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Symmetries of Weyl
superconductors with different
pairings
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We examine the Bogoliubov-de Gennes Hamiltonian and its symmetries for a time-reversal symmetry
broken three dimensional Weyl superconductor. In the limit of vanishing pairing potential, we

specify that this Hamiltonian is invariant under two sets of continues symmetries, i.e. the U(1) gauge
symmetry and the U (1) 4 axial symmetry. Although a pairing of the Bardeen-Cooper-Schrieffer type
spontaneously breaks both of these symmetries, we show that a Fulde—Ferrell-Larkin-Ovchinnikov
type pairing spontaneously breaks only the U(1) gauge symmetry (that is then restored via the
well-known scalar phase mode of superconductivity). Consequently, in the former case, two Nambu-
Goldstone modes are required in the system to restore the broken symmetries. We indicate that one
of these two modes is an emergent pseudo-scalar phase mode. We also demonstrate that such a phase
mode leads to a pseudo-Meissner effect.

A few decades ago, Nambu!~ suggested that, in the Bardeen-Cooper-Schrieffer (BCS) formalism of
superconductivity*, a massless scalar collective mode (later called the Nambu-Goldstone (NG) mode) should
appear to recover the charge conservation. That is because, although the basic Hamiltonian of the theory, which
considers only the interactions of the electric charges, is invariant under a local continuous U(1) gauge symmetry,
the mean-field reduced BCS Hamiltonian is not. This is an example of the spontaneous symmetry breaking
(SSB) and dynamical gap generating that reflects the non-conservation of the electric charge. In other words,
each of the quasi particles introduced by Bogoliubov® and Valatin®, which are the building blocks of the Cooper
pairs, does not appear to have a definite charge. Indeed, a theory with broken gauge symmetry cannot describe
processes including the electromagnetic field (like the Meissner effect”), and as Nambu observed, the SSB of the
gauge symmetry needs to be restored by an NG mode. To restore the symmetry, one has to take into account the
radiative corrections coming from the NG mode to the vertex diagram. After considering this contribution, the
modified vertex® (or the dressed vertex) satisfies the Ward identity, and thus the symmetry is restored via a scalar
NG mode. Such a massless NG mode (or phase mode) can also be absorbed into the longitudinal component
of electromagnetic fields, and gets elevated to the plasma frequency due to the Anderson-Higgs mechanism®!!,
which leads to the Meissner effect.

Moreover, the similarity of the Bogoliubov-Valentin equation to the Dirac equation'? led Nambu and
Jona-Lasinio (NJL) to transform the BCS theory to strong interaction physics'>!%, wherein the global U(1)
symmetry [The subscript A stands for axial symmetry.] as an approximately conserved global symmetry in flavor
space is spontaneously broken. Accordingly, the nucleon mass is generated by a SSB of the U (1) 4 symmetry, and
the produced pion is the pseudo-scalar NG boson of this symmetry breaking!*!¢.

On the other hand, the correspondence between high-energy and condensed matter physics has recently
reached new levels in the realm of novel quantum materials with the introduction of concepts such as the Dirac
and Weyl materials'”!8, which are commonly used to describe elementary particles'®. The Weyl semimetals
(WSMs) were first proposed in the pyrochlore irridates®® and later in the heterostructures of topological and
normal insulators?'. These objects are very peculiar in the sense that their valences and conduction bands have
non-degenerate touching points in the Brillouin zone (called Weyl nodes) whose low-energy excitations obey
the Weyl equation and are chiral fermions. It is well-known that the Weyl nodes come in pairs of opposite
chirality?” and are protected via time-reversal (TR) and/or inversion (IR) symmetry?* while are separated by a
constant vector in momentum space. Chirality is thus a defining emergent property of electrons in WSMs.

