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Graph Neural Networks (GNNs) serve as a powerful framework for representation learning on graph-
structured data, capturing the information of nodes by recursively aggregating and transforming 
the neighboring nodes’ representations. Topology in graph plays an important role in learning graph 
representations and impacts the performance of GNNs. However, current methods fail to adequately 
integrate topological information into graph representation learning. To better leverage topological 
information and enhance representation capabilities, we propose the Graph Topology Attention 
Networks (GTAT). Specifically, GTAT first extracts topology features from the graph’s structure and 
encodes them into topology representations. Then, the representations of node and topology are 
fed into cross attention GNN layers for interaction. This integration allows the model to dynamically 
adjust the influence of node features and topological information, thus improving the expressiveness 
of nodes. Experimental results on various graph benchmark datasets demonstrate GTAT outperforms 
recent state-of-the-art methods. Further analysis reveals GTAT’s capability to mitigate the over-
smoothing issue, and its increased robustness against noisy data.
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Graph-structured data maps out intricate relations between various entities around the world, from the vast 
expanses of social networks1 to the dense construction of knowledge graphs2, and the intricate patterns of 
molecular structures3 even to 3D topologies of manifolds4. This data structure plays an essential part in complex 
relationship modeling. Graph Neural Networks (GNNs) and their variants are efficient tools for exploring graph-
structured data, utilizing node features and graph structure to address challenges in network analysis. This 
capability makes GNNs widely applicable across various domains, including deciphering molecular structures5, 
navigating social networks6, formulating product suggestions7, or dissecting software programs8.

Convolution techniques in computer vision9,10 have been applied to graph-structured data, promoting 
advancements in GNNs. Based on different convolution definitions, GNNs are divided into two categories: 
spectral-domain11 and spatial-domain12–14. Spectral-domain GNNs define graph convolution through the lens 
of graph signal processing, based on the principle that convolving two signals in the space domain is equivalent 
to multiplying their Fourier transforms in the frequency domain. This concept originates from Bruna’s work11, 
with subsequent advancements and refinements made by notable works on ChebNet15, CayleyNet16, and GCN17. 
Spatial-domain GNNs perform convolution on the representations of each node and its neighbors directly to 
update states, and exhibit a wide variety of variants according to different neighboring information aggregation 
and integration strategies. Particularly, Graph Attention Network (GAT)18stands out owing to its attention-
based neighborhood aggregation. This architecture enables nodes to weigh the significance of neighboring 
information during their feature update process. Building upon this, GAT219 introduces dynamic attention, 
demonstrating more robust and expressive capabilities.

While these methods make use of basic topological information, such as node degrees or edges, during 
message passing, they do not explicitly incorporate richer topological features. This limitation prevents GNNs 
from fully leveraging the inherent properties of the graph structure, which are crucial for understanding graph-
structured data. For instance, in social networks20, the topological structure can reveal community patterns, 
influential entities, and the dynamics of information flow. In chemical informatics21, the molecular topology 
directly influences the chemical properties and reactivity of molecules. In biological networks22, analyzing 
topological differences helps understand cellular functions and disease mechanism. To address this limitation, 
some GNNs23–25 leverage the topological infomation, by adjusting factors like message passing weights or 
choosing specific nodes for information propagation. You’s and Tian’s work26,27 attempts to enhance node 
expressiveness by concatenating the extracted topological information with node representation. However, node 
representations and topology representations are essentially two different modalities. Wang’s and Baltrušaitis’s 
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work28,29 indicates that simply concatenating data from different modalities, while ignoring the interactions 
between these modalities, may hinder the network from effectively learning useful information from each 
modality.

Motivated by the above issues, we propose Graph Topology Attention Networks (GTAT) to address the 
inadequate utilization of topological information and the limitation of unimodal configuration. In specific, 
GTAT starts by extracting topology features from the graph’s structure, and then encodes them into topology 
representations. We take the infuluence of the node local topology into account by encoding the topology 
information as another input into the model. Then, we compute two types of attention scores and use cross 
attention mechanism to process both the node representations and the extracted topology features. This 
integration enables topology features to be incorporated into node representations and ensures the relationships 
in graph effectively captured, achieving a more robust and expressive graph model.

