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The advancement of the Internet of Things has positioned intelligent water demand forecasting as 
a critical component in the quest for sustainable water resource management. Despite the potential 
benefits, the inherent non-stationarity of water consumption data poses significant hurdles to 
the predictive accuracy of forecasting models. This study introduces a novel approach, the Robust 
Adaptive Optimization Decomposition (RAOD) strategy, which integrates a deep neural network 
to address these challenges. The RAOD strategy leverages the Complete Ensemble Empirical 
Mode Decomposition (CEEMD) to preprocess the water demand series, mitigating the effects 
of non-stationarity and non-linearity. To further enhance the model’s robustness, an innovative 
optimization algorithm is incorporated within the CEEMD process to minimize the variance in multi-
scale arrangement entropy among the decomposed components, thereby improving the model’s 
generalization capabilities. The predictive power of the proposed model is harnessed through the 
construction of deep neural networks that utilize the decomposed data to forecast minutely water 
demand. To validate the effectiveness of the RAOD strategy, real-world datasets from four distinct 
geographical regions are employed for multi-step ahead predictions. The experimental outcomes 
demonstrate that the RAOD model outperforms existing models across all considered metrics, 
highlighting its suitability for accurate and reliable water demand forecasting in the context of 
sustainable energy management.
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The burgeoning global population has led to a surge in urban water consumption, exacerbating the existing 
tension between water supply and demand. This escalating imbalance poses a formidable impediment to societal 
progress, particularly within the expansive water distribution networks that cater to the needs of residential 
and industrial sectors. Addressing this challenge is imperative for the advancement of sustainable development 
goals. The integration of Internet of Things (IoT) technology (Fig. 1) into smart water management systems 
has become a key strategy to enhance water security and operational efficiency, alleviating the complexities 
associated with water resource management planning1–3.

The essence of sustainable water management lies in the accurate forecasting of water demand and consumption, 
which serves as the foundation for informed decision-making in water resource planning. Applications such as 
leak detection and pump operation exemplify the practical utility of IoT in water management. However, the full 
potential of IoT platforms in water demand prediction remains largely untapped, often relying on human experts 
to provide estimates based on their expertise. Although valuable, this approach is insufficient for predictive 
analytics in real time, which is essential for the dynamic and responsive management of water resources. In 
this context, data-driven artificial intelligence (AI) methodologies offer a promising avenue for the precise and 
scientific prediction of water demand. These AI-driven approaches not only harness the wealth of data generated 
by IoT devices but also provide the analytical prowess necessary for the development of robust and forward-
looking water supply strategies4–6.
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As shown in Fig. 1, the IoT-enabled water distribution network combines instrumentation, interconnectivity, 
and intelligence to seamlessly integrate water infrastructure, culminating in a state-of-the-art smart water 
distribution system7–10. This advanced system facilitates a bidirectional data flow between sensors and the 
monitoring platform, enabling a timely and informed decision-making process. Despite these advancements, 
identifying patterns within the data remains the main challenge in water demand prediction, influenced by 
numerous factors11,12. Consequently, the extraction of inherent hidden features, crucial for reducing the impact 
of water demand pattern variability on hydraulic behavior and consumption within the water supply pipe 
network, has emerged as a critical scientific inquiry to be addressed.

An important property of water demand is the temporal variation property13,14. Many of the modern 
approaches exploit this property by using statistical models, machine learning models, and deep learning 
models15–17. The general methods for water demand time series modeling are autoregressive integrated 
moving average model (ARIMA)18 and Naïve Bayes algorithm19. However, these methods are based on linear 
assumptions or prior distribution selection, and their ability to extract nonlinear features is poor. Other studies 
propose machine learning approaches for optimizing the water demand prediction, such as Random Forest20, 
Support Vector Machine (SVM)21, K-nearest neighbor (KNN)22. It has gradually been recognized that due to 
the nonlinear nature of water demand variations, linear regression methods lack the accuracy and generalization 
required for practical applications. Recently, deep learning methods, such as Long Short Term Memory (LSTM)23, 
Graph Convolutional Recurrent Neural Network (GCRNN)8, and Gated Recurrent Unit (GRU)24, have emerged 
as a notable and promising example of a learning algorithm in water demand modeling. These deep learning 
methods used for the water demand prediction can analyze high-frequency time-series signals but are limited 
by error accumulation during training.

To better capture the temporal characteristics and correlations of explanatory variables, researchers have 
concentrated on hybrid optimisation strategies25,26. Preprocessing methods such as feature selection and time-
series decomposition are often used in practical problems. For example, Vo27 developed a hybrid method of 
convolutional neural networks and bidirectional short-term memory networks for monthly household water 
consumption prediction. Experimental results show that the performance of the hybrid method is better 
than that of traditional LSTM. Du28 combines principal component analysis with wavelet transform for data 
preprocessing, and uses LSTM to achieve urban daily water demand prediction. Xu29 decomposed the water 
demand sequences by using an integrated empirical mode decomposition method, then reconstructed it into 
randomness and deterministic terms through Fourier transform. Compared to other data processing methods, 
the decomposition algorithms can effectively improve the prediction performance of the built models through 
decomposing the intermittent water demand sequences into several more stationary sub-layers. However, 
separate optimisations and tuning for different models in a hybrid model seem to restrict the overall performance. 
To achieve better flexibility and robustness, optimization requires control parameters with good self-adaptive 
ability.

