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The prevalence of Alzheimer’s disease (AD) is increasing as society ages. The details of AD pathogenesis 
have not been fully elucidated, and a comprehensive gene expression analysis of the process leading 
up to the onset of AD would be helpful for understanding the mechanism. We performed an RNA 
sequencing analysis on a cohort of 1227 Japanese blood samples, representing 424 AD patients, 
543 individuals with mild cognitive impairment (MCI), and 260 cognitively normal (CN) individuals. 
A total of 883 and 1169 statistically significant differentially expressed genes (DEGs) were identified 
between CN and MCI (CN-MCI) and between MCI and AD (MCI-AD), respectively. Pathway analyses 
using these DEGs, followed by protein–protein interaction network analysis, revealed key roles of 
ribosomal function in MCI progression, whereas immune responses, cell cycle, and protein processing 
in endoplasmic reticulum were involved in AD progression. Our findings indicate that the onset of 
AD might be associated with gene expression changes in the immune system, cell cycle, and protein 
processing following alterations in the expression of ribosomal protein genes during the MCI stage, 
although validation using brain tissue samples will be necessary in the future. Given the known 
effectiveness of delaying MCI progression in preventing AD, the genes related to ribosomal function 
might emerge as biomarkers for early diagnosis.
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With the aging of the global population, the prevalence of dementia is expected to reach an estimated 
152.8  million individuals worldwide by 2050 1. Alzheimer’s disease (AD) is the leading cause of dementia, 
accounting for 60–80% of all cases2. The majority of AD cases are sporadic and are typically diagnosed in people 
over 65 years of age (late-onset AD). AD is characterized by its heterogeneity, with intricate interactions among 
various genetic and environmental risk factors. The heritability of AD is estimated to be in the range of 58–79% 3. 
The ε4 polymorphism in the protein encoded by the apolipoprotein E (APOE) gene, located on chromosome 19, 
is recognized as the most potent genetic risk factor for AD4,5. Recently, additional genetic risk factors influencing 
the development of AD have been identified by genome-wide association studies (GWAS) using a large number 
of samples6. However, a substantial proportion of the heritability remains unexplained. Genetic variants can 
affect gene expression, and perturbations in gene expression are frequently involved in the onset of various 
diseases. Additionally, perturbations in gene expression due to aging can be factors that ultimately lead to disease.

One of the most powerful tools for the comprehensive analysis of all gene expression in an organism is whole 
RNA sequencing (RNA-seq) using a next-generation sequencer7. The identification of differentially expressed 
genes (DEGs) between patients and healthy individuals in RNA-seq data, and subsequent gene set enrichment 
analysis (GSEA) of the expression signatures, contributes to our understanding of the biological mechanisms 
underlying disease pathogenesis and the identification of potential disease biomarkers. Recently, RNA-seq 

1Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, 
Obu 474-8511, Aichi, Japan. 2Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, 
Aichi, Japan. 3Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and 
Health Sciences, Hiroshima 734-8551, Japan. 4RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, 
Kanagawa, Japan. email: daichi@ncgg.go.jp

OPEN

Scientific Reports |         (2025) 15:3838 1| https://doi.org/10.1038/s41598-025-88526-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-88526-y&domain=pdf&date_stamp=2025-3-8


data from human blood have offered promising biomarkers for the diagnosis and treatment of a wide variety 
of diseases, including cancers8, circadian sleep-wake disorders9, and depression10. For AD, some potential 
biomarkers (e.g., PHGDH, BASE-AS1, NEAT1, and GAS5) have been identified from blood-based RNA-seq 
data11,12. Our previous study also reported several candidate AD biomarkers (e.g., EEF2, RPL7, and WDR37) 
through analyses of blood-based RNA-seq data13,14 and miRNA expression data15. However, AD progresses 
through three stages—cognitively normal (CN), mild cognitive impairment (MCI), and dementia—and stage-
specific gene expression during the transitions from CN to MCI (CN-MCI) and from MCI to AD (MCI-AD) 
would shed light on what causes the progression from one stage to the next and have not yet been sufficiently 
investigated.

