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Simulating virtual crowds can bring significant economic benefits to various applications, such as 
film and television special effects, evacuation planning, and rescue operations. However, the key 
challenge in crowd simulation is ensuring efficient and reliable autonomous navigation for numerous 
agents within virtual environments. In recent years, deep reinforcement learning has been used to 
model agents’ steering strategies, including marching and obstacle avoidance. However, most studies 
have focused on simple, homogeneous scenarios (e.g., intersections, corridors with basic obstacles), 
making it difficult to generalize the results to more complex settings. In this study, we introduce a new 
crowd simulation approach that combines deep reinforcement learning with anisotropic fields. This 
method gives agents global prior knowledge of the high complexity of their environment, allowing 
them to achieve impressive motion navigation results in complex scenarios without the need to 
repeatedly compute global path information. Additionally, we propose a novel parameterized method 
for constructing crowd simulation environments and evaluating simulation performance. Through 
evaluations across three different scenario levels, our proposed method exhibits significantly enhanced 
efficiency and efficacy compared to the latest methodologies. Our code is available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​
m​​/​t​o​m​b​l​​a​c​k​2​0​​1​4​/​D​R​L​​_​C​r​o​w​d​​_​S​i​m​u​l​​a​t​i​o​n​.
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The meta-universe era is upon us, and the construction of highly immersive virtual worlds based on computer 
simulation is a pivotal frontier technology being explored by both industry and academia. One of the core issues 
that needs to be resolved is the autonomous navigation of a large number of agents within these simulated 
environments. Decades of research have shown that to achieve exceptional agent simulation, agents must be 
modeled in a multidimensional and multilayered manner, including individuals, groups, physics, psychology, 
and more1,2. These various levels are often intricately interconnected. Steering, which includes obstacle avoidance 
and target searching based on environmental awareness, is a crucial aspect of agent behavior. Therefore, an 
efficient, seamless, and resilient steering implementation is essential to achieve high-quality agent simulation.

Crowd simulation has been a topic of research for nearly three decades3,4. Early efforts focused on manually 
crafted mathematical models, such as patch-based5, vision-based6, force-based7, and velocity-based8 approaches. 
These methods are structurally simple and easy to implement, forming the basis of current industrial crowd 
simulation software. The data-driven paradigm9 introduces a new concept of motion generation that relies 
on data sources. By extracting characteristics of pedestrian behavior from raw video data, it enables agents to 
simulate accordingly. While these classical methods have had a significant impact on the application landscape, 
their results often suffer from limitations in terms of rigidity, homogeneity, and efficiency.

Reinforcement learning is well suited for crowd simulation10 due to its design, which includes components 
such as the environment, agent perception, agent action, and action reward. In recent years, many studies11–13 
have focused on enabling autonomous navigation of agents in virtual environments by training neural networks 
to adapt to the agents’ actions or value strategies. However, several challenges remain: 1.The simulation 
environment’s structure is often simplistic and uniform, leading to a lack of diversity in the behavior patterns of 
trained agents. 2.In existing methods, reinforcement learning primarily relies on local environment information 
as input perception. Agents require additional global information during decision-making, which results in 
significant computational overhead, and and hinders the implementation of end-to-end systems. 3.There is a 
lack of agent performance evaluation metrics that are grounded in multi-level virtual environments.

We propose a novel deep reinforcement learning method for crowd simulation, based on the anisotropic 
field(AF) framework previously introduced by predecessors14. Furthermore, we present a parametric approach 
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to constructing virtual environments for crowd navigation, capable of generating a wide range of plausible 
and heterogeneous scenarios for agents to explore. During training, we incorporate the desired speed into the 
state space, achieving fine-grained control over the agent’s speed and enabling variable-speed movement in 
the simulation. Moreover, since the AFs are positioned within the environment and implicitly include scene 
navigation information, the agent can effectively complete steering tasks with similar efficacy, eliminating the 
need for global path planning (GPP). This innovation significantly enhances the mobility efficiency of the crowd 
simulation system. Our contributions are three-fold:

•	 We present a parameterized methodology for constructing crowd navigation environments. Through the ma-
nipulation of a few key parameters, we efficiently generate a multitude of crowd navigation environments, 
varying in complexity, obstacle distribution, and other characteristics. This provides valuable training and 
evaluation metrics for crowd simulation, thereby enhancing the generalization capability of simulated crowd 
generation.

