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Robust adaptive optimization
for sustainable water demand
prediction in water distribution
systems

Ke Wang'+?, Jiayang Meng?, Zhangquan Wang?, Kehua Zhao' & Banteng Liu'**

The advancement of the Internet of Things has positioned intelligent water demand forecasting as
a critical component in the quest for sustainable water resource management. Despite the potential
benefits, the inherent non-stationarity of water consumption data poses significant hurdles to

the predictive accuracy of forecasting models. This study introduces a novel approach, the Robust
Adaptive Optimization Decomposition (RAOD) strategy, which integrates a deep neural network

to address these challenges. The RAOD strategy leverages the Complete Ensemble Empirical

Mode Decomposition (CEEMD) to preprocess the water demand series, mitigating the effects

of non-stationarity and non-linearity. To further enhance the model’s robustness, an innovative
optimization algorithm is incorporated within the CEEMD process to minimize the variance in multi-
scale arrangement entropy among the decomposed components, thereby improving the model’s
generalization capabilities. The predictive power of the proposed model is harnessed through the
construction of deep neural networks that utilize the decomposed data to forecast minutely water
demand. To validate the effectiveness of the RAOD strategy, real-world datasets from four distinct
geographical regions are employed for multi-step ahead predictions. The experimental outcomes
demonstrate that the RAOD model outperforms existing models across all considered metrics,
highlighting its suitability for accurate and reliable water demand forecasting in the context of
sustainable energy management.

Keywords Water demand prediction, Sequence decomposition, Permutation entropy, Smart water
management, Long short-term memory network

The burgeoning global population has led to a surge in urban water consumption, exacerbating the existing
tension between water supply and demand. This escalating imbalance poses a formidable impediment to societal
progress, particularly within the expansive water distribution networks that cater to the needs of residential
and industrial sectors. Addressing this challenge is imperative for the advancement of sustainable development
goals. The integration of Internet of Things (IoT) technology (Fig. 1) into smart water management systems
has become a key strategy to enhance water security and operational efficiency, alleviating the complexities
associated with water resource management planning'~>.

The essence of sustainable water managementliesin the accurate forecasting of water demand and consumption,
which serves as the foundation for informed decision-making in water resource planning. Applications such as
leak detection and pump operation exemplify the practical utility of IoT in water management. However, the full
potential of IoT platforms in water demand prediction remains largely untapped, often relying on human experts
to provide estimates based on their expertise. Although valuable, this approach is insufficient for predictive
analytics in real time, which is essential for the dynamic and responsive management of water resources. In
this context, data-driven artificial intelligence (AI) methodologies offer a promising avenue for the precise and
scientific prediction of water demand. These AI-driven approaches not only harness the wealth of data generated
by IoT devices but also provide the analytical prowess necessary for the development of robust and forward-
looking water supply strategies®~.
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Fig. 1. IoT based smart water management system.

As shown in Fig. 1, the IoT-enabled water distribution network combines instrumentation, interconnectivity,
and intelligence to seamlessly integrate water infrastructure, culminating in a state-of-the-art smart water
distribution system’~!°. This advanced system facilitates a bidirectional data flow between sensors and the
monitoring platform, enabling a timely and informed decision-making process. Despite these advancements,
identifying patterns within the data remains the main challenge in water demand prediction, influenced by
numerous factors!!2. Consequently, the extraction of inherent hidden features, crucial for reducing the impact
of water demand pattern variability on hydraulic behavior and consumption within the water supply pipe
network, has emerged as a critical scientific inquiry to be addressed.

An important property of water demand is the temporal variation property!>!*. Many of the modern
approaches exploit this property by using statistical models, machine learning models, and deep learning
models!>"!7. The general methods for water demand time series modeling are autoregressive integrated
moving average model (ARIMA)'® and Naive Bayes algorithm!®. However, these methods are based on linear
assumptions or prior distribution selection, and their ability to extract nonlinear features is poor. Other studies
propose machine learning approaches for optimizing the water demand prediction, such as Random Forest?,
Support Vector Machine (SVM)?!, K-nearest neighbor (KNN)?2. It has gradually been recognized that due to
the nonlinear nature of water demand variations, linear regression methods lack the accuracy and generalization
required for practical applications. Recently, deep learning methods, such as Long Short Term Memory (LSTM)?,
Graph Convolutional Recurrent Neural Network (GCRNN)?, and Gated Recurrent Unit (GRU)?*, have emerged
as a notable and promising example of a learning algorithm in water demand modeling. These deep learning
methods used for the water demand prediction can analyze high-frequency time-series signals but are limited
by error accumulation during training.

