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We examine the Bogoliubov–de Gennes Hamiltonian and its symmetries for a time-reversal symmetry 
broken three dimensional Weyl superconductor. In the limit of vanishing pairing potential, we 
specify that this Hamiltonian is invariant under two sets of continues symmetries, i.e. the U(1) gauge 
symmetry and the U(1)A axial symmetry. Although a pairing of the Bardeen–Cooper–Schrieffer type 
spontaneously breaks both of these symmetries, we show that a Fulde–Ferrell–Larkin–Ovchinnikov 
type pairing spontaneously breaks only the U(1) gauge symmetry (that is then restored via the 
well-known scalar phase mode of superconductivity). Consequently, in the former case, two Nambu–
Goldstone modes are required in the system to restore the broken symmetries. We indicate that one 
of these two modes is an emergent pseudo-scalar phase mode. We also demonstrate that such a phase 
mode leads to a pseudo-Meissner effect.

A few decades ago, Nambu1–3 suggested that, in the Bardeen–Cooper–Schrieffer (BCS) formalism of 
superconductivity4, a massless scalar collective mode (later called the Nambu–Goldstone (NG) mode) should 
appear to recover the charge conservation. That is because, although the basic Hamiltonian of the theory, which 
considers only the interactions of the electric charges, is invariant under a local continuous U(1) gauge symmetry, 
the mean-field reduced BCS Hamiltonian is not. This is an example of the spontaneous symmetry breaking 
(SSB) and dynamical gap generating that reflects the non-conservation of the electric charge. In other words, 
each of the quasi particles introduced by Bogoliubov5 and Valatin6, which are the building blocks of the Cooper 
pairs, does not appear to have a definite charge. Indeed, a theory with broken gauge symmetry cannot describe 
processes including the electromagnetic field (like the Meissner effect7), and as Nambu observed, the SSB of the 
gauge symmetry needs to be restored by an NG mode. To restore the symmetry, one has to take into account the 
radiative corrections coming from the NG mode to the vertex diagram. After considering this contribution, the 
modified vertex8 (or the dressed vertex) satisfies the Ward identity, and thus the symmetry is restored via a scalar 
NG mode. Such a massless NG mode (or phase mode) can also be absorbed into the longitudinal component 
of electromagnetic fields, and gets elevated to the plasma frequency due to the Anderson-Higgs mechanism9–11, 
which leads to the Meissner effect.

Moreover, the similarity of the Bogoliubov–Valentin equation to the Dirac equation12 led Nambu and 
Jona–Lasinio (NJL) to transform the BCS theory to strong interaction physics13,14, wherein the global U(1)A 
symmetry [The subscript A stands for axial symmetry.] as an approximately conserved global symmetry in flavor 
space is spontaneously broken. Accordingly, the nucleon mass is generated by a SSB of the U(1)A symmetry, and 
the produced pion is the pseudo-scalar NG boson of this symmetry breaking15,16.

On the other hand, the correspondence between high-energy and condensed matter physics has recently 
reached new levels in the realm of novel quantum materials with the introduction of concepts such as the Dirac 
and Weyl materials17,18, which are commonly used to describe elementary particles19. The Weyl semimetals 
(WSMs) were first proposed in the pyrochlore irridates20 and later in the heterostructures of topological and 
normal insulators21. These objects are very peculiar in the sense that their valences and conduction bands have 
non-degenerate touching points in the Brillouin zone (called Weyl nodes) whose low-energy excitations obey 
the Weyl equation and are chiral fermions. It is well-known that the Weyl nodes come in pairs of opposite 
chirality22 and are protected via time-reversal (TR) and/or inversion (IR) symmetry23 while are separated by a 
constant vector in momentum space. Chirality is thus a defining emergent property of electrons in WSMs.

Furthermore, the experimental observations and theoretical analysis suggest a superconducting phase 
in WSMs, like MoTe224,25 and TaP26. In addition to intrinsic superconductivity, WSMs can also become 
superconductors via the proximity effect, which occurs when one brings a WSM close to a superconductor. 
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It is worth mentioning that despite the ‘chirality blockade’ in a magnetic WSM, where the Andreev reflection 
between the normal state of the WSM and a superconductor is suppressed, introducing a Zeeman field at the 
interface provides the necessary chirality switch. Indeed, such action overcomes the blockade and enables the 
activation of the Andreev reflection, leading to the proximity induced superconductivity in WSMs27. Also, the 
surface states in WSMs, known as Fermi arc states, violate the chirality blockade. The reason lies in the fact that 
Fermi arcs are not part of the Weyl spectrum28. Moreover, it has been reported that with a suitable choice of the 
Fermi cutoff, the Fermi arcs do not affect the paring amplitude in WSMs29. Furthermore, the classification of the 
induced pairing and the magnitude of each pair amplitude has been evaluated in the chirality blockade regime 
for both even- and odd-frequency pairing29. Considering the even-frequency spin-singlet pairing, the amplitude 
of the interorbital s-wave pairing has been shown to be 2-orders of magnitude larger than the intraorbital s-wave.