•	 We introduce an efficient and adaptable crowd navigation approach based on deep reinforcement learning, 
showcasing broad applicability across diverse multi-class scenarios. By introducing AF into the state space of 
reinforcement learning, we eliminate the requirement for GPP in intricate navigation environments, there-
by markedly decreasing computational expenses and enhancing the ease of constructing and maintaining 
end-to-end systems. Consequently, reinforcement learning-trained agents can produce accurate and varied 
steering outcomes.

•	 By incorporating the desired speed into the state space and devising an appropriate reward function, we estab-
lish an adaptive mechanism for configuring and adjusting the agents’ speeds during simulation. This enables 
agents to dynamically control their behavioral patterns, facilitating the heterogeneous generation of crowds.

Related work
Crowd simulation, as an integral branch of computer graphics and artificial intelligence, has received significant 
attention in recent years. Researchers in this field strive to replicate the behaviors, dynamic interactions, and flow 
patterns of real-world crowds, aiming to create highly realistic animation effects and gain a deeper understanding 
and prediction of complex social phenomena. Over the past few decades, crowd simulation has evolved from 
the classical study of flocking behavior15 to a multi-level, multi-granular approach that encompasses the 
understanding and simulation of large-scale group dynamics1–4. The main focus of this paper is on implementing 
high-quality crowd simulation using reinforcement learning, as well as generating and assessing various virtual 
simulation scenarios.

Classic agent-based crowd simulation
Agents serve as the fundamental building blocks of a virtual crowd. During the simulation process, these agents 
require continuous behavior generation based on an autonomous decision-making system that utilizes the 
environmental information they possess. Over the past few decades, several classical methods focused on agent 
implementation have emerged in the field of crowd simulation. The classical Social Force Model (SFM), which 
is rooted in Newtonian mechanics, employs attraction and repulsion to reflect the behavioral motivations of 
pedestrians7,16,17. Subsequently, the extended force-based model was widely used to depict agents navigating 
complex environments with a large number of participants (such as evacuations, formations, interactions, etc.). 
However, despite its simplicity and ease of implementation, the force-based model’s reliance on numerous 
parameter experiments to balance various forces often leads to distorted or erroneous agent behavior due to 
force imbalances.

On the other hand, the velocity-based approach coordinates the positions and velocity directions of all 
agents. It ensures collision avoidance during motion by prompting interacting agents to yield to each other in the 
direction of their respective velocities. Early versions of this model, such as Reciprocal Velocity Obstacles (RVO), 
and their refined counterparts like Optimal Reciprocal Collision Avoidance (ORCA), have gained significant 
influence in industrial applications, particularly in game engines8,18. Compared to the force model, the velocity-
based method performs better with longer time steps. The classical methods serve as important baselines for 
comparing the methodology presented in this study during the subsequent experiments.

Crowd simulation by machine learning
Addressing the challenge of crowd steering through artificial modeling leads to a rapid increase in both the 
number and diversity of parameters, making them incompatible19. Generally, a steering model designed to 
address a specific problem struggles to maintain optimal performance in different environments20. As the 
number of parameters multiplies to correct errors, the issue of parameter explosion becomes more severe. The 
crowd steering problem is a complex, high-dimensional, semi-chaotic, open-loop system11, which inherently 
makes it difficult to solve through manual modeling and continuous parameter tuning.

Over the past decade, machine learning techniques, particularly those based on deep neural networks, have 
introduced numerous innovative approaches to address this dilemma. One prominent solution involves learning 
from crowd trajectory data, thereby reformulating the crowd steering problem as a trajectory prediction task21. 
This approach frames agent steering as localized trajectory forecasting, where future trajectories are inferred 
based on the agent’s position, target point, and current state. A seminal implementation of this strategy used 
Long Short-Term Memory (LSTM) networks to predict human trajectories in dense settings22, and subsequent 
works have continually refined the methodology. GANs have been utilized to generate diverse predictive 
scenarios23,24, while variational recurrent neural networks have been employed to accelerate convergence25–27.

However, a fundamental limitation persists in these trajectory-learning-based approaches. Specifically, 
the accuracy of trajectory predictions heavily depends on the training dataset, and the complexity of crowd 
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dynamics exceeds the representational capacity of limited trajectory data. An alternative perspective, advocated 
and employed in this study, is to address the crowd steering problem through reinforcement learning28. 
Reinforcement learning explores the state space that an agent may encounter during its actions, optimizing 
behavioral strategies based on environmental rewards. This approach is particularly suited for solving large-
scale crowd steering challenges in complex environments29,30. Early efforts in reinforcement learning, focusing 
on simple discrete spaces, successfully demonstrated navigation capabilities for small groups31–33. Subsequently, 
deep reinforcement learning, powered by deep neural networks, gained widespread adoption in crowd steering 
due to its superior ability to model high-dimensional continuous state spaces, leading to groundbreaking 
contributions10. Xu et al.34 combined deep reinforcement learning with ORCA, improving agents’ motion 
efficiency and fluidity. Hu et al.11 introduced a model-free approach to learn a parameter strategy, generating 
heterogeneous synthetic populations, which achieved competitive performance with traditional methods while 
maintaining favorable computational efficiency.