The contributions of this paper are summarized as follows:

•	 We propose a novel graph neural network framework, GTAT, which enhances the utilization of topological 
information for processing graph-structured data. In this framework, we treat node feature representations 
and extracted topology representations as two separate modalities, which are then inputted into the GNN 
layers.

•	 We explore the feasibility of applying the cross attention mechanism in GNNs. Our approach calculates at-
tention scores for both node feature representations and node topology representations, then employ a cross 
attention mechanism to integrate these two sets of representations. This integration allows the model to dy-
namically adjust the influence of node features and topological information, enhancing the representation 
capability.

•	 Experimental results on nine diverse datasets demonstrate our model has a better performance than state-of-
the-art models on classification tasks. Further analysis involving variations in model depth and noise levels 
reveals GTAT’s capability to mitigate the over-smoothing issue, and its increased robustness against noisy 
data. These results highlight that GTAT can be used as a general architecture and applied to different scenar-
ios.

Related work
Graph neural networks
Different GNNs employ various aggregation schemes for a node to aggregate messages from its neighbors. 
GCN17 utilizes a layer-wise propagation technique, employing a localized first-order approximation of spectral 
graph convolutions to encode representations. SAGE30 learns a function to generate embeddings from a node’s 
local neighborhood, enabling predictions on previously unseen data. SGC31 simplifies the training process by 
reducing the number of non-linear layers and merges multiple layers of graph convolution into a single linear 
transformation. FAGCN32 optimizes neighborhood information aggregation by analyzing the spectral properties 
of graphs, employing different strategies for handling high-frequency and low-frequency signals. Attention 
mechanism33 empowers GATs to selectively focus on significant neighborhood information while updating 
node representations, thus pioneering a new approach in graph representation learning. GAT18 employs a self-
attention mechanism, which calculates attention coefficients for each neighbor of a node and utilizes them to 
weight corresponding neighbor features during aggregation, permitting the GAT to assign more considerable 
weights to more relevant neighbors. GAT219 employs a dynamic attention mechanism to enhance the model’s 
expressive abilities, accommodating scenarios where different keys possess varying degrees of relevance to 
different queries.

GNNs with topology
Leveraging graph topology has become more and more popular in graph representation learning. mGCMN34 
incorporates motif-induced adjacency matrices into its message passing framework, adjusting weights to capture 
complex neighborhood structures. TAGCN35 slides a set of fixed-size learnable filters over the graph, where 
each filter adapts to the local topology. P-GNNs26 samples multiple sets of anchor nodes and applies a distance-
weighted aggregation scheme to differentiate nodes’ positions information. SubGNN36 learns disentangled 
representations of subgraphs by using routing mechanism to handle subgraph internal topology, position, and 
connectivity, enhancing performance on subgraph prediction tasks. To learn deep embeddings on the high-
order graph-structured data, Hyper-Conv37. extends traditional graphs, permitting edges to connect to any 
number of vertices, thus altering the aggregation methods among nodes. Given the importance of topological 
information, we extract and encode it to enhance model’s representation ability.

Cross attention mechanism
The concept of the cross attention mechanism was first proposed in the Transformer model38. Cross attention 
mechanism bridges two distinct sequences from diverse modalities such as text, sound, or images. Cross attention 
provides a flexible framework that allows for interactions between different modalities39,40, enhancing mutual 
understanding. Exploiting this concept, the Perceiver model41 processes input byte arrays by alternating between 
cross attention and latent self-attention blocks. Meta’s Segment Anything Model42 leverages cross attention to 
connect the prompts and image information, fostering enhanced interactions and richer embeddings. MMCA43 
uses cross attention module to generate cross attention maps for each pair of class feature and query sample 
feature, making the extracted feature more discriminative. Recently, some works44,45 have also adopted cross-
attention mechanisms in graph-related tasks. However, most of these studies focus on using cross-attention 
to facilitate interactions between graph modules and non-graph modules. In this study, we employ the cross-
attention mechanism to enable modality interaction within the graph module itself, without requiring the 
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assistance of non-GNN modules. This distinction allows for more efficient and intrinsic interactions within the 
graph structure itself.

Method
Framework
As illustrated in Figure 1, our framework begins with the topology feature extraction (TFE) for each node. 
After getting the set of topology representations, we apply Graph Cross Attention (GCA) layers to update node 
feature representations and topology representations. Lastly, the model utilizes the node feature representations 
from the final layer to predict node classifications. Our methodology presents an innovative fusion of original 
feature representations and the topology representations, utilizing a unique cross attention mechanism on graph 
to enhance the expressive capabilities of each node. The following sections comprehensively elaborate on our 
approach.