Furthermore, the experimental observations and theoretical analysis suggest a superconducting phase
in WSMs, like MoTe2?*% and TaP?. In addition to intrinsic superconductivity, WSMs can also become
superconductors via the proximity effect, which occurs when one brings a WSM close to a superconductor.
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It is worth mentioning that despite the ‘chirality blockade’ in a magnetic WSM, where the Andreev reflection
between the normal state of the WSM and a superconductor is suppressed, introducing a Zeeman field at the
interface provides the necessary chirality switch. Indeed, such action overcomes the blockade and enables the
activation of the Andreev reflection, leading to the proximity induced superconductivity in WSMs?’. Also, the
surface states in WSMs, known as Fermi arc states, violate the chirality blockade. The reason lies in the fact that
Fermi arcs are not part of the Weyl spectrum?®. Moreover, it has been reported that with a suitable choice of the
Fermi cutoff, the Fermi arcs do not affect the paring amplitude in WSMs%. Furthermore, the classification of the
induced pairing and the magnitude of each pair amplitude has been evaluated in the chirality blockade regime
for both even- and odd-frequency pairing®. Considering the even-frequency spin-singlet pairing, the amplitude
of the interorbital s-wave pairing has been shown to be 2-orders of magnitude larger than the intraorbital s-wave.

Accordingly, the Weyl equation is affected due to the presence of superconducting term in the corresponding
Hamiltonian. In this regard, for instance, when a conventional BCS superconductor is placed next to a WSM,
an s-wave superconductivity is induced in that WSM. The resulting Hamiltonian, namely the Bogoliubov-de
Gennes (BdG) Hamiltonian**?!, includes a pairing term originated from the SSB. However, the nature of such a
pairing is under debate, as there are generally two candidates to explain this situation. One case is the s-wave
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) or intranode pairing, in which electrons are paired up on the same
side of the Fermi surface. Another is the conventional BCS or internode pairing, in which the pair consists of
electrons on opposite sides of the Fermi surface, and the center of mass of Cooper pairs has zero momentum.
Despite some efforts, there are still debates about the preferred pairing state in WSMs. For instance, Cho et
al. argued that the FFLO state in the IR-symmetric WSMs has lower-energy compared to the conventional
superconducting state via the mean-field calculations®®. Whereas, other groups have demonstrated that the
energy of the BCS state is lower compared to the FFLO state**°. Both types of pairing are allowed when the TR-
symmetry is broken but the IR-symmetry is preserved, whilst the FFLO state is the only allowed pairing term
when both of the IR-symmetry and TR-symmetry are broken?*. It is worthwhile to mention that, a minimal
model of TR broken WSMs consists of a single pair of the Weyl nodes, while a WSM with broken IR contains
four Weyl nodes with total zero chirality®®. It has already been observed that in a WSM, the chirality can be
understood as a topologically protected charge’”~*, and in a 3-dimensional Weyl superconductor (3DWS), the
chiral symmetry breaking occurs in addition to gauge symmetry breaking?!. Indeed, in Ref.%, the authors have
considered the anomalous Hall effect in a topological Weyl superconductor with the broken TR-symmetry and
demonstrated the existence of a conserved chiral charge in WSMs. Also, topological superconductivity in WSMs
can lead to anomalies in the presence of chiral vortex lines*2.

In this work , we aim to provide a physical insight on the nature of superconductivity in WSMs by focusing
on symmetry considerations. Thus, we promote the idea that in a 3DWS, besides the U(1) gauge symmetry,
an emergent low-energy U(1) 4 symmetry exists, which leads to a new charge for the system, namely a chiral
charge. To make this idea clearer, we study the BAG Hamiltonian using a doubled representation of Dirac
matrices. Next, we investigate the model when the BCS- and/or the FFLO-type pairings are proximity induced
in WSMs. Then, we demonstrate that an emergent pseudo-scalar phase mode appears in WSMs with BCS-type
superconductivity, while the FFLO-type lakes this phase mode. In addition, we demonstrate that such a phase
mode leads to a pseudo-Meissner effect. The outline of this work is as follows. In Sect. “Chiral invariance and
new pseudo-scalar NG mode”, we briefly review the SSB in the NJL model, and explain how an NG mode
appears to recover a continuous global symmetry. In Sect. “Weyl superconductors and chiral symmetry”, we
introduce the BAG Hamiltonian for a 3DWS and clearly show that the continuous gauge and axial symmetries
are spontaneously broken via the induced pairings. Accordingly, we indicate that, as a result of the SSB of the
U(1) 4, an emergent pseudo-scalar phase NG mode appears. In Sect. “Pseudo-Meissner effect”, we review the
Higgs mechanism and argue that the interaction of this pseudo-scalar phase mode with an external pseudo-
magnetic can lead to a pseudo-Meissner effect. Finally, we furnish the conclusion in the last section.