In the realm of water demand prediction models, parameter optimization has been a significant area of 
research focus. Several studies have explored different optimization techniques to enhance the performance 
of prediction models. For instance, some researchers have utilized genetic algorithms (GA) to optimize the 
parameters of traditional machine learning models like SVM. By evolving the parameter values over multiple 
generations, GA-based optimization has shown the potential to improve the accuracy of water demand forecasts30. 
In another approach, particle swarm optimization (PSO) has been employed to fine-tune the hyperparameters of 
deep learning architectures such as LSTM. PSO can effectively search the parameter space and converge towards 

Fig. 1.  IoT based smart water management system.

 

Scientific Reports |         (2025) 15:4039 2| https://doi.org/10.1038/s41598-025-88628-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


optimal values, leading to enhanced prediction capabilities31. Additionally, ant colony optimization (ACO) has 
been applied in the context of water demand prediction to optimize the selection of input variables and model 
parameters simultaneously. This method has demonstrated its ability to handle complex relationships between 
variables and improve the overall model performance32. However, despite the progress made, existing parameter 
optimization methods still face challenges such as computational complexity and the potential for overfitting 
in certain scenarios. There is a need for more efficient and robust optimization strategies that can adapt to the 
dynamic nature of water demand data and the complexity of different prediction models.

Motivated by the quest for efficiency and sustainability, this research embarks on an exploration of hybrid 
optimization strategies-a critical technique in the field of intelligent water demand prediction. The crux of our 
study harnesses meta-heuristic optimization algorithms to refine the accuracy of hybrid predictive models, 
which are pivotal for the sustainable management of water resources. Our approach is validated through a series 
of practical experiments, designed to encompass diverse water demand scenarios. The main contributions and 
novelty of this paper are encapsulated within the following innovations: (1) A robust adaptive decomposition 
strategy is introduced to address the multifaceted nature of water demand sequences. This strategy’s dynamic 
parameter adjustment dismantles the rigidity of conventional fixed-mode decomposition, bolstering the 
model’s robustness and adaptability. (2) A objective function is crafted to gauge the complexity of prediction 
within decomposed sequences. By dynamically modulating decomposition parameters, this strategy enhances 
the model’s robustness and its capacity for generalization. 3)A novel framework for short-term water demand 
prediction is proposed, with experimental outcomes from varied real-world datasets underscoring its superiority 
and efficacy across distinct environmental and operational contexts.

This paper is organized as follows: Section “Methodologies” introduces the general framework and 
mathematical description of our method. We present the detailed analysis and practical experiments in Section 
“Experiments and discussion”, and give the evaluation results. Finally, Section “Conclusion” concludes this 
article.

Methodologies
The complex temporal features and strong nonlinear characteristics in water demand make it difficult to model and 
predict such series precisely with traditional prediction models. In this paper, we use Complementary Ensemble 
Empirical Mode Decomposition (CEEMD) method to decompose time series into different components to 
reduce the temporal complexity. There are three core parameters that affect the performance of CEEMD: noise 
amplitude A, number of components K, and total lumped average times N. Heuristic optimization algorithms 
are very useful to find a global optima or near-optimal solution to parameter search problems. Therefore, an 
improved quantum genetic search algorithm is applied to obtain parameters and improve the decomposition 
effect efficiently.

The architecture of the proposed robust adaptive decomposition with LSTM is shown in Fig. 2. In this method, 
a robust adaptive decomposition strategy is proposed to decompose the original sequence into k components, 
and the entropy variance of multi-scale arrangement between components is computed in terms of the error 
function. Therefore, components with the similar complexity of temporal features can be obtained. Then, in 

Fig. 2.  Diagram of the proposed ROADLSTM model.
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parallel, prediction method is performed on each component. A suitable proposal prediction method is therefore 
the LSTM because the decomposed detailed parts of the water demand time series have stochastic characteristics 
and short-term dependency. This approach enables the model to focus on the temporal relationship between 
time segments in each component, which improves the overall prediction accuracy.

