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Social media has become a powerful tool for public discourse, shaping opinions and the emotional 
landscape of communities. The extensive use of social media has led to a massive influx of online 
content. This content includes instances where negativity is amplified through hateful speech but 
also a significant number of posts that provide support and encouragement, commonly known as 
hope speech. In recent years, researchers have focused on the automatic detection of hope speech 
in languages such as Russian, English, Hindi, Spanish, and Bengali. However, to the best of our 
knowledge, detection of hope speech in Urdu and English, particularly using translation-based 
techniques, remains unexplored. To contribute to this area we have created a multilingual dataset 
in English and Urdu and applied a translation-based approach to handle multilingual challenges and 
utilized several state-of-the-art machine learning, deep learning, and transfer learning based methods 
to benchmark our dataset. Our observations indicate that a rigorous process for annotator selection, 
along with detailed annotation guidelines, significantly improved the quality of the dataset. Through 
extensive experimentation, our proposed methodology, based on the Bert transformer model, 
achieved benchmark performance, surpassing traditional machine learning models with accuracies of 
87% for English and 79% for Urdu. These results show improvements of 8.75% in English and 1.87% in 
Urdu over baseline models (SVM 80% English and 78% in Urdu).
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Recently, people have been spending more time on social media platforms, making decisions more frequently 
based on sentiments shared by these online communities. Social media platforms allow us to monitor the 
activities of our friends and family in a manner similar to how we would in our everyday lives. In addition, it 
enables us to connect with peoples we have never met in person from around the world. On these platforms, the 
predominant sentiments fall into two categories: hope and hate. Hope is a positive state of mind characterized 
by the anticipation of favorable outcomes in one’s life events and circumstances. Hope can be valuable for 
individuals aiming to sustain a steady and positive perspective on life1. We often use hopeful phrases, such as 
“Great job!“, “Kudos to you!” and “Continue the excellent work” to motivate and encourage others. In contrast, 
hate expresses a negative sentiment prevalent on online platforms that seeks to harass individuals based on 
characteristics such as race, religion, ethnicity, sexual orientation, disability, or gender2. The primary objective 
of social media platforms is to reduce the dissemination of hateful content, while actively encouraging and 
amplifying positive and hopeful expressions. Hope speech plays a crucial role in promoting positivity, fostering 
resilience, and encouraging individuals to maintain an optimistic outlook, which can lead to healthier, more 
constructive interactions. By highlighting and spreading hope, we can help combat negativity, creating a more 
supportive and uplifting online environment.

Hope speech detection is a relatively new approach that aims to identify and promote positive content, foster 
harmony, and encourage a positive atmosphere in society. Among the limited studies on hope speech detection, 
most have focused on monolingual contexts, where the model is trained and tested within a single language, 
such as English3, Tamil and Malayalam4, Kannada5, Bengali6, and Spanish7. The LT-EDI-EACL 20211 shared task 
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made a significant contribution to Hope Speech Detection by organizing competitions in English, Tamil, and 
Malayalam, advancing research on identifying positive and supportive content across these languages. However, 
no significant research has addressed hope speech detection in Urdu, either within monolingual or multilingual 
frameworks. To address this, we adopted a “multilingual” with translations based approach for hope speech 
detection. The concept of “multilingual hope speech detection (MHSD)” involves a comprehensive approach 
to processing mixed-language texts commonly found in social media conversations within multilingual 
communities, such as English and Urdu in Pakistan or similar countries, where both languages are widely used 
in public discourse. Translation-based techniques are employed to bridge linguistic gaps and accurately detect 
hope speech in this mixed-language content. This approach enables effective sentiment analysis and fosters 
positive discourse in multilingual online communities.

Recent developments in natural language processing (NLP) have provided new techniques to advance hope 
speech detection task. Models like BERT and its multilingual variants, as discussed by Devlin et al.8 and Pires 
et al.9, have demonstrated impressive performances in capturing semantic and contextual information across 
several languages. These models leverage transfer learning to fine-tune language representations pre-trained on 
specific tasks, enabling sophisticated identification of hope speech10.

This study highlights the potential of machine learning, deep learning, and advanced language models in 
promoting positive online discourse through the detection of hope speech. By focusing on both English and 
Urdu, it bridges the linguistic gap, ensuring that underrepresented communities are included in computational 
research. Urdu, spoken by over 230 million people globally11, plays a crucial role in social media interactions 
but has often been overlooked in natural language processing. In response, we developed a multilingual dataset 
for both English and Urdu, contributing to the emerging field of hope speech detection in these languages. 
Using a translation-based approach via the Google Translate API, we fine-tuned cutting-edge models to navigate 
the complexities of multilingual data. Our proposed models achieved (BERT) 87% accuracy on the English 
dataset and 79% on the Urdu dataset, demonstrating their capacity to identify and foster positive, constructive 
dialogues. By detecting and amplifying hope speech, this research not only counters the pervasive negativity on 
social media but also contributes to the creation of safer, more inclusive online spaces, where diverse voices are 
elevated and respected. This work underscores the broader societal value of cultivating optimism and civility in 
digital spaces, encouraging a more compassionate and constructive online culture.

The contributions of this paper are as follows:

	1.	� Our findings indicate that multilingual and joint translation-based approaches have not previously been 
explored for English and Urdu datasets;

	2.	� We explore the psychological basis of hope speech and conceptualize hope as a form of expectation, which 
informs the design of our dataset and the approach to classification tasks;

	3.	� We propose, implement, and evaluate transfer learning tools that help users actively encourage and amplify 
positive and hopeful expressions;

	4.	� Conduct a comprehensive analysis and performance evaluation by employing various learning techniques 
along with visualization methods;

	5.	� The comprehensive set of experiments demonstrated that the proposed framework achieved benchmark-lev-
el performance, surpassing the baselines in joint-translated approaches.

The rest of the paper is organized into six sections: “Literature survey” reviews related work on Hope Speech 
detection. “Methodology and design” presents the methodology and design. Results and analysis are presented 
in “Results and analysis”. “Limitation of the proposed solution” present the limitations of the proposed solution. 
Finally, “Conclusion and future work” discusses the conclusions of our research and potential avenues for future 
exploration.

Literature survey
Hope is essential for the well-being and recovery of individuals, as recognized by health professionals. It is 
defined as a positive mental state focused on anticipating favorable results in life’s situations or the world at large. 
This hopeful perspective is both future-oriented and driven by a desire for positive outcomes12.

Nath et al.6 highlights the lack of research on hope speech detection in Bengali, despite its significance due 
to the large number of Bengali speakers. They address this gap by creating a high-quality, annotated dataset of 
Bengali tweets and applying computational models to validate its effectiveness for hope speech research.

Daniel, et al.7. Focuses on hope speech, which can inspire positivity and ease hostile environments, as an 
alternative to detecting negative content. It introduces SpanishHopeEDI, a new Spanish Twitter dataset on the 
LGBT community, and provides baseline experiments for further research on hope speech detection.

