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An ESG-ConvNeXt network for
steel surface defect classification
based on hybrid attention
mechanism

Ning Zhang"?, Ziyang Liu, Enxu Zhang, Yuangqi Chen & Jie Yue

Defect recognition is crucial in steel production and quality control, but performing this detection task
accurately presents significant challenges. ConvNeXt, a model based on self-attention mechanism,
has shown excellent performance in image classification tasks. To further enhance ConvNeXt's ability
to classify defects on steel surfaces, we propose a network architecture called ESG-ConvNeXt. First, in
the image processing stage, we introduce a serial multi-attention mechanism approach. This method
fully leverages the extracted information and improves image information retention by combining
the strengths of each module. Second, we design a parallel multi-scale residual module to adaptively
extract diverse discriminative features from the input image, thereby enhancing the model’s feature
extraction capability. Finally, in the downsampling stage, we incorporate a PReLU activation function
to mitigate the problem of neuron death during downsampling. We conducted extensive experiments
using the NEU-CLS-64 steel surface defect dataset, and the results demonstrate that our model
outperforms other methods in terms of detection performance, achieving an average recognition
accuracy of 97.5%. Through ablation experiments, we validated the effectiveness of each module;
through visualization experiments, our model exhibited strong classification capability. Additionally,
experiments on the X-SDD dataset confirm that the ESG-ConvNeXt network achieves solid
classification results. Therefore, the proposed ESG-ConvNeXt network shows great potential in steel
surface defect classification.
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Steel, as an essential material in industrial production, is widely used in various fields such as construction,
infrastructure, automotive, transportation, machinery, and industrial equipment!. However, during the actual
production process, due to the influence of complex factors such as the manufacturing process and production
environment, various defects may appear on the steel surface, including cracks, inclusions, rolled-in scales, and
scratches. Accurate classification and identification of these defects can help analyze their formation causes and
optimize the production process, ultimately improving product quality. This not only holds significant industrial
application value but also has far-reaching theoretical significance?.

In the traditional identification of steel surface defects, two main methods are used: manual inspection and
non-destructive testing®. Although manual visual inspection can intuitively detect defects, it is less efficient,
more labor-intensive, and susceptible to subjective factors, which limits the consistency and accuracy of the
inspection results. Non-destructive testing methods, such as ultrasonic testing, magnetic particle testing, and
penetration testing, can identify surface defects without damaging the material. However, these methods have
high requirements regarding the type of defects, inspection materials, and inspection environment, which limits
their widespread application in practice?.

With the rapid development of computer technology, machine vision has overcome the shortcomings of
traditional inspection methods by leveraging advantages such as fatigue resistance, low cost, high accuracy, and
speed. It has gradually become the most effective choice for industrial inspection®. However, machine vision
methods typically use industrial cameras to capture images and directly process them to obtain detection results.
The processing methods include distortion correction, image denoising, image segmentation, etc., followed by
the classification and detection of defective images using classifiers. The disadvantage of this approach is that
the detection model is relatively simple and may not meet generalization requirements. Due to the complexity
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of steel surface defects in terms of area and shape, traditional image processing techniques have struggled to
meet the demands of industrial detection. Unlike traditional machine vision methods, deep learning approaches
utilize learning-based techniques®. Through the stacking of multi-layer neural networks, deep learning can
fit high-dimensional functions and achieve distributed representation of input data. After training on many
samples, deep learning can extract essential features and is characterized by high flexibility and superior fitting
capabilities.

In intelligent manufacturing systems, industrial products typically have few defects, leading to an extremely
unbalanced sample distribution in surface defect recognition tasks, which diminishes the deep learning model’s
ability to recognize these categories effectively’. Meanwhile, traditional deep learning models often struggle
with feature extraction, making it difficult to capture the subtle texture and shape features of the steel surface.
Additionally, noise and background interference pose significant challenges in complex shooting environments.
Moreover, with limited training data, the model is prone to overfitting, which negatively affects its generalization
ability. To address these issues, this paper proposes a novel method for steel surface defect classification. First,
to tackle the data imbalance problem, we employ data augmentation to address the current situation. Second, to
resolve the insufficient feature information in the model, we propose a parallel multi-scale residual module to
enhance the model’s ability to extract diverse features. To overcome the limitations in capturing subtle texture
and shape features, we introduce a multi-attention mechanism to focus on key information while minimizing
noise and background interference. During training, we use the AdamW optimizer and extend the dataset
by combining multiple data augmentation techniques, which effectively alleviates the sample distribution
imbalance and improves the model’s generalization ability. The results demonstrate that the proposed model
excels in classification performance.