To better capture the temporal characteristics and correlations of explanatory variables, researchers have
concentrated on hybrid optimisation strategies®>. Preprocessing methods such as feature selection and time-
series decomposition are often used in practical problems. For example, Vo?’ developed a hybrid method of
convolutional neural networks and bidirectional short-term memory networks for monthly household water
consumption prediction. Experimental results show that the performance of the hybrid method is better
than that of traditional LSTM. Du?® combines principal component analysis with wavelet transform for data
preprocessing, and uses LSTM to achieve urban daily water demand prediction. Xu?® decomposed the water
demand sequences by using an integrated empirical mode decomposition method, then reconstructed it into
randomness and deterministic terms through Fourier transform. Compared to other data processing methods,
the decomposition algorithms can effectively improve the prediction performance of the built models through
decomposing the intermittent water demand sequences into several more stationary sub-layers. However,
separate optimisations and tuning for different models in a hybrid model seem to restrict the overall performance.
To achieve better flexibility and robustness, optimization requires control parameters with good self-adaptive
ability.

In the realm of water demand prediction models, parameter optimization has been a significant area of
research focus. Several studies have explored different optimization techniques to enhance the performance
of prediction models. For instance, some researchers have utilized genetic algorithms (GA) to optimize the
parameters of traditional machine learning models like SVM. By evolving the parameter values over multiple
generations, GA-based optimization has shown the potential to improve the accuracy of water demand forecasts™®.
In another approach, particle swarm optimization (PSO) has been employed to fine-tune the hyperparameters of
deep learning architectures such as LSTM. PSO can effectively search the parameter space and converge towards
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optimal values, leading to enhanced prediction capabilities®!. Additionally, ant colony optimization (ACO) has
been applied in the context of water demand prediction to optimize the selection of input variables and model
parameters simultaneously. This method has demonstrated its ability to handle complex relationships between
variables and improve the overall model performance®2. However, despite the progress made, existing parameter
optimization methods still face challenges such as computational complexity and the potential for overfitting
in certain scenarios. There is a need for more efficient and robust optimization strategies that can adapt to the
dynamic nature of water demand data and the complexity of different prediction models.

Motivated by the quest for efficiency and sustainability, this research embarks on an exploration of hybrid
optimization strategies-a critical technique in the field of intelligent water demand prediction. The crux of our
study harnesses meta-heuristic optimization algorithms to refine the accuracy of hybrid predictive models,
which are pivotal for the sustainable management of water resources. Our approach is validated through a series
of practical experiments, designed to encompass diverse water demand scenarios. The main contributions and
novelty of this paper are encapsulated within the following innovations: (1) A robust adaptive decomposition
strategy is introduced to address the multifaceted nature of water demand sequences. This strategy’s dynamic
parameter adjustment dismantles the rigidity of conventional fixed-mode decomposition, bolstering the
model’s robustness and adaptability. (2) A objective function is crafted to gauge the complexity of prediction
within decomposed sequences. By dynamically modulating decomposition parameters, this strategy enhances
the model’s robustness and its capacity for generalization. 3)A novel framework for short-term water demand
prediction is proposed, with experimental outcomes from varied real-world datasets underscoring its superiority
and efficacy across distinct environmental and operational contexts.

This paper is organized as follows: Section “Methodologies” introduces the general framework and
mathematical description of our method. We present the detailed analysis and practical experiments in Section
“Experiments and discussion”, and give the evaluation results. Finally, Section “Conclusion” concludes this
article.

Methodologies
The complex temporal features and strong nonlinear characteristics in water demand make it difficult to model and
predict such series precisely with traditional prediction models. In this paper, we use Complementary Ensemble
Empirical Mode Decomposition (CEEMD) method to decompose time series into different components to
reduce the temporal complexity. There are three core parameters that affect the performance of CEEMD: noise
amplitude A, number of components K, and total lumped average times N. Heuristic optimization algorithms
are very useful to find a global optima or near-optimal solution to parameter search problems. Therefore, an
improved quantum genetic search algorithm is applied to obtain parameters and improve the decomposition
effect efficiently.

The architecture of the proposed robust adaptive decomposition with LSTM is shown in Fig. 2. In this method,
a robust adaptive decomposition strategy is proposed to decompose the original sequence into k components,
and the entropy variance of multi-scale arrangement between components is computed in terms of the error
function. Therefore, components with the similar complexity of temporal features can be obtained. Then, in
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Fig. 2. Diagram of the proposed ROADLSTM model.
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parallel, prediction method is performed on each component. A suitable proposal prediction method is therefore
the LSTM because the decomposed detailed parts of the water demand time series have stochastic characteristics
and short-term dependency. This approach enables the model to focus on the temporal relationship between
time segments in each component, which improves the overall prediction accuracy.