Chakravarthi et al.13 introduces a multilingual dataset designed to recognize and promote positive 
comments, using a custom deep network architecture with T5-Sentence embedding. The proposed CNN model 
outperformed other machine learning models, achieving macro F1-scores of 0.75 for English, 0.62 for Tamil, 
and 0.67 for Malayalam.

Chakravarthi et al.14 introduce HopeEDI, a multilingual dataset of hope speech from YouTube, annotated 
in English, Tamil, and Malayalam. It emphasizes the need for positive online content and provides benchmarks 
using precision, recall, and F1-score. The dataset, available for public use, aims to foster further research in 
promoting inclusive and supportive speech.

Balouchzahi et al.15 introduce a hope speech English dataset that classifies tweets into “Hope” and “Not Hope,” 
with further categorization into three hope types such as realistic hope, unrealistic hope and generalized hope. 
It details the annotation process and evaluates various baseline, deep learning and transfer learning approaches, 
finding that contextual embedding models outperform simpler classifiers in detecting hope speech.
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Daniel et al.16 focuses on developing new datasets and systems for the automatic detection of hope speech, 
primarily in Spanish, using classical machine learning and deep learning techniques. It emphasizes the importance 
of studying hope speech, which can inspire positivity, as an alternative to solely detecting hate speech.

Shahid Iqbal et al.17 explores multilingual hope speech detection in English and Russian using transfer 
learning and RoBERTA. It introduces a new Russian corpus and evaluates joint multi-lingual and translation-
based approaches in binary classification. The translation-based method (Russian-RoBERTA) achieved the 
highest performance with 94% accuracy and 80.24% F1-score. Our work is different in Urdu and English 
language.

Methodology and design
Construction of dataset
This section outlines the data collection process for the hope speech detection using the Tweepy API, which is 
used to extract tweets from Twitter. The dataset consists of 25,000 Urdu and 18,000 English Tweets collected 
between January 2023 and March 2024 related to hope speech. To extract relevant tweets, we used specific 
keywords that were carefully selected for their potential to evoke strong emotions related to either hope or 
not hope. To capture expressions of hope, positive words such as for Urduدیما (Umeed), ہلصوح (Housla) 
 ”,etc. while in English such as “Congratulations,“, “Thank you (Masbat) تبثم (Khushi) یشوخ - (Azm) مزع
“Brave,” “Hope,” and “Support” were used. Additionally, words associated with negative emotions, like “Lose,” 
“Ignorance,” “End,” “Sorrow,” and “War,” were included to gather non-hopeful. We incorporated different parts 
of speech (verbs, nouns, adjectives, and adverbs) using the same keywords to capture a broader range of relevant 
tweets. In total, 43,000 tweets were collected and saved in a 2 different CSV files for the further process. Figure 1 
shows the proposed methodology and design of the study.

Annotation
Annotation involves assigning labels to each sample through a manual evaluation process. In this study 
three independent annotators were selected to label each sample into binary classification such as a tweet as 
either “hope” or “not-hope.” Annotation is a crucial step for creating a high-quality dataset, so we carefully 
selected postgraduate students in Computer Science who were native speakers of both Urdu and English to 
ensure linguistic accuracy and cultural relevance in the annotation process. The final label for each tweet was 
determined based on majority voting.

Annotation guidelines
Annotation guidelines consist of a set of instructions provided to annotators to assist them in effectively 
classifying tweets as “hope” or “non-hope”. These guidelines are not strict rules, but serve to help annotators 
distinguish between hope and not hope speech. Although all annotators receive the same set of guidelines, their 
individual interpretations ultimately determine whether the qualities described are present in a tweet binary 
class, as shown in Table 1. The following criteria were established to identify tweets that should be marked as 
binary class hope-speech detection.

Hope

•	 Positive and encouraging tone that conveys optimism.
•	 Expresses belief in a better future, progress, or solutions.
•	 May offer support, motivation, or reassurance to keep going.
•	 The tweet includes supportive, hopeful, and empathetic responses during times of distress, tension, or un-

certainty.
•	 It contains words of reassurance, encouragement, inspiration, compliments, or satisfaction in optimistic so-

cial contexts.
•	 It expresses tolerance towards hate.
•	 It offers supportive comments directed towards any minority community.
•	 It demonstrates faith in the possibility of a better future.
•	 The tweet includes expressions of appreciation for someone.
•	 It conveys gratitude or appreciation for other people, places, or circumstances.

Not hope

•	 Negative, neutral, or indifferent tone that lacks optimism.
•	 Focuses on challenges, obstacles, or failure without expressing belief in improvement.

Annotation procedure
The labeling of tweets in the binary class followed the annotation guidelines outlined above. These guidelines, 
along with the tweet list, were provided to the three selected annotators. The list was given in a randomized order, 
and each annotator was tasked with labeling all (n = 9236) tweets in both Urdu and English as either “Hope” or 
“Not-hope,” based on the provided criteria. According to the classification guidelines, any tweet not evoking 
hope was labeled as “Not-hope,” including tweets that potentially carried neutral or negative sentiments. The 
annotators were given ample time to complete the task. To supervise the annotation process, individual Google 
Forms were created for each annotator to ensure consistency and track key annotation details. These forms were 
designed to capture categorization criteria, challenges faced, and any ambiguities encountered. Weekly meetings 
were scheduled to review the data collected through the forms, assess the progress of the annotation, and address 
any challenges encountered. Afterward, their annotations were reviewed and adjusted to ensure that the correct 
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labels were assigned. Notably, in the binary classification, annotators 1 and 2 exhibited nearly identical labeling 
patterns. The distribution of the labels remained balanced throughout the corpus.

Inter annotator agreement
We calculated the inter-annotator agreement (IAA) using Fleiss’ Kappa and pairwise Kappa for binary 
classifications. Fleiss’ Kappa18 is particularly useful when dealing with three or more annotators and categorical 

Language Tweets Label

English
Even in the darkest times, there’s always a glimmer of hope. Keep believing, keep pushing, and never give up. Better days are coming! Hope

It feels like things aren’t improving, and I’m not sure where this is all headed Not hope

Urdu

۔ےگ ںوہ رتہب تالاح ہک ںیھکر دیما ہشیمہ رگم ،یگ ںیئآ تالکشم ںیم یگدنز
HopeEnglish Translation

Challenges will come in life, but always keep hope that things will get better

۔ںیہن ہدئاف یئوک اک ےنرک ششوک ،ےگ ںیلدب ںیہن یھبک تالاح ہی
Not hopeEnglish Translation

These circumstances will never change, there is no point in trying

Table 1.  Examples of hope and not hope tweets.

