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In our present work, we probe the thermal phase transition structure, the dynamic and kinetic behavior 
of the Born–Infeld-AdS black hole. With the emergence of a triple point behavior and the possible 
ruling out the reentrant phase transition, for a certain parametric value of the charge parameter, 
we scrutinize the stochastic dynamics and the kinetic processes using the free energy landscape 
formalism. Such processes occur during the black hole phase transitions in terms of the Landau 
functional and equivalently by the Fokker–Planck equation in the context of black hole chemistry. 
Our analysis establishes a pertinent bridge between the thermal behavior among the different states 
of the Van-der-Waals-like fluids and the Born–Infeld-AdS black hole phases. To visualize the direct 
implications of the Landau functional of the usual Van-der-Waals-like fluids, we consistently employed 
the generic Landau formalism. We find that such investigations are worthy of study in implementing 
the continuous phase transition behavior during Hawking radiation. For more details, and in addition 
to the exploitation of the Landau functional, we introduce its convexity to determine its extreme 
points and the corresponding stable and unstable phases of the thermal black hole systems. We 
systematically study the behavior of the first-order and the second-order phase transitions and look 
into details of their evolution during thermal transitions. Moreover, knowing that the thermal phase 
transitions are controlled through a stochastic process depending upon an order parameter, the 
dynamics during its phases are determined through the fluctuating macroscopic variables, we recall the 
dynamical Fokker–Planck equation to furnish the advancement of such a process in the Born–Infeld-
AdS background with a special focus on the probability distribution of the triple point. The evolution 
of the initial probability indicates that not only the initial small black hole to the final large black hole 
phase occurs, but also one has the equilibrium conditions established among the thermal radiations 
to the small black holes or the large black holes to thermal radiations and large black hole states. We 
also demonstrate the first passage time for the different black hole phase behaviors to determine their 
time scale using the Crank-Niclson method. Such a study has implications for the friction effects of the 
kinetic turnover of different black hole phases and consequently a direct connection to the microscopic 
degrees of freedom.

In the realm of theoretical high-energy physics, the thermodynamics of black holes presents an intriguing 
and promising avenue for probing their quantum nature. This field offers a potential pathway towards the 
development of a quantum gravitational theory, particularly when examined within the framework of anti-de 
Sitter (AdS) space and conformal field theory (CFT)1,2. The discovery of the Hawking-Page phase transition 
between the AdS thermal bath and large Schwarzschild-AdS black holes triggered a flurry of thermodynamic 
activities in the last few decades3–14. Further, the black hole chemistry, i.e., the thermodynamics with a negative 
cosmological constant, made an open room to understand the different and new thermodynamics phenomena 
from the AdS/CFT perspectives15–21. The gravitational viewpoint of the Van-der-Waals (VdW) fluid, the 
reentrant phase transition of the multicomponent liquids, the thermal behavior of the triple points, the polymer 
phases, and the superfluidity have uplifted the status of thermodynamics of a wide range of AdS black holes22–36. 
Among various solutions, the Born–Infeld black holes in AdS spacetime have been of great importance37,38. The 
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Born–Infeld gravity is a nonlinear generalization of Maxwell’s electrodynamics calibrated by the Born–Infeld 
parameter which was originally used to establish a finite energy density model for the electron in the 1930s39. 
Such kind of electrodynamics with the goal of avoiding divergences such as the infinite self-energy of a point 
charge are very important to understand the short-distance behavior of the electromagnetic field. Therewith, they 
arise naturally in the context of superstring theory and D-brane physics40–44. Born–Infeld electrodynamics has 
been also explored in the context of cosmology, offering alternative models of the early universe45–47. In a more 
recent development, Born–Infeld electrodynamics has been incorporated to modify the Einstein-Hilbert action, 
garnering significant attention and emphasis in literature48–52 from different physical point of views53–62. In 
addition to this, such nonlinear solutions present some exotic thermodynamic behaviors. Indeed, the reentrant 
phase transition behaviors which were uncommon in the study of thermodynamics were first observed in the 
case of Born–Infeld AdS black holes in four-dimensional spacetime63, instead, this phase transition was examined 
in the usual thermodynamic systems exhibiting the nicotine/water mixture64. Otherwise, the reentrant phase 
transition (RPT) can be understood as a thermodynamic phenomenon of multicomponent liquids when the 
thermal system goes through multiple phases for a monotonic variation of any of the thermodynamic variables, 
provided the initial and the final states of the system shows the same macroscopic behaviors. After its inception 
for the conventional thermodynamic system, the reentrant phase transition has been reported for a wide class of 
AdS black hole systems17,65–75 apart from four-dimensional Born–Infeld AdS black holes. However, the Born–
Infeld AdS black hole in dimensions greater than four does not show the reentrant phase transition76.

The thermal properties of AdS black holes have surpassed the core idea of black hole mechanics and landed 
into much richer physics that is probed through the critical points and different tools77–82. During the small to 
large phase transitions the thermodynamic properties change, which in turn affects the dynamic and kinetic 
processes that indicate the evolution of thermal systems through any thermodynamic process. Such dynamical 
evolution is systematically analyzed through Landau’s theory of free energy and controlled via the Landau 
functional83,84. Rigorously speaking, during a phase transition, the system experiences a non-equilibrium state, 
and the Landau parameters play a pivotal role in discerning the thermal phase transition characteristics. This 
is particularly evident in systems such as VdW-type fluids or charged AdS black holes. As a result, the Landau 
functional manifests itself into a local minimum, effectively mimicking a second-order phase transition. On the 
other hand, in the case of first-order transitions spanning different phases, the Landau functional corresponds to 
a global minimum across the extended thermodynamic phases of AdS black hole systems.

Recently, the idea comprising the free energy landscape has been introduced from the perspectives of 
connecting the thermodynamic properties, the dynamics, and the kinetic transition processes through a 
stochastic process à la Fokker–Planck equation. In thermal statistical physics, the dynamical Fokker–Planck 
relation is employed to study the time profile of the probability density function for any generic observable85. 
For black hole thermal systems, such notions were first explored in the context of the phase transition due 
to Hawking and Page and also for the massive gravity scenarios86. The concept of representing the off-shell 
Gibbs free energy as dependent on the order parameter (e.g., the horizon radius), was the crucial identification 
behind such studies. The investigations of the free energy landscape are still under improvement, though people 
studied it for a wide range of black holes in Einstein as well as in modified gravity theories in asymptotically AdS 
spacetime.

Following the initial exploration of the dynamics of Schwarzschild-AdS spacetime within the framework 
of the free energy landscape proposal, this conceptualization has undergone successive expansions. Notably, 
it has been applied to charged AdS black hole systems87, charge-neutral Gauss–Bonnet gravity theories88 and 
their charged counterparts in four-dimensional spacetime89. The investigation then delved into determining 
the dynamics of the triple point for six-dimensional electrically charged Gauss–Bonnet-AdS systems90 and 
extended to incorporate modifications related to dark energy in charged AdS systems91. Additionally, it explored 
the black hole spacetime in the presence of a minimal coupling of general relativity to nonlinear electromagnetic 
sources92,93, and more recently, Euler-Heisenberg-AdS black holes94. The Analysis of the dynamical evolution is 
also involved by considering the effects of path integral and instanton approaches95. For certain cases, the free 
energy landscape was extended to take into account the non-Markovian effects96,97. This approach was further 
applied to rotating solutions, as seen in similar analyses of Kerr-AdS black holes98. The free energy landscape 
problem underwent additional exploration through the generalized Fokker–Planck equation99. Supplementary 
to recent developments, the topology of the free energy landscape and the identification of a dominant route in 
the dynamic and kinetic process during black hole phase alternation were analyzed for electrically charged AdS 
spacetime in Gauss–Bonnet gravity100.

In our investigation, we will explore the thermal phase transition characteristics of AdS black holes within 
the Born–Infeld gravitational framework. Our focus entails a comprehensive examination of the free energy 
landscape for Born–Infeld-AdS black holes, employing both Landau theory and the Fokker–Planck equation. 
Our inquiry will be extended to the dynamic evolution of these black holes during thermal transitions and also 
probe reentrant phase transitions. A pivotal aspect of our study involves the Born–Infeld parameter, which 
significantly influences the horizon size. The radius of the horizon, in turn, serves as the order parameter. Our 
subsequent analysis will elucidate the dependency of the Landau functional or Gibbs free energy on the horizon 
radius, effectively forming a one-dimensional curve.

The structure of our paper unfolds as follows. In “Born–Infeld black hole in AdS spacetime and its 
thermodynamical criticality” section provides a comprehensive review of fundamental concepts related to 
Born–Infeld-AdS black holes, encompassing their solutions and relevant thermodynamic quantities of interest. 
Moving forward, we delve into an in-depth analysis of criticaxl points and their coordinates. The formalism 
of the Landau functional takes a central stage in “Born–Infeld AdS black hole phases picture from the Landau 
theory point of view” section, thereby shedding light on the dependence of free energy due to the Born–Infeld 
parameter. Afterward, in “Exploring free energy landscape through the Fokker–Planck equation: unveiling 
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probabilistic dynamics” section, we shift our focus on the dynamic and kinetic processes governing the thermal 
system as it undergoes various phase transitions. This exploration is probed through the application of the 
Fokker–Planck equation. Our findings and overall conclusions are encapsulated in “Kinetics and fluctuations in 
the dynamics of Born–Infeld-AdS black hole state transitions” section, where we provide a concise summary and 
offer final remarks on the implications of our study.

