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This research investigates the design of a nanofiltration (NF) system based on a nanocomposite 
membrane containing graphene oxide (GO) for the demineralization of sweet whey and the modeling 
the NF process. The effects of various process variables, including, transmembrane pressure (TMP), 
Reynolds number, feed pH, and temperature, on the rejection of the minerals were surveyed. 
Consequently, the recovery of whey proteins from industrial whey using fabricated membranes in a 
cross-flow membrane module was also investigated. Among the input variables, the pH of the whey 
solution has the greatest effect on membrane flux and salt rejection performance. In the dead-end 
filtration system, the highest flux was achieved for the GO-modified membrane under laboratory 
conditions with a pressure of 10 bar and a pH of 6. The dynamic flux behavior of whey output and salt 
rejection from whey was modeled using convolutional neural network (CNN) machine learning tools. 
Linear and non-linear correlations demonstrated that the CNN model correlates well with experimental 
data on dynamic flux (R2–1.00). Overall, this study on dynamic flux and rejection of minerals from whey 
using CNN modeling can improve optimal conditions for whey demineralization and reduce laboratory 
testing costs by predicting the results of untested experimental variables.
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Whey, as a by-product of cheese factories, is the liquid that remains after fat and casein removing from milk 
during the cheese-making process1. There are two types of whey: sweet whey and acid whey. Sweet whey is 
produced from enzyme cheeses and has a pH of 5.6,while acid whey, resulting from acid cheese production, has a 
pH of less than 5.12. Whey is a highly polluted wastewater due to the presence of organic and mineral substances, 
which also give it a very high chemical oxygen demand (COD) of approximately 76,000 ppm and a biochemical 
oxygen demand (BOD) of approximately 40,000 ppm. Additionally, whey has twice as much ash as milk, 
which makes it difficult to use extensively in food formulations. The product of sweet whey demineralization 
can serve as a basis for food products such as powdered milk, ice cream, and soft drinks containing whey. 
Thus, whey demineralization expands its use in the food industry while addressing environmental pollution 
issues3. Numerous techniques can be employed to demineralize whey, including electrodialysis, ion exchange, 
nanofiltration (NF), and reverse osmosis4. The use of NF for whey processing has recently received attention 
due to the unique advantages of this technique, including ease of operation and reduced energy consumption. 
NF process is used to separate salts while preserving beneficial organic components, such as lactose and 
protein during whey demineralization3. Polymeric membranes ensure high permeate flux and salt rejection 
percentage under operating conditions. Polysulfone is one of the most popular choices for preparing polymeric 
membranes is, due to its mechanical strength, chemical, and thermal resistance, stability in various pHs, and 
biocompatibility5. However, limitations such as low flux and membrane fouling, have promoted researchers to 
explore nanostructures in the membrane matrix. One promising nanostructure is graphene oxide (GO). GO, 
with its layered structure and polar functional groups, can increase the hydrophilicity of the membrane and 
reduce the fouling problem, and on the other hand, is very effective in improving membrane performance6–8 .

It should be noted that in whey protein filtration, salt transport is a complex phenomenon influenced by 
several parameters such as membrane properties and process variables, including feed properties, transmembrane 
pressure (TMP), cross-flow velocity, and tangential velocity9.

The ideal conditions for achieving lactose concentration and whey demineralization were found by Uribe 
Cuartas using NF membranes for whey ultrafiltration in a diafiltration mode with water addition10. Studies 
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have also examined energy efficiency in sweetened osmosis-treated whey desalination using electrodialysis11, 
and explored how operational parameters impact permeate flux reduction in cross-flow microfiltration of whey. 
Findings indicate that Reynolds number and operational pressure positively affect optimal permeate flux, with 
compatibility improving as pressure increases12.

Maria et al. (2023) conducted a study on membrane ultrafiltration (UF) of whey to recover whey proteins and 
remove water as much as possible from the permeate and to predict and control the reduction of permeate flux in a 
cross-flow ultrafiltration device using a step-by-step approach and comparing different artificial neural networks 
following a genetic algorithm as an optimization strategy13. Yugara’s 2022 study compared process variables for 
whey protein recovery using polysulfone membranes. Cake layer formation was found to be the most significant 
factor, and the effect of pH on the membrane flux and protein removal performance was understood. A machine 
learning convolutional neural network (CNN) has been used to model whey permeate flux, demonstrating its 
potential for regulating flow rate sensors and improving whey recovery efficiency14. In 2017, Cabrera et al. used 
response surface methodology (RSM) and artificial neural networks5 to create prediction models for the reverse 
osmosis desalination process. The ANN model was valid across all feed salt concentrations and addressed RSM 
model limitations with four nonlinear input variables15.

In another study, the functional and antifouling properties of polymer NF membranes based on 
polyethersulfone (PES) polymer has been investigated. The surface modified membranes significantly improved 
salt separation and hydrophilicity, increasing the salt separation rate from 68 to 94%. The adsorption property 
of the chitosan polymer and GO nanosheets in contact with the feed solution was also reported. However, the 
amount of water flux passing through the membrane decreased due to the coating of the polymer layer and the 
increase in the thickness of the separator layer. The water contact angle also decreased due to the improvement of 
hydrophilicity and surface affinity due to the deposition of the hydrophilic chitosan layer and GO nanosheets16.

The main objective of this study is to investigate the feasibility of using modified nanocomposite membranes 
containing single-layer GO for sweet whey demineralization while developing a model capable of identifying 
complex patterns in NF dynamics. The influence of different process variables (membrane pressure, temperature, 
feed pH, and Reynolds number) on whey demineralization and membrane flux is investigated in the designed 
CNN. The results of this study lead to an improvement in the performance of whey NF membranes and can be 
implemented and utilized on an industrial scale.

