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Gastric cancer (GC) is one of the most common tumors; one of the reasons for its poor prognosis 
is that GC cells can resist normal cell death process and therefore develop distant metastasis. 
Cuproptosis is a novel type of cell death and a limited number of studies have been conducted on the 
relationship between cuproptosis-related genes (CRGs) in GC. The purpose of the present study was 
to establish a prognostic model of CRGs and provide directions for the diagnosis and treatment of 
GC. Transcriptome and clinical data of patients with GC were collected from The Cancer Genome Atlas 
and Gene Expression Omnibus datasets. Single sample gene set enrichment analysis (GSEA) and the 
randomized forest method were used to establish the prognostic model. Kaplan-Meier survival curve, 
receiver operating characteristics diagram and a nomogram were used to evaluate the reliability of 
the model. GSEA and gene set variation analysis (GSVA) were used to examine enrichment pathways 
between high and low risk groups. Finally, immunohistochemical analysis was used to examine 
ephrin 4 (EFNA4) expression in GC samples and determine the prognosis of patients with GC based 
on the expression pattern of EFNA4. A group of 7 predictive models (RTKN2, INO80B, EFNA4, ELF2, 
MUSTN, KRTAP4, and ARHGEF40) was established which were correlated with CRGs. This model can 
be used as an independent prognostic factor to predict the prognosis of patients with GC. GSEA and 
GSVA results indicated that high risk patients with GC were mainly associated with the enrichment 
of ANGIOGENESIS and TGF_BETA_SIGNALING pathways. Finally, EFNA4 expression in GC was 
significantly higher than that in normal tissues, and patients with GC and high EFNA4 expression 
exhibited improved prognosis. In conclusion, the prognosis model based on CRGs could be used as 
the basis for predicting the potential prognosis of patients with GC and provide new insights for the 
treatment of GC.
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Gastric cancer (GC) is the world’s fifth most common type of cancer. It is also the third most common cause 
of cancer-related death1. More than 1 million new cases of early GC occur each year. Early GC can be directly 
resected by endoscopy, while advanced GC can only be treated by surgery. The early GC postoperative 5-year 
survival rate can reach 90%, whereas the 5-year survival rate of stage IA and IB patients with GC can reach > 60%. 
Patients with stage III GC exhibit a 5-year survival rate of 18%2. Despite the high survival rate following early 
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surgery, the overall survival rate for patients with GC worldwide is only 25%3. The reason for this is that most 
patients with GC are diagnosed at an advanced stage. Therefore, it is necessary to develop more effective 
prognostic models for this disease.

Copper is essential in the normal physiological activities of eukaryotes including energy metabolism, iron 
absorption, and signaling. An imbalance of copper in the body leads to the development of various diseases, 
such as anemia and centripenia, as well as the development and progression of tumors4,5. Cuprotosis is 
a newly discovered mode of cell death that differs from other known modes of death and is closely related 
to mitochondrial respiration. Specifically, copper causes toxic protein stress by binding to the fatty acylation 
component of the tricarboxylic acid cycle, which leads to cell death6. Considering the role of abnormal copper 
levels in tumors, several patients undergo treatment for their tumors via interference with the copper content 
in their body. The copper chelating agent Tetrathiomolybdate inhibits the transformation growth of melanoma 
cell lines, and the same effect also occurs in stem cell hepatoma7,8. The copper ion carrier disulfide binds to 
copper ions in breast cancer cells, thereby effectively inhibiting proteomase activity in these cells9. Therefore, the 
construction of cuproptosis-related genes (CRGs) can provide an improved basis for the prognosis of patients 
with tumors, as well as GC.

In the present study, the accuracy of the CRGS-based model was comprehensively investigated with regard to 
prognosis, clinical characteristics, receiver operating characteristics (ROC) and nomogram analysis of patients 
with GC in the training and validation sets. Moreover, the enrichment pathways of patients with GC were 
analyzed in the high and low risk groups. Finally, the expression levels of ephrin 4 (EFNA4) were investigated in 
each cell line by western blot analysis and in GC and normal tissues by immunohistochemical (IHC) analysis. 
Disease prognosis was determined according to the expression of EFNA4 in GC.

