absolute efficiency of 226Ra a is 0.015127. The net level 
for all samples was zero. Because the net level is a pivotal element for assessing specific activities, we conclude 
that the specific activity level of 226Ra across all samples is also zero.

The specific activities of 232Th are presented. Using Eq. (2), we determined that the total sampling duration 
for all samples was one day, equivalent to 86400 s, with a total mass of 800 cc or 0.8 kg for each sample, as shown 
in Table 6. The branching ratio of 232Th, calculated using Decay software for 228Ac at an energy level of 911 keV, 
was estimated to be 0.28. The absolute yield for 232Th is recorded as 0.011389. Among the samples, sample 7 
exhibited the highest net activity (165), while sample 14 exhibited the lowest net activity ((0). Furthermore, the 

Sample no. Net area ε BR T m 226Ra

wfr1 0 0.015127 0.46 86,400 0.8 0

wfr2 0 0.015127 0.46 86,400 0.8 0

wfr3 0 0.015127 0.46 86,400 0.8 0

wfr4 0 0.015127 0.46 86,400 0.8 0

wfr5 0 0.015127 0.46 86,400 0.8 0

wfr6 0 0.015127 0.46 86,400 0.8 0

wfr7 0 0.015127 0.46 86,400 0.8 0

wfr8 0 0.015127 0.46 86,400 0.8 0

wfr9 0 0.015127 0.46 86,400 0.8 0

wfr10 0 0.015127 0.46 86,400 0.8 0

wfr11 0 0.015127 0.46 86,400 0.8 0

wfr12 0 0.015127 0.46 86,400 0.8 0

wfr13 0 0.015127 0.46 86,400 0.8 0

wfr14 0 0.015127 0.46 86,400 0.8 0

wfr15 0 0.015127 0.46 86,400 0.8 0

Table 5.  Summary of the special activity results of 226Ra related to all samples according to (Bq/l).

 

Fig. 3.  Steps to construct the machine learning regression model.
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highest specific activity of 232Th was associated with sample 7, which was recorded at 0.748 Bq/L, whereas sample 
14 had the lowest specific activity at zero.

Table 7 lists the special activity values for 40K. Using Eq. (2), it is determined that the total sampling duration 
for all samples amounts to one day and night, equivalent to 86,400 s. The total mass of all samples was 800 cc 
(0.8 kg. The branching ratio for 40K was computed using decay software, yielding an energy value of 1460 keV 
and an estimated branching ratio of 0.1. The absolute efficiency for 40K was calculated as 0.008009. Among the 
samples, sample 9 exhibited the highest net level (413), while sample 14 exhibited the lowest net level (zero). The 
most significant specific activity for 40K was associated with sample 9, which measured 7.460 becquerels per liter, 
whereas sample 14 had the lowest specific activity, recorded as zero.

Table 8 lists the specific activities of 137Cs. Utilizing Eq. (2), it is determined that the total sampling duration 
for all samples is one day, equivalent to 86,400 s, with a total mass of 800 cc or 0.8 kg for each sample. The 
branching ratio of 137Cs was estimated to be 0.94 based on an energy level of 661.66 keV using decay software. 
The absolute efficiency for 137Cs is recorded at 0.0139. Among the samples, sample 7 exhibited the highest net 
level (134), while sample 14 exhibited the lowest net level (0). The specific activity of 137Cs was highest in sample 
7, with a value of 0.148 becquerels per liter, whereas sample 14 had the lowest specific activity, recorded as zero.

The data presented in Fig. 4 indicate that the mineral water samples exhibited the highest levels of radioactivity 
associated with the elements 40K, 232Th, and 137Cs. The concentration of 226Ra was recorded as zero across all 
samples, which is significant given that 98.5% of radiation-related damage is attributed to 226Ra. Consequently, 
the concentration of radium emerges as a critical parameter for mineral water factories seeking licensure from 
the Ministry of Health.

Sample no. Net area ε BR T m 40K

wfr1 309 0.008009 0.1 86,400 0.8 5.582

wfr2 98 0.008009 0.1 86,400 0.8 1.770

wfr3 4 0.008009 0.1 86,400 0.8 0.072

wfr4 19 0.008009 0.1 86,400 0.8 0.343

wfr5 135 0.008009 0.1 86,400 0.8 2.438

wfr6 84 0.008009 0.1 86,400 0.8 1.517

wfr7 9 0.008009 0.1 86,400 0.8 0.162

wfr8 0 0.008009 0.1 86,400 0.8 0.000

wfr9 413 0.008009 0.1 86,400 0.8 7.460

wfr10 387 0.008009 0.1 86,400 0.8 6.991

wfr11 148 0.008009 0.1 86,400 0.8 2.673

wfr12 47 0.008009 0.1 86,400 0.8 0.849

wfr13 82 0.008009 0.1 86,400 0.8 1.481

wfr14 0 0.008009 0.1 86,400 0.8 0.000

wfr15 12 0.008009 0.1 86,400 0.8 0.261

Table 7.  Summary of report special activity results for 40K related to all samples according to (Bq/l).