Topology feature extraction
To extract the information inherent in graph, we obtain the topology representations based on the graphlet 
degree vector (GDV)22,46 for each node. GDV is a count vector that represents the distribution of nodes in 
specific orbits of graphlets. Graphlets, defined as small connected non-isomorphic induced subgraphs within a 
graph, succinctly capture the neighboring structure of each node in the network. And an orbit can be thought of 
as a unique position or role a node can have within a graphlet. For instance, each node in a triangle (a three node 
graphlet) has the same role, so they belong to the same orbit. GDV is a vector to count the participation times 
of different orbits across the local distinct graphlets. The GDV delivers a measure of the node’s local network 
topology feature, enhancing model’s understanding of the graph structure.

Figure 2 shows all four different orbits with up to three nodes and the GDV calculating of node ν. In fact, there 
are 15 distinct orbit types for graphlets with up to four nodes, and 73 types for graphlets with up to five nodes. 
We utilize the Orbit Counting Algorithm (OCRA)47 to compute the GDV of nodes within a network. OCRA 
offers a combinatorial method for the enumeration of graphlets and orbit signatures of network nodes, reducing 
the computational complexity encountered in the counting of graphlets. The time complexities for computing 
the GDVs of these two dimensions are respectively O

(
n · d3)

 and O
(
n · d4)

, where n is the number of nodes 
and d is the maximum degree of the nodes.

Fig. 2.  Up: Four orbits with different color. Down: The computation of GDV for node ν in graph G. This 
diagram illustrates all instances where node ν appears in four distinct orbits. Correspondingly, the GDV for ν 
is [2, 1, 0, 1], reflecting the appearance count of ν in these orbits.

 

Fig. 1.  GTAT framework. Given a graph G with N  nodes, along with a set of node feature representations H, 
we first obtain the GDV of these nodes through the TFE. Subsequently, we use MLP transforms GDV into a set 
of topology representations T. GTAT layer receives G and these two representations as input, then transforms 
and outputs two updated sets of representations. Finally, based on the set of node feature representations, our 
model outputs the predictions of nodes’ classifications.
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Building on the aforementioned approach, this study employs the GDV as the extracted node topology 
feature. The dimensionality of each node’s GDV corresponds to the number of orbits, representing its topological 
characteristics. These GDVs, after being normalized and processed through a multilayer perceptron (MLP)48, 
serve as the topology representations inputted into the network. To balance the computational efficiency and 
prediction accuracy, we employ the 73-dimensional GDV. The comparative experiments are showed in Section 4.

Graph cross attention layer
After obtaining the topology representation, our approach introduces the computation of two types of attention: 
the feature attention and a novel topology attention, thereby implementing a cross attention mechanism on 
graph. The structure of GCA layer is depicted in Figure 3.

Our GCA layer receives a set of node feature representations, Hl = {h1, h2, . . . , hN }, and a set of topology 
representations, Tl = {t1, t2, . . . , tN }, where N is the number of nodes at layer l. Following the methodology in 
GAT, we calculate the feature attention score between feature representations of nodes and their corresponding 
neighbors:

	 e (hi, hj) = LeakyReLU
(
a⊤ · [W hi∥W hj ]

)
� (1)

where hi and hj  are the feature representations of nodes i and j, while W and a represent a weight matrix and a 
shared parameter vector, respectively. This calculation embodies the inherent attributes of the nodes and assigns 
more considerable weights to more relevant neighbors.

Furthermore, we introduce a new form of attention score, topology attention score. This score is calculated 
between topology representations of nodes and their corresponding neighbors:

	 et (ti, tj) = LeakyReLU
(
a⊤

t · [ti∥tj ]
)

� (2)

where ti and tj  are the topology representations of node i and node j, with at being a shared parameter vector. 
Then the feature attention scores and topology attention scores are normalized as :

	
αij = softmaxj (e (hi, hj)) = exp (e (hi, hj))∑

j′∈Ni
exp (e (hi, hj′ )) � (3)

and

	
βij = softmaxj (et (ti, tj)) = exp (et (ti, tj))∑

j′∈Ni
exp (et (ti, tj′ )) � (4)

where αij  is the feature attention coefficient between node i and node j, and βij  serves as the topology attention 
coefficient, enabling the model to capture the local substructure of each node in the network. Additionally, Ni 
represents the set of neighbors of node i, and it can be defined as follows:

