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GTAT: empowering graph neural
networks with cross attention

Jiahao Shen?, Qura Tul Ain?, Yaohua Liu?, Banging Liang?, Xiaoli Qiang?** & Zheng Kou**

Graph Neural Networks (GNNSs) serve as a powerful framework for representation learning on graph-
structured data, capturing the information of nodes by recursively aggregating and transforming

the neighboring nodes’ representations. Topology in graph plays an important role in learning graph
representations and impacts the performance of GNNs. However, current methods fail to adequately
integrate topological information into graph representation learning. To better leverage topological
information and enhance representation capabilities, we propose the Graph Topology Attention
Networks (GTAT). Specifically, GTAT first extracts topology features from the graph'’s structure and
encodes them into topology representations. Then, the representations of node and topology are
fed into cross attention GNN layers for interaction. This integration allows the model to dynamically
adjust the influence of node features and topological information, thus improving the expressiveness
of nodes. Experimental results on various graph benchmark datasets demonstrate GTAT outperforms
recent state-of-the-art methods. Further analysis reveals GTAT’s capability to mitigate the over-
smoothing issue, and its increased robustness against noisy data.

Keywords Graph learning, Graph neural networks, Network topology, Cross attention mechanism

Graph-structured data maps out intricate relations between various entities around the world, from the vast
expanses of social networks' to the dense construction of knowledge graphs?, and the intricate patterns of
molecular structures® even to 3D topologies of manifolds®. This data structure plays an essential part in complex
relationship modeling. Graph Neural Networks (GNNs) and their variants are efficient tools for exploring graph-
structured data, utilizing node features and graph structure to address challenges in network analysis. This
capability makes GNNs widely applicable across various domains, including deciphering molecular structures,
navigating social networks®, formulating product suggestions’, or dissecting software programs®.

Convolution techniques in computer vision®!* have been applied to graph-structured data, promoting
advancements in GNNs. Based on different convolution definitions, GNNs are divided into two categories:
spectral-domain!! and spatial-domain'?-'4. Spectral-domain GNNs define graph convolution through the lens
of graph signal processing, based on the principle that convolving two signals in the space domain is equivalent
to multiplying their Fourier transforms in the frequency domain. This concept originates from Bruna’s work!!,
with subsequent advancements and refinements made by notable works on ChebNet'3, CayleyNet'®, and GCN'.
Spatial-domain GNNs perform convolution on the representations of each node and its neighbors directly to
update states, and exhibit a wide variety of variants according to different neighboring information aggregation
and integration strategies. Particularly, Graph Attention Network (GAT)!®stands out owing to its attention-
based neighborhood aggregation. This architecture enables nodes to weigh the significance of neighboring
information during their feature update process. Building upon this, GAT2!® introduces dynamic attention,
demonstrating more robust and expressive capabilities.

While these methods make use of basic topological information, such as node degrees or edges, during
message passing, they do not explicitly incorporate richer topological features. This limitation prevents GNNs
from fully leveraging the inherent properties of the graph structure, which are crucial for understanding graph-
structured data. For instance, in social networks?’, the topological structure can reveal community patterns,
influential entities, and the dynamics of information flow. In chemical informatics?!, the molecular topology
directly influences the chemical properties and reactivity of molecules. In biological networks??, analyzing
topological differences helps understand cellular functions and disease mechanism. To address this limitation,
some GNNs?*-% leverage the topological infomation, by adjusting factors like message passing weights or
choosing specific nodes for information propagation. You's and Tian’s work?®?” attempts to enhance node
expressiveness by concatenating the extracted topological information with node representation. However, node
representations and topology representations are essentially two different modalities. Wang’s and Baltrusaitis’s
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work?®?® indicates that simply concatenating data from different modalities, while ignoring the interactions

between these modalities, may hinder the network from effectively learning useful information from each
modality.