Complementary ensemble empirical mode decomposition
The Empirical Mode Decomposition (EMD) technique is an adaptive data analysis method that has been widely
applied in non-linear and non-stationary data analysis®*>4. Although the data adaptive EMD is a powerful
method to decompose nonlinear signal, it has the disadvantage of the frequent emergence of mode integration.
This indicates a mode mixing problem, where a single IMF either consists of signals of widely dissimilar scales, or
a signal of a scale alike existing in unlike IMFs. To address this problem, a common approach is to add different
Gaussian white noise with the same amplitude during each decomposition period to change the extreme point
characteristics of the signal. Then, multiple EMDs are performed to obtain the corresponding IMF for overall
averaging to cancel out the added white noise, which effectively suppresses the generation of mode mixing®>%.
It is worth noting that paired positive and negative white noise signals should be used to minimize the signal
reconstruction error, which is the basic idea of Complementary Ensemble Empirical Mode Decomposition
(CEEMD)¥:3,

For water demand « = [x1, T2, . . ., T ], pairwise white noise with specific amplitudes is added to generate
new sequences:

zt . =x' + An’
; (1)

Theg =" — An'

where acf)os is the i-th subsequence with positive noise; ar:ineg is the i-th subsequence with negative noise; n’
is the white noise for the i-th subsequence; ¢ = 1,2,..., N, N is the total number of subsequences; A is the
amplitude of white noise.

Then, the corresponding k Intrinsic Mode Function (IMF) components can be obtained by using EMD
decomposition:

k—1
i EMD i i
Tpos — § Cjpos T €
j=1

2)

k—1
i EMD i i
Tneg — E Cjneg T €

Jj=1

where ¢ is the j-th IMF component, j = 1,2,...,k — 1; €' is the residual high-frequency component.

Repeat these operations and finally the j-th component can be get by a lumped average. Thus the corresponding
signal can be represented as a combination of kK — 1 IMFs and residual:

c’i (c;, pos J’_ c;, neg )/2

€)

Proposed adaptive parameter optimizer

In practical applications, time consumption in parameter optimization could be critical. It is meaningful to
obtain optimal solutions with the smallest possible number of evaluations. In this study, a quantum inspired
evolutionary algorithm is implemented to achieve computational efficiency. It uses a group of independent
quantum bits with superposition characteristics to encode chromosomes, and updates through the quantum
logic gate, so as to achieve the efficient solution of target. Unlike classical computing, the quantum inspired
evolutionary algorithm has the advantage that it benefits from superposition or parallelism by considering all

the paths at the same time, thus increasing its processing capacity>.

Chromosome representation with quantum btis
In quantum computing, the qubit is the smallest unit of the information and can be in either |0) or |1) states
Then the state 1) is represented by the linear combination of ket 0 and 1.

) = |0) + B]1) (4)

41-43

Scientific Reports |

(2025) 15:4039 | https://doi.org/10.1038/s41598-025-88628-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

where o and 3 are the probability amplitude; |«|? is the probability of the quantum bit in |0); |3|? is the
probability of the quantum bit in |1). And |«|® 4 | 8| = 1. Hence the quantum states of two or more objects are
to be described by a single chromosome. The global optimum of the chromosomes can be obtained based on the
updating of the quantum revolving gate**.

(5] 3] [k )] 5]

where (o}, 3/)7 is the probability amplitude after each update. Note that updating the quantum bit is equivalent
to gradient descent, which can be written as follows:

cost cos A6 —sin Af cost
U(A@){ sint ] = [ sin A8  cos Af } [ sint }

_ [ cos(t+ AB) ©)

- [ sin (t + A0) }

The A6 is the change of rotation angle, the choice of which is determined by analyzing the trend of the object
function at a certain chromosome. When this trend is small, Af can be increased; when it is large, Af can be
decreased. Using this change information helps improve convergence. Then, we construct the step size function
of rotation angle as follows:

31

Ab; ; = sgn gg ) ?)

X Aeo X exp ('vf(Xz)| Vf],mm)

vfj,max - vfj,min

where A6 is an initial value for Af; ao,B0 is the optimal probability amplitude within the current population;
a1, is the probability amplitude of the current solution; f(X) is the fitness function value for an individual
gene; V f(X?) is the gradient of f(X) at the point X/; fmax, fmin is the maximum and minimum values of
the individual fitness function of the current population, respectively. And the gradients of f; max, fjmin are
given by:

vfj,max:max{'m , , M }
aXi 0X3, .
hyom _min{’W f?f(Xm)}

J,min 8X{ , i ann

where, X Zn is the j-th component of vector X ..

Quantum interference crossover

Basically, a genetic algorithm consists of a fixed size population of chromosomes which have the opportunity
to survive in the next generation. By using genetic operators, such as selection, crossover, and mutation,
the offspring can be generated for iterations. However, the crossover operator is not used in gradient-based
algorithm, which often gets stuck in poor local minima.

To overcome this drawback, a quantum interference crossover is proposed as illustrated in Fig. 3. Each
row represents a chromosome. And the interference crossover can be described as follows: take the 1st gene
of chromosome one, 2nd gene of chromosome two, 3rd gene of chromosome three, etc. No duplicates are
permitted within the same universes, if a gene is already present in the offspring, choose the next gene not already
contained. Therefore, the information between each gene can be fully utilized by using quantum interference.