The main contributions of this paper are summarized as follows:

1. A parallel multi-scale residual module is proposed. This module extracts diverse discriminative features
from the input image and fuses them to further enhance the model’s ability to capture various features.

2. A serial approach to multiple attention mechanisms is proposed. We serialize an efficient local attention
module, a lightweight, parameter-free attention module, and a global attention module after different convo-
lutional modules. These modules utilize the extracted defect features to enable the model to focus on global
discriminative features and use the information more efficiently to emphasize the defect itself.

3. The model’s performance was evaluated using the NEU-CLS-64 dataset, which demonstrated that the model
proposed in this paper has a strong ability to classify steel surface defects. First, the effectiveness of each
sub-module was assessed through ablation experiments. Subsequently, feature visualization and result vis-
ualization experiments were conducted to examine the model’s classification effectiveness and its focus on
defects. Our ESG-ConvNeXt network outperforms other methods in classifying surface defects on strips.
Finally, in generalizability experiments, our proposed network also shows excellent results on the X-SDD
dataset.

Related work

In recent years, the rise of deep learning technology has revolutionized the field of steel material surface defect
detection. Deep learning-based methods can autonomously learn image features without the need for manually
designed feature extraction algorithms?, significantly improving the accuracy and efficiency of defect detection.
Common deep learning models include Convolutional Neural Networks’ (CNN), Generative Adversarial
Networks!® (GAN), and object detection algorithms such as YOLO!}, SSD'2, and Faster R-CNN'3. These
algorithms can be trained on large image datasets to recognize defects of various types and sizes and can be
adapted to different surface conditions of steel materials. However, online adaptive detection of steel surface
defects remains a challenging task due to the diversity of defect classes'4, low contrast between defects and the
background, and complex texture backgrounds.

Wei et al.!> proposed an enhanced Faster R-CNN model that achieved significant improvements in the
detection rate of small defects and the reduction of false alarms by combining weighted Rol pooling, deformable
convolution, and the feature pyramid network (FPN). However, the study did not explore the model’s
adaptability in various industrial scenarios with different defect types. Guan et al.'® introduced an improved
deep learning network model for identifying steel surface defects through feature visualization and quality
assessment, demonstrating significant improvements in classification accuracy and convergence speed compared
to VGG19 and ResNet. However, further research is needed to enhance the detection of rare defects and the
model’s generalization ability under small sample conditions. Zhao et al.'” proposed a new algorithm based on
discriminative manifold regularized local descriptors (DMRLD) for the classification of steel surface defects,
which constructs local descriptors through a learning mechanism and utilizes the manifold structure for feature
extraction, thus improving classification performance. Feng et al.!® fused the ResNet50 and FcaNet networks,
added the CBAM (Convolutional Block Attention Module), and validated the algorithm on the X-SDD strip
steel defect dataset, achieving a classification accuracy of 94.11%. To address the algorithm’s low classification
performance for individual defects, the team applied ensemble learning for optimization, combining it with
VGG16 and SqueezeNet on top of the original network, which increased the recognition rate of individual iron
oxide pressed-in defects by 21.05% and the overall accuracy rate to 94.85%.

In a complex industrial production context, defects on the surface of hot-rolled strip steel are rare and diverse,
making it very challenging to acquire defect images. Wang et al.!® proposed a transductive learning algorithm to
address the problem of poor classification accuracy when only a small number of labeled samples are available.
Unlike most inductive small sample learning methods, this algorithm trains new classifiers during the testing
phase, enabling it to handle unlabeled samples in the dataset. Additionally, the team implemented simple fusion
counting to extract more sample information, achieving a high classification accuracy of 97.13% on the NEU-
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CLS dataset with only one labeled sample. Yi et al.?’ proposed a single-image model-based SDE-ConSinGAN

method for surface defects in strip steel, trained using generative adversarial networks, to construct a framework
for image feature cutting and stitching. The model aims to reduce training time by dynamically adjusting the
number of iterations in different phases, and to emphasize the detailed defect features of the training samples by
introducing a new resizing function and incorporating a channel attention mechanism.

Materials and methods

Dataset description

In this study, the NEU-CLS-642! dataset, consisting of surface defects on hot-rolled strip steel from Northeastern
University, was used. The dataset contains approximately 7000 images across nine defect categories: rolling scale,
patches, cracks, pitting surface, inclusions, scratches, oil stains, pits, and rust. Each category includes hundreds
to thousands of images, each with a size of 64 x 64 pixels. Figure 1 illustrates a random sample of images from
each category.

Despite the availability of approximately 7000 samples in the dataset, there is an imbalance among the
categories. Considering that images may encounter various factors during the collection process, such as
different angles, changes in lighting, and interference from impurities, we applied data augmentation techniques
such as rotation, adding random noise, and adjusting brightness to simulate various real-world scenarios and
expand the dataset. After augmentation, the total number of samples reached 28,904.