Motivated by the above issues, we propose Graph Topology Attention Networks (GTAT) to address the
inadequate utilization of topological information and the limitation of unimodal configuration. In specific,
GTAT starts by extracting topology features from the graph’s structure, and then encodes them into topology
representations. We take the infuluence of the node local topology into account by encoding the topology
information as another input into the model. Then, we compute two types of attention scores and use cross
attention mechanism to process both the node representations and the extracted topology features. This
integration enables topology features to be incorporated into node representations and ensures the relationships
in graph effectively captured, achieving a more robust and expressive graph model.

The contributions of this paper are summarized as follows:

o We propose a novel graph neural network framework, GTAT, which enhances the utilization of topological
information for processing graph-structured data. In this framework, we treat node feature representations
and extracted topology representations as two separate modalities, which are then inputted into the GNN
layers.

« We explore the feasibility of applying the cross attention mechanism in GNNs. Our approach calculates at-
tention scores for both node feature representations and node topology representations, then employ a cross
attention mechanism to integrate these two sets of representations. This integration allows the model to dy-
namically adjust the influence of node features and topological information, enhancing the representation
capability.

 Experimental results on nine diverse datasets demonstrate our model has a better performance than state-of-
the-art models on classification tasks. Further analysis involving variations in model depth and noise levels
reveals GTAT’s capability to mitigate the over-smoothing issue, and its increased robustness against noisy
data. These results highlight that GTAT can be used as a general architecture and applied to different scenar-
ios.

Related work

Graph neural networks

Different GNNs employ various aggregation schemes for a node to aggregate messages from its neighbors.
GCN' utilizes a layer-wise propagation technique, employing a localized first-order approximation of spectral
graph convolutions to encode representations. SAGE? learns a function to generate embeddings from a node’s
local neighborhood, enabling predictions on previously unseen data. SGC*! simplifies the training process by
reducing the number of non-linear layers and merges multiple layers of graph convolution into a single linear
transformation. FAGCN?? optimizes neighborhood information aggregation by analyzing the spectral properties
of graphs, employing different strategies for handling high-frequency and low-frequency signals. Attention
mechanism* empowers GATs to selectively focus on significant neighborhood information while updating
node representations, thus pioneering a new approach in graph representation learning. GAT'® employs a self-
attention mechanism, which calculates attention coefficients for each neighbor of a node and utilizes them to
weight corresponding neighbor features during aggregation, permitting the GAT to assign more considerable
weights to more relevant neighbors. GAT2!® employs a dynamic attention mechanism to enhance the model’s
expressive abilities, accommodating scenarios where different keys possess varying degrees of relevance to
different queries.

GNNs with topology

Leveraging graph topology has become more and more popular in graph representation learning. mGCMN3*
incorporates motif-induced adjacency matrices into its message passing framework, adjusting weights to capture
complex neighborhood structures. TAGCN? slides a set of fixed-size learnable filters over the graph, where
each filter adapts to the local topology. P-GNNs?® samples multiple sets of anchor nodes and applies a distance-
weighted aggregation scheme to differentiate nodes’ positions information. SubGNN?>¢ learns disentangled
representations of subgraphs by using routing mechanism to handle subgraph internal topology, position, and
connectivity, enhancing performance on subgraph prediction tasks. To learn deep embeddings on the high-
order graph-structured data, Hyper-Conv®’. extends traditional graphs, permitting edges to connect to any
number of vertices, thus altering the aggregation methods among nodes. Given the importance of topological
information, we extract and encode it to enhance model’s representation ability.