Chiral invariance and new pseudo-scalar NG mode

In this section, we review how the the spontaneously broken chiral symmetry in Dirac Lagrangian can be
restored by introducing a pseudo-scalar NG mode. The Dirac Lagrangian for a free electron with mass m and
momentum p is

L = (i, 0" —m)y, (1)

where 1) = 170, the natural units with & = 1 = ¢ is assumed [However, in condensed matter systems, the
Dirac Hamiltonian contains the Fermi velocity vr instead of the speed of light.] and the «,’s are the Dirac
gamma matrices that, in the Weyl or chiral representation, are defined as

0 i 0 I
i = ( —o; (6 ) and Yo = < Tovs 262 ) (2)

Here, o; (where i=1, 2, 3) and 22 respectively are the Pauli matrices and the unit matrix, and the symbol 0
represents a 2 X 2 matrix. The s matrix, that is constructed as v5 = ivoy172773, is

~( —Iaxe 0
s = ( 0 Toxo ) ’ (3)

Also, one can construct the charge-conjugation operator ¢ = iy2 K, with K being the complex-conjugate
operator, as
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which transforms a particle to an anti-particle, namely €y — 1°. Moreover, the -y, matrices satisfy

{77} = v + v = 20ullaxa, (5)
where 7, (with g1, v =0, - - -, 3) is the Minkowski metric in (1 + 3) dimensions with the signature —2.
The equation of motion of Lagrangian (1) is the celebrated Dirac Eq.!?
i0¢h = v0(v - p+m)ip. (6)

By defining the left-handed and right-handed projection operators ¢yr = (1 + 7v5)%/2 and ¢, = (1 — v5)/2
, the Dirac equation becomes

o -pYr +mYL = eYr and —o-pYrL+mir = ey, (7)

with the eigenvalues € = ++/p? + m?2. Obviously when m = 0, the right and left chirality sectors are decoupled

and the Dirac equation reduces to the Weyl Eq.!°. In this limit, Lagrangian (1) is invariant against the set of two
independent continuous global transformations

P—exp (i) hence: ¥ — Pexp (—ia), (8)

p—exp (i7y55)9 hence: Y — P exp (i), ©)
with v and 3 as arbitrary constants. Due to the Noether theorem, there are two conserved currents, namely
Ju=tw  and s = Yyuysy (10)

as the vector and axial vector currents, respectively, which satisfy the continuity equations

Mj.=0 and 0" js,. = 0. (11)

This fact corresponds to the conservation of the electron number and the chiral or 5 charge, respectively.

When the fermion mass term is generated dynamically, for example in the context of the NJL model [This
relation is referred to as the gap equation of the NJL model'*1.], i.e. m¢ o< (1)1)) in modified Lagrangian (1), the
conservation relations (11) become

"j.=0 and M s = 20 mphys), (12)

which means that the mass term has spoiled the axial or the v5 symmetry. Nevertheless, by including the
radiative corrections, the vertex function for the axial vector current is not simply given by ,,7s, instead by'>*

2msY5qu
X, (P, D) = Vs —ZTI7 (13)

where p and p’ are the initial and final momenta and ¢ = p’ — p. Therefore, the vertex function now includes an
extra term, which indicates the existence of a pseudo-scalar zero-mass state. Hence, by redefining j2 ,, = ¥Xs5, .1},
we obtain

" j3. =0, (14)

which means the chiral symmetry is restored by introducing a pseudo-scalar NG mode.