Born–Infeld black hole in AdS spacetime and its thermodynamical criticality
The starting point is the action describing the four-dimensional general relativity where the Born–Infeld 
electrodynamics is considered38

	
S = 1

16π

∫
d4x

√
−g

[
R − 2Λ + 4b2

(
1 −

√
1 + FµνF µν

2b2

)]
,� (1)

in which R denotes the Ricci scalar curvature, Λ is the cosmological constant expressed as Λ = −3/l2, where l is 
the AdS radius and b stands for the Born–Infeld parameter having the dimension of mass and has a connection 
to the string tension α′ as b = 1/ (2πα′)44. The electromagnetic tensor field Fµν  is given in terms of the 
four potential Aµ by Fµν = ∂µAν − ∂νAµ. The ansatz of the 4-dimensional static geometry with spherical 
symmetry has the following form

	
ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2,� (2)

where, dΩ is the line element on a unit 2-sphere and the blackening function f(r) is obtained to be37,38,50

	
f(r) = 1 + r2

l2 − m

r
+ 2b2r2

3

(
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√
1 + 16π2Q2

b2r2

)
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5
4 , −16π2Q2
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]
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with 2F1 [a, b, c, d] is the hypergeometric function of the second kind, the black hole mass M can be expressed 
via the integration constant m as M = m/8π. The electric charge per unit volume ω = 4π is denoted by Q. 
Within the spherical symmetric distribution, the only non-zero component is

	
At(r) = −4πQ

r 2
F1

[
1
4 ,

1
2 ,

5
4 , −16π2Q2

b2r2

]
.� (4)

The limiting case of the Reissner–Nordstrom (RN)-AdS black hole101,102 can easily be recovered by taking the 
limit b → ∞ in the metric function and the gauge potential. The Hawking temperature of Born–Infeld AdS 
spacetime metric is found to be

	
T = 1

4π

∂f(r)
∂r

∣∣∣∣
r=rh

= 1
4πrh

+ 3rh

4πl2 + b2rh

2π

(
1 −

√
1 + 16π2Q2

b2r2
h

)
.� (5)

in which rh is the event horizon radius, obtained as the largest positive real solution of the blackening function, 
f(r) = 0. The electric potential at spatial infinity relative to the event horizon reads as

	
Φ = ∂M

∂Q
= 4πQ

rh 2
F1

[
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4 ,

1
2 ,

5
4 , −16π2Q2

b2r2
h

]
.� (6)

The first law of thermodynamics associated with the Born–Infeld-AdS black hole, is obtained by defining its key 
ingredients, namely entropy S, pressure P, and the volume V63
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� (7)

the additional quantity B is conjugated to b which is interpreted as the Born–Infeld vacuum polarization63, so 
that the first law and the related Smarr formula take the forms

	

dM = T dS + ΦdQ + V dP +Bdb,

M = 2T S + ΦQ − 2P V −Bb.
� (8)

We should keep in mind that the thermodynamic quantities M, Q, S, and V are written per unit volume ω.
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Following103, we look into the Born–Infeld-AdS black hole critical behavior, where the black hole charge 
is allowed to vary but the cosmological constant remains a constant parameter. The specific heat at a constant 
charge is expressed as

	
CQ = T

(
∂S

∂T

)
Q

,� (9)

and the stability/instability during the phase transition can be found by considering the sign (positive/negative) 
of this quantity.

Note that Eq.  (9) is also calculated with l and b taken as fixed. In addition, the Born–Infeld parameter 
significantly impacts the temperature of the black hole, particularly when the horizon radius is small. Depending 
on the value of the nonlinear parameter b, the BI-AdS black hole exhibits distinct behavior. For Q ≥ Qm, where 
Qm = 1

8πb  is the marginal charge, the black hole resembles a Reissner-Nordström-anti-de-Sitter (RN-AdS) 
black hole. Conversely, for Q < Qm, it resembles a Schwarzschild-like black hole. Another important black hole 
charge, Qc, emerges in the Reissner-Nordström configuration. The presence of this quantity associated with the 
critical behavior leads to a change in the phase structure.

To unveil the thermal behavior of the Born–Infeld-AdS spacetime, we depict the variation of the temperature 
T and the specific heat CQ as a function of the event horizon radius rh within various values of the charge in 
Figs. 1 and 2 respectively.

Obviously, one can notice that the behavior of the temperature is highly influenced by the black holes’ charge 
for small rh. So, for small rh values, we can Taylor expand the Hawking temperature as

	
T = 2b

rh
(Qm − Q) +

rh

(
3 + 2b2l2)
4πl2 − b3r3

h

16π2Q
+O(r4

h),� (10)

Besides, the large limit of rh corresponds to the Hawking temperature, T = 3rh
4πl2  which is independent of the 

charge and which explains the linearly increasing behaviour of the temperature for the large rh.
Depending on the value of Q, Born–Infeld-AdS black hole is identified as follow :

•	 For Q < Qm, the black hole is ‘Schwarzschild-like’ (S-type). In the region of low temperature, black holes do 
not exist, much like in the Schwarzschild solution. The largest (smallest) branch of the isocharge, as shown in 
Fig. 1 is connected to the huge (small) black hole, which is locally stable (unstable), as illustrated by the posi-
tive (negative) values of specific heat at the constant charge in Fig. 2a. Indeed, in the largest (smallest) branch, 
the temperature is an increasing (decreasing) function in terms of the event horizon radius showing that the 
black hole is locally stable (unstable). Actually, in the situation of Q < Qm, the extremal Born–Infeld-AdS 
black hole can not be found and therefore small charged black hole does not persist. This finding may be 
understood as screening effects on the electric field caused by the existence of the parameter b, which makes 
the role of charge less significant.

•	 When Qm ≤ Q < Qc, black hole is ‘Reissner–Nordstrom-like’ (RN-type). Due to the temperature crossing 
over from zero with decreasing rh, we get an extremal black hole. Moreover, the system exhibits a phase tran-

Fig. 1.  Temperature T in terms of the event horizon radius rh for different values of charge Q with l = 1 and 
b = 3.5. Herein Qm = 0.0113682 and Qc = 0.0136024.
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sition behavior of first-order between a small black hole (SBH) and a large black hole (LBH) as one can notice 
from Fig. 2b,c. Indeed, as we can observe in Fig. 1, small and large black holes are both locally stable phases 
because the temperature is an increasing function in terms of horizon radius in these two regions.

•	 The situation Q = Qc, associated with Fig. 2d, a critical behavior appears and phase transition is of a sec-
ond-order that occurs between an SBH and an LBH.

•	 In the last case Q > Qc, the black hole has a locally thermal stable phase forever, and the heat capacity is pos-
itive everywhere as is revealed in Fig. 2e. Moreover, the temperature is a monotonically increasing function in 
terms of horizon radius as is displayed in Fig. 1.

We proceed to determine the values of critical points relevant to the second-order phase transition in the Born–
Infeld-AdS black hole previously discussed. With constant l and Q = Qc, Fig. 1 illustrates that the critical points 
are identified through the inflection point, as characterized by

Fig. 2.  The specific heat capacity CQ in terms of the event horizon radius rh for different values of charge Q 
with l = 1 and b = 3.5. Herein Qm = 0.0113682 and Qc = 0.0136024.
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∂T

∂rh

∣∣∣
Qc

= 0 and
∂2T

∂r2
h

∣∣∣∣
Qc

= 0.� (11)

Criticality is expected to have occurred on the right branch of the T − rh curve in the S-Type black hole, indicating 
thermal stability. Subsequently, the expressions for the formulas in Eq. (11) are derived by incorporating the 
temperature from Eq. (5) as follows

	

− 2x2 +
(

1 + 3
2b2l2 − 1

2b2r2
c

)
x + 1 = 0,

x4 − x2

2 + x

4b2r2
c

− 1
2 = 0,

� (12)

in which, we have set

	
x =

(
1 + 16π2Q2

c

b2r4
c

)−1/2

,� (13)

and rc denotes the critical horizon radius. To ensure the positive definiteness of the values of the critical 
quantities, we impose the following constraint on x

	 0 ≤ x ≤ 1.� (14)

By the help of Eq. (12), one can obtain the following cubic equation

	 x3 + px + q = 0,� (15)

in which, the quantities p and q stand for

	
p = −3

2 , q = 1
2

(
1 + 3

2b2l2

)
.� (16)

Furthermore, given that q is a real-valued parameter and p is negative, the cubic equation exhibits either one or 
three real roots. The existence of these three roots is governed by the requirement ∆ = 4p3 + 27q2 ≤ 0, and 
hence

	
b ≥ b0 =

√
3
2

(
1 +

√
2
)
/l ≈ 1.9029/l,� (17)

and their form can be expressed as

	
xk =

√
2 cos

(
1
3 arccos

[
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√
2

2

(
1 + 3

2b2l2

)]
− 2πk

3

)
, k = 0, 1, 2.� (18)

The third root x2 contravenes the condition specified in Eq. (14). Additional analysis by calculating the critical 
quantity for x1 reveals that rc persists in the branch of critical isocharge where it is locally unstable for the S-type 
black holes63,103. Consequently, the sole physically meaningful solution is x0. While, in the b < b0 scenario, a 
single real root is found and it is expressed as follows

	
x3 = −

√
2 cosh

(
1
3 arccosh

[
−

√
2

2

(
1 + 3

2b2l2

)])
,� (19)

which breaks the rule obtained in Eq. (14). Henceforth, the criticality of the Born–Infeld-AdS black holes can 
only be seen for b ≥ b0. The critical quantities are revealed as soon as x0 is available

	

rc =
√

x0

2b2 (1 + x2
0 − 2x4

0) ,

Qc = 1
8πb

√
(1 + 3x2

0 − 4x6
0)

,

Tc =
3 + 2b2l2 (

1 + x0 − 2x3
0
)
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√
x

2 (1 + x2
0 − 2x4
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� (20)

The critical charge Qc is larger than Qm where
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b > b1 =

√√√√ 3

2
(√

6
√

3 − 9 − 1
)/l ≈ 2.8870/l.� (21)

Thus for b ≥ b1, the criticality is the mimicker of the RN-type black hole. On the contrary, for b0 ≤ b ≤ b1, the 
criticality occurs at the right branch of (T − rh)Qc  curve of the S-type black hole63,103.