Complementary ensemble empirical mode decomposition
The Empirical Mode Decomposition (EMD) technique is an adaptive data analysis method that has been widely 
applied in non-linear and non-stationary data analysis33,34. Although the data adaptive EMD is a powerful 
method to decompose nonlinear signal, it has the disadvantage of the frequent emergence of mode integration. 
This indicates a mode mixing problem, where a single IMF either consists of signals of widely dissimilar scales, or 
a signal of a scale alike existing in unlike IMFs. To address this problem, a common approach is to add different 
Gaussian white noise with the same amplitude during each decomposition period to change the extreme point 
characteristics of the signal. Then, multiple EMDs are performed to obtain the corresponding IMF for overall 
averaging to cancel out the added white noise, which effectively suppresses the generation of mode mixing35,36. 
It is worth noting that paired positive and negative white noise signals should be used to minimize the signal 
reconstruction error, which is the basic idea of Complementary Ensemble Empirical Mode Decomposition 
(CEEMD)37,38.

For water demand x = [x1, x2, . . . , xN ], pairwise white noise with specific amplitudes is added to generate 
new sequences:

	

xi
pos = xi + Ani

xi
neg = xi − Ani

� (1)

where xi
pos is the i-th subsequence with positive noise; xi

neg  is the i-th subsequence with negative noise; ni 
is the white noise for the i-th subsequence; i = 1, 2, . . . , N , N is the total number of subsequences; A is the 
amplitude of white noise.

Then, the corresponding k Intrinsic Mode Function (IMF) components can be obtained by using EMD 
decomposition:

	

xi
pos

EMD→
k−1∑
j=1

ci
j,pos + ϵi

xi
neg

EMD→
k−1∑
j=1

ci
j,neg + ϵi

� (2)

where ci
j  is the j-th IMF component, j = 1, 2, . . . , k − 1; ϵi is the residual high-frequency component.

Repeat these operations and finally the j-th component can be get by a lumped average. Thus the corresponding 
signal can be represented as a combination of k − 1 IMFs and residual:

	

ci
i = (ci

j, pos + ci
j, neg )/2

cj =
N∑

i=1

ci
i

N

x =
k−1∑
j=1

cj + ϵ

� (3)

Proposed adaptive parameter optimizer
In practical applications, time consumption in parameter optimization could be critical. It is meaningful to 
obtain optimal solutions with the smallest possible number of evaluations. In this study, a quantum inspired 
evolutionary algorithm is implemented to achieve computational efficiency. It uses a group of independent 
quantum bits with superposition characteristics to encode chromosomes, and updates through the quantum 
logic gate, so as to achieve the efficient solution of target. Unlike classical computing, the quantum inspired 
evolutionary algorithm has the advantage that it benefits from superposition or parallelism by considering all 
the paths at the same time, thus increasing its processing capacity39,40.

Chromosome representation with quantum btis
In quantum computing, the qubit is the smallest unit of the information and can be in either |0⟩ or |1⟩ states41–43. 
Then the state ψ is represented by the linear combination of ket 0 and 1.

	 |ψ⟩ = α|0⟩ + β|1⟩� (4)
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where α and β are the probability amplitude; |α|2 is the probability of the quantum bit in |0⟩; |β|2 is the 
probability of the quantum bit in |1⟩. And |α|2 + |β|2 = 1. Hence the quantum states of two or more objects are 
to be described by a single chromosome. The global optimum of the chromosomes can be obtained based on the 
updating of the quantum revolving gate44.

	

[
α′

i

β′
i

]
= U(θi)

[
αi

βi

]
=

[ cos θi − sin θi

sin θi cos θi

] [
αi

βi

]
� (5)

where (α′
i, β′

i)T  is the probability amplitude after each update. Note that updating the quantum bit is equivalent 
to gradient descent, which can be written as follows:

	

U (∆θ)
[ cos t

sin t

]
=

[ cos ∆θ − sin ∆θ
sin ∆θ cos ∆θ

] [ cos t
sin t

]

=
[ cos (t + ∆θ)

sin (t + ∆θ)
] � (6)

The ∆θ is the change of rotation angle, the choice of which is determined by analyzing the trend of the object 
function at a certain chromosome. When this trend is small, ∆θ can be increased; when it is large, ∆θ can be 
decreased. Using this change information helps improve convergence. Then, we construct the step size function 
of rotation angle as follows:

	
∆θi,j = sgn

∣∣∣ α0 α1
β0 β1

∣∣∣ × ∆θ0 × exp
(

|∇f(Xj
i )| − ∇fj,min

∇fj,max − ∇fj,min

)
� (7)

where ∆θ0 is an initial value for ∆θ; α0,β0 is the optimal probability amplitude within the current population; 
α1,β1 is the probability amplitude of the current solution; f(X) is the fitness function value for an individual 
gene; ∇f(Xj

i ) is the gradient of f(X) at the point Xj
i ; fmax, fmin is the maximum and minimum values of 

the individual fitness function of the current population, respectively. And the gradients of fj,max, fj,min are 
given by:

	

∇fj,max = max
{∣∣∣∣

∂f(X1)
∂Xj

1

∣∣∣∣ , · · · ,

∣∣∣∣
∂f(Xm)

∂Xj
m

∣∣∣∣
}

∇fj,min = min
{∣∣∣∣

∂f(X1)
∂Xj

1

∣∣∣∣ , · · · ,

∣∣∣∣
∂f(Xm)

∂Xj
m

∣∣∣∣
} � (8)

where,Xj
m is the j-th component of vector Xm.