Cross attention mechanism

The concept of the cross attention mechanism was first proposed in the Transformer model®®. Cross attention
mechanism bridges two distinct sequences from diverse modalities such as text, sound, or images. Cross attention
provides a flexible framework that allows for interactions between different modalities®*’, enhancing mutual
understanding. Exploiting this concept, the Perceiver model*! processes input byte arrays by alternating between
cross attention and latent self-attention blocks. Meta’s Segment Anything Model*? leverages cross attention to
connect the prompts and image information, fostering enhanced interactions and richer embeddings. MMCA*
uses cross attention module to generate cross attention maps for each pair of class feature and query sample
feature, making the extracted feature more discriminative. Recently, some works**** have also adopted cross-
attention mechanisms in graph-related tasks. However, most of these studies focus on using cross-attention
to facilitate interactions between graph modules and non-graph modules. In this study, we employ the cross-
attention mechanism to enable modality interaction within the graph module itself, without requiring the
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Fig. 1. GTAT framework. Given a graph G with N nodes, along with a set of node feature representations H,
we first obtain the GDV of these nodes through the TFE. Subsequently, we use MLP transforms GDV into a set
of topology representations T. GTAT layer receives G and these two representations as input, then transforms
and outputs two updated sets of representations. Finally, based on the set of node feature representations, our
model outputs the predictions of nodes’ classifications.
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Fig. 2. Up: Four orbits with different color. Down: The computation of GDV for node v in graph G. This
diagram illustrates all instances where node v appears in four distinct orbits. Correspondingly, the GDV for v
is [2, 1, 0, 1], reflecting the appearance count of v in these orbits.

assistance of non-GNN modules. This distinction allows for more efficient and intrinsic interactions within the
graph structure itself.

Method

Framework

As illustrated in Figure 1, our framework begins with the topology feature extraction (TFE) for each node.
After getting the set of topology representations, we apply Graph Cross Attention (GCA) layers to update node
feature representations and topology representations. Lastly, the model utilizes the node feature representations
from the final layer to predict node classifications. Our methodology presents an innovative fusion of original
feature representations and the topology representations, utilizing a unique cross attention mechanism on graph
to enhance the expressive capabilities of each node. The following sections comprehensively elaborate on our
approach.

Topology feature extraction

To extract the information inherent in graph, we obtain the topology representations based on the graphlet
degree vector (GDV)?*%® for each node. GDV is a count vector that represents the distribution of nodes in
specific orbits of graphlets. Graphlets, defined as small connected non-isomorphic induced subgraphs within a
graph, succinctly capture the neighboring structure of each node in the network. And an orbit can be thought of
as a unique position or role a node can have within a graphlet. For instance, each node in a triangle (a three node
graphlet) has the same role, so they belong to the same orbit. GDV is a vector to count the participation times
of different orbits across the local distinct graphlets. The GDV delivers a measure of the node’s local network
topology feature, enhancing model’s understanding of the graph structure.

Figure 2 shows all four different orbits with up to three nodes and the GDV calculating of node v. In fact, there
are 15 distinct orbit types for graphlets with up to four nodes, and 73 types for graphlets with up to five nodes.
We utilize the Orbit Counting Algorithm (OCRA)* to compute the GDV of nodes within a network. OCRA
offers a combinatorial method for the enumeration of graphlets and orbit signatures of network nodes, reducing
the computational complexity encountered in the counting of graphlets. The time complexities for computing
the GDVs of these two dimensions are respectively O (n . d3) and O (n . d4), where 7 is the number of nodes

and d is the maximum degree of the nodes.
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Building on the aforementioned approach, this study employs the GDV as the extracted node topology
feature. The dimensionality of each node’s GDV corresponds to the number of orbits, representing its topological
characteristics. These GDVs, after being normalized and processed through a multilayer perceptron (MLP)*,
serve as the topology representations inputted into the network. To balance the computational efficiency and
prediction accuracy, we employ the 73-dimensional GDV. The comparative experiments are showed in Section 4.

Graph cross attention layer

After obtaining the topology representation, our approach introduces the computation of two types of attention:
the feature attention and a novel topology attention, thereby implementing a cross attention mechanism on
graph. The structure of GCA layer is depicted in Figure 3.

Our GCA layer receives a set of node feature representations, H; = {h1, ha, ..., hnx}, and a set of topology
representations, 7; = {t1, t2, ..., tn }, where N is the number of nodes at layer I. Following the methodology in
GAT, we calculate the feature attention score between feature representations of nodes and their corresponding
neighbors:

e (hi, hj) = LeakyReLU (a' - [Whi|Wh;])) (1)

where h; and h; are the feature representations of nodes ¢ and j, while W and a represent a weight matrix and a
shared parameter vector, respectively. This calculation embodies the inherent attributes of the nodes and assigns
more considerable weights to more relevant neighbors.