 

Fig. 1.  Proposed methodology and design.
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output labels. The dataset used in this study contained 9236 tweets, each labeled by three annotators. During 
the annotation process, differences in opinions among the annotators may arise, and it is essential to examine 
and analyze these discrepancies to derive meaningful insights from annotators’ outputs. This evaluation was 
conducted by calculating the IAA, which serves as a measure of the quality and reliability of the annotation 
process, indicative of the accuracy of the results19. Landis and Koch20 proposed a way to interpret agreement 
levels based on the value of K, which is given in Table 2, while the pairwise Kappa values between the annotators 
used in this study is shown in Table 3, reflect the level of agreement in their annotations. The Kappa value between 
Annotator 1 and Annotator 2 is 0.94, indicating strong agreement. The Kappa value between Annotator 1 and 
Annotator 3 is 0.78, suggesting moderate to strong agreement. Finally, the Kappa value between Annotator 2 and 
Annotator 3 is 0.74, indicating moderate agreement. These results demonstrate a high degree of consistency in 
the annotation process across all annotator pairs.

Corpus characteristics and standardization
The proposed corpus comprises 4934 English and 4302 Urdu samples, resulting in a total of 9,236 after translating 
between the two languages out of 4700 labeled as Hope and the remaining 4536 samples labeled as Not Hope. 
This balancing data is crucial for ensuring the best performance of the model during training and testing phase. 
Figure 2 illustrate the word clouds while Fig. 3 shows the data distribution for each language. Figure 4 illustrates 
key statistics of a dataset comprising both English and Urdu languages. It presents a comparison between the 
two languages across several metrics, including the number of posts, total words, and average words per post, 
vocabulary size, character count, and character-related averages. Both languages feature the same number of 
posts (9236), but English shows a higher total character count (1,369,373) compared to Urdu (1,393,052). Urdu, 
however, has a slightly larger vocabulary size (19,517 words) than English (19,762 words). The average number 
of words per post is higher for Urdu (34.08) compared to English (27.4), while English has a higher average 
number of characters per word (5.4) relative to Urdu (4.4). These statistics reflect the linguistic differences and 
variations in text structure between the two languages in the dataset.

Fig. 2.  Word cloud (a) Urdu (b) English.

 

Annotator pair Kappa value

Annotator 1 and Annotator 2 0.94

Annotator 1 and Annotator 3 0.78

Annotator 2 and Annotator 3 0.74

Table 3.  Pairwise Kappa values between annotators.

 

Kappa value range Interpretation

1.0 Perfect agreement

0.80 to 1.0 Substantial agreement

0.60 to 0.80 Moderate agreement

0.40 to 0.60 Fair agreement

< 40 Poor agreement

Table 2.  Interpretation of the Kappa values.

 

Scientific Reports |         (2025) 15:9005 5| https://doi.org/10.1038/s41598-025-88687-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Ethical concern
Social media data, particularly concerning Racial and Ethnic Minorities, Religious Minorities, People with 
Disabilities and Economic Minorities, are highly sensitive. To minimize the risk of exposing individual identities, 
we carefully removed personal information such as names and religion from the dataset, with the exception 
of public figures, and pledged not to contact the original authors. The dataset will be made available only to 
researchers who agreed to comply with ethical guidelines for research.

Translation based approach
The translation-based approach aims to standardize both Urdu and English texts by converting all content into 
a single language and storing the dataset in a single CSV file; in the first column of the CSV, there are tweets 
the 2nd column contain a label, making it easier to process and analyze. The translation pipeline involves the 
following steps:

Fig. 4.  Dataset statistics in both Urdu and English languages.

 

Fig. 3.  Label distribution (a) English Dataset and (b) Urdu Dataset.
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•	 Pre-translation Tokenization: Before proceeding with the translation, the text is divided into smaller tokens 
called words or phrases. This step helps to improve translation accuracy by allowing translation tools to better 
understand the context and meaning of each segment.

•	 Handling Noisy Translations: Once translation is complete, we carefully manually review the entire procedure 
to track any errors, especially for idiomatic expressions or slang that may not translate smoothly between 
languages. This ensures that the translated content maintains its intended meaning and clarity.

•	 Post-Translation Alignment: To maintain consistency, we first translated the Urdu language text into English 
and combined it into a single CSV file to create a single corpus for 2nd corpus we translated the English 
language to Urdu texts carefully aligned with the original Urdu texts in the dataset. This ensures that both 
translated and native original texts are of similar quality for analysis.

•	 Text Length Standardization: For texts that are excessively long, truncation is applied to ensure a uniform 
input length, making the data more suitable for deep learning models.

This approach helps ensure that linguistic differences between Urdu and English do not interfere with model 
performance and enables uniform text processing across both languages. Table 4 represents the pseudo-code for 
multilingual hope speech classification (Urdu-English Dataset using BERT model).

Preprocessing
Data pre-processing involves transforming raw data to make it suitable for machine learning models. It is essential 
for analyzing Twitter posts, to improve the quality of data and performance of the model. The preprocessing 
involves a series of essential steps, first, we standardize the input text by removing special character, numbers, 
punctuations, short word and extra spaces, converting everything to lowercase for uniformity. Next, we 
standardize the text into individual words or tokens, making it easier to work with. In the following step, we 
focus on removing noise from the tokens by looping through each one and filtering out any non-alphanumeric 
characters, ensuring that only relevant content remains. We then eliminate unwanted words by loading a list 
of English stop words21 and filtering out these common words, along with any tokens that are shorter than 
three characters. This helps refine our dataset further. Afterward, we apply stemming to the filtered tokens, 
which reduces words to their base forms, ensuring consistency across the dataset. To handle class imbalance, we 
applied SMOTE (Synthetic Minority Over-sampling Technique) to balance the classes in the dataset. SMOTE 
is a popular technique used to address class imbalance by generating synthetic samples for the minority class. 
By applying SMOTE, we ensure a more reliable evaluation of the model, as it mitigates the bias caused by 

Step Procedure/operation Description

1 Multilingual. Hope-speech-classification () Procedure for multilingual hope speech classification (Urdu-English Dataset)

2 D1 ← Urdu-Dataset (4,302) Load Urdu dataset (4302 samples)

3 D2 ← English-Dataset (4,934) Load English dataset (4934 samples)

4 Eng-Translated-D1 ← Translate-To-English (D1) Translate Urdu dataset into English

5 Urd-Translated-D2 ← Translate-To-Urdu (D2) Translate English dataset into Urdu

6 Review-Translations (Eng-Translated-D1, Urd-Translated-D2) Manually review translations for accuracy, especially focusing on idiomatic expressions or slang

7 Combined-Eng-D ← Merge (Eng-Translated-D1, D2) Combine reviewed translated Urdu (in English) with the original English dataset

8 Combined-Urd-D ← Merge (Urd-Translated-D2, D1) Combine reviewed translated English (in Urdu) with the original Urdu dataset

9 Augmented-Eng-D ← Back-Translation (Combined-Eng-D) Apply back-translation to augment the combined English dataset (e.g., English → French → English)