Crowd simulation performance quantification
The foundation for quantifying the performance of crowd simulation relies on having a precise definition of 
the objective of the crowd simulation task. Computer simulations of crowd behavior may prioritize different 
performance indicators, depending on the specific goals of the application. For example, some studies12,35,36 aim 
to simulate a virtual crowd system that closely mirrors real crowds. By doing so, they can uncover the operational 
rules of real crowds and identify potential risks within the system. As a result, their quantitative performance 
metrics focus on the authenticity of the simulation results, the similarity to real crowd systems, and the behavior 
of individual agents.

This type of work is often presented in three-dimensional scenes with strong modeling foundations, 
providing users with an immersive visual experience. On the other hand, some studies aim to achieve smooth 
and visually appealing group movements37–39, with less emphasis on authenticity. These efforts tend to focus on 
the organizational structure of crowds and the consistency of movement flows. When quantifying performance 
for these tasks, the primary focus is on group coherence, the accuracy of visual representation, and maintaining 
boundaries. This type of work is primarily used in film and television special effects, performance rehearsals, and 
similar applications, where the goal is to simulate individuals with unique characteristics under tight constraints.

A significant amount of research focuses on improving and evaluating the performance of steering itself, 
which includes waypoint reaching, obstacle avoidance, and emergent behaviors in various and complex 
scenarios40. A classic example of this is measuring the evacuation efficiency of different algorithms in crowd 
evacuation situations17, where factors such as collision avoidance, movement distance, and total evacuation time 
are assessed. These methods, which utilize automatically or semi-automatically generated virtual scenes, have 
been rigorously tested with classical algorithms41. However, one ongoing challenge is the limited complexity and 
diversity of environmental construction. The parametric approach to constructing crowd turning environments 
proposed in this study introduces a new virtual scene construction algorithm, along with accompanying source 
code, providing an effective way to quantify performance for future methodologies.

Methods
In this section, we introduce the definition and generation method of virtual environments related to the crowd 
simulation problem. Additionally, we provide the details of proposed crowd simulation method based on deep 
reinforcement learning.

Generating crowd simulation environment
Creatures or robots in the real world explore their environment through senses such as vision and hearing. 
Similarly, agents use perceptrons to perceive the virtual environment around them and complete tasks based 
on that information. Unlike the complexity of setting up a scene in the real world, a large number of virtual 
environments could be generated quickly using algorithms. To standardize the description, the environment is 
defined as a two-dimensional square space with a specified width w and height h. The principles outlined in this 
study can also be applied to navigation problems in higher dimensions. The entire environment is rasterized into 
a grid to form its structure. Each grid cell within this environment can be in either an “accessible” or “inaccessible” 
state, where “accessible” indicates that it is free to move through, and “inaccessible” indicates that it is blocked by 
an obstacle. In this way, a virtual environment can be efficiently stored in minimal memory space using bitsets.

For an environment of a certain size (w, h), there are 2wh possible heterogeneities. In order for an agent to 
perform tasks in a virtual environment correctly and efficiently in theory, the environment needs to be solvable, 
meaning that all ‘on’ areas within the environment must be connected. Based on the definitions provided earlier, 
parameters P can be defined to characterize a class of environments.

	 P = (s, os, ζ, η)� (1)

Here, s = (w, h) represents the size of the environment. w represents the width of the environment, and h 
represents the height of the environment. os = (omin, omax) denotes the size range of the independent obstacle 
sizes within the scene. omin represents the minimum value of the obstacle’s side length, and omax represents the 
maximum value of the obstacle’s side length. The sizes of all obstacles in the scene are restricted to fall within this 
range. ζ  signifies the proportion of the total area covered by obstacles in the scene. Meanwhile, η represents the 
proportion of obstacles indicating independence relative to the total number of obstacles. Both ζ  and η values 
lie between 0 and 1. Parameters P can be used to broadly refer to the properties of a class of environments, and 
given these parameters, Algorithm 1 can automatically generate the corresponding environment.
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Algorithm 1.  Generate an environment based on a set of parameters

In the aforementioned algorithm, singleoff  represents the proportion of obstacles with no other obstacles in 
their neighborhood, and nsingleoff  represents the proportion of obstacles that are part of a connected domain. 
The algorithm guarantees that the result environment can be solved while also adhering to the constraints placed 
on the parameters, which affect the characteristics of the generated results. Figure 1 shows the different styles of 
generation outcomes that can be achieved with various parameter settings. Utilizing deep reinforcement learning 
to train and evaluate the performance of agents in a complex and highly differentiated virtual environment 
provides numerous advantages, particularly in terms of improving the agents’ ability to navigate and make 
decisions within the environment.