Furthermore, we introduce a new form of attention score, topology attention score. This score is calculated
between topology representations of nodes and their corresponding neighbors:

e: (ti,t;) = LeakyReLU (a; - [ti|t;]) )

where t; and ¢; are the topology representations of node ¢ and node j, with a; being a shared parameter vector.
Then the feature attention scores and topology attention scores are normalized as :

exp (6 (h“ h]))
> iren;, &b (€ (ha, hy))

a;; = softmax; (e (hi, hj)) =

€)

and

exp (et (ti, t;))

Bi; = softmax; (e: (ti,t5)) = 5 oxp (e (1 1))
JTEN; iy byl

(4)

where o is the feature attention coefficient between node 7 and node j, and 3;; serves as the topology attention
coefficient, enabling the model to capture the local substructure of each node in the network. Additionally, N;
represents the set of neighbors of node 7, and it can be defined as follows:

Ni={jeV|(i)et} (5)

Y
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Outputs

Fig. 3. The structure of GCA layer. Inputs is a set of node feature representations, H; € R™*¥" and a set
of node topology representations, 1; € RY*F2 where N is the number of nodes at layer I. After computing
two attention matrices, denoted as o and 3, we erngloy message passing(M.P.) mechanism to get the new

. NXF3 NXFs
representations H; 1 € R andT;4+1 € R .
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where V represents the set of nodes in the graph, and £ represents the set of edges.

Following the two attention computations, we implement the cross attention mechanism, which intertwines the
node feature representations and the topology representations. The node feature representation is updated with
the computed topology attention coeflicients as:

hi=o Z BigWh; (6)
JEN;

where o is a nonlinearity and W € R¥3*F1 represent a weight matrix. Simultaneously, the topology

representation is updated with the calculated feature attention coefficients :

ti=o Z aijtj (7)
JEN;
!

Finally, the layer outputs a new set of node feature representations, H;41 = {h'17 Oy eens h?v}, and a set of
topology representations, Tj+1 = {t},t5,...,tx }

It's worth mentioning that dynamic attention mechanism, which is introduced in GAT2, also performs well
across various tasks. The dynamic attention in GAT?2 diverges from GAT'’s static counterpart by adjusting its
weights based on the query, thus accommodating scenarios where different keys possess varying degrees of
relevance to different queries. The dynamic attention calculation in GAT?2 is formulated as follows:

e (hi,h;) = a' LeakyReLU ([Whs||Wh;]) (8)

To equip our model with dynamic attention, we further propose another version: GTAT2. In GTAT2, we employ
the dynamic attention mechanism as utilized in GAT2 for the computation of two attention scores, as Equation
8 and Equation 9:

et (ti,t;) = a; LeakyReLU ([t;]|t;]) 9)

Both the node feature and topology representations in GTAT2 are updated similarly to those in GTAT.
Experiments and analysis on GTAT and GTAT2 are conducted subsequently.

The cross action of the node and topology representations allows for the capture of both node intrinsic attributes
and topological relations, thereby significantly augmenting the prediction accuracy of our model.

Experiments

Datasets

In our experiments, we use nine commonly used benchmark datasets, namely three citation networks datasets
(i.e., Cora, Citeseer, and PubMed)*’, two Amazon sale datasets (i.e., Computers and Photo)*’, two coauthorship
datasets (i.e., Physics and CS), one Wikipedia-based dataset (i.e., WikiCS)*!, and one arxiv papers dataset (i.e.,
Arxiv)*. Statistics for all datasets can be found in Table 1. The resources we used are all from the PyTorch
Geometric Library®3.