10 Augmented-Urd-D ← Back-Translation (Combined-Urd-D) Apply back-translation to augment the combined Urdu dataset (e.g., Urdu → Arabic → Urdu)

11 Pre-Processed-Eng-D ← Pre-Processing (Augmented-Eng-D) Pre-process the augmented English dataset (Cleaning, Lower-Case, Replace Emoji)

12 Pre-Processed-Urd-D ← Pre-Processing (Augmented-Urd-D) Pre-process the augmented Urdu dataset (Cleaning, Lower-Case, Replace Emoji)

13 Com-D1 ← BERT-Tokenizer (Pre-Processed-Eng-D, Pre-
Processed-Urd-D, ‘bert-base-multilingual-cased’) Tokenize the combined and augmented dataset (Urdu and English) using BERT multilingual model

14 Classification (Com-D1, 3) Classify the combined and augmented dataset (Urdu-English) using a fine-tuned Multilingual 
BERT model

15 Pre-Processing(D) Procedure to pre-process dataset (Cleaning, Lower-Case, Replace Emoji)

16 D1 ← Cleaning(D) Remove hashtags, mentions, punctuation, URLs, numbers, etc.

17 D2 ← Lower-Case(D1) Convert text to lower-case

18 D3 ← Replace-Emoji(D2) Replace emojis/emoticons with corresponding text

19 Classification (Dataset D, mode) Procedure for classification using fine-tuning of the relevant multilingual BERT model

20 Model ← fine-tuning (D, ‘Bert-base-multilingual-cased’, 80 − 20) Fine-tune the combined and augmented Urdu-English dataset using BERT multilingual (cased) 
model (80 − 20 split)

21 confusion-matrix ← generate-results (Model) Generate confusion matrix from the fine-tuned model

22 accuracy ← compute-accuracy(confusion-matrix) Compute accuracy from the confusion matrix

23 precision ← compute-precision(confusion-matrix) Compute precision from the confusion matrix

24 recall ← compute-recall(confusion-matrix) Compute recall from the confusion matrix

25 F1-score ← compute-F1(confusion-matrix) Compute F1-score from the confusion matrix

Table 4.  Multilingual hope speech detection classification (English dataset, Urdu dataset).
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imbalanced data. Finally, we compile the cleaned and processed tokens into a final list, ready for analysis as seen 
Fig. 5. Through these carefully executed steps, we ensure that the text data is clean, relevant, and well-prepared 
for meaningful insights.

Feature extraction
After effectively translating and pre-processing our dataset, we turned our attention to feature extraction. 
This step is crucial because it enables the conversion of textual data into numerical formats in which machine 
learning algorithms can work effectively. For machine learning, we used the Term Frequency–Inverse Document 
Frequency (TF-IDF) as the feature extraction method. For deep learning, we used FasText and GloVe, and for 
transfer learning, we used transformer-based language models leveraging contextual embeddings as the feature 
extraction method.

TF-IDF
TF-IDF is a technique used to determine how often a word appears in a document, while also reducing the 
influence of words that appear in multiple documents across the corpus. The advantage of using TF-IDF lies in 
its simplicity of calculation and ability to assess the relevance of keywords effectively.

	
T F = Number of times term t appears in a document

Total number of terms in the document
� (1)

The IDF of a term reflects the inverse proportion of documents containing that term. Terms with technical 
jargon, for example, hold greater significance than words found in only a small percentage of all documents. The 
IDF can be computed using the following Eq. (2);

	
IDF = Number document in the corpus

Number of document in the corpus contain terms
� (2)

TF-IDF can be calculated in Eq. (3);

	 T F − IDF = T F × IDF � (3)

FasText
FastText extends Word2Vec by representing words as bags of character n-grams. The embedding for a word ‘w’ 
is calculated in Eq. (4);

	
V w =

∑
g∈ G(w)V g� (4)

 where G (w) is the set of character n-grams in the word w. Vg is the vector representation of each n-gram g.

Fig. 5.  Data preprocessing approach.
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GloVe
GloVe (Global Vectors for Word Representation) creates word embedding’s based on the co-occurrence matrix 
of words. The key Eq. (5) is derived from the ratio of co-occurrence probabilities:

	
Cost =

∑
V
i,jf (Xi,j) (V i

T Vj + bi + bj − log(xi,j ))2
� (5)

 where Xi, j​ is the number of times word j occurs in the context of word i. V is the vocabulary size. Vi and Vj are 
the embedding’s for words i and j. bi and bj​ are bias terms for the words. f(Xi, j) is a weighting function to down-
weight the influence of very frequent words.

Transformer-based contextual embeddings
In addition to traditional and deep learning methods, we employed transformer-based language models for 
feature extraction in our transfer learning approach. These models generate contextualized embeddings, 
providing dynamic word representations based on their surrounding context. Unlike static embeddings like 
FastText and GloVe, contextual embeddings adapt to the specific context in which words appear, enabling a 
deeper semantic understanding of the text. TF-IDF, FastText, and GloVe were used alongside transformers to 
provide a comparative analysis because they each offer different strengths: TF-IDF highlights important terms 
based on frequency, while FastText and GloVe offer pre-trained word-level embeddings that capture semantic 
relationships. These traditional methods were contrasted with transformers’ contextual embeddings to understand 
their individual contributions to hope speech detection. Each of these feature extraction techniques—TF-IDF, 
FastText, GloVe, and transformer-based language models—was used separately to evaluate their individual 
impact on hope speech detection. This approach allowed us to analyze the effectiveness of statistical, deep 
learning, and contextual embedding methods independently for multilingual social media discourse.

Application of models, training and testing phase
To optimize the models for the best performance, grid and random search techniques were used to explore 
different combinations of hyper parameters as shown in Table 5. A grid search systematically tests all possible 
combinations, whereas a random search selects random sets of hyper parameters. These tuning methods 
ensure that each model is configured to perform the classification tasks as accurately as possible. Specifically, 
we utilized two hope speech datasets: one in Urdu and another in English. To evaluate our datasets we applied 
state-of-the-art six machine learning models such as Extreme gradient boosting (XGB), Naive Bayes (NB), 
Logistic Regression (LR), Decision tree (DT), Random forest (RF) and Support vector machine (SVM) (using 
TF-IDF word embedding’s) and two deep learning models such as Convolutional Neural Network (CNN) and 
Bidirectional Long Short-Term Memory (BiLSTM) with two different word embedding’s (GloVe and FastText) 
and four transformer-based models such as Bidirectional Encoder Representations from Transformers (BERT) 
and Robustly Optimized BERT Approach (RoBERTa), Google Electra and GPT-2 for representation learning. 
The transformer-based models use pre-trained embedding’s to leverage rich contextual information and 
multilingual capabilities, enhancing the accuracy and robustness of the classification tasks across languages. For 
all experiments, we applied an 80–20 split, allocating 80% of the data for training and remaining 20% for testing. 
This split ensures that the models learn patterns from the training data while being evaluated on unseen data 
during testing to monitor the performance, as shown in Fig. 6.