 

Sample no. Net area ε BR T m 232Th

wfr1 61 0.011389 0.28 86,400 0.8 0.276

wfr2 39 0.011389 0.28 86,400 0.8 0.176

wfr3 53 0.011389 0.28 86,400 0.8 0.240

wfr4 66 0.011389 0.28 86,400 0.8 0.299

wfr5 108 0.011389 0.28 86,400 0.8 0.489

wfr6 117 0.011389 0.28 86,400 0.8 0.530

wfr7 165 0.011389 0.28 86,400 0.8 0.748

wfr8 55 0.011389 0.28 86,400 0.8 0.249

wfr9 71 0.011389 0.28 86,400 0.8 0.322

wfr10 40 0.011389 0.28 86,400 0.8 0.181

wfr11 40 0.011389 0.28 86,400 0.8 0.181

wfr12 99 0.011389 0.28 86,400 0.8 0.449

wfr13 78 0.011389 0.28 86,400 0.8 0.353

wfr14 0 0.011389 0.28 86,400 0.8 0.000

wfr15 37 0.011389 0.28 86,400 0.8 0.167

Table 6.  Summary of report special activity results for 232Th related to all samples according to (Bq/l).
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The information provided in Table 8 reveals that the annual effective dose for infants ranged from zero (as 
observed in sample 14) to 0.130 microsieverts (as recorded in sample 7. Additionally, the maximum effective 
dose was lower than the observed dose in infants. The annual effective dose for the pediatric population ranged 
from zero microsieverts, noted in sample 14, to 0.182 microsieverts (n = 7). Moreover, the maximum effective 
dose for children, as indicated by UNSCEAR, is also comparatively lower. Lastly, the annual effective dose for the 
pediatric age group ranged from zero microsieverts (associated with sample 14) to 379 microsieverts (associated 
with sample 7. Furthermore, the peak effective dose for children remains below the UNSCEAR threshold.

Figure 5 compares the dosages received by infants, children, and adults. The annual consumption of drinking 
water is 730 L for adults, 350 L for children, and 250 L for infants. Consequently, the dosage received by each age 
group decreased in the following order: adults, children, and infants. The highest doses for all three age groups 
were associated with sample 7.

The data presented in Table 10 indicate that the cancer risk factor for newborns ranges from 0 to 71,010− 6, 
demonstrating variability. The cancer risk coefficient for the same age group spans from 0 to 99,510− 6, also 
exhibiting variability. Additionally, the cancer risk coefficient for infants, within the range of 0–2070, is on the 
order of 10− 6, highlighting its variable nature.

Figure 6 illustrates the comparative risk of cancer among the analyzed samples, including adults, infants, and 
children. This assessment was influenced by the critical AED variable. Notably, the effective dose received was 
correlated with a decreased cancer risk among the following age groups: adults, children, and infants.

Fig. 4.  The amounts of special activity226Ra، 40K، 232Th and 137Cs in the samples.

 

Sample no. Net area ε BR T m 137Cs

wfr1 35 0.0139 0.94 86,400 0.8 0.038

wfr2 60 0.0139 0.94 86,400 0.8 0.066

wfr3 30 0.0139 0.94 86,400 0.8 0.033

wfr4 30 0.0139 0.94 86,400 0.8 0.033

wfr5 17 0.0139 0.94 86,400 0.8 0.018

wfr6 65 0.0139 0.94 86,400 0.8 0.071

wfr7 134 0.0139 0.94 86,400 0.8 0.148

wfr8 62 0.0139 0.94 86,400 0.8 0.068

wfr9 1 0.0139 0.94 86,400 0.8 0.001

wfr10 55 0.0139 0.94 86,400 0.8 0.060

wfr11 34 0.0139 0.94 86,400 0.8 0.037

wfr12 61 0.0139 0.94 86,400 0.8 0.067

wfr13 13 0.0139 0.94 86,400 0.8 0.014

wfr14 0 0.0139 0.94 86,400 0.8 0.000

wfr15 70 0.0139 0.94 86,400 0.8 0.077

Table 8.  Summary of special activity results from 137Cs related to all samples according to (Bq/l).
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The equivalent radium activity is presented as an average of 0.61, in Table  11. The internal and external 
indelibilities are consistent, attributable to the uniform specific activity of radium-226, resulting in identical 
and low values. Furthermore, the analysis indicates that the water safety levels across all samples are below one, 
suggesting that there is no significant health risk associated with these findings.