Materials and methods
Sample collection
The mRNA expression profile data of all samples were obtained from the The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) databases. GSE84437 served as the training set and TCGA-STAD and 
Gene Set Enrichment (GSE)26,253 served as the external verification set. To ensure the reliability of the analysis, 
paracancer tissues and samples with incomplete clinical information were deleted. Finally, 433 samples were 
included in GSE84437, 432 samples in GES26253, and 350 samples in TCGA-STAD (Table S2). Since the data 
for this study came from GEO and TCGA databases, we collected the maximum amount of data while deleting 
samples with paracarcinoma tissue and incomplete clinical information in order to ensure the reliability of the 
analysis. Peter et al.6 identified 10 copper death genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, 
GLS, and CDKN2A) for subsequent analysis.

Model construction
In order to establish a reliable CRG signature, the CRGs were screened. Firstly, single sample gene set enrichment 
analysis (ssGSEA) was applied to calculate the cuproptosis score of each sample based on 10 CRGs10. Subsequently, 
based on the copper death fraction, the samples were divided into high and low copper death fraction groups 
and the differentially expressed genes in the two groups were screened. Subsequently, univariate Cox regression 
analysis was used to screen the genes associated with prognosis in patients with GC11. The following screening 
criteria were used: P < 0.05. Finally, the differentially expressed genes and the prognosis of the intersection of 
copper were considered to be death-related genes.

The random forest model was applied to establish the signature associated with cuproptosis in GC. The 
process was implemented based on the “randomForestSRC” package12. The random forest algorithm can greatly 
reduce the risk of overfitting by integrating the prediction results of multiple decision trees, thus improving the 
prediction accuracy, and can calculate a large number of data.Different signatures were established through 
arrangement and combination, and the signature with the lowest P value was regarded as the optimal signature. 
According to the Risk score =∑ Coefgene×Expgenes, Coefgene corresponds to the coefficient of each prognostic 
gene and Expgenes corresponds to the expression level of each gene. Based on median risk scores, the samples 
from the training and external verification sets were divided into high and low risk groups, respectively. In 
addition, the random survival forest algorithm was used to screen the importance of prognostic genes, and the 
data indicated the top 10 most important genes.

Verification of gene signature associated with cuproptosis
The Kaplan-Meier (KM) survival analysis was used to evaluate the survival of patients with high risk and low risk, 
a process completed based on “survival” and “survminer” packages13. Subsequently, the “survivalROC” package 
was used to plot a ROC curve to assess the specificity and sensitivity of the signature. In order to further evaluate 
a prognostic model for independent prognostic factors of GC, univariate and multivariate Cox regression 
analyses were used to assess the signature in the training and the external validation sets of the prognostic 
value. In addition, the prognostic value of this signature in patients with GC was analyzed with different clinical 
characteristics (age, sex, tumor size, and lymph node metastasis). Finally, nomograms were established based on 
signature and clinical features for clinical application. To ensure the accuracy of this nomogram, a calibration 
curve was drawn to assess the difference between the prediction and the real situation. The Nomogram itself is 
built on the basis of a prognostic model trained with big data, and does not involve migration problems. We only 
need to evaluate the actual situation of the patient to determine the prognosis of the patient.
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Analysis pathways gene set variation analysis (GSVA) and gene set enrichment analysis 
(GSEA)
Both GSEA14 and GSVA15 assess the enrichment of gene sets based on gene expression. The difference between 
the two lies in that GSEA assesses the enrichment of gene sets based on the contribution of the genes in the 
gene sets, while GSVA uses ssGSEA to calculate the gene sets and “limma” to analyze the differences between 
groups. To assess the signaling pathways associated with the prognostic model, GSEA and GSVA were used to 
assess enrichment pathways in the high risk and low risk groups. GSEA (Version 4.3.2) was used for GSEA and 
“GSVA” package was used for GSVA analysis. P < 0.05 and FDR < 0.05 were considered to indicate statistically 
significant differences and were used to screen for signaling pathways. The Nomogram itself is built on the basis 
of a prognostic model trained with big data, and does not involve migration problems. We only need to evaluate 
the actual situation of the patient to determine the prognosis of the patient.