Accordingly, the Weyl equation is affected due to the presence of superconducting term in the corresponding 
Hamiltonian. In this regard, for instance, when a conventional BCS superconductor is placed next to a WSM, 
an s-wave superconductivity is induced in that WSM. The resulting Hamiltonian, namely the Bogoliubov–de 
Gennes (BdG) Hamiltonian30,31, includes a pairing term originated from the SSB. However, the nature of such a 
pairing is under debate32, as there are generally two candidates to explain this situation. One case is the s-wave 
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) or intranode pairing, in which electrons are paired up on the same 
side of the Fermi surface. Another is the conventional BCS or internode pairing, in which the pair consists of 
electrons on opposite sides of the Fermi surface, and the center of mass of Cooper pairs has zero momentum. 
Despite some efforts, there are still debates about the preferred pairing state in WSMs. For instance, Cho et 
al. argued that the FFLO state in the IR-symmetric WSMs has lower-energy compared to the conventional 
superconducting state via the mean-field calculations33. Whereas, other groups have demonstrated that the 
energy of the BCS state is lower compared to the FFLO state34,35. Both types of pairing are allowed when the TR-
symmetry is broken but the IR-symmetry is preserved, whilst the FFLO state is the only allowed pairing term 
when both of the IR-symmetry and TR-symmetry are broken23. It is worthwhile to mention that, a minimal 
model of TR broken WSMs consists of a single pair of the Weyl nodes, while a WSM with broken IR contains 
four Weyl nodes with total zero chirality36. It has already been observed that in a WSM, the chirality can be 
understood as a topologically protected charge37–40, and in a 3-dimensional Weyl superconductor (3DWS), the 
chiral symmetry breaking occurs in addition to gauge symmetry breaking41. Indeed, in Ref.40, the authors have 
considered the anomalous Hall effect in a topological Weyl superconductor with the broken TR-symmetry and 
demonstrated the existence of a conserved chiral charge in WSMs. Also, topological superconductivity in WSMs 
can lead to anomalies in the presence of chiral vortex lines42.

In this work , we aim to provide a physical insight on the nature of superconductivity in WSMs by focusing 
on symmetry considerations. Thus, we promote the idea that in a 3DWS, besides the U(1) gauge symmetry, 
an emergent low-energy U(1)A symmetry exists, which leads to a new charge for the system, namely a chiral 
charge. To make this idea clearer, we study the BdG Hamiltonian using a doubled representation of Dirac 
matrices. Next, we investigate the model when the BCS- and/or the FFLO-type pairings are proximity induced 
in WSMs. Then, we demonstrate that an emergent pseudo-scalar phase mode appears in WSMs with BCS-type 
superconductivity, while the FFLO-type lakes this phase mode. In addition, we demonstrate that such a phase 
mode leads to a pseudo-Meissner effect. The outline of this work is as follows. In Sect. “Chiral invariance and 
new pseudo-scalar NG mode”, we briefly review the SSB in the NJL model, and explain how an NG mode 
appears to recover a continuous global symmetry. In Sect.  “Weyl superconductors and chiral symmetry”, we 
introduce the BdG Hamiltonian for a 3DWS and clearly show that the continuous gauge and axial symmetries 
are spontaneously broken via the induced pairings. Accordingly, we indicate that, as a result of the SSB of the 
U(1)A, an emergent pseudo-scalar phase NG mode appears. In Sect. “Pseudo-Meissner effect”, we review the 
Higgs mechanism and argue that the interaction of this pseudo-scalar phase mode with an external pseudo-
magnetic can lead to a pseudo-Meissner effect. Finally, we furnish the conclusion in the last section.