Weyl superconductors and chiral symmetry

After reviewing the concept of SSB of the U (1) 4 symmetry in the context of Dirac equation, we now investigate
the relevant symmetries for WSMs after they become 3DWS as a consequence of the SSB. In this regard, we
consider a minimal relativistic low-energy model of a WSM with two Weyl nodes of opposite chirality separated
by 2 po in the momentum space. The nonzero chiral shift pg breaks the TR-symmetry in such a model. The Weyl
Hamiltonian around the Weyl nodes at momentum =£po (in unit vr = 1) reads

HY 0 .
Hw(p) = ( 0+ WY ) with HY = to - (pFpo), (15)

where p is the momentum of excitations and + stands for two chiralities of the Weyl nodes. With a proper
rotation, the term containing po can be gauged away from this Hamiltonian. In the presence of an external
electromagnetic field, such a rotation leads to an induced f-term® in the corresponding action of the field,
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which is called the axionic field. Such a term is responsible for the anomalous Hall effect and the chiral magnetic
effect®, in which the number of particles of a specific chirality, in the presence of a topologically nontrivial
configuration of the background gauge field (like electromagnetic field), is not conserved. This effect is the
condensed matter counterpart of the chiral anomaly in high-energy physics. It is also interesting to know that
the chiral anomaly has been experimentally observed in the chiral superfluid 3He — A with Weyl fermionic
quasiparticles®.

The pairing Hamiltonian for such a system is

- A

with A being the superconducting order parameter and j: the electrochemical potential. However, the chemical
potential in the Hamiltonian acts as a shift in energy and adjusting its value leads to a quantitative change in
the Fermi level of the system, and does not affect the output results considered in this research. Moreover, it
is common to consider an undoped WSM corresponding to zero chemical potential, see, e.g., Ref.?’. Hence,
we consider 1 = 0 in this work. In the literature, the two chirality sectors have been dealt with separately, see,
e.g. Ref.23. However, for convenience, we prefer to mix the two chiralities of the Weyl nodes to construct the
following Hamiltonians for the internode and intranode pairings as

o 0 Asg 0 o 0 0 Ar
) 0 -0 0 Ap 0 —o Ar 0
Hsos = |« d  Hrro = R 1
Bes A, 0 —o 0 o Lo 0o AL —e 0 | (17)
o AL o0 o Al 0 0 o
where
" A 0 A A 0
ABE( o AB> and AFE( FoA ) (18)

with scalars Ap and Ar that represent the s-wave BCS-like and the FFLO-like pairings, respectively. These
Hamiltonians act in the space of the Nambu spinors

o= ( g ). (19)

where ® is a generic solution,
T
U= (¢l uh) (20)

and the charge conjugation operator is defined in (4).

As stated, Hamiltonians (17) have the advantage of accommodating both chiralities in a doubled
representation. However, we intend to write these Hamiltonians in a covariant manner. Hence, for this purpose,
we define the set of matrices [Similar set of matrices has also been defined in Refs.4%%7.]

_( —v0 Oaxa L Yi  Oaxa _ v¥s  Oaxa Taxa  Osaxa
Lo _( O0sxa  —v0 )’ X _( Oaxa  —7i )’ Ts _( Osxa =5 )7 Oaxa —laxa ) 1)

where the I', set of matrices form the basis of the Clifford algebra with
{T,, T} =20 Isxs. (22)
Accordingly, we obtain I's = iI'oI'1T'2I'3 and
[[6,I'e] =0 for:a=0,---,3,5, {I's,T',} =0. (23)

To deal with the pairing part of the BdG Hamiltonian, we also define

r, = ( Oaxa  laxa ) and Iy = ( O4x4 070 )7 (24)

Iyxa  Oaxa

whose commutation relations with matrices (21) are

{F7,Fa} =0 for:a= 1,2,3,576, [F7,F0,8] = 0,
(25)
=0 for:a=0,---,3,5, {T's,T6} = 0.
Using these matrices, Hamiltonians (17) can be written as
Hpos = Tol'ip’ — Tol'sAp and Hrrro = Lolip' — Tol'7Ar (26)
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with
AL 0o 0o o0 AL 0 0 o0
o AL o0 o o AL o o0
Ap = B d Arp = L 27
B 0 0 As 0 an F 0 0 Ar 0 @7
0 0 0 Ag 0 0 0 Ar