Here, we explored the stage-specific gene expression patterns in CN-MCI and MCI-AD by using a large-scale 
retrospective Japanese cohort dataset. We observed the involvement of the ribosomal pathway related genes in 
CN-MCI and genes associated with the immune system, cell cycle, and protein processing in MCI-AD. Our 
findings indicate that the onset of AD may be associated with gene expression changes in the immune system, 
cell cycle, and protein processing, following alterations in the expression of ribosomal protein genes during the 
MCI stage. Given the effectiveness of delaying MCI progression in preventing AD16, the expression of ribosome-
related genes may serve as potential biomarkers. We believe that these characteristics will help to elucidate the 
mechanism of AD onset.

Results
Sample collection
A total of 1227 samples were included in this study, from 424 individuals with AD, 543 with MCI, and 260 CN 
individuals. The mean age and APOE ε4 allele frequency (AF) were highest for AD (age = 79.5 years, AF = 0.23), 
followed by MCI (age = 76.8 years, AF = 0.19), and CN (age = 72.6 years, AF = 0.085). Each category had more 
samples from females than from males, with the largest difference in the MCI group (Table 1). Similar allele 
frequencies were reported by Farrer et al.17.

Distribution of white blood cell types
We investigated the differences in cell type distribution between CN and MCI samples and between MCI and 
AD samples. By using CIBERSORT (see Methods), we estimated the relative proportions (as TPM) of 12 major 
leukocyte cell types in each sample (Fig. 1a). Of those, only γδ T cells showed a statistically significant difference 
between CN and MCI samples (FDR = 7.88 × 10− 3). Four cell types (B cells, 2.78 × 10–7; plasma cells, 6.28 × 10–3; 
γδ T cells, 1.64 × 10–7; neutrophils, 3.62 × 10–2) showed statistically significant differences between MCI and AD 
samples.

Detection of DEGs
To elucidate differences in DEGs between CN and MCI, and between MCI and AD, we conducted two-group 
comparisons. A total of 883 and 1169 statistically significant DEGs with Entrez Gene IDs were identified in CN-
MCI and MCI-AD, respectively, with statistical significance defined as FDR < 0.05 and |FC| >1.2 (Supplementary 
Table 1). In CN-MCI, 293 DEGs were upregulated and 590 were downregulated (Fig. 1b). In MCI-AD, 1027 
DEGs were upregulated and 142 were downregulated (Fig. 1c). Notably, a substantial number of upregulated 
genes were obtained in MCI-AD samples, whereas CN-MCI samples exhibited predominantly downregulated 
genes.

Gene set enrichment analysis of DEGs
To obtain further insight into the biological functions of the DEGs, we performed GSEA by using the DAVID 
gene functional classification tool. Our analysis revealed that DEGs were enriched in two KEGG biological 
pathways (coronavirus disease – COVID-19 and ribosome) for CN-MCI and in five pathways (TCR signaling 
pathway, oocyte meiosis, protein processing in endoplasmic reticulum, salmonella infection, and NF-κB 
signaling pathways) for MCI-AD. The significance level was set at FDR < 0.05 (Table 2). The number of unique 
genes was 38 in CN-MCI and 101 in MCI-AD.

In CN-MCI, a considerable number of genes were involved in the COVID-19 pathway, with more than 70% 
(26/36) overlapping with those in the ribosomal pathway (Supplementary Fig. 1a). In contrast, in MCI-AD, 
there were fewer gene overlaps among the identified pathways. However, more than 57% of genes (58/101) 
were associated with immune-related pathways, including the TCR signaling, salmonella infection, and NF-κB 

AD MCI CN

Number of samples 424 543 260

Male:Female 1:1.04 1:1.41 1:1.08

Age (mean ± 1 SD) 79.5 ± 5.4 76.8 ± 6.4 72.6 ± 6.0

Number of APOE ε4 alleles (ratio)