Dataset Nodes | Edges Features | Classes
Cora 2,708 5,278 1433 7
CiteSeer 3,327 4,552 3703 6
PubMed 19,717 | 44,324 500 3
Computers | 13,752 245,861 767 10
Photo 7,650 119,081 745 8
Physics 34,493 | 247,962 8415 5

CS 18,333 | 81,894 6805 15
WikiCS 11,701 | 431,726 300 10
Arxiv 169,343 | 1,166,243 | 128 40

Table 1. The statistics of datasets.
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Experimental setup

All experiments are implemented in PyTorch and conducted on a server with two NVIDIA GeForce 4090
(24 GB memory each). We conduct 20 runs, reporting the mean values alongside the standard deviation. The
search space for hyper-parameters encompasses: hidden size options of {8, 16, 32, 64}, learning rate choices
of {0.01,0.005}, dropout values of {0.4,0.6}, weight decay options of {1E — 3,5F — 4}, and selection of
attention heads from {1, 2, 4, 8}for models using attention mechanism. We hold the number of layers constant
at 2. All methods utilize an early stopping strategy® based on validation loss, with patience of 100, and all are
trained using a full-batch approach. In all cases, we randomly select 20 and 30 nodes per class for the training
and validation, respectively, and the remaining nodes are used for testing. We use NLL Loss as the loss function
for the model:

N C
1 N
L=—% DD wiclog (i) (10)
=1 c=1

where C is the number of classes in the classification task, g, is the predicted probability of sample i being
classified into class ¢, and y; cis the ground truth label. We utilize the Adam optimizer® to minimize the loss
function and optimize the parameters of these models.

Node classification results
The comparative methods in our study involve nine different algorithms: GCN'7, GraphSAGE (SAGE)*’, SGC?!,
FAGCN?, GAT', GAT2", Hyper-Conv?’, mGCMN>* and Dir-GNN>°,

Table 2 shows the average accuracy and standard deviation of different models. Except for two datasets, GTAT
or GTAT?2 achieves the best results in all other datasets. Compared to GATs, GTATs show better performance
across all datasets due to the extracted topology features and the cross attention mechanism. Specifically,
GTAT achieves an average accuracy improvement of 0.53% across nine datasets compared to GAT, and GTAT2
outperforms GAT2 with an accuracy improvement of 0.48%. Compared to Hyper-Conv. and mGCMN, which
utilize topological information, our model also demonstrates better accuracy. While Hyper-Conv. and mGCMN
merely adjust the message-passing pathways or weights based on the extracted topological structure, our
method receives the extracted topology features as an additional modality. This mechanism enables GTATs to
fit the impact of the topological structure on node representation, contributing to more accurate and reliable
predictions. Compared to the earlier proposed SGC, GCN, and SAGE models, the GTATs exhibit superior
performance.

FAGCN'’s effectiveness in the Physics and Cs datasets, where the node features have high dimensions, can
be attributed to its adaptive integration of low-frequency and high-frequency signals from the raw features.
However, GTATs outperform FAGCN across all other seven datasets. Particularly for the Arxiv dataset, which
has low node feature dimensions, GTAT outperforms FAGCN by 4.25%, highlighting GTATS capability to
achieve higher accuracy with limited node features.

In summary, our GTAT models demonstrate outstanding performance across all nine datasets spanning four
distinct data types, showcasing their broad applicability in handling diverse graph-structured data.

Effectiveness of cross attention

To further explore the impact of the cross attention mechanism embedded in our model, we conduct series
of experiments based on GATs with two different configurations. (1) GATs+A, which updates both the node
feature representations H and the topology representations T using the topology attention coefficients 3. (2)
GATs+B updates only the node feature representations H based on the topology attention coefficients 3, while
the topology representations T remain constant. As shown in Table 3, our method presents the best performance
across the most of datasets except the Computers. These results support the importance of utilizing the potential