The Table  5 presents a comparative overview of the learning approaches, models, and hyperparameter 
configurations used in this study. To address concerns regarding the misuse or lack of distinction between 
methodologies, we elaborate on the specific setups and parameters that differentiate each approach:

Transformer-Based Models: The transformer-based models (e.g., BERT, mBERT, RoBERTa, GPT-2, and 
ELECTRA) were fine-tuned using domain-specific data, a core application of transfer learning. These models 
were pre-trained on large corpora, and their learned knowledge was transferred to our task by fine-tuning them 
with carefully selected hyperparameters. For instance, a learning rate of 2e-5, 3 epochs, a batch size of 32, the 
AdamW optimizer, and CrossEntropyLoss function were chosen through grid search. This approach is aligned 
with transfer learning principles, which leverage the power of pre-trained models to reduce the need for large 
amounts of task-specific data while ensuring the models are adapted for specific tasks such as sentiment analysis 
and hope speech detection.

Learning approach Models Hyper parameter Grid search

Transformer BERT, mBERT, RoBERTa, GPT-2, ELECTRA Learning rate, epoch, batch size, Optimizer, Loss Function 2e-5, 3, 32, AdamW, CrossEntropyLoss

Machine learning

SVM Random state, kernel, c value, gamma 42, linear and rbf, 1.0, auto

XGB n_estimators, max_depth, learning_rate 100, 6, 0.3

DT random state, max_depth, min_samples_split, min_samples_leaf 42, 10, 2, 1

RF n_estimators, max_depth, min_samples_split, min_samples_leaf 100, 10, 2, 1

NB Alpha, fit_prior, class_prior 1.0, true, none

LR Random state, max_iter, c value, solver 42, 1000, 0.1, liblinear

Deep learning BiLSTM and CNN Learning rate, epoch, embedding_dim, batch size, 0.1, 5, 300, 32

Table 5.  Optimum values identified for the hyper-parameters of proposed models.
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Fine-Tuning of mBERT and BERT: Both mBERT (Multilingual BERT) and BERT (Bidirectional Encoder 
Representations from Transformers) were fine-tuned in the context of our multi-language task. For mBERT, 
which is pre-trained on a large multilingual corpus, we used a similar fine-tuning process as BERT but adapted 
it for multilingual text. During fine-tuning, mBERT was exposed to our specific multilingual dataset containing 
text in Urdu, and English. The model’s parameters, such as the learning rate (2e-5), the number of epochs (3), 
and batch size (32), were selected to optimize performance for the specific classification task. This fine-tuning 
process ensures that the model effectively learns the nuances of each language, while leveraging pre-existing 
language knowledge from mBERT’s training.

For BERT, which was pre-trained on English text data, fine-tuning followed a similar process, but it was done 
exclusively with the English subset of our dataset. This adaptation ensures that the model is not only leveraging 
its pre-trained knowledge but also refining it to recognize patterns within our task-specific data. Fine-tuning 
was performed using task-specific labels (e.g., hope speech detection), and hyperparameters were selected to 
maximize model convergence and performance for the binary classification problem.

Traditional Machine Learning Models (Benchmarking Role): To provide a benchmark and distinguish 
them from the transformer-based deep learning models, we utilized traditional machine learning models like 
Support Vector Machines (SVM), XGBoost (XGB), Naïve Bayes (NB), DT, RF, and Logistic Regression (LR). 
It is important to note that these models are not transfer learning approaches, as they do not leverage pre-
trained representations or fine-tuning of large-scale models. Instead, their role is to serve as a benchmark for 
comparison against the more advanced transformer-based models. By training them directly on the task-specific 
data without utilizing pre-trained models, we establish a baseline performance to evaluate the advantages and 
performance improvements offered by transfer learning. Each model’s hyperparameters, such as kernels for 
SVM, tree estimators for XGB, and solver choices for LR, were optimized using grid search to ensure rigorous 
comparison. This distinction clarifies how traditional machine learning methods differ from transfer learning 
models, where knowledge is adapted from pre-trained models.

Deep Learning Models: We used BiLSTM and CNN models to capture sequential and spatial patterns in 
text data. These models require extensive training from scratch and differ fundamentally from transfer learning 
approaches, as they do not benefit from pre-trained representations. Parameters such as embedding dimensions 
(300), learning rates (0.1), and batch sizes (32) were tuned using grid search. The use of these deep learning 
models emphasizes the contrast in methodological application compared to transformer-based models, where 
the core strength of transfer learning is its ability to fine-tune pre-trained knowledge to specific tasks.

By explicitly defining the hyperparameters and optimization processes for each model, this table underscores 
the distinction between transfer learning, traditional machine learning, and deep learning methodologies. This 
clarification ensures that the application of transfer learning is well justified and not misused, emphasizing its 
role in adapting pre-trained models for task-specific performance, while also providing a clear comparison with 
other methodologies.

Fig. 6.  Application of models training and testing phase.
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Evaluation metrics
Accuracy: This metric calculates the percentage of correctly classified instances out of the total number of 
predictions, providing a straightforward measure of the model’s overall performance, as calculated in Eq. (6).

Precision: Precision evaluates the number of predicted positive cases (hope speech) that are correct. This is 
particularly important when the cost of false positives (incorrectly identifying non-hope speech as hope speech) 
is high, as calculated in Eq. (7).

Recall: Known as the sensitivity or true positive rate, recall measures how many of the actual positive cases 
(hope speech) are correctly identified by the model. This helps in understanding how well the model captures 
hope speech, as calculated in Eq. (8).

F1-score: F1-score is the harmonic mean of the precision and recall, offering a balanced measure when both 
precision and recall are important. This is especially useful when there is an imbalance in the dataset, ensuring 
that neither metric is disproportionately favored, as calculated in Eq. (9).

	
Accuracy = TN + TP

Total Predictions
� (6)

	
Percision = TP

FP + TP
� (7)

	
Recall = TP

FN + TP
� (8)

	
F1 − score = 2 × Recall × Precision

Recall + Precision
� (9)

While TP is true positive, FP is false positive and TN is true negative.

Results and analysis
Experimental setup
Experiments were conducted on a Lenovo laptop powered by an Intel Core i7 8th generation processor with 4 
cores, bus speed of 8 GT/s, 24 GB of RAM, and 1 TB of storage. The operating system used was Windows 10 Pro, 
which provided a stable environment for development and execution. To perform the predictive analysis Google 
Colab was selected for programming and easy access to a Python environment, we utilized Python version 3.12.4 
and Scikit-Learn library, version 1.3.0, was employed to implement the machine learning algorithms. Moreover, 
using Google Colab’s GPU capabilities significantly enhances the performance of transformer-based models.

Results for machine learning
Table 6 presents the performance of several traditional machine learning models using TF-IDF word embedding’s 
on both English and Urdu datasets, evaluated by Accuracy, Precision, Recall, and F1-score.