To facilitate the comparison of the findings of this study, Table 12 presents the specific activity results of 
radioactive nuclei in bottled water from various countries. The outcomes of this investigation align well with 
those reported in other countries and the values established by international organizations. Consequently, it 
can be inferred that the radiation levels in the bottled water consumed by Arak residents do not pose any health 
risks. As illustrated in Fig. 7, except for Malaysia and Nigeria, the levels of radioactive nuclei activity in all other 
countries fell below the thresholds established by the World Health Organization. Furthermore, research on 
bottled water consumption in Arak City, Iran, indicates that the presence of radioactive nuclei does not represent 
a risk to human health.

This illustration presents the Actual versus Predicted chart for the RF model applied to the regression analysis. 
A chart serves as a valuable tool for juxtaposing the model’s predicted values against the actual observed values, 
thereby facilitating the assessment of the regression model’s efficacy. In this representation, points that align 
closely with the 45-degree line indicate that the model’s predictions are nearly equivalent to the actual values. 
A significant number of points clustered around this line, particularly at the lower end of the X-axis, suggesting 
a high level of accuracy in this region. The minimal dispersion of most points on the chart indicates that the 
RF model effectively captured the complexities of the data and produced reliable predictions. Nevertheless, a 
few points deviating from the diagonal line may reflect specific characteristics of the data that warrant further 

Fig. 5.  Comparison of the received dose among infants, children, and adults.

 

– Infants Children Adult

Sample no. AED AED AED

wfr1 56.4 78.9 165

wfr2 33.3 46.6 97

wfr3 41.6 58.3 122

wfr4 53.2 74.5 155

wfr5 88.2 123.0 258

wfr6 94.0 132.0 275

wfr7 130.0 182.0 379

wfr8 43.2 60.4 126

wfr9 67.1 94.0 196

wfr10 42.2 59.2 123

wfr11 35.5 49.7 104

wfr12 87.6 123.0 256

wfr13 63.2 88.5 185

wfr14 0.0 0.0 0

wfr15 29.4 41.1 85

Average 57.6 80.7 168

Table 9.  Annual dose for infants, children, and adults based on µSv/y.
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investigation. Overall, this chart demonstrates that the RF model has excelled in this regression task, achieving 
commendable accuracy in its predictions of actual values.

Figure 8 displays the actual and predicted values for the RF model used in our regression analysis. This chart 
is a useful tool for comparing the model’s predicted values with the actual observed values, making it easier to 
evaluate the effectiveness of the regression model. The plot shows the actual values on the horizontal axis and the 
predicted values on the horizontal axis. Each point on the plot represents a specific data pair, where the actual 
value is compared to the predicted value.

In this representation, points that closely align with the 45-degree line indicate that the model’s predictions 
are nearly equivalent to the actual values. Notably, a significant number of points were clustered around this 
line, particularly at the lower end of the X-axis, suggesting a high level of accuracy in this region. The low 
scatter in most parts of this image shows that the RF model can accurately predict complex representations. 
However, a few points deviating from the diagonal line may reflect specific data characteristics that warrant 
further investigation. Overall, this chart demonstrates that the RF model has excelled in this regression task, 
achieving commendable accuracy in its predictions of actual values.

Table 13 compares the actual and predicted AECL and ECLR. The samples were divided into three groups: 
Infants, Children, and Adults. The table includes columns for FAR (75 for all samples), RF (0.073 for all 
samples), and CR (ranging from 0.00264 to 0.00401). These values are small decimals, indicating some form 

Fig. 6.  Comparison of cancer risk among adults, infants, and children.

 

– Infants Children Adult

Sample no. ELCR ELCR ELCR

Rank 10− 6 10− 6 10− 6

wfr1 309 432 901

wfr2 182 255 533

wfr3 228 319 665

wfr4 291 408 850

wfr5 483 676 1410

wfr6 515 721 1500

wfr7 710 995 2070

wfr8 236 331 690

wfr9 368 514 1070

wfr10 231 324 676

wfr11 194 272 567

wfr12 480 672 1400

wfr13 346 485 1010

wfr14 0.00 0 0.00

wfr15 161 225 470

Average 316 442 922

Table 10.  Risk factors for cancer in infants, children, and adults.
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of measurement or calculation. This table compares the predicted results of our prediction model with actual 
values across various age categories.

Figure  9 presents a summary of the feature’s importance chart. The CR feature had the highest level of 
importance, indicating its crucial role in the model analysis. The “Adults” feature ranked second most significant, 
demonstrating a considerable effect. Mineral water types 7, 6, and 5 also had notable importance although less 

Fig. 7.  Comparison of the specific activities of the radioactive cores in the mineral waters of this study with 
those of other countries.