Based on Refs.**, as the FFLO-like superconducting pairing is given by 1/Ary%). and the BCS-like pairing is
given by ¥ Agllyx 41, hence the Lorentz invariance is satisfied.
Now, the Lagrangian of the system can be written as

Lecs = ®(Tup" — [sAp)® and Lrrro = @(Tup" — T7AF)D, (28)

where ® = ®'T'y. Hence, the corresponding equations of motions are

(TCup" —TsA)® =0 and/or (Tup" —T7Ar)® = 0. (29)
To get a better sense on the role of I's and I's, we also define the projection operators

Pl = %(]I:I: I's) and P§ = %(ﬂﬂ“ﬁ), (30)

2 2
where T is 8 x 8 identity matrix, and we have P} = P2, P$ = P$.Inaddition, acting these operators on the

Nambu spinors (19) yields
Pipﬁ%(ﬂ+r5)(ﬂ+rﬁ)q> =0, PIPY® = — (14 T5)(1—T6)® = U5, (31)

(I-Ts)(I—T6)® =W, (32)

N

1
PEP?@E(H—F5)(H+F6)¢: U, P’P°® =

These relations suggest that the operator I's is related to the chirality and I's is related to the particle-hole
symmetry.

In the limit Ap = 0 = Ap, Hamiltonians (26) will obviously be the same and will be invariant against the
set of two independent continuous global transformations

B(r,t) — e T2 (x, t) hence: B(r,t) — D(r,t)e' T39/2,

(33)
B(r,t) — €' T°2®(r,t)  hence:  B(r,t) — B(r,t)e T0¥/?
that can also be written as
d — (W767i0/27@+6i0/27 \Iliew/Q, \Ilie,w/g)T7 "
34

d — (\I/_ei“a/Q7 \I/_~_ei“"/27 \I/ie_i“"/z7 \Ilie_i"/Q)T ,

where 6 and ¢ are arbitrary constants. The Noether theorem dictates that such invariance leads to the conserved
currents

Js, = L, T5® and Jo,0 = O, T6®. (35)

These currents satisfy the continuity equations

8”.]5# =0 and BMJGM =0. (36)

The Js,,, (which originates from I's that is related to the axial symmetry) is the axial current, and in the same
vein, the Jg,, is the electromagnetic current.

It is noteworthy that the continuous global transformation leading to Js,,, also gives rise to a 6 phase shift
between the pairings at Fermi surfaces with opposite chiralities. Such a phase shift may lead to interesting
observable effects in the Josephson phenomena®. Further discussion of this topic is beyond the scope of this
work and will be presented in upcoming works. However, it should be noted that our work differs from the
Leggett work®">? because for the Leggett mode to appear, it is necessary to have an interband pairing term that
couples positive and negative chiralities. Whereas this is not the case in Egs. (29), where we consider either
internode pairing, A, or intranode pairing, Ar, and do not assume both pairings simultaneously.

Now, by utilizing transformations (33) and commutation relations (25), we observe that Ap in the left-hand
Hamiltonian (26) breaks both of the I's and I'¢ symmetries, while Ar in the right-hand Hamiltonian (26) breaks
only the I's symmetry. Accordingly, when only Ar is present in the system, we can justify that it transforms as
Ar — A €' 76% and hence the conservation relations (36) become
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"Js,, =0 and 0" Jo,u = —2i Ap®T7T6®. (37)

iTgp+iT50

whereas, when only Ap is present, it transforms as A — Ape , and one has

M s = —2i Ag®Ts'5® and 0" Js, = —2i Ap®PT'sT6D. (38)

As is obvious, when Ag is non-zero, an emergent pseudo-scalar phase mode should appear to restore the broken
I's symmetry.