Like most existing work, our agent is depicted as a two-dimensional disk with an orientation denoted by 
(o, θ). Here, o represents the location of the agent, while θ represents its orientation. At the start of each time 
step, the agent makes a decision in the form of an acceleration a. This decision is then used to update the agent’s 
speed and heading, a process that is implemented using the classical Euler integral model42.

	 ot+1 ← ot + vt∆t� (2)

	 vt+1 ← vt + (a − c|vt|vt)∆t� (3)

	 θt+1 ← θt + ω� (4)

Figure 1.  2D visualization of the automatically generated virtual environment with different parameters. The 
navigable area is colored white, while the obstacles are black.
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	 ω = min(angle(a, v)∆t, ωmax)� (5)

Here, ωmax represents the maximum angular velocity that the agent can achieve within one step ∆t. v 
denotes the agent’s instantaneous velocity. The formula does not specify the direction of rotation (clockwise 
or counterclockwise). During the calculation process, it is important to determine and choose the rotation 
direction that yields the smallest angle. c is the damping coefficient that accounts for factors such as friction 
and air resistance affecting the agent’s motion in the environment. From this, it can be easily inferred that there 
is an upper speed limit for the agent in this model, denoted as vlim =

√
amax

c , where amax is the constant 
representing the maximum acceleration limit.

Each agent’s task within the environment involves navigating from a starting point in one open area to a target 
point in another. As previously mentioned, all open areas are interconnected, guaranteeing that all tasks have 
viable solutions. By utilizing various steering algorithms, multiple agents can perform their tasks simultaneously 
in a periodic manner. The performance of the algorithm is evaluated by quantifying the results achieved.

Reinforcement learning
Solving agent steering through reinforcement learning requires assuming the process of an agent performing 
a task in the environment follows a Markov process. This process is formally defined using a Markov Decision 
Process (MDP)43, which is represented as a five-tuple (S, A, T, R, γ), along with the introduction of a policy 
π. Here, S and A represent the sets of all possible states and actions of the agent, respectively, forming the state 
space and action space. T (s′|s, a) denotes the probability of transitioning from state s to state s′ through action 
a. R is the reward function associated with state transitions. γ ∈ (0, 1) is a discount factor that adjusts the 
weight of future potential rewards. Reinforcement learning aims to optimizing a policy π(a|s, θ) to maximize 
the expected cumulative reward Uk . This is achieved by finding the best policy that maps states to actions, given 
the current state and the parameters θ of the policy.

	
Uk = Eak∼π(sk)[

∞∑
k=0

γkrk]� (6)

To achieve the goal, we fit the mapping relationship between states and actions using a machine learning 
model. This model should be capable of maximizing the cumulative reward obtained from a series of actions, 
empowering the agent with the intelligence needed to perform tasks accurately within the environment. 
Specifically, we have chosen to employ the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm44 
to fit the policy function and generate optimal actions. The TD3 algorithm was selected due to its robustness 
in handling continuous action spaces and its ability to mitigate overestimation biases commonly encountered 
in deep reinforcement learning. The Actor-Critic architecture45 is utilized to iteratively learn both the optimal 
action strategy (provided by the Actor) and the optimal action value estimation (provided by the Critic). 
Furthermore, we combine this with the Target Network, which helps stabilize the learning process. To optimize 
network parameters, we apply Clipped Double-Q Learning46, which helps prevent overestimation of action 
values, and smoothing of the target policy, which helps improve the robustness of the learned policy.

Anisotropic fields
The anisotropic field (AF) is a newly introduced simulation model specifically designed for crowd navigation. 
Its purpose is to encapsulate the complexities of crowd dynamics14. The core concept of AF revolves around 
fitting the various behavioral patterns exhibited by crowds within an environment by applying superimposed 
probability distributions. Figure 2 illustrates the properties of AFs, as well as a comparison with classical 

Figure 2.  The anisotropic field is an improved version of the classical navigation field. It can generate more 
complex group behavior based on richer navigation information.
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navigation fields47. Compared to the classic navigation fields model, AF stands out as it has the potential to drive 
crowd simulations towards more diverse and heterogeneous behavior patterns.