Model Core Citeseer Pubmed Computers | Photo Physics Cs WikiCS Arxiv

GCN 80.67+1.10 | 68.10+1.47 | 78.22+1.49 | 82.43+1.47 | 90.84+0.72 | 92.98+0.82 | 91.45+0.31 | 75.04+0.82 | 70.33 +0.32
FAGCN 80.64+1.49 | 68.13+1.34 | 78.85£1.80 | 83.63+1.37 | 91.71+1.06 | 93.47+0.75 | 92.52+0.34 | 74.43+1.05 | 67.12 +0.85
SGC 79.51+1.49 | 67.75£1.39 |76.24+2.35 | 83.27+1.21 | 91.01£1.02 | 92.40+0.29 |91.95+0.48 | 74.32%1.54 | 70.23 £0.26
SAGE 80.50+1.54 | 68.60+1.20 | 78.65+1.83 | 82.77+£1.23 | 91.52+0.76 | 92.92+0.55 | 90.98+0.50 | 73.99+1.40 | 69.98 +0.20
GAT 81.06+1.03 | 68.61+1.22 | 78.51£1.63 | 83.21+1.42 | 91.33+0.80 | 93.09+£0.77 | 91.34+0.40 | 75.21+0.98 | 70.41 +0.14
GAT2 81.16+1.34 | 68.40+1.17 | 78.51£1.76 | 83.62+1.51 | 91.47+0.98 | 92.89+0.74 | 91.32+0.29 | 75.39+1.14 | 70.98 +0.27

mGCMN 81.21+0.91 | 68.69+1.31 | 78.87+1.60 | 82.88+1.22 | 91.34+0.77 | 93.38+0.54 | 91.12+0.36 | 73.94+0.11 | 70.12 +0.10
Hyper-Conv. | 80.11+1.02 | 67.41£1.47 | 78.16£1.04 | 79.47+1.85 | 88.59+0.68 | 92.65+0.49 | 89.14+0.35 | 73.26+2.08 | 70.08 £ 0.26
Dir-GNN 77.89x1.51 | 67.44%1.12 | 75.46%2.29 | 80.19+1.67 | 90.42£1.22 | 93.00+0.65 |91.92+0.23 | 73.61£1.05 | 69.11 £ 0.26

GTAT 81.50+1.27 | 68.91+£1.51 | 79.34+0.80 | 83.93+1.09 | 91.70+0.39 | 93.41+0.35 | 91.68+0.21 | 76.01+1.15 | 71.02 £ 0.17
GTAT2 81.65+1.49 | 68.78+1.58 | 79.05+1.33 | 84.37+1.46 | 91.79+0.41 | 93.39+£0.53 | 91.75+0.37 | 75.93+1.15 | 71.37 +0.14

Table 2. Accuracy(%) comparison with different models on nine datasets.
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Methods | Core Citeseer Pubmed Computers | Photo Physics CS WikiCS Arxiv

GAT 81.06+1.03 | 68.61+1.22 | 78.51+£1.63 | 83.21+1.42 | 91.33+0.80 | 93.09+0.77 |91.34+0.40 | 75.21+0.98 | 70.41 +0.14
GAT+A | 80.40£1.60 | 67.33£1.92 | 77.57+2.59 | 83.56+0.99 | 90.72+1.77 | 92.59+0.55 | 91.69+0.38 | 75.12+1.51 | 70.93 +0.27
GAT+B | 80.38+1.31 | 68.13+1.33 | 77.9+1.15 84.46+1.12 | 91.00+0.92 | 92.76+0.50 | 91.42+0.55 | 74.34+0.81 | 70.85 +0.16
GTAT 81.50+1.27 | 68.91+1.51 | 79.34+0.80 | 83.93+1.09 | 91.70+0.39 | 93.41+0.35 | 91.69+0.21 | 76.01+1.15 | 71.02 + 0.17
GAT2 81.16+1.34 | 68.40%1.17 | 78.51£1.76 | 83.62+1.51 | 91.47+0.98 | 92.89+0.74 |91.32+0.29 | 75.39+1.14 | 70.98 £ 0.27
GAT2+A | 80.61+0.97 | 68.05+0.98 | 77.44+1.51 | 82.61+1.09 | 91.49+0.67 | 93.24+0.29 | 91.53+0.69 | 75.14+1.19 |70.97 +£0.11
GAT2+B | 80.98+1.51 | 68.27+£1.27 | 77.53+2.67 | 84.49+1.36 | 91.53£1.68 | 92.65+0.97 | 91.34+0.61 | 73.21£1.46 | 71.06 +0.29
GTAT2 81.65+1.49 | 68.78+1.58 | 79.05+1.33 | 84.37+£1.46 | 91.79+0.41 | 93.39+0.53 | 91.75+0.37 | 75.93+1.15 | 71.37 £ 0.14

Table 3. Accuracy(%) comparison with/without cross attention.