Improved quantum mutation

The mutation operation changes chromosomes generated by interference crossover operator*>=*7. We can select
a chromosome randomly and change the probability amplitude of quantum bit arbitrarily. An example of the
quantum mutation would be Hadamard-based strategy*®:

A A A A

Fig. 3. Quantum Interference Crossover.
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Essentially the quantum mutation problem can be reduced to one strategy of rotation angle in the quantum bits.
Note that it is usually hard to find the global optimum, and we may be stuck in a local optimum®. In practice,
using multiple random restarts can increase out chance of finding a “good” local optimum. Of course, careful
initialization can help a lot, too. However, those methods of randomness might oscillate, and convergence is
not guaranteed. Here we introduce the cataclysm mechanism®°. Firstly, an elite retention strategy is adopted to
retain the optimal individuals, ensuring the convergence of subsequent population evolution. Then, reinitialize
new individuals to replace those with poor fitness rankings in the population, thereby increasing the diversity
and search range of the population. This mechanism enables the algorithm to jump out of the local optima and
improve the convergence and effectiveness of the results.

I ENE

Objective function improvement

For general optimization problems, the fitness function usually uses the root mean square error function
(RMSE) to measure the difference between the reconstruction sequence and the original sequence. The CEEMD
method eliminates residual noise by adding paired positive and negative white noise, making the RMSE of its
decomposition result equal to 0. Thus, ordinary fitness functions cannot achieve the desired results.

We know that the degree of complexity and regularity can be described by multi-scale permutation entropy
which is capable of fully reflecting the dynamical characteristics of sequences across different temporal scales. As
a measure of the complexity or the regularity of a sequence, a large value of entropy often describes the sequence
with serious nonlinear dynamics. The stronger the nonlinearity of a sequence, the higher its uncertainty and
complexity, which results in further difficulty in prediction.

It is clear from the literature review in Introduction that signal decomposition technology helps to increase
the precision of water demand prediction. The components with low-entropy will have good regularity and
are relatively easy to predict. We therefore consider a new objective function called multi-scale arrangement
entropy variance between components. By minimizing the objective function, we could obtain a sequence of
components with similar nonlinear complexity, therefore limiting the nonlinear complexity of high-frequency
components, and achieving better prediction results. The formula for calculating the multi-scale permutation
entropy variance between components is as follows:

Hy=)Y PP
=1
; (10)
MPEV =Y "(H; - H,)*
s=1

where P; is the probability of symbol sequence occurrence for reconstructed components. H,, is the multi-scale
arrangement entropy value of the s-th subsequence. The range of H,, is 0-1, which represents the randomness
and complexity.

Robust adaptive optimization decomposition with long short-term memory model

For water demand data, we are interested in modelling quantities that are believed to be periodic over 24 hours

or over a week cycle. Therefore, in this research, the training process is computed over a sliding window’'.
Consider a set of observations X (t) = [z1,22 ... 27| of the water demand. It can be divided into two

parts, the input part Xin (t) = [21,Z2 ... 27—1] and the actual target value thruth (t) = @7, in which the truth

corresponds to X, (). For a given input part, we can perform the improved signal decomposition method,

and then get k subsequences:

k
Xin(t)CEEI\)/IDZX:ub (11)
s=1

where X, is the s-th subsequence. Then, the presence of a parallel processing architecture will be integrated
into the LSTM to facilitate feature extraction for each IMF and increase prediction accuracy.

Yo = F(Xoub)
k
12
Y =3 Yoo (12
s=1

where F(X) is the mapping relationship learned by LSTM; Y, is the prediction result of the s-th subsequence,
and Y is the final prediction result.
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After the decomposition step, we can compute the prediction for each subsequence. In general, a latent variable
model, which can capture correlation between the visible variables via a set of latent common causes, can be
applied for prediction efficiently. However, long-term information preservation and short-term input loss for
latent variable models is fraught with difficulties. In this approach, LSTM is used to model these long and short-
term dynamics. As shown in Fig. 4, individual LSTM units consists of an internal storage unit and three gates.
The input, output, and forget operations of the memory cells are realized by multiplication of the corresponding
gate. Through the gating mechanism, LSTM can maintain a certain level of gradient information to prevent
gradient explosion. To alleviate the vanishing gradient problem, it properly keeps and forgets past information,
indicating its great power for capturing long-term temporal dependencies. This makes possible the nonlinear
learning ability for water demand time series.

Specifically, the LSTM structure is built considering the number of subsequence to be analyzed. We compute
the multiplication of all the hidden state units by “sliding” this weight vector over the input. Meanwhile, all these
steps can be performed in parallel on each subsequences. Then, the final output is obtained by computing the
local prediction within each sliding window.

Pred = [Yl 7Y2 e Ynum]

Truth = [Xltruth 7X2truth o truth }

where Y,um is the predicted value of the num-th window; X i1t is the real water demand value of the num-th
window.

Data: Historical water demand data
1 Initialization: population = initialize_population(SD), SD < standard_deviation(input_sequence), A € [0,0.2SD], N € [10, 999], k € [2, 10].
2 Calculate the fitness value of population according to Eq.10.