Constructing network model

With the emergence of Vision Transformers®? (ViTs), they have gradually replaced convolutional neural
networks (ConvNets) as the leading models for image classification?’. However, when dealing with computer
vision tasks such as object detection and image classification, the performance of pure ViTs often falls short.
Hierarchical Transformers, such as Swin Transformer??, have incorporated prior knowledge from convolutional
neural networks, allowing Transformers to serve as universal backbone networks in various visual tasks and
demonstrating excellent performance. Nonetheless, the effectiveness of this hybrid approach is often attributed
to the superiority of Transformers themselves rather than the inherent advantages of convolution. Recently,
researchers have progressively aligned the design of standard ResNet?® with that of visual transformers, leading
to the development of a scalable, pure convolutional neural network called ConvNeXt, aimed at improving
the inference speed and accuracy of image classification tasks. Compared to the Swin Transformer, ConvNeXt
exhibits superior performance in mechanical applications. Therefore, we have chosen ConvNeXt V226, a pure
convolutional neural network, as the backbone and proposed our model to tackle the detection and classification
of surface defect types in hot-rolled steel strips.

Overall structure of the network model

To accurately detect the types of defects on the surface of hot-rolled strip steel, we propose a network called ESG-
ConvNeXt. This network is not only capable of effectively learning image features but also capable of classifying

(c)
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Fig. 1. Sample images of nine typical surface defects in the NEU-CLS-64 dataset. (a) Cracks (b) pits (c)
inclusions (d) patches (e) pitting surface (f) rust (g) rolling scale (h) scratches (i) oil stains.
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these images accurately. As shown in Fig. 2, the network consists of four main stages: Stage 1, Stage 2, Stage 3,
and Stage 4. In the image preprocessing stage, a convolution kernel with a stride of 4 and a size of 4 x4 is used
for downsampling, and the image is resized to an input feature map of 224 x 224, which is then normalized by
an LN layer. After each stage of processing, the dimension of the feature map is progressively reduced while the
number of channels is increased, and the receptive field is expanded, ultimately outputting the key point location
information of the defects on the strip surface. All stages except the first one consist of a downsampling layer
and a modified ConvNeXt block, where the main function of the downsampling layer is to expand the receptive
field while reducing the image resolution. The model structure is inspired by the Swin Transformer, and the ratio
of the number of core blocks is modified from the standard 3:4:6:3 to 1:1:3:1. Replacing the Stem layer in the
traditional ResNet model, the stride of the convolutional layer is increased from 2 to 4, the convolution kernel

size is reduced from 7 to 4, and the maximum pooling layer is removed.

The training process is as follows: First, the training and test sets are divided in a ratio of 8:2; the training set
is augmented with data, and the test set is normalized. Next, the ESG-ConvNeXt model is defined, the model
parameters are initialized, and the optimizer and loss function are specified. Finally, the model is trained using

the training set, and its performance is evaluated using the test set.

ConvNeXt module for multi-attention mechanisms

To overcome the limitations of standard convolutional operations in capturing long-range dependencies and
focusing on important features, we integrate three different attention mechanisms: efficient local attention?’
(ELA), parameter-free attention module®® (SimAM), and global attention mechanism?*’ (GAM) at key locations
in each ConvNeXtV2 block, as shown in Fig. 3a. This hierarchical approach aims to progressively optimize the
feature map to improve the model’s classification ability and robustness. We name our proposed model “ESG-
ConvNeXtV2,” where “ESG” stands for the initials of the three attention mechanisms we integrate. This naming
provides an intuitive reflection of the key components of the model and highlights its core strategy for improving

feature representation.

Firstly, an efficient local attention (ELA) mechanism is introduced after the first convolution operation
within each ConvNeXtV2 block. As shown in Fig. 3d, ELA employs strip pooling in the spatial dimension to
acquire feature vectors in the horizontal and vertical directions while maintaining a narrow kernel shape to
capture long-range dependencies and prevent the influence of irrelevant regions on the label prediction. This
approach generates rich target location features in their respective directions. The ELA independently processes
the feature vectors in each direction to obtain attention predictions, which are then combined through a product

operation to ensure accurate location information for the region of interest.
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Fig. 2. Overall structure of the ESG-ConvNeXt model.
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Fig. 3. (a) ESG-ConvNeXt model block structure (b) SimAM attention module (¢) GAM attention module (d)
ELA attention module.