0.9 {-gasgeia
0.8
0.7
3 306
© 0.60 ©
5 505
S 0.55 o1
< <04
0.50 GAT GAT
—e— GAT2 0.31 —— GAT2
0.45 7 _a- GTAT \‘\‘ 024 -4~ GTAT
0.404.—=- GTAT2 ~ | -u- GTAT2 Nt
: ; 0.1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of Layers Number of Layers
(A) Pubmed (B) Photo
B4 : { ] }
0.9 kg o U 0.7 ‘ GAT
i ; S . —o— GAT2
LN B o
08 \\ e 0.6 * \i —4- GTAT
-a- GTAT2
307 30.5 )
b
06 ’_‘\ o4 3
o] o A%
go05 \ <Los n
GAT \ a '
0.4 1 —e— GAT2 > o 0.2
-4~ GTAT
037 _as GTaAT2 § 0.1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Number of Layers Number of Layers

(C) Physics (D) WikiCS

Fig. 4. Average classification accuracy after ten runs for different model depths.

of both node feature and topology representations through our cross attention mechanism to attain optimal
performance.

Over-smoothing analysis

A critical challenge in GNNG is the over-smoothing issue®’, which limits the number of layers that can be
effectively stacked. As the number of layers increases, the nodes become less and less distinguishable, making
the performance of the model drop sharply.

To verify whether topology representations and cross attention could alleviate the over-smoothing issue, we
select four different types of datasets and compare the performance of GTATs and GATs at varying depths. There
are few significant differences between the models in initial layers, as shown in Figure 4. However, as the depth
increases, the GTATs demonstrate more stable performance, avoiding the drastic decline observed in GATs.

Figure 5displays the t-SNE®® plots of the node representations with 20 layers of GAT and GTAT on the
Physics dataset. The t-SNE plot provides a visual description of high-dimensional data by projecting them
into 2D space, aiding in the identification of relevant patterns. From this visualization, it is evident that GTAT
achieve clearer node clustering than GAT. Besides, Figure 6 shows the node classification accuracy curves and
loss curves of GATs and our proposed GTATS. It can be seen that GTATs can converge more quickly and stably
while achieving better accuracy.

Over-smoothing occurs when node representations become increasingly similar, rendering the model
incapable of effectively distinguishing between different nodes. To quantify the similarity between node
representations, we selected Dirichlet energy (E p)>° as our metric:
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Fig. 5. 2D t-SNE plot of Physics dataset.
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where n. denotes the total number of edges, h; represents the representation of node i, and A;; is the
corresponding element in the adjacency matrix. A higher Ep indicates greater dissimilarity between node
representations. Figure 7 shows that the Dirichlet energy at each layer of the GTATs is exponentially higher
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than that of the GATSs, indicating that GTATS better preserve the distinctiveness of node embeddings even as the
depth increases.

GTATS better performance at deep layers can be attributed to the topology attention in our model architecture,
which establishes the relationships between nodes from the perspective of the topology they inhabit. Topology
attention enhances the distinctiveness of node feature representations, thereby improving the expressiveness of
the model.

Robustness analysis

Better robustness indicate stronger stability of the model when facing noisy data. To evaluate the robustness
of the GTATs, we conduct experiments on four different types of datasets and compare the performance of
GTATs and GATs under random feature attack (RFA). RFA! intentionally corrupts node features in the graph
to evaluate each model’s ability when facing the perturbations caused by feature attacks. In particular, the attack
is implemented by randomly modifying the nodes features according to a noise ratio 0 < p < 1. For node ¢, its
representations is modified as follows:

hi = hi +p - noise, noise ~ N(0,1)

where noise is a vector sampled from a Gaussian distribution, A/, with mean zero and variance one.