Chiral invariance and new pseudo-scalar NG mode
In this section, we review how the the spontaneously broken chiral symmetry in Dirac Lagrangian can be 
restored by introducing a pseudo-scalar NG mode. The Dirac Lagrangian for a free electron with mass m and 
momentum p is

	 L = ψ̄(iγµ∂µ − m)ψ,� (1)

where ψ̄ = ψ†γ0, the natural units with ℏ = 1 = c is assumed [However, in condensed matter systems, the 
Dirac Hamiltonian contains the Fermi velocity vF instead of the speed of light.] and the γµ’s are the Dirac 
gamma matrices that, in the Weyl or chiral representation,  are defined as

	
γi =

( 0 σi

−σi 0
)

and γ0 =
( 0 I2×2

I2×2 0
)

.� (2)

Here, σi (where i=1, 2, 3) and I2×2 respectively are the Pauli matrices and the unit matrix, and the symbol 0 
represents a 2 × 2 matrix. The γ5 matrix, that is constructed as γ5 = iγ0γ1γ2γ3, is

	
γ5 =

( −I2×2 0
0 I2×2

)
.� (3)

Also, one can construct the charge-conjugation operator C = iγ2K , with K being the complex-conjugate 
operator, as
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C =

( 0 iσ2
−iσ2 0

)
K,� (4)

which transforms a particle to an anti-particle, namely C ψ → ψc. Moreover, the γµ matrices satisfy

	 {γµ, γν} ≡ γµγν + γνγµ = 2 ηµνI4×4,� (5)

where ηµν  (with µ, ν = 0, · · · , 3) is the Minkowski metric in (1 + 3) dimensions with the signature −2.
The equation of motion of Lagrangian (1) is the celebrated Dirac Eq.12

	 i ∂tψ = γ0(γ · p + m)ψ.� (6)

By defining the left-handed and right-handed projection operators ψR = (1 + γ5)ψ/2 and ψL = (1 − γ5)ψ/2
, the Dirac equation becomes

	 σ · p ψR + m ψL = εψR and − σ · p ψL + m ψR = εψL,� (7)

with the eigenvalues ε = ±
√

p2 + m2. Obviously when m = 0, the right and left chirality sectors are decoupled 
and the Dirac equation reduces to the Weyl Eq.19. In this limit, Lagrangian (1) is invariant against the set of two 
independent continuous global transformations

	 ψ→exp (iα)ψ hence: ψ̄ → ψ̄ exp (−iα), � (8)

	 ψ→exp (iγ5β)ψ hence: ψ̄ → ψ̄ exp (iγ5β),� (9)

with α and β as arbitrary constants. Due to the Noether theorem, there are two conserved currents, namely

	 jµ = ψ̄γµψ and j5,µ = ψ̄γµγ5ψ� (10)

as the vector and axial vector currents, respectively, which satisfy the continuity equations

	 ∂µjµ = 0 and ∂µj5,µ = 0.� (11)

This fact corresponds to the conservation of the electron number and the chiral or γ5 charge, respectively.
When the fermion mass term is generated dynamically, for example in the context of the NJL model [This 

relation is referred to as the gap equation of the NJL model13,14.], i.e. mf ∝ ⟨ψ̄ψ⟩ in modified Lagrangian (1), the 
conservation relations (11) become

	 ∂µjµ = 0 and ∂µj5,µ = 2i mfψ̄γ5ψ,� (12)

which means that the mass term has spoiled the axial or the γ5 symmetry. Nevertheless, by including the 
radiative corrections, the vertex function for the axial vector current is not simply given by γµγ5, instead by13,14

	
λ5,µ(p′, p) = γµγ5 − i

2mfγ5qµ

q2 ,� (13)

where p and p′ are the initial and final momenta and q = p′ − p. Therefore, the vertex function now includes an 
extra term, which indicates the existence of a pseudo-scalar zero-mass state. Hence, by redefining jλ

5,µ = ψ̄λ5,µψ, 
we obtain

	 ∂µjλ
5,µ = 0,,� (14)

 
which means the chiral symmetry is restored by introducing a pseudo-scalar NG mode.

Weyl superconductors and chiral symmetry
After reviewing the concept of SSB of the U(1)A symmetry in the context of Dirac equation, we now investigate 
the relevant symmetries for WSMs after they become 3DWS as a consequence of the SSB. In this regard, we 
consider a minimal relativistic low-energy model of a WSM with two Weyl nodes of opposite chirality separated 
by 2 p0 in the momentum space. The nonzero chiral shift p0 breaks the TR-symmetry in such a model. The Weyl 
Hamiltonian around the Weyl nodes at momentum ±p0 (in unit vF = 1) reads