2 25 (0.06) 22 (0.04) 4 (0.01)

1 149 (0.35) 164 (0.30) 36 (0.14)

0 250 (0.59) 357 (0.66) 220 (0.85)

Table 1.  Summary of characteristics of AD, MCI, and CN samples
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signaling pathways (Supplementary Fig.  1b). Given the involvement of many immune-related genes in the 
progression to AD, we further investigated potential differences in the diversities of TCR and BCR repertoires. 
However, no statistically significant difference was observed in either MCI-AD or CN-MCI (Supplementary 
Fig. 2).

Extraction of representative genes
We detected 38 candidate genes in CN-MCI samples and 101 in MCI-AD samples through GSEA. To determine 
the optimal n representative genes from these candidates (n ≤ 38 for CN-MCI; n ≤ 101 for MCI-AD, see the 
Methods), we applied a logistic regression method. Gene selection was based on hierarchical clustering, with 
nine-tenths of the dataset for clustering and model fitting in each cross-validation step. The adjusted model 
was then evaluated on the remaining one-tenth of the dataset, with the process repeated 10 times (10-fold 
cross-validation, Fig. 2). Consequently, we identified 8 representative genes for CN-MCI and 22 for MCI-AD 
(Supplementary Fig. 3).

Case KEGG pathway Description Number of genes (n) FDR (BH) Unique genes (n)

CN-MCI
hsa05171 Coronavirus disease – COVID-19 36 6.05 × 10− 8

38
hsa03010 Ribosome 28 8.49 × 10− 7

MCI-AD

hsa04660 T cell receptor signaling pathway 20 2.76 × 10− 2

101

hsa04114 Oocyte meiosis 22 4.12 × 10− 2

hsa04141 Protein processing in endoplasmic reticulum 26 4.19 × 10− 2

hsa05132 Salmonella infection 33 4.19 × 10− 2

hsa04064 NF-κB signaling pathway 18 4.95 × 10− 2

Table 2.  Pathways and numbers of genes in pathways from gene set enrichment analysis. BH: Benjamini–
Hochberg.

 

Fig. 1.  Proportions of immune cell types and distribution of differentially expressed genes.
 Proportions of the 12 major immune cell types among CN, MCI, and AD samples (a). Statistical significance 
was set at a false discovery rate < 0.05. *: <0.05; **: <0.01; ***: <0.001, NS: not significant. Data are represented 
as box and whisker plots, depicting minimum, lower quartile (Q1), mean (Q2), upper quartile (Q3), and 
maximum values. Distribution of differentially expressed genes in CN-MCI (b) and MCI-AD (c) comparisons. 
Each point represents a gene. Red and blue dots represent upregulated and downregulated genes, respectively. 
FC, fold change; FDR, false discovery rate.
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Functional modules in MCI and AD samples
All eight representative genes in CN-MCI were associated with ribosome functions, while among the 22 
representative genes in MCI-AD, 11 were linked to the immune system, 7 were related to the cell cycle, and 4 
were involved in the protein processing (Fig. 3 and Supplementary Table 2). There were no overlapping genes 
between CN-MCI and MCI-AD, suggesting distinct molecular mechanisms in the progression of MCI and AD.

Fig. 2.  Outline of the representative genes’ extraction.
 AD, Alzheimer’s disease; CN, cognitively normal; CV, cross-validation; MCI, mild cognitive impairment.
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To further investigate these molecular mechanisms, we performed a PPI network analysis by using 
NetworkAnalyst 3.0 18 with the STRING Interactome database19. The resulting PPI network comprised 929 
nodes and 2056 edges, identifying 18 hub genes (node degrees ≥ 25) (Fig. 4a). These hub genes were categorized 
into four groups: CN-MCI (ribosome) and MCI-AD (immune, cell cycle, and protein processing). Alterations 
in CN-MCI were observed in eight ribosomal protein genes, while the remaining 10 genes were involved in NF-
κB mediated immune response, cell cycle, and protein processing in MCI-AD. Interestingly, seven of the eight 
hub genes were down-regulated in CN-MCI, whereas nine of the ten were up-regulated in MCI-AD (Fig. 4a). 
Additionally, several ribosomal protein genes (RPL7, RPL11, RPS14, and RPL21) and immune-related genes 
(ACTR2 and CDC42) showed opposing responses between CN-MCI and MCI-AD (Fig.  4a). These findings 
suggest that ribosome and immune functions play a crucial role in the pathogenesis of AD.