	 Ni = {j ∈ V | (j, i) ∈ E}� (5)

Fig. 3.  The structure of GCA layer. Inputs is a set of node feature representations, Hl ∈ RN×F1  and a set 
of node topology representations, Tl ∈ RN×F2 , where N is the number of nodes at layer l. After computing 
two attention matrices, denoted as α and β, we employ message passing(M.P.) mechanism to get the new 
representations Hl+1 ∈ RN×F3  and Tl+1 ∈ RN×F2 .
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where V  represents the set of nodes in the graph, and E  represents the set of edges.

Following the two attention computations, we implement the cross attention mechanism, which intertwines the 
node feature representations and the topology representations. The node feature representation is updated with 
the computed topology attention coefficients as:

	
h′

i = σ

( ∑
j∈Ni

βijW hj

)
� (6)

where σ is a nonlinearity and W ∈ RF3×F1  represent a weight matrix. Simultaneously, the topology 
representation is updated with the calculated feature attention coefficients :

	
t′
i = σ

( ∑
j∈Ni

αijtj

)
� (7)

Finally, the layer outputs a new set of node feature representations, Hl+1 = {h′
1, h′

2, . . . , h′
N }, and a set of 

topology representations, Tl+1 = {t′
1, t′

2, . . . , t′
N }.

It’s worth mentioning that dynamic attention mechanism, which is introduced in GAT2, also performs well 
across various tasks. The dynamic attention in GAT2 diverges from GAT’s static counterpart by adjusting its 
weights based on the query, thus accommodating scenarios where different keys possess varying degrees of 
relevance to different queries. The dynamic attention calculation in GAT2 is formulated as follows:

	 e (hi, hj) = a⊤ LeakyReLU ([W hi∥W hj ])� (8)

To equip our model with dynamic attention, we further propose another version: GTAT2. In GTAT2, we employ 
the dynamic attention mechanism as utilized in GAT2 for the computation of two attention scores, as Equation 
8 and Equation 9:

	 et (ti, tj) = a⊤
t LeakyReLU ([ti∥tj ])� (9)

Both the node feature and topology representations in GTAT2 are updated similarly to those in GTAT. 
Experiments and analysis on GTAT and GTAT2 are conducted subsequently.

The cross action of the node and topology representations allows for the capture of both node intrinsic attributes 
and topological relations, thereby significantly augmenting the prediction accuracy of our model.

Experiments
Datasets
In our experiments, we use nine commonly used benchmark datasets, namely three citation networks datasets 
(i.e., Cora, Citeseer, and PubMed)49, two Amazon sale datasets (i.e., Computers and Photo)50, two coauthorship 
datasets (i.e., Physics and CS), one Wikipedia-based dataset (i.e., WikiCS)51, and one arxiv papers dataset (i.e., 
Arxiv)52. Statistics for all datasets can be found in Table 1. The resources we used are all from the PyTorch 
Geometric Library53.

Dataset Nodes Edges Features Classes

Cora 2,708 5,278 1433 7

CiteSeer 3,327 4,552 3703 6

PubMed 19,717 44,324 500 3

Computers 13,752 245,861 767 10

Photo 7,650 119,081 745 8

Physics 34,493 247,962 8415 5

CS 18,333 81,894 6805 15

WikiCS 11,701 431,726 300 10

Arxiv 169,343 1,166,243 128 40

Table 1.  The statistics of datasets.
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Experimental setup
All experiments are implemented in PyTorch and conducted on a server with two NVIDIA GeForce 4090 
(24 GB memory each). We conduct 20 runs, reporting the mean values alongside the standard deviation. The 
search space for hyper-parameters encompasses: hidden size options of {8, 16, 32, 64}, learning rate choices 
of {0.01, 0.005}, dropout values of {0.4, 0.6}, weight decay options of {1E − 3, 5E − 4}, and selection of 
attention heads from {1, 2, 4, 8}for models using attention mechanism. We hold the number of layers constant 
at 2. All methods utilize an early stopping strategy54 based on validation loss, with patience of 100, and all are 
trained using a full-batch approach. In all cases, we randomly select 20 and 30 nodes per class for the training 
and validation, respectively, and the remaining nodes are used for testing. We use NLL Loss as the loss function 
for the model:

	
L = − 1

N

N∑
i=1

C∑
c=1

yi,c log (ŷi,c)� (10)

where C is the number of classes in the classification task, ŷi,c is the predicted probability of sample i being 
classified into class c, and yi,cis the ground truth label. We utilize the Adam optimizer55 to minimize the loss 
function and optimize the parameters of these models.