	
HW(p) =

(
HW

+ 0
0 HW

−

)
with HW

± = ±σ · (p∓p0) ,� (15)

where p is the momentum of excitations and ± stands for two chiralities of the Weyl nodes. With a proper 
rotation, the term containing p0 can be gauged away from this Hamiltonian. In the presence of an external 
electromagnetic field, such a rotation leads to an induced θ-term43 in the corresponding action of the field, 
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which is called the axionic field. Such a term is responsible for the anomalous Hall effect and the chiral magnetic 
effect44, in which the number of particles of a specific chirality, in the presence of a topologically nontrivial 
configuration of the background gauge field (like electromagnetic field), is not conserved. This effect is the 
condensed matter counterpart of the chiral anomaly in high-energy physics. It is also interesting to know that 
the chiral anomaly has been experimentally observed in the chiral superfluid 3He − A with Weyl fermionic 
quasiparticles45.

The pairing Hamiltonian for such a system is

	
HBdG(p) =

(
HW(p) − µ ∆

∆† µ − C HW(p)C −1

)
,� (16)

with ∆ being the superconducting order parameter and µ the electrochemical potential. However, the chemical 
potential in the Hamiltonian acts as a shift in energy and adjusting its value leads to a quantitative change in 
the Fermi level of the system, and does not affect the output results considered in this research. Moreover, it 
is common to consider an undoped WSM corresponding to zero chemical potential, see, e.g., Ref.29. Hence, 
we consider µ = 0 in this work. In the literature, the two chirality sectors have been dealt with separately, see, 
e.g., Ref.23. However, for convenience, we prefer to mix the two chiralities of the Weyl nodes to construct the 
following Hamiltonians for the internode and intranode pairings as

	

HBCS =




σ· 0 △̂B 0
0 −σ· 0 △̂B

△̂†
B 0 −σ· 0

0 △̂†
B 0 σ·


 and HFFLO =




σ· 0 0 △̂F

0 −σ· △̂F 0
0 △̂†

F −σ· 0
△̂†

F 0 0 σ·


 ,� (17)

where

	
△̂B ≡

( △B 0
0 △B

)
and △̂F ≡

( △F 0
0 △F

)
,� (18)

with scalars △B and △F that represent the s-wave BCS-like and the FFLO-like pairings, respectively. These 
Hamiltonians act in the space of the Nambu spinors

	
Φ =

( Ψ
Ψc

)
,� (19)

where Φ is a generic solution,

	 Ψ =
(
ψ↑

−, ψ↓
−, ψ↑

+, ψ↓
+

)T
,� (20)

and the charge conjugation operator is defined in (4).
As stated, Hamiltonians  (17) have the advantage of accommodating both chiralities in a doubled 

representation. However, we intend to write these Hamiltonians in a covariant manner. Hence, for this purpose, 
we define the set of matrices [Similar set of matrices has also been defined in Refs.46,47.]

	
Γ0 ≡

( −γ0 04×4
04×4 −γ0

)
, Γi ≡

(
γi 04×4

04×4 −γi

)
, Γ5 ≡

(
γ5 04×4

04×4 −γ5

)
, Γ6≡

( I4×4 04×4
04×4 −I4×4

)
, � (21)

where the Γµ set of matrices form the basis of the Clifford algebra with

	 {Γµ, Γν} = 2 ηµνI8×8.� (22)

Accordingly, we obtain Γ5 = iΓ0Γ1Γ2Γ3 and

	 [Γ6, Γa] = 0 for : a = 0, · · · , 3, 5, {Γ5, Γµ} = 0.� (23)

To deal with the pairing part of the BdG Hamiltonian, we also define

	
Γ7 ≡

( 04×4 I4×4
I4×4 04×4

)
and Γ8 ≡

( 04×4 γ0
γ0 04×4

)
,� (24)

whose commutation relations with matrices (21) are

	

{Γ7, Γa} = 0 for : a = 1, 2, 3, 5, 6, [Γ7, Γ0,8] = 0,

= 0 for : a = 0, · · · , 3, 5, {Γ8, Γ6} = 0.

� (25)

Using these matrices, Hamiltonians (17) can be written as

	 HBCS = Γ0Γip
i − Γ0Γ8∆B and HFFLO = Γ0Γip

i − Γ0Γ7∆F� (26)
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with

	

∆B ≡




△̂†
B 0 0 0

0 △̂†
B 0 0

0 0 △̂B 0
0 0 0 △̂B


 and ∆F ≡




△̂†
F 0 0 0

0 △̂†
F 0 0

0 0 △̂F 0
0 0 0 △̂F


 .� (27)

Based on Refs.48,49, as the FFLO-like superconducting pairing is given by ψ̄∆Fγ0ψc and the BCS-like pairing is 
given by ψ̄∆BI4×4ψc, hence the Lorentz invariance is satisfied.