In the context of working with AFs, researchers have discovered a crucial aspect: AF inherently captures both 
the obstacles present in the environment and the overall behavioral trends of agents within it. A key innovation 
in our research lies in the introduction of anisotropic fields at some critical locations in the environment, 
serving as prior knowledge for the agent in navigating the randomly generated unknown environment. This 
approach helps the agent make more intelligent and rational behavioral decisions without the need for global 
path searching.

In contrast to the original paper14 which generates AFs through video analysis or drawing lines, we employ a 
novel approach where trajectories serve as the foundation for AF generation. This is accomplished by conducting 
a large number of random global navigations within the scene. As illustrated in Fig. 3, multiple random A* global 
navigations were executed within a 10m × 10m scene, resulting in an equivalent number of paths.

To generate AFs within the environment based on these trajectories, we adopt the methodology outlined 
in the original paper14. However, due to the highly discrete distribution of most AFs generated through this 
method, extracting meaningful information from them becomes challenging. Therefore, the effective AFs is 
selected using the following formula

	
ψ = {

∑
pi∈P (G)

(pi − p)2 ≥ nδ|G ∈ ΩAF }� (7)

Here, ΩAF  represents the set of all AFs in the environment. p denotes the expectation of P(G), where P(G) is 
a probability distribution related to the environment.The number of terms obtained after discretizing P(G) is 
denoted as n, and δ is a threshold constant. As illustrated in Fig. 3, it is evident that the selected AFs are primarily 
located near the obstacles. This positioning enables them to better capture the characteristics of the surrounding 
environment. Consequently, these AFs provide agents with valuable potential information during navigation.

State & action space
To ensure that the agent performs the task accurately and efficiently within the virtual environment using deep 
reinforcement learning, it is crucial to standardize both the state space and the action space of the agent. The state 
space includes all the information gathered through the agent’s observation of the environment. In the context 
of this study, for the agent to successfully complete the task, it must navigate to the destination while avoiding 
any obstacles. Therefore, the following state space is defined to provide the agent with sufficient information to 
achieve these objectives

	 S = (dtgt, v, vE , Θ, daf )� (8)

Figure 4 illustrates the details of state space. Here, dtgt = (dx, dy) is the relative positional relationship between 
the agent’s current position and the target position. The agent’s current speed is denoted by v = (vx, vy). VE  is 
a scalar that signifies the expected speed of the artificially set agent during motion. This value can be adjusted 
freely during the simulation system’s runtime, allowing the agent to dynamically change its expected speed. 
The agent probes the environment ahead using depth rays, and Θ signifies the distance to the nearest obstacle 
in various directions. Based on historical experience and comparative analysis, the interval between detection 
rays is set to 15°. daf  represents the AF at the agent’s current location. Occasionally, when the agent moves to a 
position where the AF is not distributed, the default value remains constant.

Figure 3.  An approximation of global navigation information for the agent is derived from the AF at key 
locations. (a) illustrates the process of obtaining the AF through trajectory sampling. (b) depicts the screening 
of its critical components using Eq. (7). For instance, the green portion. (Searching for activation functions) 
demonstrates how global navigation can be achieved, transcending local optimization, based on the filtered AF.
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The action space encompasses all the behaviors that the agent can exhibit within its environment. Consistent 
with the definition of the agent’s behavior in a simulated environment, we focus solely on acceleration, denoted 
as a = (ax, ay).

Reward function
Well-designed reward mechanisms can greatly enhance an agent’s ability to learn how to perform tasks accurately 
and efficiently within its environment. Building on prior research11,30, the reward design framework is based on 
the principles of penalizing collisions and rewarding task completion. However, what sets the approach apart 
is how to tackle the challenge of achieving convergence in complex environments, where sparse rewards and 
penalties are encountered during exploration learning. The reward structure is defined as

	 R = rarrv + rmove + rclose + rcoll + rspeed� (9)

	 rclose = w1(dlast − dcur)� (10)

	
rcoll = −

∑
θ∈Θ

w2e−w3
r−θ

r � (11)

	 rspeed = w4(1 − e|vE−|v||)� (12)

Here, rarrv  represent the reward acquired by the agent for completing a task and pmove represent the penalty 
imposed for each action taken during a clock cycle within a task, both of which are constants. rclose denotes the 
immediate reward given to the agent for moving closer to the target point. dlast and dcur  represent the distances 
between the agent and the target point in the previous and current clock cycle, respectively. To encourage the 
agent to exhibit more intelligent behaviors, such as detouring around obstacles, no penalty is imposed on the 
agent when it is far away from the intended target. This is based on empirical evidence. pcoll represents the 
penalty imposed on the agent for colliding obstacles or other agents, where r is the radius of the agent. pspeed 
is the penalty introduced for deviations between the current speed and the expected speed. w1, w2, w3 and w4 
are all constant coefficients that are used to adjust the weight of each reward or penalty component in the overall 
reward function.