To validate the RNA-seq results, we performed qPCR analysis for RPL11 and RPS14 from the ribosomal 
group and for CDC42 from the immune group. The qPCR results (Fig. 4b) were overall consistent with the trend 
observed in the RNA-seq results (Supplementary Table 2). Although there was no significant difference in 
either RPS14 or CDC42 between CN and MCI, this may have been due to the small number of samples (n = 10 
each).

Discussion
Through transcriptome analysis and subsequent pathway and PPI network analyses, we revealed distinct 
molecular mechanisms differentiating MCI from CN and AD from MCI. The involvement of genes associated 
with the ribosome function was observed in the CN-MCI comparison, whereas the MCI-AD comparison 
highlighted genes associated with the immune system, cell cycle, and protein processing, although validation 
using brain tissue samples will be necessary in the future.

Most of ribosomal protein genes detected in this study (i.e., RPL7, RPL11, RPL19, RPL21, RPS8, and 
RPS14) were also identified in our previous study, where we observed their downregulation in AD through 
transcriptomic comparison of CN with AD13. This finding is consistent with previous reports indicating changes 
in ribosomal protein abundance not only in AD20,21, but also in Parkinson’s disease22, spinal muscular atrophy23, 
and recently in tauopathy24,25. These observations suggest an early and widespread involvement of ribosomal 
proteins in neurodegenerative diseases. However, our stage-specific transcriptome analyses revealed that the 
downregulations of these ribosomal protein genes have occurred in only CN-MCI, whereas a slight upregulation 
was observed in MCI-AD. Also, ribosome-associated quality control deposition at the core of amyloid plaques in 
AD brains may result from translational stalling due to ribosomal defects in AD pathogenesis26. Moreover, recent 
proteome analysis of AD patients identified the upregulation of ribosomal proteins, including PRL7, RPL11, 

Fig. 3.  Functional classification of representative genes identified.
 The descriptions obtained from the KEGG pathway were further classified into four categories (Ribosome, 
Immune, Cell cycle, and Protein processing). Red and blue bars represent beta coefficients obtained from a 
logistic regression method.
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Fig. 4.  Functional modules obtained from PPI network analysis.
 (a) PPI network diagram including representative genes. Gene names are shown for nodes with ≥ 25 edges. 
The size of the circle representing each gene reflects the number of edges. Green and magenta dashed 
circles represent the modules in CN-MCI and MCI-AD, respectively. Pairs of arrows indicate genes that are 
upregulated (↑ in red), unchanged (→ in yellow), or downregulated (↓ in blue) in CN-MCI and MCI-AD, 
respectively.
 (b) Validation by quantitative PCR analysis. Each dot represents one CN (blue), MCI (green), or AD (red) 
sample. The results were consistent with the RNA-seq results for all genes. Data are represented as box and 
whisker plots, depicting minimum, lower quartile (Q1), mean (Q2), upper quartile (Q3), and maximum values. 
The data are normalized such that the mean in CNs is 1 for each gene. P values are shown in parentheses, and 
statistical significance was set at P < 0.05. *: <0.05; **: <0.005; ***: <0.0005, NS: not significant.
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PRL14, and RPS8—consistent with our results, but specifically in brain capillaries, not in brain parenchyma27. 
These results suggest that the expression of ribosomal protein genes, especially RPL7, RPL11, RPL14, and RPS8, 
might be a potential target for AD prevention. Furthermore, considering the reported association between 
mitochondrial dysfunction and the pathogenesis of AD28,29, mitochondrial ribosomal protein genes differentially 
expressed between CN and MCI, such as MRPS11 and MRPS14, could also serve as potential targets for AD 
prevention.