As b attains large values, the Taylor expansion of the critical quantities gives rise to

	

rc = l√
6

− 7
24

√
6b2

+O
( 1

b4

)
,

Qc = l

24π
− 7

576πlb2 +O
( 1

b4

)
,
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2
3π2l2 − 1

12π
√

6b2l3
+O

( 1
b4

)
.

� (22)

As expected, the first terms in all the quantities of Eq. (22) reproduce the same critical behaviors as that of the 
RN-AdS black holes102.

Born–Infeld AdS black hole phases picture from the Landau theory point of view
A brief review of Landau theory formalism
Landau estimated a system’s free energy from a perspective that displays the non-analytical nature during the 
phase transition and ends up capturing a significant amount of the physics. The system is defined through a 
global minimum of Landau free energy L as a function of order parameter. The quantity L called sometimes the 
Landau functional, which is related to the system’s Gibbs free energy and has an energy dimension, but it is not 
the same as given in84,104.

Following84, the Landau free energy can be constructed for a general thermodynamical system as

	
L =

∫
F (X, T, P, Q) dX.� (23)

The thermodynamic system consisting of temperature T, pressure P, and charge Q are treated as independent 
parameters, whereas the parameter X is regarded as an auxiliary variable. The function F (X, T, P, Q) represents 
various relationships that these four significant thermodynamic system parameters satisfy.

The equation of state (EOS) describing the thermal properties is expressed as P = f(V, T, Q), where V is 
the volume which is in canonical conjugation of P. Based on the EOS, we may create the functional dependence 
of F (X, T, P, Q) as

	 F (X, T, P, Q) = P − f(X, T, Q).� (24)

Now, one can assert that a particular thermodynamic equation describing the system’s state under a particular 
set of certain physical conditions takes the form F (X, T, P, Q) = 0. The system’s preferred path is the one that 
causes its free energy to drop to its lowest value between many distinct paths that the system can take to attain 
equilibrium. We incorporate an auxiliary variable X which serves as an order parameter having a dimension 
of volume when the system is heading towards the equilibrium in the isothermal, isobaric, and isocharge 
environments. We can discover certain actual physical thermodynamic system operations by the use of this 
parameter. Thus, when the functional L takes the least possible value, it is considered as the most realistic state in 
which the system is described, the relations F (X, T, P, Q) satisfied by the set {X, T, P, Q}:

	
dL

dX
= F (X, T, P, Q) = 0 =⇒ X = V,� (25)

The order parameter X can be viewed as a volume of the system as it approaches equilibrium or, less formally, as 
the volume of the system in a non-equilibrium state that does not meet the system’s equation of state. Although 
the equilibrium thermodynamic volume V fulfills the system’s equation of state and is the root of the function 
F (X, T, P, Q) = 0. Another benefit of creating Landau-free energy in this manner is that its convexity is 
connected to the thermal stability of the thermodynamical system

	
δ

(
dL

dX

)∣∣∣
X=V

= −∂f(V, T, Q)
∂V

δV,� (26)

from which, one can notice that the extreme point is comparable to a potential well when ∂f(V, T, Q)/∂V < 0 
and the corresponding state is stable, while the corresponding thermodynamic state is unstable when 
∂f(V, T, Q)/∂V > 0 and the extreme point is similar to a potential barrier. Hence, γ-function as

	
γ(V ) = (3V )2/3 ∂L(V )

∂V
.� (27)
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The sign of γ(V ) serves as an indicator:

•	 It is negative (indicating a stable phase) when the thermodynamic volume V corresponds to a local minimum 
of the Landau functional L(X), where X is the order parameter, interpreted as a non-equilibrium volume 

	
γ(V ) < 0 ⇐⇒ ∂L

∂X

∣∣∣
X=V

= 0 and
∂2L

∂X2

∣∣∣∣
X=V

> 0

•	 The function γ(V ) is positive (indicating an unstable phase) when V corresponds to a local maximum of the 
Landau functional L(X) 

	
γ(V ) > 0 ⇐⇒ ∂L

∂X

∣∣∣
X=V

= 0 and
∂2L

∂X2

∣∣∣∣
X=V

< 0.

•	 The function γ(V ) is zero (indicating a fixed point) when V corresponds to an inflection point of the Landau 
functional L(X).: 

	
γ(V ) = 0 ⇐⇒ ∂L

∂X

∣∣∣
X=V

= 0 and
∂2L

∂X2

∣∣∣∣
X=V

= 0.

With the definition provided in Eq. (27), the derivative is taken with respect to the thermodynamic volume 
V rather than the order parameter X, and the term (3V )2/3 serves as a scaling factor. Therefore, the sign of 
the γ(V ) function is related to the convexity of the Landau functional L(X) when X = V . Further, the sign 
of γ(V ) is not directly related to the sign of F (X, T, P, Q) = P − f(X, T, Q), particularly when X = V . 
Indeed, according to Eq. (25), when X = V , we have F (V, T, P, Q) = P − f(V, T, Q) = 0 in all equilibrium 
states, which corresponds to the equation of state.

Born–Infeld-AdS black hole thermodynamics through Landau formalism
To delineate a comprehensive phase transitions framework and categorize their types, an exploration of the 
thermodynamic potential linked to the Born–Infeld-AdS black hole is crucial. In this context, we revisit the 
Gibbs free energy, which is computed from the Euclidean action with the appropriate boundary term in the 
canonical ensemble101, maintaining fixed Hawking temperature T, pressure P, and charge Q. Employing the 
Legendre transformation, the Gibbs free energy per unit volume ω can be derived as follows63

	

G (T, P, Q) = M − T S

= 1
48πrh

[
3r2

h − 3r4
h

l2 − 2b2

(
1 −

√
1 + 16π2Q2

b2r4
h

)
+ 128π2Q2

2F1

[
1
4 ,

1
2 ,

5
4 , −16π2Q2

b2r2
h

]]
,
� (28)

in which, rh = rh(T, Q, P ) and l = l(P ). In the following, we shall assume the charge of the Born–Infeld-
AdS black hole can vary, while the value of the pressure is fixed. Moreover, we shall take b = 3.5 > b1, thus the 
critical behavior will take place in the RN-type black hole.

To better determination of the global stability of the black hole configuration under consideration, we 
introduce the on-shell free energy which accounts for transient black hole states, with respect to the relevant 
thermodynamic variables such as temperature, pressure, and charge95. In other words, we define the on-shell free 
energy G̃ (T, P, Q) as the Gibbs free energy corresponding to the globally stable phase. Specifically, the Gibbs 
free energy G(T, P, Q) is a multivalued function in terms of T, describing both local stable and unstable black 
hole phases. The on-shell free energy G̃ (T, P, Q) can be expressed as:

	 G̃ (T, P, Q) = min (G (rh, T, P, Q)) ,� (29)

such that G (rh, T, P, Q) represents the generalized off-shell Gibbs free energy for the transient black hole state, 
and is given by

	

G (rh, T, P, Q) = M(rh, P, Q) − T S(rh)

= − 1
24πrh

[
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4 , −16π2Q2
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h

]]
,

� (30)

where the horizon radius rh serves as the order parameter, encompassing values from zero to infinity105. The 
minimum of G (rh, T, P, Q) in Eq. (29) is determined with respect to the horizon radius rh (order parameter). 
Consequently, the on-shell free energy G̃ (T, P, Q) characterizes the global stability of the black hole106,107. It’s 
worth knowing, that, the Generalized off-shell Gibbs free energy differs from the free Gibbs energy G (T, P, Q) 
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given in Eq. (28), where the temperature T represents the Hawking temperature. In the Generalized off-shell 
Gibbs free energy, denoted as G (rh, T, P, Q), the temperature T serves as a parameter that can be freely and 
independently chosen from rh. Therefore, the Generalized off-shell Gibbs free energy, G (rh, T, P, Q), equals 
the Gibbs free energy presented in Eq. (28) only when the temperature T matches the Hawking temperature 
corresponding to the black hole state with the horizon radius rh.