3 repeat

4 Update population by quantum rotation, interference, and mutation;
5 Calculate fitness values of population;

6 if optimal individual changed then

7 |_ change_counter==0;

8 else

change_counter++;

if change counter > 3 then

Apply Cataclysm mechanism;
change_counter==0;

13 until termination condition or max iterations reached;

14 CEEMD decomposition parameters +— Optimal individual parameters from population;
15 subsequences +— CEEMD(input sequence, optimal parameters);

16 Predicted_value < parallel LSTM(subsequences);

17 return Final water demand prediction results

Algorithm 1. ROADLSTM Model

.‘——-» multiplication addition ”
cell state ©¢) .I. * cell state
108 "ee
forget gate input gates output gate
@ OOJ)OO —00
hidden concatenate hidden
state units A state units
input
Fig. 4. Architecture of an LSTM cell.
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Experiments and discussion

In this study, water demand data is collected from a real-world water distribution system, with a sampling interval
of 5 minutes®2. The experimental data is chosen from different scenes, including mall, company, apartment, and
school. For each scene, water demand data was continuously collected over a one-year period and aggregated
into the experimental dataset, as shown in Fig. 5. We can see that, apartment water demand slightly exceeds
that of malls, as apartment population flows are comparable to malls, while mall usage is limited by customer
activities. In these data sets, there are various possible abnormalities in water consumption patterns®®. These
could include sudden spikes in water usage that deviate significantly from the typical consumption behavior
of an end-user. Another possible abnormality could be an unusually low or zero consumption for an extended
period, which might indicate a faulty meter or a situation where water supply has been disrupted without proper
authorization. We applied the 36 principle to detect and handle outliers by replacing them with the average of
the two adjacent values. This method preserved the original number of 8640 samples, maintaining consistent
time intervals and preventing any disruption to the prediction results. Experiments are conducted on these
four types of datasets, each with 105120 samples. And 30 days (8640 points) of samples are randomly selected
from each dataset. The selected data is divided into an 8:1:1 split. Specifically, the first 80% of the data (the st
to 6912th samples) is used for training the model, the middle 10% (the 6913th to 7776th samples) is used for
validation, and the final 10% (the 7777th to 8640th samples) is used to test the model’s predictive performance.
During training process, the sliding window of size 577 is used, which includes two-day samples (576 points)
and one-step prediction values.

Three commonly-used metrics are used to evaluate the model in this study: Mean Squared Error(RMSE),
Mean Absolute Error(MAE), and Nash-Sutcliffe Efficiency coefficient(NSE). RMSE and MAE reflect the error
between the predicted values and the actual values. NSE is used to evaluate the fitting effect and stability of the
model. A value closer to 1 indicates higher stability of the model.

Model performance on IMFs

In the proposed ROADLSTM model, CEEMD is applied to decompose the original water demand sequence
into several independent IMFs. Different signals have different frequency components, amplitude variations and
nonlinear characteristics. The traditional IMF decomposition method with fixed parameters may not be able to
handle various types of signals effectively. For example, for some signals containing abrupt change information
or multi-scale frequency mixtures, the decomposition with fixed parameters may lead to the phenomenon
of mode mixing, that is, components of different frequencies are wrongly decomposed into the same IMF or
components of the same frequency are decomposed into different IMFs, thus affecting the accurate analysis of
signal characteristics in the subsequent steps. However, the adaptive IMF decomposition can dynamically adjust
the key parameters in the decomposition process, such as the number of sifting iterations and the stopping
criteria, according to the specific conditions of the signals, so as to improve the accuracy and effectiveness of
the decomposition. Through a robust adaptive optimization decomposition strategy, the number of IMFs can be
adaptively adjusted according to data characteristics, avoiding the accumulation of estimation errors caused by
excessive IMFs. Taking the mall dataset as an example, Fig. 6 illustrates the decomposition and prediction results
for the mall dataset. It can be observed that the component sequences constrained by the robust optimization
adaptive decomposition strategy exhibit similar nonlinear complexity. Based on this, predicting it can better
learn the evolution pattern of the sequence, thereby generating more accurate prediction results.

Comparative study

To verify the effectiveness of the proposed ROADLSTM algorithm, we compare our model with eight models,
including classic models like ARIMA, basic RNN, LSTM models, and hybrid models based on EMD and
EEMD. Hybrid models based on EMD and EEMD specifically involve replacing CEEMD in the robust adaptive
optimization decomposition strategy with EMD and EEMD. Additionally, the predictors support interchangeable
use of both ARIMA and LSTM models. Note that ROADLSTM1 and ROADLSTM2 correspond to EMD and
EEMD based LSTM model, while ROADAR-1 and ROADAR-2 correspond to EMD and EEMD based ARIMA
model. The LSTM hyperparameter settings used in this article are shown in Table 1.