 

Country 226Ra 232Th 40K 137CS Source

Italy 0.10 0.03 – – 26

Poland 0.34 0.32 – – 27

Algeria 0.14 0.05 < 0.07–2.19 – 28

Nigeria 15.50 7.04 34.08 – 29

Slovenia 0.03 0.01 – – 30

Malaysia 3.30 3.39 25.31 – 31

Romania 0.45 – 1.28 – 32

Australia 0.22 0.23 – – 33

Türkiye 0.70 1.20 14.80 – 34

Iraq 0.029–3.017 0.025–2.326 4.706–161.56 0.040–0.953 35

Iran 0.00 0.31 2.10 0.04 This research

WHO 0.50 1.00 22.10 10.00 36

Table 12.  Comparison of the obtained results with those from other countries according to (Bq/l).

 

Sample no. Raeq Hex Hin SFW

wfr1 0.82 0.002 0.002 0.72

wfr2 0.38 0.001 0.001 0.38

wfr3 0.34 0.001 0.001 0.41

wfr4 0.45 0.001 0.001 0.52

wfr5 0.88 0.002 0.002 0.93

wfr6 0.87 0.002 0.002 0.96

wfr7 1.08 0.002 0.002 1.28

wfr8 0.35 0.001 0.001 0.42

wfr9 1.03 0.002 0.002 0.87

wfr10 0.79 0.002 0.002 0.62

wfr11 0.46 0.001 0.001 0.42

wfr12 0.70 0.001 0.001 0.79

wfr13 0.62 0.001 0.001 0.66

wfr14 0.00 0.000 0.00 0.00

wfr15 0.25 0.001 0.001 0.29

Average 0.61 0.001 0.001 0.62

Table 11.  Risk indicators for mineral water samples consumed in Arak City.
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Sample no. Age Category FAR RF CR Actual AED Actual ELCR Predicted AED Predicted ELCR

wfr3 Infants 75 0.073 0.000228 0.000042 0.000228 0.000040 0.000220

wfr5 Infants 75 0.073 0.000483 0.000088 0.000483 0.000078 0.000425

wfr11 Infants 75 0.073 0.000194 0.000035 0.000194 0.000034 0.000185

wfr12 Infants 75 0.073 0.000480 0.000088 0.000480 0.000072 0.000393

wfr6 Children 75 0.073 0.009871 0.000132 0.000721 0.000123 0.000672

wfr11 Children 75 0.073 0.003726 0.000050 0.000272 0.000061 0.000335

wfr13 Children 75 0.073 0.006640 0.000089 0.000485 0.000096 0.000528

wfr14 Children 75 0.073 0.000000 0.000000 0.000000 0.000011 0.000061

wfr15 Children 75 0.073 0.003086 0.000041 0.000225 0.000061 0.000335

wfr1 Adults 75 0.073 0.000901 0.000165 0.000901 0.000158 0.000863

wfr2 Adults 75 0.073 0.000533 0.000097 0.000533 0.000110 0.000601

wfr8 Adults 75 0.073 0.000690 0.000126 0.000690 0.000130 0.000710

wfr9 Adults 75 0.073 0.001073 0.000196 0.001073 0.000170 0.000930

wfr12 Adults 75 0.073 0.001401 0.000256 0.001401 0.000238 0.001301

Table 13.  Comparison of actual AECL and ECLR with predicted AECL and ECLR.

 

Fig. 8.  Actual versus predicted values in the RF regression.
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than CR and Adults. On the other hand, features related to infants and children were moderately important 
compared to the other features. This figure highlights the features that have the greatest influence on our model 
analysis.

Summary and conclusion
In all mineral water samples, special Ra-226 radiation levels were absent. The average Th-232, K-40, and Cs-
137 concentrations were 0.311, 2.104, and 0.049 Bq/l, respectively, all below the WHO thresholds. The annual 
effective doses from bottled water consumption were 57.6 µSv/y for infants, 80.7 µSv/y for children, and 168 
µSv/y for adults, which were significantly lower than the UNSCEAR limit of 1000 µSv/y. The cancer incidence 
coefficients were 316 for infants, 442 for children, and 922 for adults, indicating a cancer risk of 922 × 10–6 for 
a 75-year-old. Hex and Hin values ranged from 0 to 0.002, indicating no health risk. The radium equivalent 
activity values ranged from 0 to 1.08, aligning with global averages, with the highest level observed in the WFR7 
sample. Heavy elements such as Cd, Hg, Sn, Pb, and As were detected at zero mg/L. The RF model’s performance 
was validated by comparing actual and predicted values, demonstrating its reliability across different age groups 
and enhancing the study’s robustness.

Data availability
All data generated or analyzed during this study is included in this published article.
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