The phase structure of the Born–Infeld-AdS Black hole is characterized based on the value of Q in the 
following manner:

•	 For Q = 0.005 < Q0 = 0.00922, we present various plots in Fig. 3 showcasing the temperature as a function 
of the horizon radius rh (Fig. 3a), Gibbs free energy with respect to temperature (Fig. 3b), Landau function L 
as a function of the parameter X at different temperatures (Fig. 3c), Landau function L in terms of the black 
hole volume V (Fig. 3d), γ-function with respect to the black hole volume V (Fig. 3e), and on-shell Gibbs 
free energy G̃ versus temperature (Fig. 3f). We observe that the black hole behaves like the Schwarzschild one 
revealing a Hawking-Page transition (black dot) between the thermal radiations phase and stable large black 
hole one at THP = 0.3065. The unstable phase corresponds to the local maximum of the Landau function 
(blue dot) whereas the stable phase corresponds to the local minimum (red dot). Moreover, we notice that the 
Landau function is a decreasing function in terms of the black hole volume when the system is stable (dark 
red curve) and it is an increasing function when the system is unstable (dark blue curve). Thus the γ function 
is negative in the large black holes phase and positive in the small black holes one. The zero of γ-function is 
associated with an unstable fixed point indicating that the temperature is (locally) minimal. We can interpret 
these results as the large black hole becoming larger and more stable when it gets hotter, whereas the small 
hole becomes smaller when it gets hotter because of evaporation. The pink region indicates the zone where 
the temperature is less than Hawking-Page one (pink curves) and only the thermal radiation phase is globally 
stable.

•	 Herein, all previous diagrams of Fig. 3 are reproduced but for Q = Q0 = 0.00922 in Fig. 4.
	 It is noteworthy that the temperature, expressed in terms of the horizon radius, exhibits an inflection point, 

signifying a discontinuity in the first derivative of the Gibbs free energy and inflection points in the Landau 
function (depicted by the green and dark cyan curves). Consequently, a novel black hole phase emerges, 
termed intermediate black holes (green dots), sharing similarities with the unstable small black holes, as il-
lustrated in Fig. 4c, where this phase corresponds to a local maximum of the Landau function. Furthermore, 
Fig. 4d illustrates that the Landau function increases concerning the black hole volume, signifying instabil-
ity. In Fig. 4e, the γ-function reveals two fixed points: one unstable, corresponding to a Hawking-Page-like 
scenario, indicating minimal temperature; the second semi-stable fixed point separates two unstable phases 
(small and intermediate black holes) and corresponds to an inflection point in the temperature behavior. Fi-
nally, Fig. 4f demonstrates that the black hole resembles AdS Schwarzschild black holes, where only thermal 
radiations and large black hole phases are globally stable.

•	 Now, the charge is set to Q = 0.01 in Fig. 5.
	 The temperature curve, as a function of the horizon radius, exhibits two minima (gray points), one local 

(rh = 0.07) and the other global (rh = 0.52). Additionally, it features a local maximum at (rh = 0.18). 
These minima and maxima correspond to discontinuities in the first derivative of the Gibbs free energy and 
inflection points in the Landau function (magenta, green, and dark cyan curves). Consequently, we identify 
four distinct black hole phases: two stable phases, represented by large and stable small black holes (dark red 
and orange points, respectively), and two unstable phases, corresponding to unstable small and intermediate 
black holes (dark blue and green points, respectively), as illustrated in Fig. 5c. These phases align with the lo-
cal minima and maxima of the Landau functional. Furthermore, Fig. 5d depicts that the Landau function de-
creases concerning black hole volume for the stable phases and increases for the unstable ones. Additionally, 
Fig. 5e reveals three fixed points in the γ-function: one unstable (right point) segregating the large black hole 
phase from the unstable intermediate black hole phase, indicating minimal temperature; the second stable 
(middle point) dividing the stable small black holes phase from the unstable intermediate black holes phase 
and corresponding to the temperature maximum; the third unstable (left point) acting as a boundary between 
the stable small black hole phase and the unstable phase, suggesting a local minimum in temperature. Moreo-
ver, we observe that stable black holes increase in size as they become hotter, whereas unstable ones decrease 
in size with increasing temperature. Finally, Fig. 5f indicates that the black hole resembles AdS Schwarzschild 
black holes, where only thermal radiations and large black hole phases are globally stable.

•	 The case of Q = 0.010026 is depicted in Fig. 6.
	 At such a charge, the zeroth order phase transition occurs at the intersection point between the stable small 

black holes branch and the large black holes as depicted in Fig. 6b and which corresponds to an inflection 
point in Landau function in terms of the black hole volume (magenta curve). We illustrate such a phase tran-
sition that occurs at a constant temperature by the dashed magenta line in Fig. 6d,e. The zeroth order phase 
transition occurs between the unstable state (gray point) and the large black hole phase. We ought to mention 
that at this charge begins the appearance of first-order phase transition and reentrant phase transition which 
we shall examine in the next case. Finally, one can remark from Fig. 6f, that the black hole reminisces the AdS 
Schwarzschild black holes as in previous cases.

•	 Continuing our exploration of the phase picture, we now examine the case of Q = 0.01009 in Fig. 7. Specif-
ically, we plot the temperature as a function of the horizon radius rh (Fig. 7a), Gibbs free energy with respect 
to temperature (Fig. 7b), Landau function L versus the parameter X across various temperatures (Fig. 7c), 
Landau function L in terms of the black hole volume V (Fig. 7d), γ-function in terms of the black hole volume 
V (Fig. 7e), and the on-shell Gibbs free energy-temperature (G̃ − T ) diagram (Fig. 7f).

Scientific Reports |        (2025) 15:15425 9| https://doi.org/10.1038/s41598-025-88842-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 3.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy 
G̃ as a function of temperature T. The arrows indicate the evolution of the temperature and the pink region 
indicates where the thermal radiation phase is the global stable phase (T < THP ) with Q = 0.005, l = 1, and 
b = 3.5.
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Fig. 4.  (a) Temperature versus event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy 
G̃ as a function of temperature T. The arrows indicate the evolution of the temperature and the pink region 
indicates where the thermal radiation phase is the global stable phase (T < THP ) with Q = 0.00922, l = 1, 
and b = 3.5.
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Fig. 5.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy 
G̃ as a function of temperature T. The arrows indicate the evolution of the temperature and the pink region 
indicates where the thermal radiation phase is the global stable phase (T < THP ) with Q = 0.01, l = 1, and 
b = 3.5.
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Fig. 6.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy 
G̃ as a function of temperature T. The arrows indicate the evolution of the temperature and the pink region 
indicates where the thermal radiation phase is the global stable phase (T < THP ) with Q = 0.010026, l = 1
, and b = 3.5.
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Fig. 7.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy 
G̃ as a function of temperature T. The arrows indicate the evolution of the temperature and the pink region 
indicates where the thermal radiation phase is the global stable phase (T < THP ) with Q = 0.01009, l = 1, 
and b = 3.5.
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	 In this scenario, we observe a reentrant phase transition from Large Black Holes (LBH) to Small Black Holes 
(SBH) and back to Large Black Holes. As evident in Fig. 7b, a zeroth-order phase transition occurs between 
large and small black holes (indicated by the magenta dashed line), manifesting as a jump in the Gibbs free 
energy. Additionally, a first-order phase transition between small and large black holes is discernible (shown 
by the purple dashed line), characterized by the swallowtail shape in the Gibbs free energy curve. Figure 7d,e 
further highlight these transitions. Furthermore, it is noteworthy that the large black hole (red curve) can 
transition to a small black hole (following the magenta dashed line) while maintaining a constant tempera-
ture, and subsequently undergo a first-order transition back to a large black hole phase. Lastly, as indicated in 
Fig. 7f, the black hole exhibits behavior reminiscent of the Schwarzschild-AdS black hole.

•	 Increasing the charge to reach Q = 0.010128 in Fig. 8.
	 The system exhibits always a first-order phase transition between small black holes and large ones following 

the dashed purple line whereas the zeroth-order phase transition is carried out between two unstable points 
following the magenta line. From this electric charge, the zeroth order phase transition shall disappear as we 
will see next case. Therefore, the reentrant phase transition that characterized the Born–Infeld-AdS black hole 
will disappear. Finally, we see in Fig. 8f that the situation remains the same.

•	 In Fig. 9, we extend our analysis to Q = 0.0105. 
	 The key remark is the disappearance of the zeroth-order phase transition in Fig. 9, eliminating the possibility 

of a reentrant phase transition. The system now undergoes only a first-order phase transition between small 
and large black holes. The Hawking-Page-like transition persists between thermal radiations and stable small 
black hole, ensuring the absence of black holes below T = 0.226. Finally, in Fig. 9f, two critical points are 
identified. The first corresponds to the Hawking-Page-like transition between thermal radiations and small 
black holes, while the second is associated with the first-order phase transition between small and large black 
holes. Consequently, three globally stable phases emerge: thermal radiations, small, and large black holes.