Following the same procedure that led to relation (13), when only Ar is present, the vertex for Js ,, and Js, .
currents become

2Ar7 T
A5, (P',p) = Tul's and Af,.(p,p) = TTe +i——— -0 (39)
and when only Ap is the non-vanishing one, we obtain
2ABIsT 2ABIsT
AZu(p) =TuTs +i== 220 and AGL (0, p) = Tulls +i==2 =2 (40)
Hence for conditions (40), new conserved currents, say J; ?, " and Jég’ L satisfy the conservation relations
"Iy, = 0"PAS & =0 and " Jg, = O"PAL @ = 0. (41)
Also, for conditions (39), we have
My, =0"PAL =0 and g, = 0"PAG @ = 0. (42)

These conservation relations demonstrate how the NG modes restore the broken symmetries. Thus, the FFLO-like
pairing only breaks the gauge symmetry. Therefore, only a scalar phase mode appears to restore the conservation
of this symmetry. Whereas, the BCS-like pairing breaks both of the gauge and the chiral symmetries, and leads
to an extra second NG mode.

To be able to detect this new emergent pseudo-scalar NG mode, we recall that a scalar phase mode can
interact with an external photon field, leading to the Meissner effect due to the Anderson-Higgs mechanism’~!!.
Actually, as Weinberg stated “a superconductor is simply a material in which electromagnetic gauge invariance
is spontaneously broken®?”. In the same vein, we expect a phenomenon similar to the Meissner effect, in which
the pseudo-scalar NG mode (created by the SSB of the chiral symmetry via Ap) gets absorbed by an external
pseudo-magnetic field, leading to the field expulsion, and an effect we refer to as pseudo-Meissner.

Such a pseudo-magnetic field can be realized in WSMs in the form of elastic gauge fields constructed with
the deformation tensor by coupling the lattice deformations to electronic degrees of freedom®*. The most
interesting feature of these elastic gauge fields is that they are axial pseudo-gauge fields and couple to opposite
chiralities with opposite signs. The presence of elastic gauge fields in WSMs was first predicted in Ref.>> and
recently realized experimentally®®. Further works on the analysis of their physical consequences can be found in
Refs.>’~%7. In general, such an axial gauge field can be described as>®

A = Evp b, (43)
where

1
Vuw (@) = 5(8;”1/ + Ovvp), (44)

is the strain tensor, v* is the displacement vector, £ is a Gruneisen parameter and the vector b* quantifies the
separation of Weyl nodes in momentum space. The pseudo-vector field A® can be attributed to an effective axial
vector potentialég’70 . Then the axial magnetic and electric fields can be defined as B = %e“ YY Onu Ai and
E} = —0, A}, respectively. Apparently, the physical properties of the lattice deformation, such as ripples or
strains, determine the size of the emergent pseudo-field in this system®*. In principle, one can tune the pseudo-
field by controlling the lattice deformation, which was previously studied in Dirac materials theoretically”! and
observed experimentally”2.

The pseudo-magnetic (or an axial magnetic) field B® is an observable quantity, whose magnitude typically
varies from about 0.3 T to about 15 T . It couples to fermions of opposite chirality with different sign and
is therefore a chiral field. It also gives rise to an unusual dynamics of Cooper pairs, where no Meissner effect is
present, see, e.g., Ref.”>. In fact, this field is completely different from the usual electromagnetic field and does not
induce diamagnetic currents (which can destroy superconductivity)®*’°. Now, taking into account the possibility
that the pseudo-scalar phase mode can be absorbed by the B® field, the pseudo-Meissner effect is a plausible
consequence of the local chiral symmetry breaking in 3DWS. We investigate this case in the next section.