Many genes involved in the immune system, cell cycle, and protein processing were upregulated in MCI-
AD. Abnormal activation of NF-κB in the immune system is involved in synaptic dysfunction30 and is currently 
attracting attention as a therapeutic target for AD31,32. Cdc42, a member of the small G protein family, plays 
a crucial role in regulating synaptic plasticity. Activation of the Cdc42 signaling pathway is a key factor in 
mediating the progression of AD-like phenotypes33. Although ACTR2 protein expression has decreased in the 
postmortem parietal cortex of AD patients34, our stage-specific investigations indicated that expression of the 
ACTR2 decreased at the MCI stage. Cell-cycle reactivation is involved in apoptosis in neurons of AD patients35,36. 
Protein processing, including by ubiquitin ligases such as SKP1 and UBE2D3, has a key role in the pathogenesis 
of AD37,38. Overall, our findings are consistent with previous reports despite blood-based transcriptome analysis.

The primary limitation of this study lies in the small sample size and the sample variation between the groups 
(AD, n = 424; MCI, n = 543; CN, n = 260). Collecting samples from healthy individuals ≥ 60 years old has been 
challenging owing to the need to verify their cognitive normality. Increasing the number of samples could 
improve resolution and provide other important factors in the CN-MCI-AD process. Furthermore, our findings 
were identified from blood samples and should be validated using brain tissues to elucidate AD pathology. 
However, they do align with a study27 demonstrating similar expression trends among certain ribosomal proteins 
in brain or brain capillaries, adding strength to their usefulness.

Finally, our transcriptome analyses among three phenotypes (CN, MCI, and AD) provided detailed insights 
into the complicated changes in gene expression from CN to AD through MCI. Unlike the ribosomal protein 
genes observed in CN-MCI, none of the genes involved in immune, cell cycle, and protein processing in MCI-
AD were detected in our previous CN-AD comparison13. This suggests that changes in MCI-AD may have 
been masked by the large variations seen in CN-MCI, highlighting the importance of conducting stepwise 
investigations in both CN-MCI and MCI-AD. Moreover, the genes identified in this study could serve as valuable 
biomarkers, as they are associated with the progression of MCI and/or AD. Notably, several ribosomal protein 
genes and immune-related genes showed significant responses in both CN-MCI and MCI-AD comparisons. 
These findings suggest that the ribosomal protein genes (RPL7, RPL11, RPS14, and RPL21) and immune-related 
genes (ACTR2 and CDC42) may present promising targets for early intervention not only for AD but also for 
MCI.

Methods
Clinical samples
All blood samples and their associated clinical data were obtained from the National Center for Geriatrics and 
Gerontology (NCGG) Biobank. Of the 1227 samples, 424 were from patients with AD, 543 from individuals 
with MCI, and 260 from CN donors. The AD and MCI subjects were diagnosed with probable or possible AD 
according to the criteria of the National Institute on Aging and the Alzheimer’s Association workgroups39,40. 
For this study, only patients with probable AD were used as AD subjects. The CN samples were obtained from 
individuals who had subjective cognitive complaints but normal cognition on a neuropsychological assessment, 
including a score > 23 on the Mini-Mental State Examination, a comprehensive neuropsychological test. All 
samples were obtained from adults aged 60 years or older.

This study protocol was approved by the ethics committee of the NCGG of Japan. All participants were 
volunteers and completed informed consent in writing before registering with the NCGG Biobank.