•	 The phase portrait corresponding to Q = Qm = 0.0113682 is depicted in Fig. 10.
	 Clearly, we are encountering a Reissner–Nordstrom-like senario, marked by a first-order phase transition be-

tween small and large black holes (indicated by the purple arrow), along with an unstable intermediate phase.
•	 Figure 11 is associated with the case Q = Qc = 0.0136024.
	 The panels unveil a critical behavior where (block dot, i.e, critical point) a second-order phase transition 

occurs between small and large black holes at exactly T = 0.265.
•	 The case related to Q = 0.0154 is illustrated in Fig. 12, where we have depicted just the temperature as a 

function of horizon radius rh (Fig. 12a), Gibbs free energy-temperature diagram (Fig. 12b), Landau function 
L in terms of the parameter X for different temperatures (Fig. 12c), then in terms of the black hole volume V 
in Fig. 12d panel. The last panel is devoted to γ-function versus the black hole volume V (Fig. 12e).

	 We note the absence of a phase transition, as the system exhibits only one globally stable phase associated with 
the large black hole state. This observation is supported by the monotonous behavior of temperature concern-
ing the horizon radius, where there is no indication of non-monotonicity. Additionally, the Landau function 
L displays only one minimum with respect to the parameter X. Furthermore, both the Gibbs free energy and 
Landau function exhibit monotonic trends relative to temperature, and the γ-function lacks any fixed point 
(zero point), consistently maintaining a strictly negative nature.

The complete phase diagram of the Born–Infeld-AdS black hole is depicted in Fig. 13.
In Fig.  13a, the Q − V  diagram is presented, illustrating the temperature gradient through directional 

arrows and revealing four distinct local phases: stable small black holes (SSBH), unstable small black holes 
(USBH), Intermediate black holes (IBH), and large ones (LBH). The gray zone signifies regions where black 
holes cannot exist and is delimited by the extremal black hole solution. The pink zone indicates the region 
where thermal radiation is the globally stable phase, corresponding to temperatures below the Hawking-Page 
temperature. Notably, locally stable black holes exhibit a right-oriented temperature gradient, signifying an 
increase in temperature as the black hole enlarges. Conversely, locally unstable black holes display a left-oriented 
temperature gradient, indicating an increase in temperature as the black hole diminishes, ultimately leading 
to evaporation. For a more in-depth exploration, Fig. 1b illustrates the Hawking-Page transition temperature 
THP , the first-order phase transition temperature Tf , and the zeroth-order phase transition temperature 
Tz  as functions of electric charge Q. Several observations can be drawn from this panel: firstly, the zeroth-
order phase transition temperature Tz  consistently remains below the Hawking-Page transition temperature 
THP , rendering the occurrence of zeroth-order phase transitions implausible. Secondly, the first-order phase 
transition can manifest when Q > Qm. Further insights are provided in Fig. 13c, where the on-shell Gibbs free 
energy-temperature T-electric charge Q diagram depicts the presence of three globally stable phases: large black 
holes, thermal radiations, and small black holes.

In summary, the phase diagram of the Born–Infeld-AdS black hole can be characterized by three specific 
electric charge values, outlined as follows:

•	 When Q < Qt = 0.0103638, we have just two globally stable phases, thermal radiation, and a large black 
hole, then consequently there is only one possible phase transition which is the Hawking-Page phase transi-
tion. Therefore, there is neither first-order phase transition nor zeroth-order phase transition as it was shown 
in103, where, the authors have shown that the reentrant phase transition occurs for 0.010026 < Q < 0.10128 
but they had not proved that the intermediate black holes are globally stable for these values of electric charge. 
To conclude, for Q < Qt, the Born–Infeld-AdS black hole is Schwrazchild-like, there are only two globally 
stable phases that are connected by Hawking-Page phase transition. Moreover, there is no extremal (no van-
ishing temperature) which confirms the results of108.
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Fig. 8.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy 
G̃ as a function of temperature T. The arrows indicate the evolution of the temperature and the pink region 
indicates where the thermal radiation phase is the global stable phase (T < THP ) with Q = 0.010128, l = 1
, and b = 3.5.

 

Scientific Reports |        (2025) 15:15425 16| https://doi.org/10.1038/s41598-025-88842-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 9.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy 
G̃ as a function of temperature T. The arrows indicate the evolution of the temperature and the pink region 
indicates where the thermal radiation phase is the global stable phase (T < THP ) with Q = 0.0105, l = 1, 
and b = 3.5.
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Fig. 10.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy G̃ 
as a function of temperature T. The arrows indicate the evolution of the temperature. The arrows indicate the 
evolution of the temperature with Q = Qm = 0.0113682, l = 1, and b = 3.5.
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Fig. 11.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy G̃ 
as a function of temperature T. The arrows indicate the evolution of the temperature. The arrows indicate the 
evolution of the temperature with Q = Qc = 0.0136024, l = 1, and b = 3.5.
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•	 For Qt < Q < Qm = 0.0113682, three globally stable phases persist, thermal radiation (pink zone), small 
stable black hole (SSBH), and large black hole (LBH) with two possible critical points as we have shown in 
Fig. 9. Indeed, there are two possible phase transitions, the first one is between thermal radiations and small 
black holes corresponding to Hawking-Page-like transition; the second one is the first order phase transition 

Fig. 12.  (a) Temperature as a function of event horizon radius rh. (b) Gibbs free energy as a function of 
temperature. (c) Landau function L in terms of the parameter X for T = 0.25. (d) Landau function L in 
terms of the black hole volume V. (e) γ-function in terms of the black hole volume V. The arrows indicate the 
evolution of the temperature with Q = 0.015 > Qc, l = 1 and b = 3.5.
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between small and large black holes like that observed in Reissner-Nordström-AdS black holes101. Moreover, 
reaching the charge Q = Qt, the system exhibits a triple point where thermal radiation, small, and large black 
holes coexist together.

•	 In the Qm < Q < Qc = 0.0136024 scenario, the Born–Infeld-AdS black hole unveils similarities to the Re-
issner-Nordström-AdS black hole case. Indeed, two globally stable phases emerge, accompanied by a first-or-
der phase transition between small and large black holes. Additionally, the system may reach an extremal state 
where the black hole becomes sufficiently small. Consequently, the presence of a thermal radiation phase is 
eliminated, and the Hawking-Page-like transition ceases to exist.

•	 In the situation where Q > Qc, there is only a globally stable phase emerges (LBH), mirroring the character-
istics of the large black holes phase observed in the Reissner-Nordström-AdS black hole. Furthermore, when 
Q = Qc, the black hole undergoes a second-order phase transition between small and large black holes.

Fig. 13.  (a) Q − V  diagram of Born–Infeld-AdS black hole; the flow indicates the temperature gradient. 
(b) Critical temperatures as a function of electric charge. (c) On-shell Gibbs free energy as a function of 
temperature and electric charge. l = 1 and b = 3.5.
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Therefore, one concludes that the Born–Infeld-AdS black hole can unveil a triple point where the three globally 
stable phases can coexist. In Fig. 14 we illustrate the temperature as a function of horizon radius rh (Fig. 14a), 
Gibbs free energy in terms of temperature (Fig. 14b), Landau function L in terms of the parameter X for different 
temperatures (Fig. 14c), and in terms of the black hole volume V Fig. 14d, γ-function versus the black hole 
volume V (Fig. 14e), and in the last panel (Fig. 14f), the on-shell Gibbs free energy G̃ as a function of temperature.

Figure  14 reveals that Hawking-Page phase transition temperature THP  coincides with first-order phase 
temperature Tf , which means that Hawking-Page transition and first-order phase transition occur simultaneously. 
Therefore, we have an equilibrium between thermal radiations, small black holes, and large black holes.

Having comprehensively portrayed the phase transition landscape of the Born–Infeld-AdS black hole 
utilizing the Landau functional formalism, our focus in the next section shifts to a novel thermodynamic tool 
borrowed from the field of dynamical systems. We will consider the Fokker–Planck equation, a concept widely 
employed in current literature to gain deeper insights into thermodynamic processes.

Exploring free energy landscape through the Fokker–Planck equation: unveiling 
probabilistic dynamics
It was recently developed in86 a new method for examining the dynamic process of phase transition on the 
free energy landscape, demonstrating that a black hole can escape from one phase to another due to thermal 
fluctuations. Then in105, the authors investigated the criticality of RN-AdS black holes from the perspective of 
the free energy landscape, obtaining the probability distribution of states and the time distribution of the first 
passage kinetic process of black hole state switching. Within this perception, we will probe the Born–Infeld-AdS 
black hole phase structure via such a formalism to probe its rich phase portrait.

To maintain consistency with the convention in105 and for simplicity, the horizon radius rh will be referred 
to as r. Consequently, the Gibbs free energy, expressed in terms of the order parameter r, will be represented as 
G(r). In the subsequent analysis, aiming to uncover the system’s response to thermal fluctuations over time, we 
consider the probability distribution of these evolving states as a function of both the order parameter r and time 
t. Thus, ρ(r, t) represents the probability distribution of the spacetime state within the ensemble.

The explicit Fokker–Planck equation for the probabilistic evolution on the free energy landscape is obtained 
to be109,110

	
∂ρ(r, t)

∂t
= D

∂

∂r

[
e−βG(r) ∂

∂r

[
eβG(r)ρ(r, t)

]]
,� (31)

in which β = 1/kBT  denotes the inverse temperature and D = kBT/ζ  stands for the diffusion coefficient 
with kB  is the Boltzmann constant while ζ  called dissipation coefficient. For commodity and by preserving the 
generality, one will set kB  and ζ  equal to the unity in the rest of our analysis.