Cell culture, protein extraction, and western blot analysis
GES-1, HGC-27, AGS, and MKN-45 cells were purchased from the Cell Resource Center of Peking Union Medical 
College. All cells were cultured in a complete medium with RPMI-1640 (Gibco; Thermo Fisher Scientific, Inc.), 
10% fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.), and 1% penicillin and streptomycin (Gibco; 
Thermo Fisher Scientific, Inc.) at a ratio of 100:10:1. All cells were cultured in the presence of 5% CO2at 37˚C17. 
The protein was extracted according to the instructions of the Abbkine ExKine™ total protein extraction kit and 
the target protein was detected by western blot analysis according to the procedure reported by Zhang et al.18. In 
the present study, the primary antibodies used were EFNA4 (1:1,000, R&D Systems, Inc.; cat. no. MAB369-SP) 
and GAPDH (rabbit, 1:10,000, Proteintech Group, Inc., cat. no. 60004-1-Ig).

Patients and specimens
All GC and normal specimens were collected from the Gansu Provincial Hospital and confirmed by pathological 
examination as patients with GC. A total of 88 patients from January 2016 to January 2023 were collected were 
enrolled.None of the patients received treatment prior to surgery. The Ethics Committee of Gansu Provincial 
Hospital approved the study (2023099). All patients in the cohort signed an informed consent form.

IHC analysis and outcome scoring
IHC operation was performed in accordance with the instructions provided by the manufacturer and Tan 
et al.19. The primary antibody used was anti-E (1:50, R&D Systems, Inc.; cat. no. MAB369-SP). IHC scores 
were evaluated independently by two pathologists. The staining area of EFNA4 was quantified according to 
the proportion of stained positive cells. The staining strength score consisted of 0 (no staining), 1 (weak), 2 
(moderate), and 3 (strong), the expression intensity was weak at 0–25%, moderate at 25–50%, and strong at 
> 50%. The strength and percentage used were multiplied by 100 to calculate the final stain fraction. Finally, an 
organizational score of ≥ 150 was defined as high expression and < 150 as low expression.

Statistical analysis
SPSS software package (version 24.0, SPSS, Inc.) and GraphPad Prism (version 8.0, GraphPad Software, Inc.) were 
used for statistical analysis. All data are expressed as mean ± SEM. Statistical differences between experimental 
and control groups were analyzed using an unpaired two-tailed Student’s t-test (2 groups) or a one-way ANOVA 
(> 2 groups) followed by a multiple post hoc comparisons test (Dunnett’s test). The KM method was used to 
compare the GC survival time at different risk levels. Univariate Cox regression analysis was used to analyze the 
prognostic value of a single gene and Cox regression was used to analyze whether this factor could be used as an 
independent prognostic factor for GC. P < 0.05 was considered to indicate a statistically significant difference.

Results
Construction and genetic characteristics of a signature related to cuproptosis
Based on the copper death fraction, a total of 739 CRGs were screened by differential expression and univariate 
Cox regression analyses (Table S1). The random forest model was applied and a 7-gene signature was finally 
confirmed as the optimal signature (Fig. 1A). The following formula was used to estimate the risk score: 
Risk score = −0.0012×RTKN2 + −0.0027×INO80B + −0.0009×EFNA4 + 0.0029×ELF2 + 0.0050×MUSTN + 
−0.0050×KRTAP4-5 + −0.0054×ARHGEF40. By calculating the importance of the genes, it was found that it was 
ranked high for this signature (Fig. 1B). The position, similarity, forest map, and expression of the signature genes 
in the chromosomes were further explored. By analyzing the location of genes on chromosomes, it was found that 
these 7 genes were all located on autosomes (Fig. 1C). EFNA4, INO80B, and ELF2 were highly similar in terms 
of participating in the biological processes and molecular functions (Fig. 1D). Forest map results indicated that 
high expression levels of ELF2 and MUSTN1 suggested poor prognosis, while high expression levels of RTKN2, 
INO80B, ARHGEF40, KRTAP4-5, and EFNA4 were significantly correlated with improved prognosis (Fig. 1E). 
Differential expression analysis indicated that ELF2 and MUSTN1 demonstrated significantly high expression 
in the high risk group, while RTKN2, INO80B, ARHGEF40, KRTAP4-5, and EFNA4 exhibited significantly low 
expression in the high risk group (Fig. 1F).