Training
We randomly generate a series of 100 m × 100 m training environments. The smallest obstacle cell size is 2 m × 
2 m. During the training process, all agents share the same network parameters, but they are each given unique, 
randomly assigned objectives. Because AF naturally contains a potential expression of obstacle information, 
the calculation of the global path between the agent and the target is avoided. This approach helps to conserve 
computational resources during both training and running.

To tackle the issue of reward sparsity, we use curriculum learning to gradually improve the agent’s strategy. 
The level of environment is mainly adjusted by changing the value of ζ  or the number of agents na. From simpler 
to more complex scenarios, the ζ  increases from 0 to 0.15, and the na involved rises from 1 to 50. Specifically, 
whenever the ζ  increases by 0.02, the na increases by 10. Once the ζ  reaches 0.1, the na remains constant at 
50 thereafter. Compared to the state-of-the-art work11, our training includes a wider range of environmental 
samples, which allows the trained agent to demonstrate a more generalized behavior.

In our network architecture, both the Actor and Critic components have two fully connected hidden layers, 
each with 1024 artificial neurons. The number of neurons in our network was determined based on the task scale 
and the memory of the computer GPU. The Actor uses the tanh activation function between layers, while the 

Figure 4.  State space.
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Critic uses the relu activation function44,48. During training, we use the Adam optimizer to update the network 
parameters49. The specific training hyperparameters are listed in Table 1. Each episode of simulation in the 
training is triggered either when all agents complete their goals or 8000 training steps have been reached. For 
specific details, you can also refer to our Github code repository.

Experiments
In this section, we present the quantitative performance metrics and methods used for crowd navigation in this 
study. We also provide a multi-dimensional comparison between the proposed method and other works, based 
on these metrics.

Quantification method
The crowd simulation in this study is defined as a scenario involving a finite number of agents continuously 
navigating within a connected environment. Inspired by previous works11,41, we used five metrics to evaluate the 
performance of the agents during task execution, highlighting the advantages of our approach: (a) Calculation 
Cost, (b) Collision, (c) Timeout, (d) Completion Time, and (e) Velocity Variance. Specifically, (a) refers to 
the average computation time required by each agent to complete a task. (b) and (c), are metrics of errors 
encountered by agents during task execution. They include collisions between agents or with obstacles, as well as 
timeouts resulting from inaccurate movements. (d) assesses the average efficiency of task execution. If timeout 
happened, the result will be calculated based on the maximum allowed time and are factored into this metric 
as a penalty. Note that the time referenced here is the simulation environment’s elapsed time, whereas (a) refers 
to real-world computation time. Lastly, (e) measures the deviation of an agent’s speed from its expected speed 
during simulation. It serves as a metric of movement smoothness and the cumulative error in expected speed 
during task execution.

To demonstrate the generalization of the model, we used experimental environments that differs from 
the training environment. In each experimental setting, we deployed na agents, with each agent sequentially 
completing nt tasks. In this paper, nt = 3000. Upon completing a task, the agent’s current position becomes 
the starting point for the next task, and motion is executed towards the new destination. If a task results in a 
timeout, the agent is randomly reassigned a new departure location, and a new set of tasks is generated. The 
parameters na and ζ  significantly influence the execution efficiency and completion rate of agent tasks. In this 
study, we examined the correlation between these parameters and factors such as collisions, timeouts, and 
completion times. As shown in Fig. 5, as the number of obstacles and agents in the environment increases, the 
three indicators (collisions, timeouts, and completion times) rise markedly, indicating a decrease in the average 
efficiency and quality of the tasks executed by the agents. 

Based on this experimental setup,the environments was categorized into three levels: Easy, Middle, and Hard 
(Fig. 6). The training environments and test environments had both five, which were totally different with each 
other. The results reported are the average of the outcomes from the five test environments. The correlation 
between the levels and the environmental parameters is presented in Table 2.

Comparisons
In this section, we assess the performance of the proposed model by comparing it to a seminal work7 and a 
state-of-the-art (SOTA) work that utilizes deep reinforcement learning11. For each approach, two versions 
were present: one with GPP and one without. the agent’s long-term path updated every 2 seconds and conduct 
thousands of navigation tasks in the test environment. We evaluated all works based on various aspects, including 
performance and computational efficiency.