W MU | Mh M WW 'Vt{ “M ,ML Wiy W‘fu Mwebe ey ﬁ 1

F
8 . Wy
= 3000 4000 5000 6000 7000 8000 9000 ] 1000 000 3000 4000 5000 6000 7000 8000 9000
= (a) Mall (c) Apartment
g 20 30 T T T T T
=]
= 15 p
E’ " | | { WW\“\'I‘”H\ ﬁ N [ | i ﬂ kbl |
LA i M i |
) M ‘ M‘/L | Uw'd v ‘u’ UL ub W‘\ VUl M J’M u‘l ﬂ, U \‘L JLA
D 1000 2000 3000 4000 5000 6000 7000 8000 9000 00 1000 2000 3000 4000 5000 6000 70‘00 BD‘DD 9000
(b)Company (d) School

Fig. 5. Examples of four types of datasets (30-day).
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Fig. 6. Decomposition and prediction results of ROADLSTM on the mall.

Hyper-parameter Value
Hidden units 200
Max epochs 200
Optimizer Adam

Gradient threshold 1

Initial learn rate 0.005

Learn rate schedule Piecewise

Learn rate drop period | 125

Learn rate drop factor | 0.2

Verbose 0

Table 1. LSTM hyper-parameter settings.

One-step prediction

Table 2 lists the performance of the above 9 models on the four types of datasets. It can be observed that basic
models (LSTM, RNN, and ARIMA) yield averages of RMSE and MAE by 0.6551, 0.8203, and 0.5851, 0.7364 on
the Mall and Apartment datasets, respectively. However, the RMSE and MAE rise to 1.2222, 3.7552, and 0.8912,
3.4696 on the Company and School datasets, which demonstrates the poor prediction of the nonlinear datasets.
It is worth noting that there are bad prediction results on RNN. The problem with RNN is that it is very prone
to overfitting, especially if the noise is high. This is because we usually initialize from small random weights, so
the model is initially simple (since the tanh function is nearly linear near the origin). As training progresses, the
weights become larger, and the model becomes nonlinear. Eventually it will overfit.

Utilizing the decomposition to reduce the non-stationary and non-linear characteristics in water demand
data helps to obtain a sufficient prediction accuracy. From Table 2 and Fig. 7, it can be obviously found that
the hybrid model can improve the performance of the LSTM model. It is shown that, compared with the single
LSTM model, the LSTM-based hybrid models, consisting of ROADLSTM1, ROADLSTM2, and ROADLSTM,
demonstrate reduced RMSE and MAE averages across four datasets. Specifically, for RMSE, the LSTM-based
hybrid models’ averages achieve decreases of 0.1780, 0.6377, 0.2472, and 0.3989 on the Mall, Company,
Apartment, and School datasets, respectively. Similarly, for MAE, the LSTM-based hybrid models’ averages
achieve decreases of 0.1078, 0.2675, 0.1193, and 0.2731 on the Mall, Company, Apartment, and School datasets,
respectively.

However, when employing the ARIMA prediction, the hybrid models suffer from degradation in accuracy.
As shown in Table 2, the error metric scores of the ARIMA-based hybrid models, including ROADAR-1,
ROADAR-2, and ROADARIMA, exhibit significant upward trends. Specifically, for RMSE, the averages of the
ARIMA-based hybrid models rise to 1.7045, 2.1833, 2.2335, and 10.3483 for the Mall, Company, Apartment,
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Datasets Mall Company

function RMSE (m?®) | MAE (m3) | NSE MAPE (%) | RMSE (m®) | MAE (m?3) | NSE MAPE (%)
LSTM 0.2461 0.1548 0.9609 | 16.3634 0.9211 0.4068 0.0234 | 18.8556
ROADLSTMI | 0.1265 0.0825 0.9929 | 10.5681 0.5481 0.2611 0.8665 | 16.3732
ROADLSTM2 | 0.0693 0.0518 0.9976 | 7.6552 0.2912 0.1480 09694 | 9.3396
ROADLSTM | 0.0085* 0.0066* 1.0000* | 1.9226* 0.0109* 0.0087* 0.9999% | 2.9337*
RNN 1.4937 1.4695 —0.6356 | 339.2506 | 2.1153 1.9817 -0.8707 | 136.8178
ARIMA 0.2254 0.1309 0.9688 22.3458 0.6303 0.2850 0.5293 16.4674
ROADAR-1 1.7408 1.4270 ~0.7008 | 59.1291 2.3631 2.1502 0.9212 | 54.1357
ROADAR-2 | 1.7578 1.3917 - 0.8712 | 49.5885 2.1197 1.8879 0.9389 | 50.3064
ROADARIMA | 1.6150 1.3103 —0.0055 | 83.6025 2.0671 1.9436 —0.0109 | 58.8103
Datasets Apartment School