Verification of gene signature associated with copper-associated cellular death
The parameters of gene expression were used to calculate the risk score in the patients, who were classified 
into high risk and low risk groups. It was found that both in the training set and in the external validation, the 
mortality rate from the high risk group was significantly higher than that of the low risk group (Fig. 2A and 
B). ROC curve analysis indicated that CRGs exhibited a high accuracy in the training set (GSE84437; Fig. 3A). 
Surprisingly, the gene signature was more accurate in the external validation sets TCGA-STAD (Fig. 3B) and 
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Fig. 2.  The risk score distribution for each patient was showed in the training dataset and external validation 
dataset. (A) Distribution of risk score in the training set GSE84437. (B) Distribution of risk score in the 
external verification set TCGA-STAD. The top image represents the ranking of the risk score, the middle the 
distribution of the total survival time of patients with GC, and the bottom the expression of the gene signature. 
GSE, Gene Set Enrichment; GC, gastric cancer.

 

Fig. 1.  Construction and genetic characteristics of gene signatures associated with copper-associated cellular 
death. (A) Expression of different gene signatures. (B) The importance of the signature genes was ranked 
through the random forest analysis. (C) The location of genes on chromosomes in the gene signatures. (D) 
Similarity of genes in molecular functions and biological processes in the gene signature. (E) The best gene 
signature selection using the forest analysis (F) Differences in gene signature expression between high and low 
risk groups.
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GES26253 (Fig. 3C). KM survival analysis indicated that this prognostic signature differentiated prognosis in 
TCGA-STAD [overall survival (OS)], GSE84437 (OS), and GES26253 (relapse free survival; Fig. 3D).

Relationship between the prognostic signature associated with cuproptosis and the clinical 
features
In order to identify genetic markers associated with cuproptosis, which can be used as independent prognostic 
factors for GC, univariate and multivariate Cox regression analyses were performed. The results of the univariate 
and multivariate Cox regression analyses indicated that this prognostic feature exhibited significant prognostic 
value in both the training set GSE84437 and the external validation set TCGA-STAD (Fig. 4A). Therefore, a 
signature associated with cuproptosis as an independent prognostic factor was established.

By using the analysis of high risk and low risk groups, the distribution of patients with different clinical 
features in the high risk and low risk groups was examined according to different age and sex distributions; the 
proportion of high risk patients significantly increased with the increase of pathological grading and according to 
the tumor node metastasis (TNM) stage. The proportion of high risk group patients in Stage IV was significantly 
increased (Fig. 5A). The results of KM survival analysis in the clinical subgroups indicated that prognosis was 
distinguishable in age, sex, and pathological_N subgroup except for the T1-T2 subgroup (Fig. 5B). This indicated 
that the prognostic signature associated with cuproptosis was closely related to the commonly used clinical 
pathological grade and TNM stage; in addition, its predictive ability was not affected by clinical characteristics.

Construction and evaluation of nomogram
A nomogram was established for clinicians to quantitatively determine patient outcomes based on clinical 
characteristics of prognostic variables associated with malformations and GC (Fig. 6A). Based on the age, 
gender, tumor size, lymph node metastasis, and the scores corresponding to the prognostic signature associated 
with copper-associated cellular death of specific patients with GC, their total scores were used to determine the 
5-year and 8-year survival rates. By constructing a calibration curve, it was found that the predicted survival rate 
of the nomogram was very close to the actual survival rate (Fig. 6B).