Node classification results
The comparative methods in our study involve nine different algorithms: GCN17, GraphSAGE (SAGE)30, SGC31, 
FAGCN32, GAT18, GAT219, Hyper-Conv37, mGCMN34 and Dir-GNN56.

Table 2 shows the average accuracy and standard deviation of different models. Except for two datasets, GTAT 
or GTAT2 achieves the best results in all other datasets. Compared to GATs, GTATs show better performance 
across all datasets due to the extracted topology features and the cross attention mechanism. Specifically, 
GTAT achieves an average accuracy improvement of 0.53% across nine datasets compared to GAT, and GTAT2 
outperforms GAT2 with an accuracy improvement of 0.48%. Compared to Hyper-Conv. and mGCMN, which 
utilize topological information, our model also demonstrates better accuracy. While Hyper-Conv. and mGCMN 
merely adjust the message-passing pathways or weights based on the extracted topological structure, our 
method receives the extracted topology features as an additional modality. This mechanism enables GTATs to 
fit the impact of the topological structure on node representation, contributing to more accurate and reliable 
predictions. Compared to the earlier proposed SGC, GCN, and SAGE models, the GTATs exhibit superior 
performance.

FAGCN’s effectiveness in the Physics and Cs datasets, where the node features have high dimensions, can 
be attributed to its adaptive integration of low-frequency and high-frequency signals from the raw features. 
However, GTATs outperform FAGCN across all other seven datasets. Particularly for the Arxiv dataset, which 
has low node feature dimensions, GTAT outperforms FAGCN by 4.25%, highlighting GTATs’ capability to 
achieve higher accuracy with limited node features.

In summary, our GTAT models demonstrate outstanding performance across all nine datasets spanning four 
distinct data types, showcasing their broad applicability in handling diverse graph-structured data.

Effectiveness of cross attention
To further explore the impact of the cross attention mechanism embedded in our model, we conduct series 
of experiments based on GATs with two different configurations. (1) GATs+A, which updates both the node 
feature representations H and the topology representations T using the topology attention coefficients β. (2) 
GATs+B updates only the node feature representations H based on the topology attention coefficients β, while 
the topology representations T remain constant. As shown in Table 3, our method presents the best performance 
across the most of datasets except the Computers. These results support the importance of utilizing the potential 

Model Core Citeseer Pubmed Computers Photo Physics CS WikiCS Arxiv

GCN 80.67±1.10 68.10±1.47 78.22±1.49 82.43±1.47 90.84±0.72 92.98±0.82 91.45±0.31 75.04±0.82 70.33 ± 0.32

FAGCN 80.64±1.49 68.13±1.34 78.85±1.80 83.63±1.37 91.71±1.06 93.47±0.75 92.52±0.34 74.43±1.05 67.12 ± 0.85

SGC 79.51±1.49 67.75±1.39 76.24±2.35 83.27±1.21 91.01±1.02 92.40±0.29 91.95±0.48 74.32±1.54 70.23 ± 0.26

SAGE 80.50±1.54 68.60±1.20 78.65±1.83 82.77±1.23 91.52±0.76 92.92±0.55 90.98±0.50 73.99±1.40 69.98 ± 0.20

GAT 81.06±1.03 68.61±1.22 78.51±1.63 83.21±1.42 91.33±0.80 93.09±0.77 91.34±0.40 75.21±0.98 70.41 ± 0.14

GAT2 81.16±1.34 68.40±1.17 78.51±1.76 83.62±1.51 91.47±0.98 92.89±0.74 91.32±0.29 75.39±1.14 70.98 ± 0.27

mGCMN 81.21±0.91 68.69±1.31 78.87±1.60 82.88±1.22 91.34±0.77 93.38±0.54 91.12±0.36 73.94±0.11 70.12 ± 0.10