As another peculiarity of the emergent pseudo-scalar phase mode, we infer that this mode may interact with
the axial gauge bosons of the standard model of particle physics’*-7, which also leads to the pseudo-Meissner
effect.
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Pseudo-Meissner effect

In this section, via the Higgs mechanism, we study the process in which the pseudo-scalar NG mode gets
absorbed by the pseudo-magnetic field, and results in the field expulsion. In this regard, we first introduce the
Abelian Higgs mechanism, whose Lagrangian is

1 y .
Ly = _ZF;WFM + [ (i0u — eAu)mz - V(n), (45)

wherethefieldnisacomplex classical field over spacetime, eisthe unit of the electric charge, F'** = 9* A” — 9" A*
and A" is the electromagnetic vector potential. Meanwhile, the potential energy for the field 7 is

1
V(n) = =M*[n]* + S Alnl*, (46)

where M and )\ are constants and the Lagrangian .7, remains invariant under the Abelian U(1) gauge
transformation A, — A,, — 8,x(z)/e with n — ' X(*)y), wherein x(z) is a real field without dimension in
the natural units.

At this stage, we arrange to have a ‘spontaneous breaking of the gauge symmetry’ by choosing < 7 >= v/v/2,
where v is the vacuum expectation value of the field 7 and we set it to be real without loss of generality. The
potential energy is minimized when

(47)

=

Then, we fix the gauge such that

vetx@)
n= vz (48)

where we have ignored an excitation of the potential around its minimum for the sake of convenience.
Accordingly, in order to fully fix the gauge, we introduce a new vector potential field

1
Ay — By = A, — gauX(x)7 (49)
with which Lagrangian (45) leads to”’
~ 1 1
Ly = —ZBWB’“’ + ierQBHB“, (50)

where B, = 0,B, — 0, B,. Lagrangian .,izn is interpreted as containing a massive vector field B, with
the mass mpn = ewv, where the subscript ph stands for photon. The mass of the magnetic field is inversely
proportional to its penetration depth, A, i.e.,

1 / m*
== —_—, 51
Mph 4;10 e2 <77>2 ( )

where m” is the effective mass of the Cooper pairs and po is the permeability of free space.

This model is a Lorentz invariant version of the Landau-Ginzburg (LG) model of superconductivity'!, which
is a phenomenological approach to describe the macroscopic properties of superconductors, and it can be said
that the NG boson is ‘eaten’ to become the longitudinal degree of freedom of the photon. We know that in
the LG model, the order parameter is a complex scalar field proportional to the BCS pairing potential. We
also expect the order parameter to be proportional to the pairing potentials of the model. To integrate our
results with the Higgs mechanism, we need to introduce two matrix form order parameters, say 78 = Ap and
nr = Ar, where Ap and Ar are given in relation (27) and hence, nr and 7 transform as ng — nr e'T'6% and
B — 1B e'T6#v+iT59 Then besides Ay, we also use Ai as a pseudo-electromagnetic field, and assume that
both of these fields transform as

1 . (r,t) = np(r,t)e Fox
Ay — A, — = th: 81T, P
m m eaux w1 { 77F(r7 t) N 7]F(r7 t)ez 1"6)(7

iI'sx

5 5 1 . ne(r,t) — ne(r,t)e
A= A= gOuxwith: { e (e, 6) — e (r, 1),

where g is a pseudo-charge. Therefore, the related invariant Higgs Lagrangians under these transformations are

1 v .
313 = —ZFMUF“ + trace (|(ng818“ — ereAM)ﬁBF) — V(nB), (53)
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1 v .
L = —ZFWF" + trace (|(Isxgid, — eTs A, )nr|?) — V(nr) (54)
and
1 v .
Lp = —ZF&WF; + trace (|(Isxsi0, — gT's As ,)ns|?) — V(n8), (55)

where F}" = 0" A — 0 AL. Analogously, by using the new vector potential (49) and defining
BE"=0"Bg — 0" BY, these Lagrangians lead to

~ 1 1 ~ 1 1
Ly = =3 Buv B + EeQUQBuB“, Lo =~ BuwB" + EeQUZBuB“ (56)
and
2 _ 1 nv 1 2 2 m
3577“3 = *ZBE)”L“/BS) + gg v BS,;LBsy (57)

which indicate that the BCS type of pairing causes the pseudo-magnetic field to acquire the mass m?, = gv,
where the superscript p stands for pseudo-magnetic field. In other words, it leads to a pseudo-Meissner effect,
which hopefully provides an achievable and quantitatively testable phenomenon to detect the emergent pseudo-
scalar NG mode. Similar to the Meissner effect, the mass of the pseudo-magnetic field is inversely proportional

to its penetration depth, A?, i.e.,
1 m*
=N=,/—, (58)
mp, \ b g% <ne>2

where pf is the permeability of free space for the pseudo-magnetic field. Assuming that the coupling g and
,ug are in the same order as those of the electromagnetic interactions®, the order of AP will be the same as the
normal Meissner effect, i.e., A in relation (51) in topological superconductors’®.