For the English dataset SVM stands out as the best performer, achieving the highest scores of 0.8 across 
Precision, Recall, F1-score, and Accuracy, indicating it is the most reliable model for this task. Both XGB and 
LR follow closely, with 0.79 across all metrics, making them strong alternatives to SVM, though slightly less 
effective. NB and RF score similarly, with 0.77 in most metrics, showing they are decent models but not as strong 
as the top three. DT, on the other hand, has the lowest performance with 0.72 for Accuracy and lower values for 
other metrics, suggesting that it is less suited for this classification problem. In conclusion, SVM emerges as the 
top model, while DT shows the weakest performance in comparison to the other models.

For the Urdu dataset LR and SVM both perform exceptionally well, achieving identical scores of 0.78 across 
Precision, Recall, F1-score, and Accuracy, making them the most reliable models for this task. XGB, NB, and RF 
all have similar performance, with 0.77 in all metrics, demonstrating they are effective but slightly less optimal 
than LR and SVM. DT, however, performs the weakest, with scores of 0.69 in Accuracy and lower values in the 

Language Models Precision Recall F1-score Accuracy

English

XGB 0.79 0.79 0.79 0.79

LR 0.79 0.79 0.79 0.79

NB 0.77 0.77 0.77 0.77

RF 0.77 0.77 0.76 0.77

DT 0.73 0.72 0.72 0.72

SVM 0.8 0.8 0.8 0.8

Urdu

XGB 0.77 0.77 0.77 0.77

LR 0.78 0.78 0.78 0.78

NB 0.77 0.77 0.77 0.77

RF 0.77 0.77 0.77 0.77

DT 0.69 0.69 0.68 0.69

SVM 0.78 0.78 0.78 0.78

Table 6.  Results for machine learning.
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other metrics, indicating it struggles to handle the classification task effectively. In summary, LR and SVM stand 
out as the top models for Urdu, while DT remains the least effective option.

In summary, SVM outperformed all other models in both languages, while DT demonstrated consistent 
underperformance across both datasets. Other models like XGB, LR, and RF displayed competitive results.

Deep learning results
Two deep learning models used in the experiments such as CNN and BiLSTM were trained with specific 
parameters. Each model was trained for 20 epochs per fold, using the Adam optimizer with a learning rate of 
0.001. The loss function applied was categorical cross entropy, and both models utilized a dropout rate of 0.1 to 
prevent over-fitting. In the case of CNN, filters of sizes [1, 2, 3 and 5] were employed, with a total of 36 filters. 
Both models used an embedding size of 300 for feature representation and a soft-max activation function for 
classification.

Table 7 compares the performance of CNN and BiLSTM models using two different word embeddings—
FasText and GloVe—on classification tasks for both English and Urdu languages, with metrics including 
Precision, Recall, F1-score, and Accuracy. For English, the BiLSTM model using FasText embedding performs 
the best, achieving scores of 0.81 across Precision, Recall, F1-score, and Accuracy, making it the most effective 
model. The CNN model with FasText follows closely with a score of 0.76, indicating good performance but 
not quite as strong as BiLSTM. When using GloVe embeddings, BiLSTM shows slightly lower performance 
(0.79 for F1-score and Accuracy), while CNN achieves 0.77, both still strong but lower than the FasText-based 
BiLSTM. For Urdu, the BiLSTM with FasText performs the best at 0.75 for Precision, Recall, and F1-score, 
with an Accuracy of 0.75, showing it is the most reliable model for this language as well. In contrast, CNN with 
FasText performs poorly with a Precision of 0.71, but the Recall, F1-score, and Accuracy are significantly lower, 
especially with GloVe embeddings. The CNN and BiLSTM models using GloVe in Urdu show even poorer 
results, with the highest Accuracy being 0.51 for CNN and 0.5 for BiLSTM, demonstrating that GloVe does not 
perform well for Urdu in this task. In conclusion, BiLSTM with FasText performs the best for both English and 
Urdu, while CNN models, particularly with GloVe, show significantly weaker results, especially for Urdu.

Transformers results
Table  8 compares the performance of four language models for text classification in English and Urdu. For 
English, bert-base-uncased leads the pack with the highest scores across all metrics at 0.87, showcasing its 
strength in understanding and classifying English text accurately. Close behind is roberta-base, achieving a solid 
0.86 across the board, followed by gpt2, which performs reliably with scores of 0.85. Electra-base-discriminator 
has slightly lower performance, with an F1-score of 0.83, but it still demonstrates competence in handling 
English text.

For Urdu, the performance is more varied. Bert-base-multilingual-cased performs best, with an F1-score of 
0.78 and accuracy of 0.79, making it the top choice for handling Urdu text. Gpt2 also shows strong performance, 
scoring 0.77 across most metrics. However, roberta-base underperforms compared to its English counterpart, 
achieving a consistent but lower score of 0.72. Electra-base-discriminator, in contrast, struggles significantly in 

Language Models Precision Recall F1-score Accuracy

English

Bert-base-uncased 0.87 0.87 0.87 0.87

Roberta-base 0.86 0.86 0.86 0.86

Electra-base-discriminator 0.84 0.84 0.83 0.84

gpt2 0.85 0.85 0.85 0.85

Urdu

Bert-base-multilingual-cased 0.8 0.79 0.78 0.79

Roberta-base 0.72 0.72 0.72 0.72

Electra-base-discriminator 0.25 0.5 0.33 0.5

gpt2 0.78 0.77 0.77 0.77

Table 8.  Results for transformers models.

 

Language Embedding’s Models Precision Recall F1-score Accuracy

English

FasText
CNN 0.76 0.76 0.76 0.76

BiLSTM 0.81 0.81 0.81 0.81

GloVe
CNN 0.77 0.77 0.77 0.77

BiLSTM 0.8 0.79 0.79 0.79

Urdu

FasText
CNN 0.71 0.51 0.35 0.51

BiLSTM 0.75 0.75 0.74 0.75

GloVe
CNN 0.54 0.51 0.37 0.51

BiLSTM 0.5 0.5 0.34 0.5

Table 7.  Results for deep learning.
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Urdu, with an F1-score of just 0.33 and an imbalanced precision-recall performance, highlighting its difficulty 
in managing this language.

Error analysis
The Fig. 7 showcases the performance of three top-performing models—BERT, BiLSTM (FastText), and SVM—
on an English text classification task, evaluated using four metrics: precision, recall, F1-score, and accuracy. 
Among the models, BERT outperforms the others across all metrics, achieving the highest score of 0.87 
consistently. This indicates its exceptional ability to understand and classify English text. BiLSTM (FastText) 
follows with scores of 0.81 for all metrics, showcasing solid but slightly lower performance compared to BERT. 
Lastly, SVM performs similarly to BiLSTM, with scores around 0.80, demonstrating its effectiveness but slightly 
trailing behind. Overall, the figure highlights BERT as the most powerful model for English text, with BiLSTM 
and SVM as strong alternatives, albeit with slightly lower accuracy and balance.