The choice of boundary conditions for solving the Fokker–Planck equation depends on the specific question 
under consideration. Two distinct types of boundary conditions need to be enforced at the boundaries of the 
computational domain. For instance, at r = r0, with r0 is the boundary location, we provide the following 
boundary conditions

•	 A reflecting boundary condition: 

	
∂

∂r

[
eβG(r)ρ(r, t)

]∣∣∣
r=r0

= 0.� (32)

•	 Then, an absorbing boundary condition: 

	 ρ(r0, t) = 0.� (33)

In the canonical ensemble, we explore the temporal evolution of the probability distribution of states. Throughout 
this evolution, the reflecting boundary condition is applied to preserve probability conservation, and the initial 
condition is selected as a Gaussian packet which serves as an effective approximation of the δ distribution and is 
commonly employed in numerical computations

	
ρ(r, 0) = 1√

πa
e−(r−ri)2/a2

,� (34)

with the parameter a ≤ 0.01 is the Gaussian wave packet width, and ri is the initial horizon radius.
By taking the partial derivative ∂ρ(r,t)

∂t  null in the Fokker–Planck equation, one can achieve the final 
stationary distribution as ρ(r, t∞) ∝ exp(−G(r)/T ). This is in accordance with the Boltzmann link between 
free energy and equilibrium probability distribution. In fact, as a result of the long-time evolution, the stationary 
distribution reaches the equilibrium probability. Therefore, the maximum of the final stationary distribution is 
then used to define the thermodynamic stable state87.

We propose investigating the time-dependent characteristics of black hole probability distributions in 
extended phase space at various electrical charges and temperatures. We will also discuss oscillations occurring 
during an evolutionary process within the context of phase transitions. Specifically, we examine instances where 
the probability of a thermodynamic state ‘k’, denoted as ρ(rk, t = 0) = 0, is initially higher than what it will be 
in the eventual equilibrium situation. That is to say
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Fig. 14.  (a) Temperature versus the event horizon radius rh. (b) Gibbs free energy-temperature diagram. (c) 
Landau function L in terms of the parameter X for different temperatures. (d) Landau function L in terms of 
the black hole volume V. (e) γ-function in terms of the black hole volume V. (f) On-shell Gibbs free energy G̃ 
as a function of temperature T. The arrows indicate the evolution of the temperature. The arrows indicate the 
evolution of the temperature with Q = Qt = 0.0103638, l = 1, and b = 3.5.
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	 ∃ t > 0 ρ(rk, t) > ρ(rk, t∞), with ρ(rk, t = 0) = 0.� (35)

An oscillation is considered strong when the probability of the thermodynamic state ‘k’ exceeds that of the initial 
state ‘i’:

	 ∃ t > 0 ρ(rk, t) > ρ(ri, t), with ρ(rk, t = 0) = 0 and ρ(ri, t = 0) = max (ρ(r, t = 0)) .� (36)

An oscillation is categorized as weak when it does not exhibit strength condition and satisfies only the Eq. (35) 
criteria.

•	 Considering Q = 0.01009: in103, authors affirmed that there is a reentrant phase transition between the small 
and large black hole, nevertheless, we shall show that there is no reentrant phase transition and only ther-
mal radiations and large black holes phases are globally stable and most probable states. We plot in Fig. 15 
the probability distribution ρ(r, t) governed by Fokker–Planck equation for different temperatures with 
Q = 0.01009, l = 1 and b = 3.5. For T = Tz = 0.2718, and the y-axis is rescaled with a logarithmic scale 

such that y −→ 1050(y−1)
(

y ←− log10(y)
50 + 1

)
. when it is supposed to occur a reentrant phase transition 

(zeroth order phase transition), we observe that the probability ρ(r, t) which is initially centered around the 
small black hole state, ri = 0.0707, leaks quickly to thermal radiations state, r = 0, which is the only glob-
ally stable state where the probability is maximal. This outcome serves as additional evidence supporting the 
absence of a reentrant phase transition, as ρ(rl, t∞) < ρ(rs, t∞) < ρ(r = 0, t∞), where rl = 0.6332 and 
rs = 0.0707 are the large and the small black holes horizon radii respectively, and the thermal radiations is 
the most stable phase. Afterward, in the second line of the figure, we set T = THP = 0.2783 associated with 
the Hawking-Page transition, one can notice that the probability ρ(r, t) which is initially centered around the 
large black hole state, ri = 0.7138, leaks quickly to thermal radiations state, i.e r = 0, then it comes back to 
form another peak around the large black hole state, and by the end, we have ρ(r = 0, t) = ρ(rl, t) traducing 
the coexistence of the large black hole and the thermal radiations where the probability is maximal. In the 
bottom panels where we have taken T = 0.2937, one can remark that the probability ρ(r, t) which is initial-
ly centered around the large black hole state, ri = 0.8448, leaks quickly to thermal radiations state (r = 0
), then as t increases, the thermal radiations phase probability decreases wheres the large black holes phase 
probability increases forming a peak around rl. Therefore, the large black holes phase is the most probable 
and stable phase.

•	 For the charge value Q = Qt = 0.0103638, corresponding to Fig. 14 where the existence of a triple point is 
demonstrated, we propose reaffirming this finding through the probability distribution. To achieve this, we 
illustrate in Fig. 16 the probability distribution ρ(r, t) governed by the Fokker–Planck equation for various 
temperatures Q = Qt = 0.01009, l = 1 and b = 3.5. Specifically, for T = 0.25,

	 It is notable that the probability distribution ρ(r, t), initially centered around the small black hole state at 
ri = 0.0805, rapidly shifts towards the thermal radiation state at r = 0. This transition corresponds to the 
only globally stable state, where the probability reaches its maximum value. Indeed, ρ(rs, t∞) < ρ(r = 0, t∞)
, where rs = 0.0805 is the small black hole horizon radius, and then the thermal radiations is the most stable 
phase confirming our previous result that the thermal radiation is the only globally stable phase. Increas-
ing the temperature to T = Tt = 0.276, we notice that the probability ρ(r, t) centered initially around the 
large black hole state, ri = 0.6909, leaks quickly to thermal radiations state, r = 0, but after then it comes 
back to form two peaks around the small and the large black holes horizon radii. Thus, we are in presence 
of a triple point, i.e a location where the thermal radiations, small black holes, and large black holes coexist 
together. i.e., ρ(rs, t∞) = ρ(rl, t∞) = ρ(r = 0, t∞) where rs = 0.1177 and rl = 0.6909, the three phas-
es are equiprobable and globally stable. Now reaching T = 0.29, we see that the probability distribution 
ρ(r, t), initially centered around the large black hole state at ri = 0.8172, rapidly transitions towards ther-
mal radiation and small black hole states, forming a pattern similar to the triple point case. Subsequently, 
ρ(r = 0, t) and ρ(rs, t) decrease over time, while ρ(rl, t) increases to reach its maximum. Consequently, 
ρ(r = 0, t∞) < ρ(rs, t∞) < ρ(rl, t∞), where rs = 0.1418 and rl = 0.8172. The large black hole phase 
emerges as the most probable state and, ultimately, the only globally stable phase.

•	 Now, with Q = 0.0105 that corresponds to Fig. 9 and where we have unveiled the existence of two critical 
points at such a value of charge, that is to say, two-phase transitions occur, the first one is between thermal 
radiation and small black holes phases which is a Hawking-Page-like transition, while the second one is a 
first-order phase transition between small and black holes phases. We dipect in Fig. 17 the probability dis-
tribution ρ(r, t) derived from the Fokker–Planck equation for different temperatures around thermal radia-
tions-small black holes transition with Q = 0.0105, l = 1 and b = 3.5. For T = 0.227,

	 Such a figure reveals serval remarks, one can first notice that the probability ρ(r, t) which initially centered 
around the small black hole state, ri = 0.0599, attains fast the thermal radiation state, r = 0, which is the 
only globally stable state. Indeed, ρ(rs, t∞) < ρ(r = 0, t∞), where rs = 0.0599, and then the thermal ra-
diations is the most stable phase which confirms our previous finding that the thermal radiation is the only 
globally stable phase. Second, for T = THP = 0.25708, which corresponds to the Hawking-Page-like transi-
tion between thermal radiation and small black holes phases, the probability ρ(r, t) centered around the small 
black hole state, ri = 0.1034, arrives to thermal radiations state, r = 0, then it comes back to form another 
peak around the small black hole state, and by the end, one achieves ρ(r = 0, t) = ρ(rs, t), at rs = 0.1034
, traducing the coexistence of the small black hole and the thermal radiations at the maximum of the proba-
bility. In the third scenario with T = 0.272, the probability distribution ρ(r, t), initially concentrated at the 

Scientific Reports |        (2025) 15:15425 24| https://doi.org/10.1038/s41598-025-88842-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


small black hole state with ri = 0.1226, transitions towards the thermal radiation state (r = 0). As time t 
progresses, the probability associated with the thermal radiation phase decreases, while the probability of the 
small black hole phase increases, forming a prominent peak around rs. Consequently, the small black hole 
phase emerges as the most probable and stable phase.

	 Within Fig. 18, we depict the probability distribution ρ(r, t) for different temperatures around small-large 
black holes transition with the same parameters as in Fig. 17.