Figure 8 shows the node classification accuracy on four datasets as a function of the noise ratio p. As p increases,
the accuracy of all models decrease asour expection. However, GTATs show a milder degradation in accuracy
compared to GATs, which show a steeper descent. The experimental results show that GATs, relying solely on
node representations, face difficulty adapting to increased noise levels and suffer more obvious performance
declines. GTATS’ resilience to noise can be attributed to the extracted topology presentations and the cross
attention mechanism. Both allow GTATs to maintain better differentiation and stability of node features under
RFA. These results clearly demonstrate the robustness of GTATs over GATS in noisy settings.

Efficiency analysis

Similar to other deep learning models, GTAT may need to be deployed on small devices. To compare the scale
of the GNN models, we carry out an analysis of the model parameter counts and their performance across three
datasets of varying sizes. For a fair comparison, all models in this study adhere to the same hyperparameters:
2 attention heads, an hidden layer of 64 dimensions, a dropout rate of 0.6, a learning rate of 0.01, and a weight
decay set to 0.001. As shown in Table 4, it’s clear that GTATs have only a slight increase in parameter counts
compared to GATS, yet its performance is notably better. In contrast to GATs, GTATs additionally employ a MLP
to convert the GDV into topology representation and a; to calculate topology attention.

Actually, the more orbits there are, the more local topological information a node can obtain. GTATs may
benefit from sufficient topology information, but face a heavier computational burden. To understand the
influence of orbits with different quantities on model predictions, we conduct experiments across three distinct
dataset scales and statistically analyze the time required by the OCRA to compute GDV's of them. In this study,
GTATs_4 represent the models that utilize orbits with up to four nodes, and GTATs_5 denote the versions that
utilize orbits with up to five nodes. The results in Table 5 show that orbits with up to five nodes, while taking
more time to compute than those with four nodes, enhance the accuracy of the predictions. Due to the lack of
more efficient algorithm, employing orbits with up to six nodes, while potentially increasing accuracy, would
significantly increase the computational time, especially for larger and dense networks. In order to balance
computational efficiency with accuracy gains, this paper counts the 73 different orbits with up to five nodes as
the nodes’ topology features.

Conclusion

In this paper, we introduce the GTAT, an innovative framework designed to harness the topological potential
of graph-structured data. GTAT distinctively merges node and topology features through a cross attention
mechanism, enhancing node representations and capturing graph structure information. Experimental results
indicate our approach has a better performance than state-of-the-art existing models on classification tasks.
Besides, the performance of GTAT with variations in depth and noise suggests that its topology representation
combined with cross attention mechanism not only alleviate over-smoothing issue but also enhances the model’s
robustness. Future works will focus on refining the GTAT and exploring its potential applications in diverse
contexts.
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Cora Photo Physics
Model | #Param | ACC #Param | ACC #Param | ACC
GAT 184K 79.88+1.38 | 96K 90.33+1.58 | 1078K 92.90+1.12
GTAT | 187K 80.34+0.97 | 99K 91.07+0.65 | 1080K 93.13+0.65
GAT2 184K 80.21+1.35 | 96K 90.89+1.20 | 1078K 92.29+0.79
GTAT2 | 187K 80.84+1.26 | 99K 91.17+1.01 | 1080K 92.93+0.82

Table 4. Accuracy(%) and parameter counts.

Model Times | ACC Times | ACC Times | ACC

Cora Photo Physics

GTAT_4 |0.01s | 81.41+0.48 | 0.43s 91.65+0.55 | 0.84s 93.38+0.50

GTAT_5 |0.07s |81.50+1.27 |233.54s | 91.70+0.39 | 110.94s | 93.41+0.35

GTAT2_4 | 0.01s | 81.45+1.23 | 0.43s 91.55+0.54 | 0.84s 93.20+0.63

GTAT2_5 | 0.07s | 81.65+1.49 |233.54s | 91.79+0.41 | 110.94s | 93.39+0.53

Table 5. Accuracy(%) and orbit counts.

Data availability
Codes are available at https://github.com/kouzheng/GTAT.
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