In the first step of the Efficient Local Attention (ELA) mechanism, strip pooling is used to generate feature
maps containing information about horizontal and vertical coordinates in the spatial dimension of the input
tensor, and the RE*W*C capabilities denote the outputs of the convolutional blocks in terms of height, width, and
the number of convolutional kernels, respectively. To apply strip merging, average merging is performed for each
channel in both horizontal and vertical spatial scales: (H,1) denotes the horizontal direction and (1, W) denotes
the vertical direction. Therefore, the output of the c-th channel at height h can be expressed by Eq. (1), and the
output of the c-th channel at width w is expressed by Eq. (1).

In the first step of the Efficient Local Attention (ELA) mechanism, strip pooling is used to generate feature
maps containing information about horizontal and vertical coordinates in the spatial dimension of the input
tensor, with the RT*W*€ capability denoting the output of the convolutional block, and H,W and C being the
height, width, and number of convolutional kernels, respectively. To apply strip merging, average merging is
performed for each channel at two spatial scales, horizontal and vertical: (H,1) denotes the horizontal direction
and (1, W) denotes the vertical direction. Therefore, the output of the c-th channel at height h can be expressed
by Eq. (1), and the output of the c-th channel at width w is expressed by Eq. (2).

)= Y welhi) W
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w 1 y
zd (w) = W Z ze(j, w) (2)

0<j<W

To effectively utilize the surface defect information of hot rolled strip captured in the first step, a simple processing
method is designed to apply 1D convolution to locally interact with two feature vectors in the second step. The
size of the convolution kernel can be adjusted to represent the coverage of the local interaction. The generated
feature vectors are processed by group normalization (Group Norm) and nonlinear activation functions to
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generate predictions of positional attention in both directions. The final positional attention is obtained by
multiplying the positional attention in both directions.

y" = o(Gu(Fu(zn))) 3)
y" = o(Gn(Fu(zw))) 4)

Equation (3) represents the result of positional attention in the horizontal direction, and Eq. (4) represents the
result of positional attention in the vertical direction, z, and z _ are obtained from Egs. (1) and (2), respectively.
o is denoted as the nonlinear activation function, G, denotes the extended and adopted attentional weight, and
F, and F  denote the 1D convolutions, and to be more in line with the structure of our network, the convolution
kernel of F, and F__ is set to 5. Finally, the output Y of the ELA module is obtained by Eq. (5):

Y:xcxyhxyw (5)

By applying Efficient Local Attention (ELA) after the first convolutional layer, we ensure that subsequent layers
receive optimized inputs, thus improving the model’s ability to learn and generalize to the data.

Next, after the second convolution operation, we fused an attention mechanism module (SimAM) capable of
estimating 3D weights. This module proposes a neuron-based energy function to compute attention weights by
evaluating the importance of individual neurons, as shown in Fig. 3b. Meanwhile, it enhances feature extraction
by focusing on the key information in the downsampling module to minimize the risk of overfitting and
effectively capture discriminative features. The energy function is defined as shown in Eq. (6):

M—-1
S 3 (1= (i + b)) (U= (it + b))+ A ©
i=1

et(wtvbtayaxi) = M

where t and x; are the target neuron and other neurons of a single channel input feature, i is the spatial
dimensionality coefficient, (w¢x; + b:) and (w:t + bt) are the linear transformations of x; and t, and M =HxW
is the number of neurons in a single channel, where H and W are the height and width of the input features,
respectively. The analytical solution of the above equation is Eqgs. (7) and (8):

2( — pue)
Wy = — 2 2 (7)
(t—pe)” + 207 + 2
1
by = *i(t + e )wy (8
M—1 M—1

where u; = —1— z;and o2 = - x; — ue)? are the meaning and variance of all neurons in this
M-1 t M-1
t -

1= 7
channel except t. Thus, the minimum energy formula is shown in Eq. (9):

o 4(6% 4+ N)
T (t—p) + 262+ 2)

)

Equation (9) shows that the lower the e; energy, the greater the difference between neuron t and the other
neurons around it, and the more important it is for visual processing. Finally, the features are optimized for
processing, as shown in Eq. (10):

X = sigmoid (%) X (10)

where X is the input feature and E groups all the energy functions across energy and space. Adding a sigmoid
limits excessively large values in E without affecting the relative importance of each neuron. The SimAM
attention module is introduced after the second convolution to focus the model on information-rich neurons,
reducing noise and suppressing interference from irrelevant features such as background, thus enhancing the
feature representation of the network.

After the final convolution operation of each ConvNeXtV2 block, a Global Attention Mechanism (GAM) is
fused. This mechanism retains information to enlarge the global cross-dimensional interaction and amplifies the
global dimensional interaction features while reducing the information. The GAM assigns different weights to
different dimensions of the input data, to achieve the distinction of different feature attention levels. The whole
process is shown in Fig. 3c.