Quantum interference crossover
Basically, a genetic algorithm consists of a fixed size population of chromosomes which have the opportunity 
to survive in the next generation. By using genetic operators, such as selection, crossover, and mutation, 
the offspring can be generated for iterations. However, the crossover operator is not used in gradient-based 
algorithm, which often gets stuck in poor local minima.

To overcome this drawback, a quantum interference crossover is proposed as illustrated in Fig.  3. Each 
row represents a chromosome. And the interference crossover can be described as follows: take the 1st gene 
of chromosome one, 2nd gene of chromosome two, 3rd gene of chromosome three, etc. No duplicates are 
permitted within the same universes, if a gene is already present in the offspring, choose the next gene not already 
contained. Therefore, the information between each gene can be fully utilized by using quantum interference.

Improved quantum mutation
The mutation operation changes chromosomes generated by interference crossover operator45–47. We can select 
a chromosome randomly and change the probability amplitude of quantum bit arbitrarily. An example of the 
quantum mutation would be Hadamard-based strategy48:

Fig. 3.  Quantum Interference Crossover.
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1√
2

[ 1 1
1 −1

] [ cos θij

sin θij

]
=

[ cos(θij + π
4 − 2θij)

sin(θij + π
4 − 2θij)

]
� (9)

Essentially the quantum mutation problem can be reduced to one strategy of rotation angle in the quantum bits. 
Note that it is usually hard to find the global optimum, and we may be stuck in a local optimum49. In practice, 
using multiple random restarts can increase out chance of finding a “good” local optimum. Of course, careful 
initialization can help a lot, too. However, those methods of randomness might oscillate, and convergence is 
not guaranteed. Here we introduce the cataclysm mechanism50. Firstly, an elite retention strategy is adopted to 
retain the optimal individuals, ensuring the convergence of subsequent population evolution. Then, reinitialize 
new individuals to replace those with poor fitness rankings in the population, thereby increasing the diversity 
and search range of the population. This mechanism enables the algorithm to jump out of the local optima and 
improve the convergence and effectiveness of the results.

Objective function improvement
For general optimization problems, the fitness function usually uses the root mean square error function 
(RMSE) to measure the difference between the reconstruction sequence and the original sequence. The CEEMD 
method eliminates residual noise by adding paired positive and negative white noise, making the RMSE of its 
decomposition result equal to 0. Thus, ordinary fitness functions cannot achieve the desired results.

We know that the degree of complexity and regularity can be described by multi-scale permutation entropy 
which is capable of fully reflecting the dynamical characteristics of sequences across different temporal scales. As 
a measure of the complexity or the regularity of a sequence, a large value of entropy often describes the sequence 
with serious nonlinear dynamics. The stronger the nonlinearity of a sequence, the higher its uncertainty and 
complexity, which results in further difficulty in prediction.

It is clear from the literature review in Introduction that signal decomposition technology helps to increase 
the precision of water demand prediction. The components with low-entropy will have good regularity and 
are relatively easy to predict. We therefore consider a new objective function called multi-scale arrangement 
entropy variance between components. By minimizing the objective function, we could obtain a sequence of 
components with similar nonlinear complexity, therefore limiting the nonlinear complexity of high-frequency 
components, and achieving better prediction results. The formula for calculating the multi-scale permutation 
entropy variance between components is as follows:

	

Hp =
n∑

i=1

Pi ln Pi

MPEV =
k∑

s=1

(Hs
p − Hp)2

� (10)

where Pi is the probability of symbol sequence occurrence for reconstructed components. Hs
p  is the multi-scale 

arrangement entropy value of the s-th subsequence. The range of Hp is 0-1, which represents the randomness 
and complexity.

Robust adaptive optimization decomposition with long short-term memory model
For water demand data, we are interested in modelling quantities that are believed to be periodic over 24 hours 
or over a week cycle. Therefore, in this research, the training process is computed over a sliding window51.

Consider a set of observations X(t) = [x1, x2 . . . xT ] of the water demand. It can be divided into two 
parts, the input part Xin(t) = [x1, x2 . . . xT −1] and the actual target value X1

truth(t) = xT , in which the truth 
corresponds to X1

truth(t). For a given input part, we can perform the improved signal decomposition method, 
and then get k subsequences:

	
Xin(t)CEEMD−→

k∑
s=1

Xs
sub� (11)

where Xs
sub is the s-th subsequence. Then, the presence of a parallel processing architecture will be integrated 

into the LSTM to facilitate feature extraction for each IMF and increase prediction accuracy.