Function RMSE (m®) | MAE (m?®) | NSE MAPE (%) | RMSE (m®) | MAE (m®) | NSE MAPE (%)
LSTM 0.3643 0.1809 0.9298 26.9741 0.6314 0.4489 0.9957 4.7929
ROADLSTMI | 0.1909 0.1075 09754 | 7.9412 0.3688 0.2726 09981 | 4.6448
ROADLSTM2 | 0.1490 0.0688 0.9849 | 4.6811 0.2192 0.1624 0.9993 | 2.4980
ROADLSTM | 0.0113* 0.0085* 1.0000% | 1.2136* 0.1096* 0.0924* 0.9998* | 2.2527*
RNN 1.9754 1.9523 -0.2158 | 185.8486 | 10.3185 9.7319 - 1.6827 | 105.8781
ARIMA 0.1213 0.0759 0.9848 | 5.4988 0.3156 0.2279 0.9981 | 2.4805
ROADAR-1 | 2.4387 2.2796 -0.7185 | 50.9530 9.9915 9.7391 - 0.4855 | 51.9579
ROADAR-2 | 2.1677 1.9565 - 0.6760 | 50.2650 10.4641 9.7446 ~ 1.6751 | 50.4442
ROADARIMA | 2.0940 1.8941 0.3002 174.3616 10.5892 10.0284 0.3787 65.3529

Table 2. Results on Four Types of Datasets. (The best results* are highlighted in black and bold, the second
best results are underlined.).

and School datasets, respectively. Similarly, the averages of MAE increase to 1.3763, 1.9939, 2.0434, and 9.8374
across the same datasets. This is because as a Gaussian process model, it is difficult for ARIMA to work with
high frequency nonlinear datasets. When performing decomposition on water demand datasets, the majority
of the noise is added to the residual part. Therefore, the ROADARIMA and its variants show a cliff-like decline
compared to traditional ARIMA.

From Fig. 7, we can see that the ROADLSTM has the lowest error score bar within the experiments. As
shown in Fig. 8, the proposed ROADLSTM is closer to the true value in the fitting degree of the predicted results,
which demonstrates the ability of the ROADLSTM to model periodic variables flexibly. There are significant
improvements compared to suboptimal models with the average RMSE of 81.60%, MAE of 78.03%, and NSE of
1.24%. Even when the data set is seriously nonlinear, the ROADLSTM is found in practice could maintain the
robust property. Regarding to the variants of ROADLSTM (ROADLSTM1 and ROADLSTM2), the proposed
ROADLSTM optimizes the decomposition process by introducing additional cancellation of noise residues, thus
obtaining a significant further improvement in processing seasonal and trend sequences.

Multi-step prediction

It is noted that the prediction results of decomposition based models have superior performance, with a reduction
in the statistical metrics when compared with the respective models alone. Therefore, in this section, we
investigated the results from the LSTM based hybrid models, applied as prediction models to perform multi-step
ahead prediction. The values of RMSE, MAE and NSE of the proposed and comparison models are presented in
Table 3, where the smallest value of each row is marked in boldface type. As is shown in Table 3, combining with
the CEEMD, the proposed model achieves the best performance compared with other models. This conclusion
can be further verified by the results presented in Fig. 9, which provides the prediction performances of the
proposed and other comparison models over horizons of 1-step to 7-step ahead.

Figure 9 illustrates that ROADLSTM produces better error metric results between 1 and 4-step-ahead for all
statistic metrics compared to other models. And it is obvious that the performance of comparison models on
school and company decrease rapidly as the step increases. Note that this degenerate case is common to all of the
prediction models between 4 and 7-step-ahead. This degradation occurs because, in the multi-step prediction
process, we use the first-step prediction result as the true value to input into the model to obtain the subsequent
two-step predictions. In this process, the prediction error from the first step acts as noise and is introduced,
which significantly challenges the model’s robustness and accuracy. When the introduced error exceeds the
model’s tolerance, the accuracy of the model experiences a sharp decline. It can, however, be shown that the
statistic metrics of the ROADLSTM will not exceed the expected error, and in practice the proposed adaptive
decomposition method could avoid to become rapidly unwieldy and of limited practical utility.

Ablation studies
To better understand the contribution of the improved components to the overall model, the ablation studies
are conducted, aiming at investigating: (1) the forecasting performance of the variants of ROADLSTM; (2) the
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NSE

%]