Figure  8 illustrates the performance of four models—mBERT, BiLSTM (FastText), SVM, and LR—on an 
Urdu text classification task, evaluated across precision, recall, F1-score, and accuracy. mBERT leads in all 
metrics, with the highest scores of 0.80 for precision and 0.79 for recall, F1-score, and accuracy, showcasing 
its superior ability to handle Urdu text effectively. SVM and LR follow closely, both achieving consistent scores 
of 0.78 across all metrics, highlighting their reliability. BiLSTM (FastText), while still competitive, lags slightly 
behind with scores of 0.75 for recall and accuracy and 0.74 for the F1-score. Overall, mBERT emerges as the 
top-performing model, demonstrating its strong multilingual capabilities, while SVM and LR provide strong 
alternatives for Urdu text classification.

Table 9 provides the classification performance of models for two sentiment classes, “hope” and “not hope,” 
in English and Urdu. For the English dataset, the “not hope” class achieves a precision of 0.88, recall of 0.84, and 
F1-score of 0.86, with 922 samples. The “hope” class performs slightly better with an F1-score of 0.87 due to a 
higher recall (0.89) despite slightly lower precision (0.85). The overall accuracy for English is 0.87, indicating 
strong model performance in distinguishing between the two classes.

In the Urdu dataset, the “not hope” class achieves a high recall of 0.88, but precision is lower at 0.74, resulting 
in an F1-score of 0.80 for 926 samples. For the “hope” class, precision is strong at 0.85, but recall drops to 
0.69, yielding an F1-score of 0.76 for 928 samples. The overall accuracy for Urdu is 0.79, which is lower than 
English, indicating slightly more difficulty in accurately classifying the sentiment in Urdu while Fig. 9a,b shows 
the confusion matrix and Figs. 10 and 11 shows the comparisons of train vs validation accuracy and train vs. 
validation loss in both English and Urdu dataset.

Overall, while both languages show strong performance, the model is slightly better at handling English 
sentiment classification, particularly due to more balanced precision and recall across classes. For Urdu, there is 
room to improve the recall for the “hope” class and the precision for the “not hope” class.

Fig. 7.  Comparison of the top-performing models in each learning approach of English dataset.
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Fig. 9.  (a) Confusion matrix in English and (b) shows the confusion matrix of Urdu dataset.

 

Language Class Precision Recall F1-score Support Accuracy

English
Not hope 0.88 0.84 0.86 922

0.87
Hope 0.85 0.89 0.87 932

Urdu
Not hope 0.74 0.88 0.8 926

0.79
Hope 0.85 0.69 0.76 928

Table 9.  Class wise score of BERT model in term of English and Urdu dataset.

 

Fig. 8.  Comparison of the top-performing models in each learning approach of Urdu dataset.
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Limitation of the proposed solution
This study encountered several challenges, especially due to the subjectivity involved in annotating mixed-
sentiment tweets in both Urdu and English. A major hurdle in the annotation process was the difficulty of 
finding native speakers who were fluent in both languages and had the necessary expertise in NLP and machine 
learning to ensure consistent and accurate labeling. Furthermore, during annotation, tweets with mixed 
emotional tones presented significant complexities. For example, a tweet like “تالکشم یریم ہک ےہ دیما 
 I hope my struggles“) ”اگ ےلدب ںیہن ھچک ہک ےہ اتگل اسیا راھبک یھبک رگم ،یگ ںوہ متخ دلج
will end soon, but sometimes it feels like nothing will change”) conveyed hope yet contained an underlying 
sense of despair, making it difficult to assign a definitive label. As Urdu is a low-resource language, there were 
additional challenges related to the limited availability of annotated data and linguistic tools, which complicated 
the development of effective machine learning and deep learning models for detecting hope speech. In terms 
of model performance, despite achieving reasonable success in multilingual hope speech detection (MHSD), 
the models faced considerable difficulty in classifying tweets with intricate or conflicting emotional tones. For 
instance, the tweet “ےنرک ھچک یھب رھپ نکیل ،ےہ ںیہن ہگج یئوک یک دیما ںیم یگدنز یریم 
 illustrates this (”There’s no place for hope in my life, but I still try to do something“) ”ںوہ اترک ششوک یک
challenge. These cases highlight a key limitation of the approach: the model’s struggle to accurately capture 
nuanced sentiments, especially in the context of mixed emotions.

Conclusion and future work
Social media has become a powerful space for public dialogue, influencing opinions and the emotional landscape 
of communities. Until now, most research has focused on addressing negativity in the English language, 
particularly hate speech detection. This study highlights the critical need for multilingual hope speech detection 
(MHSD) in social media discourse, particularly focusing on the Urdu language, which has been overlooked 
in existing research. This work addresses a notable gap in current research and underscores the need for more 

Fig. 11.  Training and validation performance of different epochs in English.

 

Fig. 10.  Training and validation performance of different epochs in Urdu.
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inclusive language processing tools. By exploring a translation-based approach, we aim to tackle the challenges 
of multilingualism and improve communication across different backgrounds. By creating a multilingual 
dataset and employing a transfer learning paradigm with fine-tuning, we effectively addressed the challenges 
associated with identifying hope speech in both English and Urdu. The results indicate that our proposed 
framework, utilizing pre-trained BERT and translation-based strategies, significantly outperformed baseline 
models, achieving accuracies of 87% in English and 79% in Urdu. These findings underscore the importance of 
promoting positive discourse online and demonstrate the potential of hope speech as a means to foster healthier 
and more constructive interactions within communities. Future work will focus on expanding both the dataset 
and language coverage by incorporating Large Language Models (LLMs) to enhance the detection of Hope 
speech across diverse languages and contexts. By increasing the dataset size and adding more languages, we aim 
to examine how incorporating more samples of hope speech impacts model performance. Additionally, we plan 
to explore the potential of LLMs such as (GPT 3.5 Turbo) to capture complex linguistic nuances in multilingual 
discourse.

Data availability
The dataset utilized in this study is not publicly available but can be provided upon reasonable request. Inter-
ested researchers should contact the corresponding author at Sidorov@cic.ipn.mx, Centro de Investigación en 
Computación, Instituto Politécnico Nacional (CIC-PN), Mexico City 07738, Mexico. Requests must in-clude a 
detailed description of the intended use and the requester’s institutional affiliation.