	

Y s
sub = F (Xs

sub)

Y =
k∑

s=1

Y s
sub

� (12)

where F(X) is the mapping relationship learned by LSTM; Y s
sub is the prediction result of the s-th subsequence, 

and Y is the final prediction result.

Scientific Reports |         (2025) 15:4039 6| https://doi.org/10.1038/s41598-025-88628-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


After the decomposition step, we can compute the prediction for each subsequence. In general, a latent variable 
model, which can capture correlation between the visible variables via a set of latent common causes, can be 
applied for prediction efficiently. However, long-term information preservation and short-term input loss for 
latent variable models is fraught with difficulties. In this approach, LSTM is used to model these long and short-
term dynamics. As shown in Fig. 4, individual LSTM units consists of an internal storage unit and three gates. 
The input, output, and forget operations of the memory cells are realized by multiplication of the corresponding 
gate. Through the gating mechanism, LSTM can maintain a certain level of gradient information to prevent 
gradient explosion. To alleviate the vanishing gradient problem, it properly keeps and forgets past information, 
indicating its great power for capturing long-term temporal dependencies. This makes possible the nonlinear 
learning ability for water demand time series.

Specifically, the LSTM structure is built considering the number of subsequence to be analyzed. We compute 
the multiplication of all the hidden state units by “sliding” this weight vector over the input. Meanwhile, all these 
steps can be performed in parallel on each subsequences. Then, the final output is obtained by computing the 
local prediction within each sliding window.

	

Pred = [Y1 , Y2 . . . Ynum]
Truth =

[
X1

truth , X2
truth . . . Xnum

truth
]� (13)

where Ynum is the predicted value of the num-th window; Xnum
truth  is the real water demand value of the num-th 

window.

Algorithm 1.  ROADLSTM Model

Fig. 4.  Architecture of an LSTM cell.
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Experiments and discussion
In this study, water demand data is collected from a real-world water distribution system, with a sampling interval 
of 5 minutes52. The experimental data is chosen from different scenes, including mall, company, apartment, and 
school. For each scene, water demand data was continuously collected over a one-year period and aggregated 
into the experimental dataset, as shown in Fig. 5. We can see that, apartment water demand slightly exceeds 
that of malls, as apartment population flows are comparable to malls, while mall usage is limited by customer 
activities. In these data sets, there are various possible abnormalities in water consumption patterns53. These 
could include sudden spikes in water usage that deviate significantly from the typical consumption behavior 
of an end-user. Another possible abnormality could be an unusually low or zero consumption for an extended 
period, which might indicate a faulty meter or a situation where water supply has been disrupted without proper 
authorization. We applied the 3θ principle to detect and handle outliers by replacing them with the average of 
the two adjacent values. This method preserved the original number of 8640 samples, maintaining consistent 
time intervals and preventing any disruption to the prediction results. Experiments are conducted on these 
four types of datasets, each with 105120 samples. And 30 days (8640 points) of samples are randomly selected 
from each dataset. The selected data is divided into an 8:1:1 split. Specifically, the first 80% of the data (the 1st 
to 6912th samples) is used for training the model, the middle 10% (the 6913th to 7776th samples) is used for 
validation, and the final 10% (the 7777th to 8640th samples) is used to test the model’s predictive performance. 
During training process, the sliding window of size 577 is used, which includes two-day samples (576 points) 
and one-step prediction values.

Three commonly-used metrics are used to evaluate the model in this study: Mean Squared Error(RMSE), 
Mean Absolute Error(MAE), and Nash-Sutcliffe Efficiency coefficient(NSE). RMSE and MAE reflect the error 
between the predicted values and the actual values. NSE is used to evaluate the fitting effect and stability of the 
model. A value closer to 1 indicates higher stability of the model.

Model performance on IMFs
In the proposed ROADLSTM model, CEEMD is applied to decompose the original water demand sequence 
into several independent IMFs. Different signals have different frequency components, amplitude variations and 
nonlinear characteristics. The traditional IMF decomposition method with fixed parameters may not be able to 
handle various types of signals effectively. For example, for some signals containing abrupt change information 
or multi-scale frequency mixtures, the decomposition with fixed parameters may lead to the phenomenon 
of mode mixing, that is, components of different frequencies are wrongly decomposed into the same IMF or 
components of the same frequency are decomposed into different IMFs, thus affecting the accurate analysis of 
signal characteristics in the subsequent steps. However, the adaptive IMF decomposition can dynamically adjust 
the key parameters in the decomposition process, such as the number of sifting iterations and the stopping 
criteria, according to the specific conditions of the signals, so as to improve the accuracy and effectiveness of 
the decomposition. Through a robust adaptive optimization decomposition strategy, the number of IMFs can be 
adaptively adjusted according to data characteristics, avoiding the accumulation of estimation errors caused by 
excessive IMFs. Taking the mall dataset as an example, Fig. 6 illustrates the decomposition and prediction results 
for the mall dataset. It can be observed that the component sequences constrained by the robust optimization 
adaptive decomposition strategy exhibit similar nonlinear complexity. Based on this, predicting it can better 
learn the evolution pattern of the sequence, thereby generating more accurate prediction results.