GSVA and GSEA. To further explore the potential molecular mechanism of the gene signature associated 
with cuproptosis, GSEA and GSVA analyses were performed. GSVA results indicated that, TGF_BETA_
SIGNALING, UV_RESPONSE_DN, WNT_BETA_CATENIN_SIGNALING, APOPTOSIS, MITOTIC_
SPINDLE, PI3K_AKT_MTOR_SIGNALING, NOTCH_SIG, NALING, and MYC_TARGETS_V2 signaling 

Fig. 3.  Prognostic value of the risk signature in GC. (A) 3-year and 5-year ROC analysis of TCGA-STAD. 
(B) 3-year and 5-year ROC analysis of GSE84437. (C) 3-year and 5-year ROC analysis of GES26253. (D) 
KM survival analysis based on OS in the TCGA-STAD queue. (E) KM survival analysis based on OS 
in the GSE84437 queue. (F) KM survival analysis based on RFS in GES26253. ROC, receiver operating 
characteristics; TCGA, The Cancer Genome Atlas; GSE, Gene Set Enrichment; KM, Kaplan-Meier; OS, overall 
survival; RFS, relapse free survival.
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Fig. 5.  Clinical characteristics of patients in high and low risk groups. (A) The correlations between the risk 
model and clinical factors. including Age, Gender, Histologic grade and TNM stage. (B) Kaplan-Meier survival 
curves for the high- and low-risk groups stratified by clinical factors. including Age. Gender and Stage.

 

Fig. 4.  The independence identification of the risk model. (A) Univariate Cox regression analysis of the 
GSE84437 cohort. (B) Multivariate Cox regression analysis results of the GSE84437 cohort. (C) Univariate Cox 
regression analysis of the TCGA-STAD cohort. (D) The results of the multivariate Cox regression analysis of 
the TCGA-STAD cohort.
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pathways were significantly enriched in the high risk group (Fig. 7A). GSEA enrichment results indicated that 
ANGIOGENESIS (ES = 0.32, P < 0.001), MYOGENESIS (ES = 0.29, P < 0.001), and PANCREAS_BETA_CELLS 
(ES = 0.26, P < 0.001) were significantly enriched in the high risk group (Fig. 7B). G2M_CHECKPOINT 
(ES=−0.37, P < 0.001), MITOTIC_SPINDLE (ES=−0.32, P = 0.003) and MYC_TARGETS_V2 (ES = −0.48, 
P < 0.001) were significantly enriched in the low risk group (Fig. 7C).

Expression of EFNA4 in tissues and cells
IHC analysis was used to detect the expression of EFNA4 in GC and normal tissues. EFNA4 expression was 
significantly lower in normal gastric tissues than in GC tissues (Fig. 8A); patients with GC and low expression 
exhibited improved prognosis (Fig. 8E). Western blot analysis indicated that the expression levels of EFNA4 in 
GC cells were the lowest in the normal gastric epithelial cell line GES-1, which were considerably lower than 
those of the other three GC cell lines. In tumor cells, the expression levels of MKN-45 were the highest (Fig. 8F).

Discussion
Approximately 42% of GC cases worldwide occur in China and the majority of the patients are detected at a late 
stage, resulting in poor prognosis16. The existing prognostic evaluation criteria do not adequately meet clinical 
needs. Novel therapeutic strategies, such as immune checkpoint inhibitors have greatly improved the survival 
of patients with GC; however, the beneficiaries are limited17. Therefore, the development of a new prognostic 
criterion is urgently required.

Tumor cells are characteristic of the resistance to natural death, which comprises the basis of cancer 
occurrence and development; therefore, the cells cannot self destruct, which is considered to be related to the 
growth and metastasis of cancer18. Similar to other normal cell death patterns, ferroptosis aids gemcitabine to 
inhibit the resistance to pancreatic cancer19. Pyroptosis affects all stages of tumor carcinogenesis20. Similarly, 
the control of copper levels in the body can selectively kill tumor cells21. A new Schiff base copper (II) complex 
can inhibit the growth of multiple cancer cells and promote apoptosis22; this drug exhibits the same effect in GC 
cells23. Therefore, the application of the CRGs in assessing the occurrence and prognosis of GC has significant 
value.