Now, the Lagrangian of the system can be written as

	 LBCS = Φ̄(Γµpµ − Γ8∆B)Φ and LFFLO = Φ̄(Γµpµ − Γ7∆F)Φ,� (28)

where Φ̄ ≡ Φ†Γ0. Hence, the corresponding equations of motions are

	 (Γµpµ − Γ8∆B)Φ = 0 and/or (Γµpµ − Γ7∆F)Φ = 0.� (29)

To get a better sense on the role of Γ5 and Γ6, we also define the projection operators

	
P 5

± = 1
2(I ± Γ5) and P 6

± = 1
2(I±Γ6),� (30)

where I is 8 × 8 identity matrix, and we have P 52
± = P 5

±, P 62
± = P 6

±. In addition, acting these operators on the 
Nambu spinors (19) yields

	
P 5

+P 6
+Φ=14(I + Γ5)(I + Γ6)Φ = Ψ+, P 5

+P 6
−Φ = 1

4(I + Γ5)(I − Γ6)Φ = Ψc
+, � (31)

	
P 5

−P 6
+Φ=14(I − Γ5)(I + Γ6)Φ = Ψ−, P 5

−P 6
−Φ = 1

4(I − Γ5)(I − Γ6)Φ = Ψc
−. � (32)

These relations suggest that the operator Γ5 is related to the chirality and Γ6 is related to the particle-hole 
symmetry.

In the limit ∆B = 0 = ∆F, Hamiltonians (26) will obviously be the same and will be invariant against the 
set of two independent continuous global transformations

	

Φ(r, t) → ei Γ5θ/2Φ(r, t) hence : Φ̄(r, t) → Φ̄(r, t)ei Γ5θ/2,

Φ(r, t) → ei Γ6φ/2Φ(r, t) hence : Φ̄(r, t) → Φ̄(r, t)e−i Γ6φ/2
� (33)

that can also be written as

	

Φ →
(
Ψ−e−i θ/2, Ψ+ei θ/2, Ψc

+ei θ/2, Ψc
−e−i θ/2)T

,

Φ →
(
Ψ−ei φ/2, Ψ+ei φ/2, Ψc

+e−i φ/2, Ψc
−e−i φ/2)T

,
� (34)

where θ and φ are arbitrary constants. The Noether theorem dictates that such invariance leads to the conserved 
currents

	 J5,µ = Φ̄ΓµΓ5Φ and J6,µ = Φ̄ΓµΓ6Φ.� (35)

These currents satisfy the continuity equations

	 ∂µJ5,µ = 0 and ∂µJ6,µ = 0.� (36)

The J5,µ (which originates from Γ5 that is related to the axial symmetry) is the axial current, and in the same 
vein, the J6,µ is the electromagnetic current.

It is noteworthy that the continuous global transformation leading to J5,µ also gives rise to a θ phase shift 
between the pairings at Fermi surfaces with opposite chiralities. Such a phase shift may lead to interesting 
observable effects in the Josephson phenomena50. Further discussion of this topic is beyond the scope of this 
work and will be presented in upcoming works. However, it should be noted that our work differs from the 
Leggett work51,52 because for the Leggett mode to appear, it is necessary to have an interband pairing term that 
couples positive and negative chiralities. Whereas this is not the case in Eqs.  (29), where we consider either 
internode pairing, △B, or intranode pairing, △F, and do not assume both pairings simultaneously.

Now, by utilizing transformations (33) and commutation relations (25), we observe that ∆B in the left-hand 
Hamiltonian (26) breaks both of the Γ5 and Γ6 symmetries, while ∆F in the right-hand Hamiltonian (26) breaks 
only the Γ6 symmetry. Accordingly, when only ∆F is present in the system, we can justify that it transforms as 
∆F → ∆F ei Γ6φ, and hence the conservation relations (36) become
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	 ∂µJ5,µ = 0 and ∂µJ6,µ = −2i ∆FΦ̄Γ7Γ6Φ.� (37)

whereas, when only ∆B is present, it transforms as ∆B → ∆B ei Γ6φ+i Γ5θ , and one has

	 ∂µJ5,µ = −2i ∆BΦ̄Γ8Γ5Φ and ∂µJ6,µ = −2i ∆BΦ̄Γ8Γ6Φ.� (38)

As is obvious, when ∆B is non-zero, an emergent pseudo-scalar phase mode should appear to restore the broken 
Γ5 symmetry.