Fig. 15.  Probability distribution ρ(r, t) governed by Fokker–Planck equation for different temperatures with 
Q = 0.01009, l = 1 and b = 3.5.
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	 Figure 18 reveals that for T = Tf = 0.2753, corresponding to the first-order phase transition between small 
and large black hole phases, the probability distribution ρ(r, t) initially centered around the large black hole 
state with ri = 0.6838 switchs to the thermal radiation state (r = 0). Subsequently, it bifurcates to form 
two peaks around the horizons of the small and large black holes. This indicates the existence of a critical 
point where both the small and large black hole phases coexist. Specifically, ρ(rs, t∞) = ρ(rl, t∞), where 
rs = 0.1273 and rl = 0.6838, implying that both phases are equiprobable and globally stable. Upon reach-

Fig. 16.  Probability distribution ρ(r, t) governed by Fokker–Planck equation for different temperatures with 
Q = Qt = 0.0103638, l = 1 and b = 3.5.
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ing T = 0.29, the probability distribution ρ(r, t) initially centered around the large black hole state with 
ri = 0.8177 transitions to thermal radiations and small black hole states, creating a pattern reminiscent of 
a critical point scenario. Thereafter, ρ(rs, t) decreases with time, while ρ(rl, t) increases, reaching its max-
imum. As a result, ρ(rs, t∞) < ρ(rl, t∞), where rs = 0.1542 and rl = 0.8177, indicating that the large 
black hole phase is the most probable and ultimately the only globally stable phase.

Fig. 17.  Probability distribution ρ(r, t) governed by Fokker–Planck equation for different temperatures 
around thermal radiations-small black holes transition with Q = 0.0105, l = 1 and b = 3.5.
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Now, let’s examine the dynamics at the triple point, where three globally stable phases coexist: thermal 
radiation at r = 0, the small black hole at rs, and the large black hole at rl. For a clear illustration, we depict in 
Fig. 19 the evolution of ρ(rk, t) when the initial Gaussian wave packet peaks at large or small black hole states. 
In fact, the state k ranges {0, s, l}, radiation, small and large black holes, respectively.

We observe that the initially large value ρ(rl,s, t = 0) in each case rapidly decays to a stationary value, while 
the other two states (initially zero) grow toward this value.

Henceforth, considering the first case shown Fig. 19a, the initial Gaussian wave packet ρ(r, t = 0) peaks 
at the large black hole phase with ρ(rl, t = 0) = 56.4189, while ρ(r = 0, t = 0) ≃ ρ(rs, t = 0) ≃ 0. As the 
parameter t increases, ρ(rl, t) decreases (red curve), and ρ(r = 0, t) and ρ(rs, t) increase (blue and green curves 
respectively) as expected, with ρ(r = 0, t) < ρ(rs, t) because the initial state must surmount two barriers to 
reach thermal radiations state as we can see in Fig. 20.

Certainly, from Fig. 20, portraying the Gibbs free energy landscape at the triple point, we observe three wells 
(blue, green, and red dots) of equal depth, separated by two barriers (magenta and orange dots). In this scenario, 
a large black hole situated at rl must overcome both barriers to transition to r = 0. Notably, the transition rate 
from the large to the small black hole state surpasses the combined rate from the small to the large black hole 
and thermal states. Once t > 20, ρ(r = 0, t) = ρ(rs, t) = ρ(rl, t) = 0.4377 , where the final stationary state is 

Fig. 18.  Probability distribution ρ(r, t) governed by Fokker–Planck equation for different temperatures 
around small–large black holes transition with Q = 0.0105, l = 1 and b = 3.5.
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achieved. During the evolution, we notice that ρ(rs, t) increases to a maximum of 0.7043 at t = 0.8544 and then 
decreases with time to its stationary value of 0.4377. This behavior arises because the small black hole state can 
transition to both thermal radiation and large black hole states. The system tends to persist longer in the small 
black hole and thermal radiation states, attributed to the relatively smaller barrier between them compared to the 
large black hole state. As the small black hole and thermal radiation states become more populated, transitions 
back to the large black hole state occur. Due to the possibility that ρ(rs, t) and ρ(r = 0, t) can surpass ρ(rl, t), 
we characterize this behavior as a strong oscillatory phenomenon90.

Considering second situation shown Fig.  19b, the initial Gaussian wave packet ρ(r, t = 0) peaks at the 
small black hole phase with ρ(rs, t = 0) = 56.4189, while ρ(r = 0, t = 0) ≃ ρ(rl, t = 0) ≃ 0. As expected, 
ρ(rs, t = 0) decreases whereas ρ(r = 0, t = 0) and ρ(rl, t = 0) both increase. Beyond t > 20, the probabilities 
reach a stationary state where ρ(r = 0, t) = ρ(rs, t) = ρ(rl, t) = 0.4377, resembling the previous case. 
Throughout the evolution, we note a leakage of probability from the small black hole state to both thermal 
radiation and large black hole states. The probability at r = 0 increases more rapidly than ρ(rl, t) due to the 
lower barrier height depicted in Fig. 20. Furthermore, we observe a rapid increase in ρ(r = 0, t) to a peak value 
of 4.1097 at t = 0.0245, followed by a gradual decrease over time to its stationary value of 0.4377. Notably, for 

Fig. 20.  Gibbs free energy via landscape at the triple point with Q = Qt = 0.0103638, T = Tt = 0.276, 
l = 1 and b = 3.5.

 

Fig. 19.  Behaviors of the probability ρ(r, t) at the triple point, when the initial Gaussian wave packet is peaked 
at the (a) large and (b) small black hole states, with Q = Qt = 0.0103638, T = Tt = 0.276, l = 1 and 
b = 3.5.
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t > 0.0205, we find that ρ(r = 0, t) > ρ(rs, t) > ρ(rl, t), indicating the dominance of ρ(r = 0, t) among the 
three probabilities. This suggests a higher probability of the system residing in the thermal radiation state. Given 
the dominance of ρ(r = 0, t), this behavior, akin to the previous case, is characterized as a strong oscillatory 
phenomenon. Meanwhile, the evolution of ρ(rl, t) shows an increase to a maximum of 0.7043 at t = 0.8551, 
followed by a gradual decrease to its stationary value of 0.4377. Since ρ(rl, t) consistently remains smaller than 
ρ(rs, t), this behavior is termed a weak oscillatory phenomenon90.

Kinetics and fluctuations in the dynamics of Born–Infeld-AdS black hole state 
transitions
Herein, we will explore the kinetics of the first passage event transitioning from one black hole state to another 
in a triple-point scenario, where thermal radiation, large, and small black hole states coexist. To this end, we 
recall the the first passage time notion. The time required for the black hole state to transition into 
an unstable black hole phase, represented by the free energy peak, is defined as the first passage time. In other 
words, the mean first passage time represents the average timescale for a stochastic event to occur for the first 
time87. Figure 20 illustrates three cases: thermal radiations to small black holes (case 1), small black holes to 
thermal radiations and large black holes (case 2), and large black holes to small black holes (case 3).

The distribution of first passage times is defined as Fp(t), where Σ(t) is the probability that the state of the 
black hole hasn’t performed a first passage by time t. Fp(t) and Σ(t) distributions are connected by

	
Fp(t) = −AdΣ(t)

dt
,� (37)

where A is nothing than a normalization constant such that 
∫ +∞

0 Fp(t)dt = 1. The quantity Σ(t) is defined to 
be the probability of a black hole being present in the system at time t87. Hence, we get

	
Σ1(t) =

∫ r1

0
ρ(r, t)dr,� (38)

	
Σ2(t) =

∫ r2

r1

ρ(r, t)dr,� (39)

	
Σ3(t) =

∫ +∞

r2

ρ(r, t)dr.� (40)

We apply reflective boundary conditions at r = 0 and r = +∞ (sufficiently large r) and absorbing boundary 
conditions at r1 and r2 peaks. We assumed that the time required to transition from the intermediate transition 
state of the black hole to the large black hole state is substantially shorter than the first passage time. Furthermore, 
if a black hole state makes the first passage via thermal fluctuation, the black hole state exits the system. In this 
case, the probability distribution’s normalization will not be kept.

Using Eqs.  (37), (38), (39), (40) and the Fokker–Planck equation Eq.  (31), with limr→+∞ ρ(r, t) = 0 in 
hands, one can express the first passage rate Fp(t) for the three cases as

	
Fp1(t) =A1

(
− ∂ρ(r, t)

∂r

∣∣∣∣
r=r1

+ 1
T

ρ(r, t)∂G(r)
∂r

∣∣∣∣
r=0

)
, � (41)

	
Fp2(t) =A2

(
− ∂ρ(r, t)

∂r

∣∣∣∣
r=r2

+ ∂ρ(r, t)
∂r

∣∣∣∣
r=r1

)
, � (42)

	
Fp3(t) =A3

∂ρ(r, t)
∂r

∣∣∣∣
r=r2

. � (43)

We may calculate the mean first passage time and its relative fluctuation using the time distributions. The average 
first passage time is given by

	
⟨t⟩ =

∫ +∞

0
tFp(t)dt,� (44)

while the relative fluctuation is obtained to be

	
f =

⟨
t2⟩

− ⟨t⟩2

⟨t⟩2 .� (45)

We propose focusing solely on the second and third cases, as the initial state in the first case aligns with the 
boundary at r = 0, resulting in numerical instabilities. These instabilities arise from the performance limitations 
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of our computational tools and the narrowness of the studied domain. The numerical results for Fp2(t) and 
Fp3(t) are illustrated in Fig. 21a.