RNA sequencing
Isolation of buffy coat from whole blood and of total RNAs from the buffy coat was conducted in accordance with 
the standard operating procedure of the NCGG Biobank13. Only high-quality samples with an RNA integrity 
number (RIN) ≥ 6.0 were used to construct the sequencing library. Sequencing libraries were prepared by using 
500 ng of total RNA for each sample; Illumina TruSeq Stranded Total RNA with Ribo-Zero Globin and IDT 
for Illumina TruSeq UD Indexes (Illumina, San Diego, CA) were used in accordance with the manufacturer’s 
instructions. The libraries were subsequently sequenced on the Illumina NovaSeq6000 platform with paired-end 
reads of 151 bp in accordance with the manufacturer’s instructions.

RNA sequencing data analysis
All RNA-seq data were downloaded from the NCGG Biobank database13. The quality of read sequences (fastq 
files) was assessed by using FastQC (version 0.11.7). Low-quality reads (< Q20) and trimmed reads with 
adaptor sequences (shorter than 50 bp) were discarded by using Cutadapt (version 1.16). The remaining clean, 
sequenced reads were mapped to the human reference genome (GRCh37) by using STAR41 (two-pass option, 
version 2.5.2b). Read counts for each gene were calculated with the featureCounts program42 from the subread 
package (version 1.6.6) to generate expression levels. Outlier read counts, defined as the top and bottom 5% 
of read counts for each gene, were replaced with the maximum and minimum, respectively, of the remaining 
effective counts.

An average of 39.1 million raw read sequences were obtained from AD samples, with 99.4% being high-
quality (i.e., > Q20). For MCI this was 99.4% of an average of 39.4 million raw read sequences, and for CN it was 
99.3% of an average of 35.6 million raw read sequences. After we had discarded low-quality read sequences and 
trimmed reads with adaptor sequences, 38.6 million reads of cleaned data remained for the AD samples, with 
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82.5% uniquely mapping to the human reference genome (GHCh37). For MCI, this was 79.1% of 39.1 million 
reads of cleaned data, and for CN, it was 82.1% of 35.1 million reads of cleaned data (Supplementary Table 3).

Proportion of immune cell types
After the alignment of RNA-seq reads to the human reference genome by using STAR, RSEM43 (version 1.3.0) 
was employed to quantify transcripts per million (TPM) that were suitable for use with CIBERSORT44 (version 
1.0.1). We reclassified 22 immune cell types with CIBERSORT into 12 major cell types13: (1) B cells (naive and 
memory), (2) plasma cells, (3) CD8+ T cells, (4) CD4+ T cells (CD4+ T cells naive, memory resting, and memory 
activated; T cells follicular helper; and T cells regulatory), (5) γδ T cells, (6) NK cells (resting and activated), 
(7) monocytes, (8) macrophages (M0, M1, and M2), (9) dendritic cells (resting and activated), (10) mast cells 
(resting and activated), (11) eosinophils, and (12) neutrophils. Differences in the proportions of each cell type 
between CN and MCI samples and between MCI and AD samples were evaluated with Welch’s t test. False 
discovery rate (FDR) values were calculated with the Benjamini–Hochberg method. An FDR value less than 0.05 
was considered statistically significant.

Differential gene expression analysis
The read counts from each sample were aggregated into a count file for subsequent differential expression analysis 
by using edgeR45 (version 3.18.1). Genes with a threshold CPM (counts per million reads mapped) > 1 in more 
than one-fourth of all sequenced samples were used for subsequent analysis. The caclNormFactors function 
in edgeR45 was employed to obtain a trimmed mean of M value normalization factors (TMM) to account for 
library sizes. Dispersion was calculated with the estimateCommonDisp and estimateTagwiseDisp functions in 
edgeR45. The exactTest function in edgeR45 was applied to obtain DEGs between CN and MCI samples (CN-
MCI, MCI compared with CN) and between MCI and AD samples (MCI-AD, AD compared with MCI). DEGs 
with |log2(fold change: FC)| > log2(1.2) and an FDR < 0.05 were defined as statistically significant. This definition 
was based on the small sample size, following the approach used in the previous reports13,14.