Hyper-Conv. 80.11±1.02 67.41±1.47 78.16±1.04 79.47±1.85 88.59±0.68 92.65±0.49 89.14±0.35 73.26±2.08 70.08 ± 0.26

Dir-GNN 77.89±1.51 67.44±1.12 75.46±2.29 80.19±1.67 90.42±1.22 93.00±0.65 91.92±0.23 73.61±1.05 69.11 ± 0.26

GTAT 81.50±1.27 68.91±1.51 79.34±0.80 83.93±1.09 91.70±0.39 93.41±0.35 91.68±0.21 76.01±1.15 71.02 ± 0.17

GTAT2 81.65±1.49 68.78±1.58 79.05±1.33 84.37±1.46 91.79±0.41 93.39±0.53 91.75±0.37 75.93±1.15 71.37 ±0.14

Table 2.  Accuracy(%) comparison with different models on nine datasets.
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of both node feature and topology representations through our cross attention mechanism to attain optimal 
performance.

Over-smoothing analysis
A critical challenge in GNNs is the over-smoothing issue57, which limits the number of layers that can be 
effectively stacked. As the number of layers increases, the nodes become less and less distinguishable, making 
the performance of the model drop sharply.

To verify whether topology representations and cross attention could alleviate the over-smoothing issue, we 
select four different types of datasets and compare the performance of GTATs and GATs at varying depths. There 
are few significant differences between the models in initial layers, as shown in Figure 4. However, as the depth 
increases, the GTATs demonstrate more stable performance, avoiding the drastic decline observed in GATs.

Figure 5displays the t-SNE58 plots of the node representations with 20 layers of GAT and GTAT on the 
Physics dataset. The t-SNE plot provides a visual description of high-dimensional data by projecting them 
into 2D space, aiding in the identification of relevant patterns. From this visualization, it is evident that GTAT 
achieve clearer node clustering than GAT. Besides, Figure 6 shows the node classification accuracy curves and 
loss curves of GATs and our proposed GTATs. It can be seen that GTATs can converge more quickly and stably 
while achieving better accuracy.

Over-smoothing occurs when node representations become increasingly similar, rendering the model 
incapable of effectively distinguishing between different nodes. To quantify the similarity between node 
representations, we selected Dirichlet energy (ED)59 as our metric:

Fig. 4.  Average classification accuracy after ten runs for different model depths.

 

Methods Core Citeseer Pubmed Computers Photo Physics CS WikiCS Arxiv

GAT 81.06±1.03 68.61±1.22 78.51±1.63 83.21±1.42 91.33±0.80 93.09±0.77 91.34±0.40 75.21±0.98 70.41 ± 0.14

GAT+A 80.40±1.60 67.33±1.92 77.57±2.59 83.56±0.99 90.72±1.77 92.59±0.55 91.69±0.38 75.12±1.51 70.93 ± 0.27

GAT+B 80.38±1.31 68.13±1.33 77.9±1.15 84.46±1.12 91.00±0.92 92.76±0.50 91.42±0.55 74.34±0.81 70.85 ± 0.16

GTAT 81.50±1.27 68.91±1.51 79.34±0.80 83.93±1.09 91.70±0.39 93.41±0.35 91.69±0.21 76.01±1.15 71.02 ± 0.17

GAT2 81.16±1.34 68.40±1.17 78.51±1.76 83.62±1.51 91.47±0.98 92.89±0.74 91.32±0.29 75.39±1.14 70.98 ± 0.27

GAT2+A 80.61±0.97 68.05±0.98 77.44±1.51 82.61±1.09 91.49±0.67 93.24±0.29 91.53±0.69 75.14±1.19 70.97 ± 0.11

GAT2+B 80.98±1.51 68.27±1.27 77.53±2.67 84.49±1.36 91.53±1.68 92.65±0.97 91.34±0.61 73.21±1.46 71.06 ± 0.29

GTAT2 81.65±1.49 68.78±1.58 79.05±1.33 84.37±1.46 91.79±0.41 93.39±0.53 91.75±0.37 75.93±1.15 71.37 ± 0.14

Table 3.  Accuracy(%) comparison with/without cross attention.
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ED = 1

ne

∑
i,j

Aij∥hi − hj∥2

where ne denotes the total number of edges, hi represents the representation of node i, and Aij  is the 
corresponding element in the adjacency matrix. A higher ED  indicates greater dissimilarity between node 
representations. Figure 7 shows that the Dirichlet energy at each layer of the GTATs is exponentially higher 

Fig. 7.  Dirichlet energy for different model depths.