Comparative study
To verify the effectiveness of the proposed ROADLSTM algorithm, we compare our model with eight models, 
including classic models like ARIMA, basic RNN, LSTM models, and hybrid models based on EMD and 
EEMD. Hybrid models based on EMD and EEMD specifically involve replacing CEEMD in the robust adaptive 
optimization decomposition strategy with EMD and EEMD. Additionally, the predictors support interchangeable 
use of both ARIMA and LSTM models. Note that ROADLSTM1 and ROADLSTM2 correspond to EMD and 
EEMD based LSTM model, while ROADAR-1 and ROADAR-2 correspond to EMD and EEMD based ARIMA 
model. The LSTM hyperparameter settings used in this article are shown in Table 1.

Fig. 5.  Examples of four types of datasets (30-day).
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One-step prediction
Table 2 lists the performance of the above 9 models on the four types of datasets. It can be observed that basic 
models (LSTM, RNN, and ARIMA) yield averages of RMSE and MAE by 0.6551, 0.8203, and 0.5851, 0.7364 on 
the Mall and Apartment datasets, respectively. However, the RMSE and MAE rise to 1.2222, 3.7552, and 0.8912, 
3.4696 on the Company and School datasets, which demonstrates the poor prediction of the nonlinear datasets. 
It is worth noting that there are bad prediction results on RNN. The problem with RNN is that it is very prone 
to overfitting, especially if the noise is high. This is because we usually initialize from small random weights, so 
the model is initially simple (since the tanh function is nearly linear near the origin). As training progresses, the 
weights become larger, and the model becomes nonlinear. Eventually it will overfit.

Utilizing the decomposition to reduce the non-stationary and non-linear characteristics in water demand 
data helps to obtain a sufficient prediction accuracy. From Table 2 and Fig. 7, it can be obviously found that 
the hybrid model can improve the performance of the LSTM model. It is shown that, compared with the single 
LSTM model, the LSTM-based hybrid models, consisting of ROADLSTM1, ROADLSTM2, and ROADLSTM, 
demonstrate reduced RMSE and MAE averages across four datasets. Specifically, for RMSE, the LSTM-based 
hybrid models’ averages achieve decreases of 0.1780, 0.6377, 0.2472, and 0.3989 on the Mall, Company, 
Apartment, and School datasets, respectively. Similarly, for MAE, the LSTM-based hybrid models’ averages 
achieve decreases of 0.1078, 0.2675, 0.1193, and 0.2731 on the Mall, Company, Apartment, and School datasets, 
respectively.

However, when employing the ARIMA prediction, the hybrid models suffer from degradation in accuracy. 
As shown in Table 2, the error metric scores of the ARIMA-based hybrid models, including ROADAR-1, 
ROADAR-2, and ROADARIMA, exhibit significant upward trends. Specifically, for RMSE, the averages of the 
ARIMA-based hybrid models rise to 1.7045, 2.1833, 2.2335, and 10.3483 for the Mall, Company, Apartment, 

Hyper-parameter Value

Hidden units 200

Max epochs 200

Optimizer Adam

Gradient threshold 1

Initial learn rate 0.005

Learn rate schedule Piecewise

Learn rate drop period 125

Learn rate drop factor 0.2

Verbose 0

Table 1.  LSTM hyper-parameter settings.

 

Fig. 6.  Decomposition and prediction results of ROADLSTM on the mall.
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and School datasets, respectively. Similarly, the averages of MAE increase to 1.3763, 1.9939, 2.0434, and 9.8374 
across the same datasets. This is because as a Gaussian process model, it is difficult for ARIMA to work with 
high frequency nonlinear datasets. When performing decomposition on water demand datasets, the majority 
of the noise is added to the residual part. Therefore, the ROADARIMA and its variants show a cliff-like decline 
compared to traditional ARIMA.

From Fig. 7, we can see that the ROADLSTM has the lowest error score bar within the experiments. As 
shown in Fig. 8, the proposed ROADLSTM is closer to the true value in the fitting degree of the predicted results, 
which demonstrates the ability of the ROADLSTM to model periodic variables flexibly. There are significant 
improvements compared to suboptimal models with the average RMSE of 81.60%, MAE of 78.03%, and NSE of 
1.24%. Even when the data set is seriously nonlinear, the ROADLSTM is found in practice could maintain the 
robust property. Regarding to the variants of ROADLSTM (ROADLSTM1 and ROADLSTM2), the proposed 
ROADLSTM optimizes the decomposition process by introducing additional cancellation of noise residues, thus 
obtaining a significant further improvement in processing seasonal and trend sequences.