A total of 10 CRGs were used as the main research database. The TCGA-STAD expression and survival 
data in the database were used to establish a prognostic model with cuproptosis abnormal gene expression 
differences related to the genetic variations and prognosis. Moreover, 7 CRG signatures were established using 
machine learning and the random forest model. EFNA4 is a component of the ephrin family; its members are 
widely expressed in a variety of cells by binding to cell membranes and are closely associated with the emergence 
of tumors24. EFNA4 has been extensively implicated in the progression of triple negative breast and ovarian 
cancer25, lung cancer26, and hepatocellular carcinoma24. Several articles analyzed the increased expression of 
EFNA4 in GC by means of literature searching; the results indicated that EFNA4 expression correlated with OS 
and disease free survival in patients with GC27,28, although the experimental verification was absent.The role of 
EFNA4 in the development of GC is currently unclear, and our study can only confirm that EFNA4 expression 
in GC is elevated and associated with poor prognosis in GC. INO80B, a subunit of INO80, is associated with 
multiple functions, such as DNA replication, transcriptional regulation, chromatin remodeling, and embryonic 
stem cell renewal29–32. By strongly mediating ATP-dependent chromatin remodeling, INO80 affects oncogenic 
transcription and tumor growth in melanoma33and non-small cell lung cancer34. The permanent division of 
embryonic stem cells resembles the characteristics of tumor cells. Therefore, the role of INO80B in tumor 

Fig. 6.  Construction of the nomogram and calibration curve plot. (A) Establishment of a nomogram based on 
signature and clinical characteristics related to copper-associated cellular death. (B) Calibration curve plot for 
predicting 5-year and 8-year OS in TCGA dataset.
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progression deserves further assessment. However, a limited number of studies have been conducted on the 
expression and prognosis of INO80B in GC. ELF2 also known as NERF (new Ets-related factor) is involved 
in the regulation of B and T cell development, cell cycle progression, and angiogenesis35. Overexpression of 
ELF2 can enhance various malignant phenotypes of nasopharyngeal carcinoma cells36and ELF2 can serve as 
an independent prognostic factor for non-small cell lung cancer37. Additional studies are required to clarify 
the relationship between ELF2 and GC. Rho guanine nucleotide exchange factor 40 (ARHGEF40) is a member 
of the Dbl-family of guanine nucleotide factor proteins, which participate in actin aggregation, cytoskeletal 
recombination, cell migration, and cell polarity38. ARHGEF40 regulates the progression of hereditary 
melanoma39and promotes proliferation and invasion of non-small cell lung cancer40. The role of ARHGEF40 in 
GC requires further verification. Rhotekin (RTKN) 2, a member of the RTKN protein family, is a Rho effector. 
The RTKN protein is involved in the regulation of key cellular functions, such as cell proliferation and cell 
cycle progression, cytoplasmic division, apoptosis, and transformation41. Reduction of RTKN2 expression 
in hepatocellular carcinoma42, colorectal cancer43, and non-small cell lung cancer44 leads to a corresponding 
decrease in cell proliferation and invasion. The expression of RTKN2 was increased in GC and its overexpression 
enhanced the proliferation of GC cells, promoted their migration and invasion and inhibited the induction of 
their apoptosis45. Keratin associated protein (KRTAP) 4–5, a member of the KRTAP gene family, is the main 
component of the hair proteome and plays an important role in hair formation. Therefore, the total KRTAP 
gene expression in hairy animals, such as sloths, is 10-fold higher than that noted in hairy animals, such as 
hedgehogs46. A limited number of reports have been noted on the association of KRTAP4-5 with tumors. 
Musculoskeletal nuclear protein (MUSTN) 1 is a key regulator of cell differentiation and tissue growth and is 
associated with normal embryonic development, bone, and skeletal muscle regeneration47. Previous studies on 
MUSTN1 have focused on cartilage and muscle tissue; studies on tumors are very limited and additional work 
is required.