Summary and conclusions

In this work, we have considered a conventional BCS superconductor is placed next to a WSM, where
consequently an s-wave superconductivity is induced in that WSM due to the proximity effect. To shed light on
the nature of the induced pairing, we have considered the continuous symmetries of a 3DWS. In the literature,
there have been discussions about whether the superconducting state in that WSM is of the FFLO or BCS type.
Here, we have shown that unlike the orthodox BCS superconductors, wherein the U(1) gauge symmetry is the
only symmetry of the gapless Hamiltonian (which is then spontaneously broken by the dynamically generated s-
wave BCS-like pairing), the gapless Hamiltonian of a 3DWS is invariant under two symmetries, namely the U(1)
gauge and U (1) 4 axial symmetries. To better investigate the issue, we have written the BAG Hamiltonian using
the doubled representation of Dirac matrices, which has enabled us to introduce two generators to represent the
symmetries of the system. Consequently, two charges appear in the system, i.e. the electric charge and the chiral
charge.

Furthermore, we have demonstrated that the dynamical generation of the s-wave BCS-like pairing, Ap,
breaks both the symmetries spontaneously, whereas the FFLO-like pairing, Ar, breaks only the U(1) gauge
symmetry. Nevertheless, we have indicated that the conservation of both charges get restored by introducing
the NG modes. That is, when only the U(1) gauge symmetry gets broken, the well-known scalar mode recovers
the charge conservation. Whereas, when both of the U(1) gauge and U (1) 4 axial symmetries are broken, apart
from the scalar mode, one needs to introduce an extra new pseudo-scalar phase mode to restore the U(1) 4
symmetry as well.

Analogous to conventional superconductors, where the scalar phase mode of superconductivity leads to the
Meissner effect in the presence of a normal magnetic field, we have demonstrated that a similar effect appears
in 3DWSs, due to the interaction of the pseudo-scalar phase mode with an external pseudo-magnetic. Indeed,
the obtained results indicate that when the U(1) 4 symmetry is broken by Ag, the corresponding emergent
pseudo-scalar phase mode can get absorbed by an external pseudo-magnetic field (i.e., a B® field) that leads to
an effect analogous to the Meissner effect. We have referred to this effect as a pseudo-Meissner effect, and it can
be tested in future experiments as a key prediction of this work. More specifically, we expect the repulsion of
the pseudo-magnetic field inside the WSMs in the superconducting s-wave phase. The pseudo-Meissner effect
is consequently achieved by a superconducting surface current that produces a secondary pseudo-magnetic
field to compensate for the primary pseudo-magnetic field. Also, the emergent pseudo-scalar NG mode may,
in principle, interact with the axial gauge bosons of the standard model of particle physics, and leads to the
pseudo-Meissner effect by expelling these bosons from the 3DWS. These predictions are testable in present
and forthcoming experiments. As the pseudo-Meissner effect emerges from the BCS-like pairing in WSMs, we
propose the pseudo-Meissner effect as a useful tool for distinguishing between the FFLO-like and the BCS-like
pairings.

A possible extension of this work is to study the effect of the new phase mode in phenomenon such as the
Josephson effect, which we will investigate in upcoming works. Also, a Weyl superconductor originating from a
WSM with broken inversion symmetry can lead to various physical effects such as response to external magnetic
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fields, thermal conductance, and transport properties, which can be investigated in a different work. However, a
recent publication has considered the proximity effect on an inversion broken WSM”°.
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All data generated or analysed during this study are included in this published article.
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