Multi-step prediction
It is noted that the prediction results of decomposition based models have superior performance, with a reduction 
in the statistical metrics when compared with the respective models alone. Therefore, in this section, we 
investigated the results from the LSTM based hybrid models, applied as prediction models to perform multi-step 
ahead prediction. The values of RMSE, MAE and NSE of the proposed and comparison models are presented in 
Table 3, where the smallest value of each row is marked in boldface type. As is shown in Table 3, combining with 
the CEEMD, the proposed model achieves the best performance compared with other models. This conclusion 
can be further verified by the results presented in Fig. 9, which provides the prediction performances of the 
proposed and other comparison models over horizons of 1-step to 7-step ahead.

Figure 9 illustrates that ROADLSTM produces better error metric results between 1 and 4-step-ahead for all 
statistic metrics compared to other models. And it is obvious that the performance of comparison models on 
school and company decrease rapidly as the step increases. Note that this degenerate case is common to all of the 
prediction models between 4 and 7-step-ahead. This degradation occurs because, in the multi-step prediction 
process, we use the first-step prediction result as the true value to input into the model to obtain the subsequent 
two-step predictions. In this process, the prediction error from the first step acts as noise and is introduced, 
which significantly challenges the model’s robustness and accuracy. When the introduced error exceeds the 
model’s tolerance, the accuracy of the model experiences a sharp decline. It can, however, be shown that the 
statistic metrics of the ROADLSTM will not exceed the expected error, and in practice the proposed adaptive 
decomposition method could avoid to become rapidly unwieldy and of limited practical utility.

Ablation studies
To better understand the contribution of the improved components to the overall model, the ablation studies 
are conducted, aiming at investigating: (1) the forecasting performance of the variants of ROADLSTM; (2) the 

Datasets Mall Company

function RMSE (m3) MAE (m3) NSE MAPE (%) RMSE (m3) MAE (m3) NSE MAPE (%)

LSTM 0.2461 0.1548 0.9609 16.3634 0.9211 0.4068 0.0234 18.8556

ROADLSTM1 0.1265 0.0825 0.9929 10.5681 0.5481 0.2611 0.8665 16.3732

ROADLSTM2 0.0693  0.0518  0.9976  7.6552  0.2912  0.1480  0.9694  9.3396

ROADLSTM 0.0085* 0.0066* 1.0000* 1.9226* 0.0109* 0.0087* 0.9999* 2.9337*

RNN 1.4937 1.4695 − 0.6356 339.2506 2.1153 1.9817 − 0.8707 136.8178

ARIMA 0.2254 0.1309 0.9688 22.3458 0.6303 0.2850 0.5293 16.4674

ROADAR-1 1.7408 1.4270 − 0.7008 59.1291 2.3631 2.1502 0.9212 54.1357

ROADAR-2 1.7578 1.3917 − 0.8712 49.5885 2.1197 1.8879 0.9389 50.3064

ROADARIMA 1.6150 1.3103 − 0.0055 83.6025 2.0671 1.9436 − 0.0109 58.8103

 Datasets Apartment School

Function RMSE (m3) MAE (m3) NSE MAPE (%) RMSE (m3) MAE (m3) NSE MAPE (%)

LSTM 0.3643 0.1809 0.9298 26.9741 0.6314 0.4489 0.9957 4.7929

ROADLSTM1 0.1909 0.1075 0.9754 7.9412 0.3688 0.2726 0.9981 4.6448

ROADLSTM2  0.1490  0.0688  0.9849  4.6811  0.2192  0.1624  0.9993  2.4980

ROADLSTM 0.0113* 0.0085* 1.0000* 1.2136* 0.1096* 0.0924* 0.9998* 2.2527*

RNN 1.9754 1.9523 − 0.2158 185.8486 10.3185 9.7319 − 1.6827 105.8781

ARIMA 0.1213 0.0759 0.9848 5.4988 0.3156 0.2279 0.9981 2.4805

ROADAR-1 2.4387 2.2796 − 0.7185 50.9530 9.9915 9.7391 − 0.4855 51.9579

ROADAR-2 2.1677 1.9565 − 0.6760 50.2650 10.4641 9.7446 − 1.6751 50.4442

ROADARIMA 2.0940 1.8941 0.3002 174.3616 10.5892 10.0284 0.3787 65.3529

Table 2.  Results on Four Types of Datasets. (The best results* are highlighted in black and bold, the second 
best results are underlined.).
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Fig. 8.  Examples of one-step prediction on random sequences (10 points).

 

Fig. 7.  Error scores of 9 models on four datasets. (The lower value represents the better result. Values between 
0 and 1 are shown, making it more intuitive.).
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validity of time series decomposition to the model; (3)the impact of parameter search methods on the variants 
of ROADLSTM; (4) the validity of the target function modification of the parameter search method.