Following the same procedure that led to relation (13), when only ∆F is present, the vertex for J5,µ and J6,µ 
currents become

	
ΛF

5,µ(p′, p) = ΓµΓ5 and ΛF
6,µ(p′, p) = ΓµΓ6 + i

2∆FΓ7Γ6qµ

q2 ,� (39)

and when only ∆B is the non-vanishing one, we obtain

	
ΛB

5,µ(p′, p) = ΓµΓ5 + i
2∆BΓ8Γ5qµ

q2 and ΛB
6,µ(p′, p) = ΓµΓ6 + i

2∆BΓ8Γ6qµ

q2 .� (40)

Hence for conditions (40), new conserved currents, say JB
5,µ and JB

6,µ, satisfy the conservation relations

	 ∂µJB
5,µ ≡ ∂µΦ̄ΛB

5,µΦ = 0 and ∂µJB
6,µ ≡ ∂µΦ̄ΛB

6,µΦ = 0.� (41)

Also, for conditions (39), we have

	 ∂µJF
5,µ ≡ ∂µΦ̄ΛF

5,µΦ = 0 and ∂µJF
6,µ ≡ ∂µΦ̄ΛF

6,µΦ = 0.� (42)

These conservation relations demonstrate how the NG modes restore the broken symmetries. Thus, the FFLO-like 
pairing only breaks the gauge symmetry. Therefore, only a scalar phase mode appears to restore the conservation 
of this symmetry. Whereas, the BCS-like pairing breaks both of the gauge and the chiral symmetries, and leads 
to an extra second NG mode.

To be able to detect this new emergent pseudo-scalar NG mode, we recall that a scalar phase mode can 
interact with an external photon field, leading to the Meissner effect due to the Anderson-Higgs mechanism9–11. 
Actually, as Weinberg stated “a superconductor is simply a material in which electromagnetic gauge invariance 
is spontaneously broken53”. In the same vein, we expect a phenomenon similar to the Meissner effect, in which 
the pseudo-scalar NG mode (created by the SSB of the chiral symmetry via ∆B) gets absorbed by an external 
pseudo-magnetic field, leading to the field expulsion, and an effect we refer to as pseudo-Meissner.

Such a pseudo-magnetic field can be realized in WSMs in the form of elastic gauge fields constructed with 
the deformation tensor by coupling the lattice deformations to electronic degrees of freedom54. The most 
interesting feature of these elastic gauge fields is that they are axial pseudo-gauge fields and couple to opposite 
chiralities with opposite signs. The presence of elastic gauge fields in WSMs was first predicted in Ref.55 and 
recently realized experimentally56. Further works on the analysis of their physical consequences can be found in 
Refs.57–67. In general, such an axial gauge field can be described as55,68

	 A5
µ = ξvµν bν ,� (43)

where

	
vµν(x) = 1

2(∂µvν + ∂νvµ),� (44)

is the strain tensor, vµ is the displacement vector, ξ is a Gruneisen parameter and the vector bµ quantifies the 
separation of Weyl nodes in momentum space. The pseudo-vector field A5 can be attributed to an effective axial 
vector potential69,70 . Then the axial magnetic and electric fields can be defined as B5,µ = 1

2 ϵµνγ ∂nuA5
γ  and 

E5
µ = −∂tA

5
mu, respectively. Apparently, the physical properties of the lattice deformation, such as ripples or 

strains, determine the size of the emergent pseudo-field in this system54. In principle, one can tune the pseudo-
field by controlling the lattice deformation, which was previously studied in Dirac materials theoretically71 and 
observed experimentally72.

The pseudo-magnetic (or an axial magnetic) field B5 is an observable quantity, whose magnitude typically 
varies from about 0.3 T  to about 15 T . It couples to fermions of opposite chirality with different sign and 
is therefore a chiral field. It also gives rise to an unusual dynamics of Cooper pairs, where no Meissner effect is 
present, see, e.g., Ref.73. In fact, this field is completely different from the usual electromagnetic field and does not 
induce diamagnetic currents (which can destroy superconductivity)69,70. Now, taking into account the possibility 
that the pseudo-scalar phase mode can be absorbed by the B5 field, the pseudo-Meissner effect is a plausible 
consequence of the local chiral symmetry breaking in 3DWS. We investigate this case in the next section.