From the figure, the input feature F1 is obtained after a series of intermediate operations, and the output
feature F3 is obtained. The intermediate state is defined as F2, and its formula is shown in Egs. (11) and (12),
respectively. Where M. denotes channel attention and M, denotes spatial attention.

Fo=Mc( F1 )QF (11)
F3 = Ms (F2) @ F» (12)
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The channel attention module uses 3D alignment to maintain information across three dimensions. After two
layers of Multilayer Perceptron (MLP) to amplify the correlation of the channels across dimensions, the inverse
alignment is performed, and the result is obtained by Sigmoid function. This is shown in Fig. 4.

After the channel attention module generates the feature map, the spatial attention module further compresses
the feature map. Specifically, as shown in Fig. 5, the input features are first convolved by 7x7 to reduce the
number of channels, thus reducing the computation; then they are operated by r (reduction ratio), followed by
another 7 x 7 convolution to increase the number of channels, and finally the results are obtained by the Sigmoid
function.

By adding a Global Attention Mechanism (GAM) after the last layer of convolution, it is possible to ensure
that the feature representation is optimized throughout the processing, allowing the model to make more
accurate predictions before passing through the fully connected layers.

Parallel processing strategy

To address the potential loss of detailed information during the downsampling process, we propose a new
parallel network structure, as shown in Fig. 6. This structure is based on the design principles of the Residual
Block and Inverted Residual Block, with two types of networks reconstructed.

First, in the residual block-based structure, we apply two 3 x 3 convolution operations to the input feature
maps and introduce a 1 x 1 convolution to increase the number of channels, thereby enhancing the richness of the
feature representation. To avoid the issue of zero output caused by the ReLU activation function when handling
negative values, we use the PReLU activation function instead of ReLU. This ensures that no information is
lost during negative inputs, while also enhancing the training effect and model performance, enabling better
handling of data diversity.

Second, in the inverted residual block-based design, the input feature maps are first expanded by a 1x 1
convolution, followed by high-dimensional feature extraction using 3 x3 depthwise separable convolution. To
ensure that the output feature map maintains the same size and dimension as the input, we use a 1 x 1 convolution
for dimensionality reduction. Since the inverted residual structure may have limitations in capturing complex
features, we introduce the SimAM attention mechanism after dimensionality reduction to address this limitation
and improve feature representation.

By processing these two network structures in parallel with the previously mentioned ConvNeXt module
containing the attention mechanism, we significantly enhance the overall performance and generalization of
the model.

Improved activation functions

The original ConvNeXt network used GELU (Gaussian Error Linear Unit) as an activation function. GELU is
a type of activation function that contains regularization and is a smoothed variant of ReLU (Rectified Linear
Unit), which introduces the idea of stochastic regularity to alleviate the problem of vanishing gradients. The
GELU activation function takes the form of Eq. (13):

GELU(z) = = x % {1 +ort (\%)] (13)

where x is used as the neuron input and erf(x) is the error function, a non-fundamental function. The larger x is,
the more likely it is that the activation output x will be preserved, while the smaller x is, the more likely it is that
the activation will result in a 0. The result of the activation is the same as that of a neuron.
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Fig. 6. parallel processing architecture.

Since the GELU activation function affects the convergence of the hard saturated region during the
computation, we consider changing the activation function to avoid this situation. The ReLU function is defined
as max (ax, x), the problem of which is that when the input is less than zero, the gradient is zero, which results
in neurons not being able to learn through backpropagation. The Sigmoid function is computed by the formula
H%, where x is the input value. The output range of the Sigmoid function is (0, 1). This function is affected

by the gradient saturation problem during computation, i.e., the gradient tends to zero at large or small input
values, which leads to gradient vanishing and gradient explosion. The PReLU (Parameter Rectified Linear Unit)
activation function is defined as max (ax, x) (0 <a<1). It is showing in Fig. 7. Compared to the above activation
function, PReLU solves the hard saturation problem of GELU at (x<0)*. Therefore, we replace the GELU
activation function with the PReLU activation function to increase the nonlinear capability of the proposed
network model. The improved activation function can convey the defect information on the surface of hot-rolled
strip more effectively at each stage, which improves the recognition performance and classification effect of the
model.

The improvements of downsampling module

The structure of the downsample module in the ConvNeXt model is shown in Fig. 8a, which contains a
normalization layer and a convolutional layer. Downsampling reduces the size of the extracted feature map
and filters out less influential features and redundant information while retaining key feature information. In
addition, it helps to reduce computational cost and memory consumption.