Variants of ROADLSTM
To verify the validity of the model, we performed ablation experiments on school dataset with relatively large 
errors. The traditional LSTM is chosen as the baseline model. And the random initialization method is used to 
select the parameters of the decomposition module to form the ROADLSTM3 model. For ROADLSTM4, we use 
RMSE, which measures the error of the reconstruction sequence, as the objective function of the search method 
to evaluate the decomposition results and select the parameters of the decomposition module. Finally, we use 
multi-scale permutation entropy to form ROADLSTM.

Result analysis
Table 4 summarizes the performance of the variants of ROADLSTM on the school dataset. In general, ROADLSTM 
has shown the best results than other models, which verifies the effectiveness of this general framework on water 
demand forecasting. Specifically, the predictive performance of ROADLSTM3 outperformed the baseline model 
by 21.92%. This proves that the decomposed sequences with few nonlinear features can achieve higher prediction 
accuracy than original sequences. Compared with the ROADLSTM3, RoadLSTM4 applies the parameter search 
method to the decomposition method, but with no obvious differences on the precision. This may be due to 
the fact that the paired white noise of CEEMD is completely eliminated and the reconstruction error of the 
decomposition sequence is always 0. In this case, ROADLSTM using MPEV as the objective function improved 

Fig. 9.  Multi-step prediction results of different models in four datasets. (RMSE and MAE are measured in m3

, NSE is unitless.).

 

3-step 7-step

RMSE (m3) MAE (m3) NSE MAPE (%) RMSE (m3) MAE (m3) NSE MAPE (%)

Mall

ROADLSTM1 0.6046 0.4542 0.8172 266.5622 2.8461 2.3133 − 3.1461  188.5369

ROADLSTM2  0.3898  0.3112  0.9162  130.8404  2.8360  2.1744 − 3.4067 3673.3539

ROADLSTM 0.2749* 0.1761* 0.9824* 48.7913* 2.9278* 2.2702* −1.0936* 97.4974*

Com

ROADLSTM1 2.0345 1.5312 0.3438 1024.3326 6.3414 5.1503 −   0.2227 340.7462

ROADLSTM2  1.3176  0.9407  0.7577  485.7694  5.8971  4.7745 − 0.5534  248.149*

ROADLSTM 0.2438* 0.1407* 0.987* 33.9270* 2.1074* 1.6981* − 0.2035* 1173.0386

Apa

ROADLSTM1  0.6724  0.4805  0.8288  60.9975 3.1814 2.692 − 1.5041 231.5164

ROADLSTM2 0.8479 0.6952 0.7766 209.8999 2.1269* 1.6486* − 0.3755  310.2996

ROADLSTM 0.4777* 0.2299* 0.9526* 24.7257*  2.1993  1.7203 0.2042* 369.9048

Sch

ROADLSTM1 3.7304 2.3015 0.9020 42.8898  17.2611 13.7605 − 2.7613 466.4673

ROADLSTM2  3.1381  2.1077  0.9426 422.8384 17.4418  13.1393 −  2.0033  282.9852

ROADLSTM 1.0923* 0.5068* 0.9952* 51.3175 11.0169* 7.5697* 0.2767* 172.1163*

Table 3.  Key steps’ scores of Four Types of Datasets. Significance values are in bold and underlined.
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its predicted performance by 59.46% compared to ROADLSTM4. This means that the metric RMSE for the 
objective function, as was used in ROADLSTM4, would be inappropriate. These experimental results verify the 
validity of proposed objective function in water demand prediction.

Conclusion
This paper presents a comprehensive study on a robust multi-step water demand prediction approach within the 
framework of smart water management, which helps to address an imperative challenge with profound long-
term economic implications in the industrial sector. The research introduces an innovative methodology for 
water demand forecasting, leveraging an adept decomposition technique to dissect the raw water demand series 
into multiple Intrinsic Mode Functions (IMFs), thereby facilitating a more nuanced analysis and forecasting 
process. This strategic decomposition effectively mitigates the inherent non-stationarity and nonlinearity of 
water demand time series, a critical step towards enhancing the accuracy of predictions.

To ensure practical applicability, the study advances a heuristic search algorithm designed to identify optimal 
parameters, aligning the model with real-world operational demands. Subsequently, an LSTM-based combined 
prediction model is proposed, tailored to forecast each IMF’s distinct characteristics with precision. Additionally, 
the introduction of a novel multi-scale permutation entropy variance function serves to quantify prediction 
error, bolstering the model’s resilience in the face of intricate and variable scenarios.

Through rigorous experimentation on real-world datasets, the proposed model demonstrates superior 
performance over established benchmarks across key metrics, including Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Nash-Sutcliffe Efficiency (NSE). The integration of an adaptive optimization 
strategy further endows the hybrid model with heightened stability and precision in multi-step predictions. 
This research, therefore, contributes a potent and reliable predictive tool to the arsenal of water management 
practices, underpinning sustainable energy initiatives by optimizing water resource allocation and consumption.

Data availability
The datasets analyzed during the current study are not publicly available due to that water demand data is con-
sidered confidential by water utilities, but are available from the corresponding author on reasonable request.
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