 

Fig. 6.  Accuracy and loss curves on Physics dataset.

 

Fig. 5.  2D t-SNE plot of Physics dataset.
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than that of the GATs, indicating that GTATs better preserve the distinctiveness of node embeddings even as the 
depth increases.

GTATs’ better performance at deep layers can be attributed to the topology attention in our model architecture, 
which establishes the relationships between nodes from the perspective of the topology they inhabit. Topology 
attention enhances the distinctiveness of node feature representations, thereby improving the expressiveness of 
the model.

Robustness analysis
Better robustness indicate stronger stability of the model when facing noisy data. To evaluate the robustness 
of the GTATs, we conduct experiments on four different types of datasets and compare the performance of 
GTATs and GATs under random feature attack (RFA). RFA19 intentionally corrupts node features in the graph 
to evaluate each model’s ability when facing the perturbations caused by feature attacks. In particular, the attack 
is implemented by randomly modifying the nodes features according to a noise ratio 0 ≤ p ≤ 1. For node i, its 
representations is modified as follows:

	 h′
i = hi + p · noise, noise ∼ N (0, 1)

where noise is a vector sampled from a Gaussian distribution, N , with mean zero and variance one.

Figure 8 shows the node classification accuracy on four datasets as a function of the noise ratio p. As p increases, 
the accuracy of all models decrease asour expection. However, GTATs show a milder degradation in accuracy 
compared to GATs, which show a steeper descent. The experimental results show that GATs, relying solely on 
node representations, face difficulty adapting to increased noise levels and suffer more obvious performance 
declines. GTATs’ resilience to noise can be attributed to the extracted topology presentations and the cross 
attention mechanism. Both allow GTATs to maintain better differentiation and stability of node features under 
RFA. These results clearly demonstrate the robustness of GTATs over GATs in noisy settings.

Efficiency analysis
Similar to other deep learning models, GTAT may need to be deployed on small devices. To compare the scale 
of the GNN models, we carry out an analysis of the model parameter counts and their performance across three 
datasets of varying sizes. For a fair comparison, all models in this study adhere to the same hyperparameters: 
2 attention heads, an hidden layer of 64 dimensions, a dropout rate of 0.6, a learning rate of 0.01, and a weight 
decay set to 0.001. As shown in Table 4, it’s clear that GTATs have only a slight increase in parameter counts 
compared to GATs, yet its performance is notably better. In contrast to GATs, GTATs additionally employ a MLP 
to convert the GDV into topology representation and at to calculate topology attention.

Actually, the more orbits there are, the more local topological information a node can obtain. GTATs may 
benefit from sufficient topology information, but face a heavier computational burden. To understand the 
influence of orbits with different quantities on model predictions, we conduct experiments across three distinct 
dataset scales and statistically analyze the time required by the OCRA to compute GDVs of them. In this study, 
GTATs_4 represent the models that utilize orbits with up to four nodes, and GTATs_5 denote the versions that 
utilize orbits with up to five nodes. The results in Table 5 show that orbits with up to five nodes, while taking 
more time to compute than those with four nodes, enhance the accuracy of the predictions. Due to the lack of 
more efficient algorithm, employing orbits with up to six nodes, while potentially increasing accuracy, would 
significantly increase the computational time, especially for larger and dense networks. In order to balance 
computational efficiency with accuracy gains, this paper counts the 73 different orbits with up to five nodes as 
the nodes’ topology features.

Conclusion
In this paper, we introduce the GTAT, an innovative framework designed to harness the topological potential 
of graph-structured data. GTAT distinctively merges node and topology features through a cross attention 
mechanism, enhancing node representations and capturing graph structure information. Experimental results 
indicate our approach has a better performance than state-of-the-art existing models on classification tasks. 
Besides, the performance of GTAT with variations in depth and noise suggests that its topology representation 
combined with cross attention mechanism not only alleviate over-smoothing issue but also enhances the model’s 
robustness. Future works will focus on refining the GTAT and exploring its potential applications in diverse 
contexts.
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Fig. 8.  Accuracy in different noise ratio. Each point is an average of 10 runs, error bars show standard 
deviation.
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Data availability
Codes are available at https://github.com/kouzheng/GTAT.
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