However, when the learning rate is too large, the gradient update may cause the new weights to become
negative, leading to disabled neurons. If the weights are negative, any positive input multiplied by these weights
will produce a negative value, and the output will be zero after applying activation functions such as ReLU,
Sigmoid, or GELU, resulting in the “neuron death” problem. To address this issue, we introduce the PReLU
activation function based on the original downsampling structure. By adjusting the parameter a, better nonlinear
features can be learned. The improved structure is shown in Fig. 8b.

Experiments and results

Experimental configuration

The proposed ESG-ConvNeXt is compared with other state-of-the-art methods, all of which are implemented
using Python version 3.8.1 and built on the PyTorch 1.13.1 framework. All experiments were conducted on a
workstation running Ubuntu 20.04, equipped with an AMD EPYC 7542 32-core processor and an NVIDIA
GeForce RTX 4090 graphics card.

During training, the ESG-ConvNeXt model uses the Cross-Entropy Loss function. The AdamW optimizer
and warm-up strategy were employed for training. The hyperparameters of all models were set with an initial
learning rate of 0.0001 and a batch size of 64, with a total of 100 training epochs. Additionally, all experiments
were repeated five times to ensure the stability of the models.
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Fig. 8. (a) Original downsampling module (b) Improved downsampling module.

Model training

To evaluate the effectiveness of the ESG-ConvNeXt model in classifying surface defects on hot-rolled strips, we
compared it with DenseNet121%!, MobileNetV332, InceptionV3*, ConvNeXtV2, Vision Transformer, and Swin
Transformer models using the hot-rolled strip surface defects dataset for training. The experimental results were
then compared and analyzed.

Figure 9 illustrates the trend of model validation accuracy across different training epochs. From the figure,
it is evident that our proposed model achieves an accuracy of 99.12%, followed by DenseNet121 and Swin
Transformer with 97.86% accuracy, while MobileNetV3 has the lowest accuracy at 84.97%. The results indicate
that our proposed model achieves high validation accuracy, demonstrating its strong performance.

Evaluation metrics

This experiment uses accuracy, precision, recall, F1 score, and FPS to assess model performance. Accuracy
represents the overall correctness of the model’s predictions; however, it may not be an ideal metric for evaluating
performance in cases with an unbalanced dataset. Precision measures the accuracy of the positive samples
predicted by the model, while recall indicates the probability of correctly predicting a positive sample among all
actual positive samples. FPS is used to evaluate the speed at which the deep learning network processes images
per second. Accuracy, precision, recall, and F1 score for binary classification are defined using Eqs. (14), (15),
(16), and (17):

TP + TN

A = 14
CCUTACY = TP + FP + TN + FN (14)
. TP
Precision = W (15)
TP
— - 1
Recall TP+ FN (16)
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Fig. 9. Accuracy performance of different models in training.

Precision x Recall

fi1 — score =2 x (17)

Precision + Recall

True Positive (TP) refers to the number of correctly predicted positive samples; False Positive (FP) is the number
of negative samples that were predicted as positive; True Negative (TN) indicates the number of correctly
predicted negative samples; and False Negative (FN) refers to the number of positive samples that were predicted
as negative.

Performance comparison of different models

In training the ESG-ConvNeXt model, we use images from the test set to evaluate the classification performance.
We compared the proposed ESG-ConvNeXt model with InceptionV3, ConvNeXtV2, MobileNetV3,
DenseNet121, Vision Transformer (VIT), and Swin Transformer (Swin-T) models, mainly based on accuracy,
precision, recall and F1 score. The results are shown in Table 1, where our model achieves 97.5% in accuracy,
96.6% in precision, 95.9% in recall, and 96.1% in F1 score. Compared to the other six models, our model shows
significant improvement in all four metrics and is at the highest level among these seven networks. Nevertheless,
in terms of FPS, our detection speed is not significantly improved, mainly due to the decrease in inference speed
during the network design process to retain more detailed information and better capture small target defects.

Confusion matrix analysis

As shown in Fig. 10, the confusion matrix** of our proposed ESG-ConvNeXt model is compared with other
convolutional neural network (CNN) models. In this confusion matrix, the horizontal axis represents the
predicted categories, while the vertical axis represents the true categories. The labels “cr’, “gg”, “in”, “pa’, “ps’,
“tp”, “rs”, “sc’, and “sp” on both axes correspond to the nine defect types in our dataset, specifically cracks,
pits, inclusions, patches, pitting surfaces, rust, scale, scratches, and oil stains. According to the results, under
the same experimental parameters, our proposed ESG-ConvNeXt model exhibits fewer misidentifications of
defects compared to the geometric feature-based strip surface defect classification methods. Notably, only one
out of 153 scratch images is misidentified as rust scale. In contrast, the other models show a higher number of

misidentifications. These results further validate the robustness of the ESG-ConvNeXt model.