For each case, there is a single peak at t2 = 0.0041 and t3 = 0.1986, which can be interpreted as the length 
of time at which the system remains in its initial state for each before first transiting to another state. For the 
second case (green curve), the system transits to other states (thermal radiation and large black hole) after a 
short time, whereas for the third case (red curve), the system remains in the large black hole state longer. The 
mean first passage time for the second case is ⟨t2⟩ = 0.0856 with a relative fluctuation f2 = 2.3474, whereas, 
for the third case, ⟨t3⟩ = 3.3835 with a relative fluctuation f3 = 1.9227.

In order to understand the behavior observed in Fig. 19, we depict the two parts of Fp2(t) in Fig. 21b where 
Fp21(t) (magenta curve) is the distribution of first passage time from small black hole to thermal radiation, 
and Fp22(t) (orange curve) is the distribution of first passage time from small black hole to the large black 
hole. Obviously, each distribution shows a single peak at t21 = t2 = 0.0041 and t22 = 0.1387. The mean first 
passage time for each situation is ⟨t21⟩ = 0.0612 with a relative fluctuation f21 = 2.9721, and ⟨t22⟩ = 0.2550 
with a relative fluctuation f22 = 0.4081.

Moreover, we remark that ⟨t21⟩ < ⟨t22⟩, which means that when the initial state peaks at the small black 
hole phase, the system transits suddenly to thermal radiations phase in good agreement with Fig. 19b where 
ρ(r = 0, t) increases very quickly and passes over ρ(rs, t), whereas ρ(rl, t) increases slowly before to reach 
its maximum with ρ(rl, t) is always smaller than ρ(rs, t) because the transition to large black hole phase takes 
more time than the transition to thermal radiations which explains the weak oscillations observed in this case. 
Indeed, the barrier height between the small black hole and thermal radiation is smaller than that between 

Fig. 21.  (a) First passage time distribution for cases 2 and 3. (b) First and second parts of the first passage time 
for Fp2(t). (c) First passage time distribution for case 3 and the second part of the first passage time for Fp2(t).
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small and large black holes. When the initial state peaks at the large black hole phase, the transition takes quite 
more time (⟨t3⟩ < ⟨t2⟩) to transit to the small black hole phase, and after then the system can transit quickly to 
thermal radiations phase. Moreover, we see in Fig. 21c that Fp22(t) ̸= Fp3(t), which means that the transition 
between small and large black holes is not symmetric with ⟨t3⟩ < ⟨t22⟩. That is to say, a large black hole takes 
more time to transit to a small black hole even though the height of the barrier is the same. Nevertheless, the 
relative fluctuation of first passage time is very important in the transition from a large black hole to a small black 
hole (f3 > f22), and that what could explain the strong oscillatory behavior observed in Fig. 19a.

Conclusion
The connection of gravity, thermodynamics, and quantum field theory is an essential tool to probe the quantum 
nature of black holes. The thermodynamic analysis and the phase transition behavior during the black hole 
evaporation might be a crucial area of investigation to determine the microscopic description of the black hole 
thermodynamics in particular, and the spacetime structure in general. One possible way to investigate such 
microscopic structure is by probing through the dynamic and kinetic evolution of the black hole during the 
thermal phase transitions. This paper is devoted to inquiring into the small black hole and the large black hole 
phases as well as the reentrant phase transition for the Born–Infeld-AdS black holes from the perspectives of 
the free energy landscape via the Landau free energy formalism and the stochastic processes through a certain 
probability distribution using the Fokker–Planck equation.

We started with a brief discussion of the Born–Infeld-AdS black hole solutions, the related thermodynamic 
quantities, and their thermal properties. We then moved on to compute the critical points characterizing 
different black hole configurations during the phase transitions. We systematically analyzed the profile of the 
heat capacity at a constant electric charge, Q, and studied its stable and unstable branches. Depending upon 
the values of the charge parameter, we categorically discussed the phase transition behavior. For Q < Qm, Qm 
denotes some marginal charge expressed in terms of the Born–Infeld parameter, we had Schwarzschild-AdS-like 
behavior, whereas for Q ≥ Qm we had the characteristics behavior of the heat capacity mimicking that of the 
Reissner-Nordström-AdS black holes. The condition Qm ≤ Q < Qc, where Qc is the critical point, exhibited a 
first-order phase transition where a small-sized black hole transited into a large black one. At the critical value 
Q = Qc of the charge parameter, a second-order phase transition occurred between the small and large black 
holes. For other values of the charge parameter greater than Qc, we observed that the black holes are locally 
stable, thereby indicating the positive heat capacity.

Next, we focused our attention on exploring the thermal phase transition behavior of the Born–Infeld AdS 
black holes by considering a general prescription of the Landau-free energy functional of the Van der Waals 
fluids. The Landau functional provided us with a phenomenological description of the Van der Waals fluids 
when it undergoes a second-order phase transition. The analysis was quite interesting for our present analysis 
of the Born–Infeld AdS black holes, for that, we had to take into account the parameter space {X, T, P, Q} 
describing the state of the system pertaining to a set of physical conditions to be imposed. Such an analysis 
actually led us to connect the thermal behavior among the different states of the Van der Waals-like fluids and 
the Born–Infeld AdS black hole phases. For such purposes, we computed the convexity of the Landau functional 
to determine its extreme points and the corresponding stable and unstable phases of the thermal black hole 
systems. We plotted the temperature, T vs. the horizon radius, rh, the Gibbs free energy, G as a function of 
temperature, T, the Landau functional as a function of the state variable X as well as the volumes, V for different 
values of the charge parameter Q. As a further investigation of the thermal systems, we also plotted the on-
shell Gibbs free energy G̃ as a function of the temperature. For the charge parameter Q = 0.005 < Q0, both 
small and large black hole phases were observed. It’s worth noting that Q0 corresponds to the charge parameter 
value where the temperature profile, represented by the T − rh plot, exhibits an inflection point. Consequently, 
when Q = 0.00922 = Q0, the first derivative of the Gibbs free energy became discontinuous, signifying a 
corresponding discontinuity in the Landau functional

Additionally, the dynamics of AdS black holes and their kinematic descriptions were effectively elucidated 
by examining the thermal fluctuations exhibited by the system throughout its evolution. Given that fluctuating 
variables necessitate a probability distribution during thermal phase transitions, incorporating time dependence 
became imperative. This description relied on the probability distribution of the spacetime state in the ensemble, 
denoted as ρ(r, t). The thermal phase transitions were governed by a stochastic process and were contingent 
on the order parameter, with dynamics during its phases determined by fluctuating macroscopic variables. The 
entire evolution process was investigated through the Fokker–Planck equation. Given that transitions, such as 
from small to large black holes or reentrant phase transitions, involve sudden changes in the event horizon size, 
we identified the event horizon as an order parameter. Our analysis of stability and thermal phase transitions 
in Born–Infeld-AdS spacetime employed heat capacity and Gibbs-free energy. Rather than addressing phase 
transitions during dynamic evolution, we elevated the conventional Gibbs free energy to the status of generalized 
off-shell Gibbs free energy as a function of the order parameter. Analytical solutions for the order parameter are 
challenging, but numerical analysis yielded its lower bound. Utilizing the off-shell Gibbs free energy for various 
black hole configurations, we illustrated them for different temperature values.

During the small-large black hole phases, the switching process becomes faster than it existed earlier and the 
final stationary states should be of Boltzmann type. Such parables of the small-large black hole phases existed 
in the literature for a wide variety of AdS black hole systems. However, for the AdS black holes in Born–Infeld 
gravity, the notions of the reentrant phase transitions and the leaking of the small to radiation or the large 
to radiation phases was an exciting investigation. But in the process of the dynamical evolution, the charge 
parameter Q = 0.01009, we ruled out the possible existence of the reentrant phase transition behavior as 
claimed in the previous literature103. The systems instead of going through a reentrant phase transition, drained 
down to the pure thermal state and the large black hole phase reflecting the most probable states. At slightly 
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larger values of Q = Qt = 0.0103638, the system co-existed as a triple point comprising of the small, large, and 
thermal phases as was confirmed by the probability distribution. Further slight increase in the charge value, the 
phase transitions were distilled into two distinct phases, namely, a Hawking-Page-like phase transition between 
small to radiation, and another first-order phase transition among the small and the large black holes. Lately, 
we determined the first passage time for the kinetic evolution of distinct black hole states, focusing on the triple 
point configuration. Notably, we detected a finite peak in the distribution of the first passage time for three 
distinguished scenarios: (1) transition from pure thermal radiation to a small black hole, (2) transition between 
a small black hole and a large black hole through pure thermal radiation, and (3) transition from a large black 
hole to a small black hole phase. These processes unfold within a brief interval of the first passage time.

Exploring the impact of friction on kinetic and dynamic processes constitutes a thriving and highly relevant 
area of research, as briefly demonstrated in our current work through the computation of the mean first passage 
time and corresponding fluctuations. In a dynamical system, friction is incorporated through microscopic 
descriptions, offering insights into the macroscopic behavior of AdS black holes, particularly in terms of the 
order parameter. A potential future direction for this research could involve a more in-depth examination of the 
microscopic degrees of freedom and interactions among black hole molecules during kinetic turnovers.

Data availability
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