3-step 7-step
RMSE (m®) | MAE (m?3) | NSE MAPE (%) | RMSE (m®) | MAE (m?3) | NSE MAPE (%)
ROADLSTM1 | 0.6046 0.4542 0.8172 | 266.5622 2.8461 2.3133 —3.1461 188.5369
Mall | ROADLSTM2 | 0.3898 0.3112 0.9162 130.8404 2.8360 2.1744 —3.4067 | 3673.3539
ROADLSTM | 0.2749* 0.1761* 0.9824* | 48.7913* 2.9278* 2.2702* -1.0936* | 97.4974*
ROADLSTM1 | 2.0345 1.5312 0.3438 1024.3326 | 6.3414 5.1503 - 0.2227 | 340.7462
Com | ROADLSTM2 | 1.3176 0.9407 0.7577 | 485.7694 5.8971 4.7745 —-0.5534 248.149*
ROADLSTM 0.2438* 0.1407* 0.987* 33.9270* 2.1074* 1.6981* —0.2035*% | 1173.0386
ROADLSTM1 | 0.6724 0.4805 0.8288 | 60.9975 3.1814 2.692 - 1.5041 231.5164
Apa | ROADLSTM2 | 0.8479 0.6952 0.7766 | 209.8999 2.1269* 1.6486* —-0.3755 310.2996
ROADLSTM 0.4777* 0.2299* 0.9526* | 24.7257* 2.1993 1.7203 0.2042* 369.9048
ROADLSTM1 | 3.7304 2.3015 0.9020 | 42.8898 17.2611 13.7605 —2.7613 | 466.4673
Sch ROADLSTM2 | 3.1381 2.1077 0.9426 | 422.8384 17.4418 13.1393 — 2.0033 | 282.9852
ROADLSTM 1.0923* 0.5068* 0.9952* | 51.3175 11.0169* 7.5697* 0.2767* 172.1163*

Table 3. Key steps’ scores of Four Types of Datasets. Significance values are in bold and underlined.
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validity of time series decomposition to the model; (3)the impact of parameter search methods on the variants
of ROADLSTM,; (4) the validity of the target function modification of the parameter search method.

Variants of ROADLSTM

To verify the validity of the model, we performed ablation experiments on school dataset with relatively large
errors. The traditional LSTM is chosen as the baseline model. And the random initialization method is used to
select the parameters of the decomposition module to form the ROADLSTM3 model. For ROADLSTM4, we use
RMSE, which measures the error of the reconstruction sequence, as the objective function of the search method
to evaluate the decomposition results and select the parameters of the decomposition module. Finally, we use
multi-scale permutation entropy to form ROADLSTM.

Result analysis

Table 4 summarizes the performance of the variants of ROADLSTM on the school dataset. In general, ROADLSTM
has shown the best results than other models, which verifies the effectiveness of this general framework on water
demand forecasting. Specifically, the predictive performance of ROADLSTM3 outperformed the baseline model
by 21.92%. This proves that the decomposed sequences with few nonlinear features can achieve higher prediction
accuracy than original sequences. Compared with the ROADLSTM3, RoadLSTM4 applies the parameter search
method to the decomposition method, but with no obvious differences on the precision. This may be due to
the fact that the paired white noise of CEEMD is completely eliminated and the reconstruction error of the
decomposition sequence is always 0. In this case, ROADLSTM using MPEV as the objective function improved
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LSTM | ROADLSTM3 | ROADLSTM4 | ROADLSTM
RMSE (m?) | 0.6314 | 0.4930 0.4850 0.1096*
MAE (m?®) |0.4489 | 0.3614 0.3551 0.0924*
NSE 0.9957 | 0.9968 0.9969 0.9998*
MAPE (%) |4.7929 | 3.7824 3.5793 2.2527*
ARMSE/LSTM | 21.92% 23.18% 82.64%*

Table 4. Ablation studies of ROADLSTM on the school dataset. Significance values are in bold and
underlined.

its predicted performance by 59.46% compared to ROADLSTM4. This means that the metric RMSE for the
objective function, as was used in ROADLSTM4, would be inappropriate. These experimental results verify the
validity of proposed objective function in water demand prediction.

Conclusion

This paper presents a comprehensive study on a robust multi-step water demand prediction approach within the
framework of smart water management, which helps to address an imperative challenge with profound long-
term economic implications in the industrial sector. The research introduces an innovative methodology for
water demand forecasting, leveraging an adept decomposition technique to dissect the raw water demand series
into multiple Intrinsic Mode Functions (IMFs), thereby facilitating a more nuanced analysis and forecasting
process. This strategic decomposition effectively mitigates the inherent non-stationarity and nonlinearity of
water demand time series, a critical step towards enhancing the accuracy of predictions.

To ensure practical applicability, the study advances a heuristic search algorithm designed to identify optimal
parameters, aligning the model with real-world operational demands. Subsequently, an LSTM-based combined
prediction model is proposed, tailored to forecast each IMF’s distinct characteristics with precision. Additionally,
the introduction of a novel multi-scale permutation entropy variance function serves to quantify prediction
error, bolstering the model’s resilience in the face of intricate and variable scenarios.

Through rigorous experimentation on real-world datasets, the proposed model demonstrates superior
performance over established benchmarks across key metrics, including Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Nash-Sutcliffe Efficiency (NSE). The integration of an adaptive optimization
strategy further endows the hybrid model with heightened stability and precision in multi-step predictions.
This research, therefore, contributes a potent and reliable predictive tool to the arsenal of water management
practices, underpinning sustainable energy initiatives by optimizing water resource allocation and consumption.

Data availability
The datasets analyzed during the current study are not publicly available due to that water demand data is con-
sidered confidential by water utilities, but are available from the corresponding author on reasonable request.
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