Ablation experiment
To investigate the effect of different modules on classification results, we incorporate the parallel processing
module, the attention mechanism module and the activation function into the ConvNeXt model for ablation
experiments, respectively. The effectiveness of each module on model enhancement is evaluated by accuracy, F1
score, recall and precision. The experimental results are shown in Table 2, where ‘1’ indicates the improvement
in accuracy relative to the original ConvNeXt model.

From the details of the table, the modules effectively mitigate the problem of lower accuracy encountered
when using the ConvNeXt model by parallel processing, adding the Attention Mechanism module and improving
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Model Acc (%) | Pre (%) | Rec (%) | F1Score (%) | EPS (f/s)
MobileNetV3 83.1 78.1 74.7 76.0 35.0
InceptionV3 90.2 87.9 84.6 85.6 15.9
ConvNeXtV2 92.8 90.6 88.0 88.9 42.0
VIT 93.6 91.8 90.2 90.7 19.2
DenseNet121 95.3 94.0 92.5 93.0 10.2
Swin-T 95.9 94.6 92.8 93.5 3.8
ESG-ConvNeXt | 97.5 96.6 95.9 96.1 6.0

Table 1. Comparison of the performance of the CNN-based model with the ESG-ConvNeXt model on the
NEU-CLS-64 dataset. The best values are marked in bold.
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Fig. 10. Confusion matrix of ESG-ConvNeXt model with other CNN models.

NUM | Model Acc (%) | Pre (%) | Rec (%) | F1Score (%) | 8Acc (%)
1 ConvNeXt 92.8 90.6 88.0 88.9 -
2 ConvNeXt+block1 95.1 94.4 91.7 92.7 12.3
3 ConvNeXt + block1 + block2 96.1 95.2 93.2 93.9 13.3
4 ConvNeXt + block1 + block2 + Attention | 96.0 95.0 93.2 93.9 13.2
5 ESG-ConvNeXt 97.5 96.6 95.9 96.1 14.7

Table 2. Comparison of ablation experiment parameters.

the activation function. Under the influence of these modules, our model shows a significant improvement in
comparison to the benchmark model, with an accuracy of 97.5%, precision of 96.6%, recall of 95.9%, and F1
score of 96.1%. These modules help improve the model performance and make it more suitable for classifying
surface defects on hot rolled strip. By incorporating these modules, our model improves 4.7% and 6.0% in
accuracy and precision, respectively, relative to the original model, providing more reliable and accurate results
for the task of classifying surface defects on hot-rolled strip steel.

Figure 11 demonstrates the trend of each module incorporation with respect to the change in the number of
training epochs. From the figure, each module has significantly improved the classification of surface defects on
hot rolled strips.

Feature visualization

T-SNE is a dimensionality reduction method to visualise data by downscaling it to 2D or 3D*. In classification
tasks, T-SNE is used for dimensionality reduction to show clustering between features. Our ESG-ConvNeXt model
is visualised with six models, DenseNet121, MobileNetV3, InceptionV3, ConvNeXtV2, Vision Transformer, and
Swin Transformer, in the reduced feature space with dimension 2. The random number seed is set to 42. As
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Fig. 12. Feature visualization using T-SNE for different models (a) MobileNetV3 (b) ConvNeXtV2 (c)
InceptionV3 (d) DenseNet121 (e) Swin Transformer (f) Vision Transformer (g) ESG-ConvNeXt.

shown in Fig. 12, the figure represents the different colours of the nine defects in our dataset, which are: cr,
gg, in, pa, ps, rp, 18, sc, and sp. Their corresponding defects are cracks, pits, inclusion, patches, pitting surface,
rust, scale, scratches and oil stains. in the figure, features with the same defect class are clustered together, while
features with different defect classes are clearly separated. We can clearly see that the proposed ESG-ConvNeXt
network outperforms the other six networks in clustering on each defect category, with MobileNetV3 having the
worst clustering effect. This shows that the ESG-ConvNeXt model can produce a more discriminative feature
map compared to the other models, further proving its superiority.

Visualization of results

We visualize this through Gradient Class Activation Heat Map (Grad-CAM)?¢, a method that generates a class
activation map by performing a weighted summation of the feature map to show the importance of a particular
region in the image to the classification result. This approach helps to provide insight into the generalization
capabilities of our model. Grad-CAM can analyze the region of interest of the model under a particular class and
determine whether the model has learned appropriate features or information from that region. We applied the
ESG-ConvNeXt model along with six other models (DenseNet121, MobileNetV3, InceptionV3, ConvNeXtV2,
Vision Transformer, and Swin Transformer) to the visualization of regions of interest for defects on steel surfaces,
and the raw images were randomly selected. By using these images as inputs to the respective networks, we
obtained feature maps of the parts that affect the classification scores. As shown in Fig. 13, the darker the color in
the class activation map, the greater the contribution of the region to the recognition result. The ESG-ConvNeXt
model is more accurate in determining the region of interest, and the region of interest is more concentrated
on the defect locations on the steel surface, which enhances the matching ability of the model. Compared with
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other models, our model can focus more on specific points rather than overly focusing on cracks and their
surrounding larger background regions. This improvement effectively enhances the detection of small targets
and demonstrates the strong learning ability of our model for steel surface defect detection.