Table 3 demonstrates that our approach has successfully improved crowd navigation performance, particularly 
through the introduction of AF for alternative optimization of GPP. Additionally, the computational cost 

Parameter Value Description

γ 0.99 Discount factor

Arl 1e–4 Actor learning rate

Crl 1e–4 Critic learning rate

Bsize 256 Batch size

RBsize 1e6 Reply buffer size

τ 0.005 Target update rate

Pn 0.2 Policy noise

En 0.25 Exploration noise

w1 0.15

w2 0.08

w3 1.2

w4 0.4

rarrv 10

rmove – 0.6

Table 1.  Hyperparameters.
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significantly reduced, while the navigation performance either matchs or exceeds the current optimal method. 
This improvement is due to resolving local deadlocks caused by concavities in complex environments11, which is 
especially noticeable in more challenging navigation tasks with a higher number of agents and obstacles. Figure 
7 illustrates the details of local deadlocks.

Ablation experiment
A key innovation of this work is the introduction of masked AFs at critical locations within the environment. 
These fields were incorporated into the state space of the deep reinforcement learning agent model, providing 
the agent with prior knowledge of global navigation information in complex environments. Furthermore, by 

Level s os ζ η na

Easy (100, 100) (2,2) 0.05 1 10

Middle (100, 100) (2,2) 0.1 1 20

Hard (100, 100) (2,2) 0.15 0.9 50

Table 2.  Corresponding relationship between the level of the environment and the generation parameters.

 

Figure 6.  Our approach works at three levels. Different agents use different colors for their paths.

 

Figure 5.  The correlation of environment parameters ζ  and the number of agents na with collision, timeout, 
and completion time.
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including a desired velocity in both the state space and the reward function, the agent is able to learn how to 
regulate its own movement. In this section, we examined the necessity of these two core designs through ablation 
experiments. Specifically, in the withour AFs case, the AFs was removed from the scene and concurrently 
eliminate the corresponding fields from the agent’s state space. Similarly, in the without expected speed case, the 
desired speed was removed from the state space and the speed reward was removed from the reward function.

The performance results of the aforementioned versions are shown in Table 4. The removal of any component 
results in a decrease in either partial or overall performance, highlighting the effectiveness of each design element. 
Most notably, a significant decline in performance, along with an increase in velocity variance, is observed when 
the AFs are omitted. This underscores the positive impact of the AF on navigation results. In the experiment 
where the expected speed was removed, the agent exhibited confusion and repetition in its speed regulation 
during task execution due to the lack of a clear directive to achieve smooth target speed control. This resulted in 
a notable increase in the velocity variance index.

Motion control based on expected speed
Our work can also be easily adapted to classic crowd simulation scenarios, such as corridor crossing and 
intersections. As shown in Fig. 8, we preconfigured a sampling model for the expected speed of agents in the 
scene, utilizing separate bases: an average distribution and a normal distribution. After multiple simulation 
iterations, the probability distribution model of the actual speeds of the agents within the scene closely matches 
the normal distribution of the expected speeds. This indicates that the proposed model is able to effectively 
control the speeds of the agents, which is beneficial for generating heterogeneous crowds in crowd simulations.

Furthermore, both sets of experiments have exhibited impressive results in replicating classic scenarios. 
When agents have not entered the central convergence area, agents within the same region exhibit relatively 

Figure 7.  Comparison between the proposed work and SOTA work11 in the hard level. Red boxes represent 
the agents stuck in the environment and can not finish the tasks.

 

Level Calculation cost(s)↓ Collision(%)↓ Timeout (%) ↓ Completion time(s)↓ Velocity variance↓