Gene set enrichment analysis of DEGs
A GSEA was implemented by using the Database for Annotation, Visualization and Integrated Discovery 
(DAVID)46,47 (version 2021, http://david.ncifcrf.gov). Kyoto Encyclopedia of Genes and Genomes (KEGG)48,49 
biological pathways with an FDR < 0.05 were identified as statistically significant.

Detection of immune receptor repertoires
Immune receptor repertoires in T cells and B cells were detected from RNA-seq data by using TRUST4 software50 
(v1.0.5). The estimated CDR3 clonotypes included αβ/γδ T cell receptors (TCRs: TRA, TRB, TRG, and TRD) 
and B cell receptors (BCRs: IGH, IGK, and IGL). Clonal diversity of TCRs and BCRs was estimated by using an 
inverse Simpson index calculated with VDJtools51 (v1.2.1). A linear regression model was employed to identify 
significant increases or decreases in the proportion of TCR and BCR repertoires in CN-MCI and MCI-AD. An 
FDR value < 0.05 was considered statistically significant.

Extraction of representative genes
All datasets were classified for each category (MCI from CN-MCI and AD from MCI-AD). The CN-MCI and 
MCI-AD datasets were split into nine-tenths for a training set and one-tenth for a test set, respectively (Fig. 2). 
For GSEA-detected candidate genes, we performed logistic regression analysis, adjusting for clinical information 
(age, sex, and number of APOE ε4 alleles) and immune cell types obtained from the CIBERSORT results in the 
training set. P values and beta coefficients of the candidate genes were obtained. Subsequently, a hierarchical 
clustering analysis was conducted on the candidate genes within the training set. The number of clusters (n) 
was selected stepwise (n = 1, 2, …, maximum number of candidate genes), and a representative gene with the 
minimum P value was selected from each cluster.

Logistic regression analysis, incorporating clinical information, cell types, and the n representative genes, 
was applied in the training set and evaluated on one-tenth of the test set. This process was repeated 10 times. 
The average area under the curve (AUC) values from these iterations were used to determine the optimal n 
representative genes. Representative genes were finally defined using logistic regression analysis on the entire 
dataset, including both the training and test sets. The logistic regression method was implemented using the R 
statistical software packages stats (version 3.4.3) and ROCR (version 1.0.7).

Network-based meta-analysis
A network-based analysis was performed by using NetworkAnalyst 3.0 (https://www.networkanalyst.ca)18 with 
the STRING Interactome database19. The PPI network was constructed by using first-order interaction network 
analysis with a default confidence cutoff score of 900 and was visually represented by using Cytoscape v3.10.1 
(https://cytoscape.org)52.

Quantitative PCR validation
cDNA was synthesized by using a PrimeScriptII 1st Strand cDNA Synthesis Kit (Takara Bio, Shiga, Japan). 
Quantitative PCR (qPCR) was performed by using TaqMan Fast Advanced Master Mix (Thermo Fisher 
Scientific, Waltham, MA), TaqMan Probes (Thermo Fisher Scientific), and the Quantstudio7 Flex Real-Time 
PCR System (Thermo Fisher Scientific) in accordance with the manufacturer’s instructions. The TaqMan gene 
expression assays used were commercially available: RPL11 (Hs00831112_s1), RPS14 (Hs00735285_m1), 
CDC42 (Hs00918044_g1), and ACTB (Hs99999903_m1). The qPCR conditions comprised one cycle of 50 °C for 
2 min and 95 °C for 20 s, followed by 42 cycles of 95 °C for 1 s and 60 °C for 20 s. Each gene was assayed at least 
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in duplicate. ACTB was preselected as a reference gene for normalization of target gene expression levels, and 
relative expression levels were calculated by using the ΔΔCt method. Gene expression was obtained for 10 AD 
patients, 10 individuals with MCI, and 10 CN individuals, all randomly selected.

Data availability
The data supporting the findings of this study are available under controlled access from the NBDC (National 
Bioscience Database Center) website (https://biosciencedbc.jp/en/). The accession number is hum0481.
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