As another peculiarity of the emergent pseudo-scalar phase mode, we infer that this mode may interact with 
the axial gauge bosons of the standard model of particle physics74–76, which also leads to the pseudo-Meissner 
effect.
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Pseudo-Meissner effect
In this section, via the Higgs mechanism, we study the process in which the pseudo-scalar NG mode gets 
absorbed by the pseudo-magnetic field, and results in the field expulsion. In this regard, we first introduce the 
Abelian Higgs mechanism, whose Lagrangian is

	
Lη = −1

4FµνF µν + |(i∂µ − eAµ)η|2 − V (η),� (45)

where the field η is a complex classical field over spacetime, e is the unit of the electric charge, F µν = ∂µAν − ∂νAµ 
and Aµ is the electromagnetic vector potential. Meanwhile, the potential energy for the field η is

	
V (η) = −M2|η|2 + 1

2λ|η|4,� (46)

where M and λ are constants and the Lagrangian Lη  remains invariant under the Abelian U(1) gauge 
transformation Aµ → Aµ − ∂µχ(x)/e with η → ei χ(x)η, wherein χ(x) is a real field without dimension in 
the natural units.

At this stage, we arrange to have a ‘spontaneous breaking of the gauge symmetry’ by choosing < η >= v/
√

2, 
where v is the vacuum expectation value of the field η and we set it to be real without loss of generality. The 
potential energy is minimized when

	
v = M√

λ
.� (47)

Then, we fix the gauge such that

	
η = vei χ(x)

√
2

,� (48)

where we have ignored an excitation of the potential around its minimum for the sake of convenience. 
Accordingly, in order to fully fix the gauge, we introduce a new vector potential field

	
Aµ → Bµ = Aµ − 1

e
∂µχ(x),� (49)

with which Lagrangian (45) leads to77

	
L̃η = −1

4BµνBµν + 1
2e2v2BµBµ,� (50)

where Bµν = ∂µBν − ∂νBµ. Lagrangian L̃η  is interpreted as containing a massive vector field Bµ with 
the mass mph = e v, where the subscript ph stands for photon. The mass of the magnetic field is inversely 
proportional to its penetration depth, λ, i.e.,

	

1
mph

= λ =
√

m∗

4 µ0 e2 <η>2 ,� (51)

where m∗ is the effective mass of the Cooper pairs and µ0 is the permeability of free space.
This model is a Lorentz invariant version of the Landau–Ginzburg (LG) model of superconductivity11, which 

is a phenomenological approach to describe the macroscopic properties of superconductors, and it can be said 
that the NG boson is ‘eaten’ to become the longitudinal degree of freedom of the photon. We know that in 
the LG model, the order parameter is a complex scalar field proportional to the BCS pairing potential. We 
also expect the order parameter to be proportional to the pairing potentials of the model. To integrate our 
results with the Higgs mechanism, we need to introduce two matrix form order parameters, say ηB ≡ ∆B and 
ηF ≡ ∆F, where ∆B and ∆F are given in relation (27) and hence, ηF and ηB transform as ηF → ηF ei Γ6φ and 
ηB → ηB ei Γ6φ+i Γ5θ . Then, besides Aµ, we also use A5

µ as a pseudo-electromagnetic field, and assume that 
both of these fields transform as

	

Aµ → Aµ − 1
e

∂µχ with:
{

ηB(r, t) → ηB(r, t)ei Γ6χ

ηF(r, t) → ηF(r, t)ei Γ6χ,

A5
µ → A5

µ − 1
g

∂µχ with:
{

ηB(r, t) → ηB(r, t)ei Γ5χ

ηF(r, t) → ηF(r, t),

� (52)

where g is a pseudo-charge. Therefore, the related invariant Higgs Lagrangians under these transformations are

	
LB = −1

4FµνF µν + trace (|(I8×8i∂µ − eΓ6Aµ)ηB|2) − V (ηB),� (53)
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LF = −1

4FµνF µν + trace (|(I8×8i∂µ − eΓ6Aµ)ηF|2) − V (ηF)� (54)

and

	
L5,B = −1

4F5,µνF µν
5 + trace (|(I8×8i∂µ − gΓ5A5,µ)ηB|2) − V (ηB),� (55)

where F µν
5 = ∂µAν

5 − ∂νAµ
5 . Analogously, by using the new vector potential  (49) and defining 

Bµν
5 =∂µBν

5 − ∂νBµ
5 , these Lagrangians lead to

	
L̃ηB = −1

4BµνBµν + 1
2e2v2BµBµ, L̃ηF = −1

4BµνBµν + 1
2e2v2BµBµ� (56)

and

	
L̃5,ηB = −1

4B5,µνBµν
5 + 1

2g2v2B5,µBµ
5 ,� (57)

which indicate that the BCS type of pairing causes the pseudo-magnetic field to acquire the mass mp
ph = g v, 

where the superscript p stands for pseudo-magnetic field. In other words, it leads to a pseudo-Meissner effect, 
which hopefully provides an achievable and quantitatively testable phenomenon to detect the emergent pseudo-
scalar NG mode. Similar to the Meissner effect, the mass of the pseudo-magnetic field is inversely proportional 
to its penetration depth, λp, i.e.,