Generalizability experiments

To verify the generalization ability of the ESG-ConvNeXt algorithm, this paper chooses to use the publicly
available dataset Xsteel (X-SDD), which can also be used for the classification of steel surface defects, as shown
in Fig. 14. This dataset contains seven types of defect images totaling 1360 images, including 238 images of
entrapment slag, 397 images of red tin, 122 images of tin grey, 134 images of surface scratches, 63 images of plate
system oxidation, 203 images of finishing roll marks, and 203 images of temperature system oxidation. After data
enhancement, our total number of samples reached 5440.

The results are shown on Fig. 15 when the running environment is kept consistent. The red dash line indicates
the trend of our model on the X-SDD dataset with an increasing number of trainings. By comparing the accuracy
of our model ESG-ConvNeXt with other models, it can be observed that the accuracy of our proposed model is
still at the highest level.

Then, we compared the models on accuracy, precision, recall, F1 score and FPS, respectively. As shown in
Table 3, compared to the benchmark model ConvNeXtV2, our proposed model improves 14.7%, 16.2%, 17.6%,
and 17.3% on these four parameters, respectively. Compared with Table 1, the evaluation metrics of the other
six models are not stable, while our model has been relatively stable in these evaluation metrics, which further
demonstrates the good generalization performance of our model.

Conclusion

In this paper, we address the issues of limited generalization performance and insufficient adaptability in complex
environments that have been encountered in previous studies on the detection and classification of steel surface
defects. To overcome these challenges, we propose a network model based on ESG-ConvNeXt. The method
enhances defect detection and classification by extracting feature maps at different depths within the network.
The main conclusions are as follows: the inclusion of ELA, SimAM, and GAM in each module for optimizing
the feature maps significantly improves the classification ability and robustness of the model. Furthermore, the

inclusions (in) patches (pa) {pitting surface(ps) ; [ rust (rp) rolling scale (rs) { scratches (sc) ; { oil stains (sp)

[m] | pits (gg) W

A -
BRNNAEN

Fig. 13. Grad-CAM of different models on different defect categories, from top to bottom, original images,
MobileNetV3, InceptionV3, ConvNeXtV2, Vision Transformer (VIT), DenseNet121, Swin Transformer
(Swin-T) and ESG -ConvNeXt.
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Fig. 14. Sample images of 7 typical surface defects in the X-SDD dataset. (a) Finishing roll printing (b) iron
sheet ash (c) oxide scale of plate system (d) slag inclusion (e) oxide scale of temperature system (f) red iron (g)
surface scratch.
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Fig. 15. Accuracy performance of different models in X-SDD based dataset.

MobileNetV3 64.2 59.5 58.1 58.0 35.0
ConvNeXtV2 75.8 74.5 71.9 72.4 42.0
InceptionV3 76.8 76.7 72.8 73.4 15.9
VIT 77.1 77.2 73.4 74.1 19.2
Swin-T 82.5 80.0 79.8 79.4 3.8
DenseNet121 86.9 87.3 84.6 85.1 10.2
ESG-ConvNeXt | 90.5 90.7 89.5 89.7 6.0

Table 3. Comparison of the performance of the CNN-based model with the ESG-ConvNeXt model on the
X-SDD dataset. The best values are marked in bold.

model’s performance and generalization ability are effectively enhanced by the parallel processing structure.
Additionally, the PReLU activation function is introduced to alleviate the “neuron death” problem during the
downsampling process. A series of experiments conducted on the strip surface defect dataset demonstrate that
the ESG-ConvNeXt model significantly outperforms other network models in terms of generalization. Under
the same experimental conditions, the ESG-ConvNeXt model achieves an accuracy of 97.5%, precision of 96.6%,
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recall of 95.9%, and F1 score of 96.1% on the augmented test set. These experimental results show that the ESG-
ConvNeXt model outperforms other network models in both classification ability and robustness, highlighting
the effectiveness of this model improvement approach in the detection and classification of steel surface defects.

Data availability
The datasets analyzed during the current study are available at http://faculty.neu.edu.cn/songkechen/ zh_ CN/zd
ylm/263,270/list/ and https://github.com/Fighter20092392/X-SDD-A-New-benchmark.
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