GSVA converts the expression matrix between different samples into the expression matrix of the set of 
genes in the sample, thereby assessing whether different pathways are directly enriched in different samples. 
By using this analysis, the enrichment pathways of high risk patients with GC can be noted more directly and 

Fig. 7.  Results of GSVA and GSEA. (A) Top 16 GSVA enrichment results. (B) GSEA results were significantly 
enriched in the high risk group. (C) GSEA results were significantly enriched in the low risk group. GSVA, 
gene set variation analysis; GSEA, Gene Set Enrichment Analysis.
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reference to the targeted clinical treatment can be provided. The TGF_BETA_SIGNALING pathway plays a 
key role in regulating the behavior of tumor cells48 and its role in GC has been well documented with multiple 
genes promoting the development of GC via TGF-β49–51. The WNT_BETA_CATENIN_SIGNALING pathway 
is widely implicated in human tumors and abnormal activation is strongly associated with increased prevalence, 
malignant progression of tumors, poor disease prognosis, and even increased cancer-related mortality52. The 
important role of this pathway in GC progression has also been demonstrated in multiple studies, and multiple 
genes have been identified to act via Wnt/β-catenin53,54. GSEA has been used as a pre-done variance analysis 
between the samples to further analyze and identify the gene set of interest. ANGIOGENESIS is the first gene 
set to be enriched in high risk patients with GC, and this process is one of the markers of cancer. Disorganized, 
immature, and permeable vascular networks often lead to poor perfusion creating a hypoxic environment more 
conducive to tumor invasion55. Angiogenic-related factors secreted by GC cells activate endothelial cells and 
the autocrine ring to stimulate GC development56, while angiogenic-related factors also play an integral role 
in enhancing GC immunotherapy57. Excessive muscle loss is often observed in patients with malignant tumors 
and has been shown to be associated with poor prognosis58. It has also been observed that high expression of 
multiple myogenic proteins in GC is associated with poor prognosis of this disease59,60. Therefore, it is beneficial 
to investigate the associated mechanisms of GC progression so as to develop effective treatment options.

The model of the present study has multiple advantages. Firstly, a gene signature was developed based on 
the copper death fraction in GC for the first time. Considering that cuproptosis is a novel cell death mode and 
depends on mitochondrial function, it may provide a new treatment scheme for GC. Secondly, the model of the 
present study provides improved results in the validation set, which is surprising. Thirdly, the predicted survival 
rate of the nomogram was basically consistent with the actual survival rate, indicating the accuracy and clinical 
application value of the model. In short, Using machine learning, we identified a new prognostic factor.A risk 
model created by combining ordinal prognostic factors with this new prognostic factor had better predictive 
power than conventional staging system. Then, it is necessary to speculate and discuss how it might be useful in 
actual clinical practice.

The present study exhibits several limitations. First of all, although the verification of our model was 
investigated by two external validation sets, the sample size of the patient specimens was insufficient, resulting in 
limited clinical information. This will be the focus of the subsequent studies. Secondly, the copper death fraction 
gene set was based on data analysis from public databases and was inevitably limited by selection bias, In order 
to reduce selection bias, we randomly selected one data set as the training set and the other two data sets as the 

Fig. 8.  Expression and prognostic value of EFNA4 in GC. (A-C) Negative staining of EFNA4 in normal tissues. 
(B-D) Positive staining of EFNA4 in GC tissues. (E) Survival analysis of EFNA4 low and high expression 
groups. (F) The expression levels of EFNA4 in GC cells. (G) relative expression of EFNA4 in GES-1, HGC-27, 
AGS, and MKN-45 cells. *P < 0.05, ***P < 0.001.
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verification set. This maximizes the reliability of our model construction and validation. Thirdly, the biological 
function of the related genes in GC has not been verified and will be verified sequentially in future studies.

Data availability
All dataset used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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