	

1
mp

ph
= λp =

√
m∗

4 µp
0 g2 <ηB>2 ,� (58)

where µp
0  is the permeability of free space for the pseudo-magnetic field. Assuming that the coupling g and 

µp
0  are in the same order as those of the electromagnetic interactions54, the order of λp will be the same as the 

normal Meissner effect, i.e., λ in relation (51) in topological superconductors78.

Summary and conclusions
In this work, we have considered a conventional BCS superconductor is placed next to a WSM, where 
consequently an s-wave superconductivity is induced in that WSM due to the proximity effect. To shed light on 
the nature of the induced pairing, we have considered the continuous symmetries of a 3DWS. In the literature, 
there have been discussions about whether the superconducting state in that WSM is of the FFLO or BCS type. 
Here, we have shown that unlike the orthodox BCS superconductors, wherein the U(1) gauge symmetry is the 
only symmetry of the gapless Hamiltonian (which is then spontaneously broken by the dynamically generated s-
wave BCS-like pairing), the gapless Hamiltonian of a 3DWS is invariant under two symmetries, namely the U(1) 
gauge and U(1)A axial symmetries. To better investigate the issue, we have written the BdG Hamiltonian using 
the doubled representation of Dirac matrices, which has enabled us to introduce two generators to represent the 
symmetries of the system. Consequently, two charges appear in the system, i.e. the electric charge and the chiral 
charge.

Furthermore, we have demonstrated that the dynamical generation of the s-wave BCS-like pairing, △B, 
breaks both the symmetries spontaneously, whereas the FFLO-like pairing, △F, breaks only the U(1) gauge 
symmetry. Nevertheless, we have indicated that the conservation of both charges get restored by introducing 
the NG modes. That is, when only the U(1) gauge symmetry gets broken, the well-known scalar mode recovers 
the charge conservation. Whereas, when both of the U(1) gauge and U(1)A axial symmetries are broken, apart 
from the scalar mode, one needs to introduce an extra new pseudo-scalar phase mode to restore the U(1)A 
symmetry as well.

Analogous to conventional superconductors, where the scalar phase mode of superconductivity leads to the 
Meissner effect in the presence of a normal magnetic field, we have demonstrated that a similar effect appears 
in 3DWSs, due to the interaction of the pseudo-scalar phase mode with an external pseudo-magnetic. Indeed, 
the obtained results indicate that when the U(1)A symmetry is broken by ∆B, the corresponding emergent 
pseudo-scalar phase mode can get absorbed by an external pseudo-magnetic field (i.e., a B5 field) that leads to 
an effect analogous to the Meissner effect. We have referred to this effect as a pseudo-Meissner effect, and it can 
be tested in future experiments as a key prediction of this work. More specifically, we expect the repulsion of 
the pseudo-magnetic field inside the WSMs in the superconducting s-wave phase. The pseudo-Meissner effect 
is consequently achieved by a superconducting surface current that produces a secondary pseudo-magnetic 
field to compensate for the primary pseudo-magnetic field. Also, the emergent pseudo-scalar NG mode may, 
in principle, interact with the axial gauge bosons of the standard model of particle physics, and leads to the 
pseudo-Meissner effect by expelling these bosons from the 3DWS. These predictions are testable in present 
and forthcoming experiments. As the pseudo-Meissner effect emerges from the BCS-like pairing in WSMs, we 
propose the pseudo-Meissner effect as a useful tool for distinguishing between the FFLO-like and the BCS-like 
pairings.

A possible extension of this work is to study the effect of the new phase mode in phenomenon such as the 
Josephson effect, which we will investigate in upcoming works. Also, a Weyl superconductor originating from a 
WSM with broken inversion symmetry can lead to various physical effects such as response to external magnetic 
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fields, thermal conductance, and transport properties, which can be investigated in a different work. However, a 
recent publication has considered the proximity effect on an inversion broken WSM79.

Data availibility
All data generated or analysed during this study are included in this published article.
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