SFM7

Easy 1.61 3.15 6.25 267.6 0.000389

Middle 2.58 6.16 17.3 400.9 0.000469

Hard 3.39 9.20 29.9 558.9 0.000519

SFM + GPP

Easy 3.80 2.86 2.01 244.0 0.000373

Middle 5.13 5.11 4.63 320.6 0.000453

Hard 8.68 8.97 10.1 446.8 0.000509

HOP-RL11

Easy 2.16 3.42 5.68 258.8 0.000194

Middle 2.68 7.28 17.9 384.3 0.000191

Hard 3.24 10.7 32.5 515.7 0.000204

HOP-RL + GPP

Easy 4.23 2.55 1.97 241.1 0.000194

Middle 5.86 5.62 5.14 311.9 0.000188

Hard 8.92 9.01 9.88 426.8 0.000225

Ours

Easy 2.09 1.84 1.90 231.7 0.000171

Middle 2.43 4.38 4.62 293.7 0.000181

Hard 3.22 7.72 8.10 386.5 0.000188

Table 3.  Performance comparison. Significant values are in bold.
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consistent movement behavior. In the central merging zone, each agent, while completing its own motion 
navigation tasks (approaching the target and avoiding obstacles), also strives to maintain its speed close to the 
expected speed. In Fig. 8, this is manifested as varying trajectory lengths among the agents, as the trajectories 
document the connections of the agents’ historical positions within the same clock cycle period. By setting a 
velocity distribution for the crowd to achieve varied movements among the agents, the simulated collective 
demonstrates a resemblance to real crowds.

Figure 8.  The performance of this work under two scenarios: the hallway (top, featuring a narrow middle 
section) and the crossroads (bottom). In both scenarios, we predetermine the expected velocity distribution 
of the agents using the average distribution and the normal distribution, respectively. The velocity distribution 
observed in the actual simulation results closely matches the predefined expectations.

 

Level Calculation cost(s)↓ Collision(%)↓ Timeout(%) ↓ Completion time(s)↓ Velocity variance↓

w/o AFs & expected speed

Easy 2.12 4.46 4.82 282.8 0.000472

Middle 2.79 9.14 10.1 376.1 0.000454

Hard 3.68 14.0 15.7 488.6 0.000462

w/o AFs

Easy 2.16 4.52 3.86 280.8 0.000196

Middle 2.88 8.72 7.94 361.7 0.000187

Hard 3.96 12.4 12.5 500.8 0.000188

w/o expected speed

Easy 2.11 2.22 2.20 244.9 0.000484

Middle 2.63 5.34 5.12 316.9 0.000431

Hard 3.48 9.66 10.2 420.0 0.000455

Ours

Easy 2.09 1.84 1.90 231.7 0.000171

Middle 2.43 4.38 4.62 293.7 0.000181

Hard 3.22 7.72 8.10 386.5 0.000188

Table 4.  Ablation experiments. Significant values are in bold.

 

Scientific Reports |         (2025) 15:5403 11| https://doi.org/10.1038/s41598-025-88897-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Comparison of simulated and real-world crowd dynamics
In this section, we have constructed simulation scenarios based on scenes derived from crowd datasets in the 
real world50. Within these scenarios, agents are placed with a distribution similar to that in the real datasets, and 
simulations are performed accordingly. Figure 9 illustrates the relationship between the simulation results and 
the real data, indicating that the method presented in this paper is capable of generating behavioral trajectories 
that resemble those of real crowds.

Discussion & limitations
Simulating crowds is a complex task that involves multiple individuals and intricate connections. Capturing the 
unique and heterogeneous behavior patterns among agents can be challenging for crowd simulation designers, 
as it requires the intricate adjustment of numerous parameters, which can be time-consuming and requires 
expertise. The integration of machine learning, particularly deep reinforcement learning, offers a promising 
solution to alleviate this burden.

In this study, we present an efficient and adaptable method for crowd navigation using deep reinforcement 
learning. By incorporating anisotropic field into the state space, we streamline the algorithm flow by replacing the 
traditional GPP approach, enhancing its overall efficiency. Furthermore, by embedding the desired speed within 
the state space and designing an appropriate reward function, we achieve flexible configuration and adjustment 
of agent speeds during simulations, allowing for the emergence of behavior patterns. The effectiveness of our 
approach is supported by extensive simulation experiments conducted across various virtual environments 
generated through parameterization.

While the proposed work primarily focuses on efficience in task content and speed control during movement, 
the real-world complexities of crowd behavior extend beyond these factors. Real-world crowds are influenced 
by a myriad of factors such as psychology, sound, smell, interpersonal interactions, and remote communication. 
Therefore, in the future work, we plan to explore the nuances of crowd simulation deduction under multimodal 
information, grounded in the analysis of real-world crowd data. Our goal is to bridge the gap between virtual 
and real-world crowds.

Data availability
The source code and environment data for this study are available on GitHub at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​t​o​m​b​​l​a​c​k​2​​0​​
1​4​/​D​​​R​L​_​C​r​​o​​w​d​_​S​i​​m​u​l​a​t​i​o​n​.

Received: 29 October 2024; Accepted: 31 January 2025

Figure 9.  The performance of this work under two scenarios from ETH dataset50. To enhance the effect, the 
simulation scenario has been adjusted by slightly increasing the number of agents.
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