Received: 1 December 2024; Accepted: 30 January 2025

References
	 1.	 Dowlagar, S. & Mamidi, R. EDIOne@ LT-EDI-EACL2021: Pre-trained transformers with convolutional neural networks for hope 

speech detection. In Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion 86–91 (2021).
	 2.	 Roy, P. K., Bhawal, S. & Subalalitha, C. N. Hate Speech and Offensive Language Detection in Dravidian Languages Using Deep 

Ensemble Framework 75101386 (Computer Speech & Language, 2022).
	 3.	 Palakodety, S., KhudaBukhsh, A. R. & Carbonell, J. G. Hope speech detection: a computational analysis of the voice of peace. In 

ECAI 2020 1881–1889. (IOS, 2020).
	 4.	 RamakrishnaIyer LekshmiAmmal, H. et al. Overlapping word removal is all you need: revisiting data imbalance in hope speech 

detection. J. Exp. Theor. Artif. Intell. 1–23 (2023).
	 5.	 Hande, A. et al. Hope speech detection in under-resourced kannada language. arXiv preprint arXiv:2108.04616 (2021).
	 6.	 Nath, T., Singh, V. K. & Gupta, V. BongHope: An annotated corpus for bengali hope speech detection. (2023).
	 7.	 García-Baena, D., García-Cumbreras, M. Á., Jiménez-Zafra, S. M., García-Díaz, J. A. & Valencia-García, R. Hope speech detection 

in Spanish: the lgbt case. Lang. Resour. Eval.. 57 (4), 1487–1514 (2023).
	 8.	 Devlin, J. Bert: pre-training of deep bidirectional transformers for language understanding. arXiv Preprint arXiv 181004805 (2018).
	 9.	 Pires, T. & Schlinger, T. & M. Smith. How Multilingual is Multilingual BERT? Proceedings of the 57th Annual Meeting of the 

Association for Computational Linguistics (ACL 2019) 1558–1567 (2019).
	10.	 Liu, Y., Ott, M., Goyal, N. & Smith, J. D. E. RoBERTa: A robustly optimized BERT pretraining approach. In Proceedings of the 2019 

Conference on Empirical Methods in Natural Language Processing (EMNLP 2019), 2970–2981. (2019).
	11.	 New World Encyclopedia. (n.d.). Urdu. New World Encyclopedia. Retrieved November 23. from (2024). ​h​t​t​p​s​:​/​/​w​w​w​.​n​e​w​w​o​r​l​d​e​

n​c​y​c​l​o​p​e​d​i​a​.​o​r​g​/​e​n​t​r​y​/​U​r​d​u​​​​​.​​​
	12.	 Snyder, C. R., Rand, K. L. & Sigmon, D. R. Hope theory. In Handbook of Positive Psychology, vol. 257, 276 (2002).
	13.	 Chakravarthi, B. R. Hope speech detection in YouTube comments. Social Netw. Anal. Min. 12 (1), 75 (2022).
	14.	 Chakravarthi, B. R. HopeEDI: A multilingual hope speech detection dataset for equality, diversity, and inclusion. In Proceedings of 

the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media 41–53 (2020).
	15.	 Balouchzahi, F., Sidorov, G. & Gelbukh, A. Polyhope: two-level hope speech detection from tweets. Expert Syst. Appl. 225, 120078 

(2023).
	16.	 García-Baena, D. Automatic detection of hope speech. In PLN-DS@ SEPLN 45–51 (2023).
	17.	 Malik, M. S. I., Nazarova, A., Jamjoom, M. M. & Ignatov, D. I. Multilingual hope speech detection: a robust framework using 

transfer learning of fine-tuning RoBERTa model. J. King Saud Univ.-Comput. Inform. Sci. 35 (8), 101736 (2023).
	18.	 Fleiss, J. L. Measuring Nominal Scale Agreement Among Many Raters (Psychological, 1971).
	19.	 Artstein, R. Inter-annotator agreement. Handb. Linguistic Annotation, 297–313 (2017).
	20.	 Landis, J. R. & Koch, G. G. The Measurement of Observer Agreement for Categorical data159–174 (Biometrics, 1977).
	21.	 Stop word removal-Natural Language Processing: Python and NLTK [Book] (n.d.) Retrieved May 9. from (2023). ​h​t​t​p​s​:​​​/​​/​

w​w​​w​.​o​r​e​i​l​l​​y​.​c​​o​​m​/​l​i​b​r​​a​​r​y​/​v​​​i​e​w​/​n​a​​t​u​​r​a​l​​-​l​a​n​g​​​u​a​g​e​-​p​​r​o​c​e​s​​​s​i​n​g​/​9​​7​8​1​7​8​7​2​​8​5​1​0​1​/​c​h​0​2​s 07.html#:~: text = Stop word removal is 
one,generallyclassifed as stop words.

Acknowledgements
The work was done with partial support from the Mexican Government through the grant A1-S-47854 of CO-
NAHCYT, Mexico, grants 20241816, 20241819, and 20240951 of the Secretaría de Investigación y Posgrado 
of the InstitutoPolitécnicoNacional, Mexico. The authors thank the CONAHCYT for the computing resources 
brought to them through the Plataforma de AprendizajeProfundo para Tecnologías del Lenguaje of the Labora-
torio de Supercómputo of the INAOE, Mexico and acknowledge the support of Microsoft through the Microsoft 
Latin America PhD Award.

Author contributions
Conceptualization, M.A., U.S., and I.A., methodology, M.A.,W.S., G.S., and I.B.; software, M.A.,A.H; validation, 
G.S. and U.S; formal analysis, M.H., M.M., M.J.; investigation, I.B.; resources, G.S. and I.B.; data curation, M.A.; 
writing—original draft preparation, M.A. and U.S.; writing—review and editing, M.A. and A.H.; visualization, 
M.M. and A.H.; supervision, I.B. project administration, I.B. All authors have read and agreed to the published 
version of the manuscript.

Scientific Reports |         (2025) 15:9005 16| https://doi.org/10.1038/s41598-025-88687-w

www.nature.com/scientificreports/

https://www.newworldencyclopedia.org/entry/Urdu
https://www.newworldencyclopedia.org/entry/Urdu
https://www.oreilly.com/library/view/natural-language-processing/9781787285101/ch02s
https://www.oreilly.com/library/view/natural-language-processing/9781787285101/ch02s
http://www.nature.com/scientificreports


Funding
The authors did not receive any funding.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |         (2025) 15:9005 17| https://doi.org/10.1038/s41598-025-88687-w

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Multilingual hope speech detection from tweets using transfer learning models
	﻿﻿Literature survey
	﻿﻿Methodology and design
	﻿Construction of dataset
	﻿Annotation
	﻿Annotation guidelines
	﻿Annotation procedure


	﻿Inter annotator agreement
	﻿Corpus characteristics and standardization
	﻿Ethical concern
	﻿Translation based approach
	﻿Preprocessing
	﻿Feature extraction
	﻿TF-IDF
	﻿FasText
	﻿GloVe
	﻿Transformer-based contextual embeddings

	﻿Application of models, training and testing phase
	﻿Evaluation metrics
	﻿﻿Results and analysis
	﻿Experimental setup
	﻿Results for machine learning
	﻿Deep learning results
	﻿Transformers results
	﻿Error analysis

	﻿﻿Limitation of the proposed solution
	﻿﻿Conclusion and future work
	﻿References