Materials and methods
Materials
The chemicals used in this study include PES from BASF (Germany), polyethylene glycol 6000 from Merck, N-
Methyl-2-Pyrrolidone (NMP), hydrochloric acid (HCl) from Merck. (Germany), sodium hydroxide (NaOH), 
and single-layer GO from Nano United States, which has a density of 1.9 g/cm2, a molecular weight of 4.239 g/
mol, and a purity percentage of 99.9.

Fresh whey was obtained from the cheese production line of the Pegah West Azerbaijan Company. This 
whey is derived from the traditional cheese production process and has a pH ranging from 5.6 to 5.8. The pH 
of the whey obtained from the traditional cheese production line was measured using a laboratory pH meter. A 
conductivity meter was used to determine the concentration of the initial minerals in the whey. HCl and NaOH 
were prepared to adjust the pH of the whey.

Synthesis of the nanocomposite membrane
To fabricate a suitable membrane with nanopore-sized pores and a flow rate that matches the goals of the 
research, PES membranes are first synthesized by the phase inversion method. Subsequently, the nanocomposite 
membranes are prepared with varying ratios of GO nanoparticles to increase the membrane’s hydrophilicity and 
improve fouling resistance. In order to overcome concentration polarization effects and membrane fouling on the 
intended outputs (solution flux and salt rejection), a variety of operational parameters and feed characteristics 
will be assessed and researched. For this purpose, the polymer (15 wt%) was poured into the solvent in a closed 
container and stirred for 24 h until it was completely dissolved. The required amount of polyethylene glycol 
(PEG) (30 wt% of polymer) was added to the solution and stirred again for 1 h. The prepared solution was kept 
in a static condition for 1 h to allow the bubbles to escape, and then it was cast on a clean glass with the desired 
thickness. Finally, the polymer layer was immersed in the coagulation bath (cooled distilled water) to separate 
the polymer membrane from the glass surface. The membrane was kept in a water bath for 24 h to remove the 
solvent residues, and then it was dried. The percentage of materials used to achieve the optimal formulation is 
shown in Table 1. Also, the schematic for the construction of pure PES membranes is illustrated in Fig. 1-a.

Film thickness
 (µm)

Solvent NMP
 (g)

PES concentration
 (wt %)

PEG (wt %) respect
 to polymer

250 10 20 22

200 5 22 20

250 10 25 18

150 5 28 16

150 5 30 15

200 10 33 14

Table 1.  Percentage of materials used to make an optimal formulation of PES membrane.

 

Scientific Reports |         (2025) 15:4824 2| https://doi.org/10.1038/s41598-025-89009-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


GO nanoparticles were incorporated into the matrix to investigate their effect on the membrane performance. 
For the preparation of nanocomposite-modified membranes, initially, 15 wt% of PES was mixed with 30 wt% 
of PEG respect to the polymer, inside a vessel containing NMP and stirred using a magnetic stirrer for 24 h at 
40 °C. Different percentages of single-layer GO were added to the desired membrane solutions and placed in 
an ultrasonic bath for 2 h. Each mixture was then spread onto a smooth glass surface with a thickness of 150 to 
200 micrometers, and distilled water was used as a non-solvent to separate the membrane from the glass. The 
schematic diagram of the stages of preparation of modified nanocomposite membranes is shown in Fig. 1-b. The 
prepared formulations of nanocomposite membrane are listed in Table 2.

Membrane number
GO
 (wt%)

The total weight of 
the mixture (g)

Amount of NMP
 solvent (g)

Amount of polymer 
(g)

Amount of PEG 
(g)

1 1 10 8.05 1.5 0.45

2 3 10 8.05 1.5 0.45

3 5 10 8.05 1.5 0.45

4 7 10 8.05 1.5 0.45

Table 2.  The composition and percentage of materials used to make the nanocomposite membranes.

 

Fig. 1.  (a) Schematic of making pure PES membrane, (b) schematic plan or nanocomposite membrane 
preparation.
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Furthermore, analytical instruments utilized in this study include Field Emission Scanning Electron 
(FESEM) analysis device model III MIRA, Tescan-VEGA (Czech Republic), Atomic Force Microscopy (AFM) 
analysis device model S Mobile Nanosurf (Switzerland), FTIR analysis device model Thermo Avatar (USA), ARE 
VELP heater stirrer (Italy), digital balance with four decimal places model Toledo Mettler (Switzerland), desktop 
conductivity meter model 86,505-AZ (Taiwan), micrometer for measuring membrane thickness, four-sided 
rectangular film stretcher with thicknesses of 50, 100, 150, and 200 micrometers, dead-end membrane filtration 
system for NF membrane testing with auxiliary equipment such as filtration cell and nitrogen gas capsule, pH 
meter model ST2100 from Ohaus (Switzerland), Soner203 ultrasonic bath (Taiwan).

In the construction of NF membranes based on PES, the phase inversion method is utilized. In this method, 
factors such as polymer, solvent, and non-solvent type, composition of the casting solution, coagulation bath, 
temperature of the casting solution and coagulation bath, and ambient humidity affect the structure and 
characteristics of the produced membranes. The most important parameter in membrane fabrication is the 
concentration of the casting solution. Therefore, various solutions were initially prepared for the construction of 
pure PES membranes, according to Table 1. Finally, a composition of 15 wt% polymer, 30 wt% PEG with respect 
to the polymer, and 8.05 g of NMP was deemed acceptable.

The hydrophilicity of each membrane is determined by measuring the contact angle of water. The contact 
angle (CA) measurement was performed using the drop shape analysis system VCA-OPTIMA. Using a syringe, 
three droplets with a volume of 4 µl were placed on the surface of the membranes to measure the static contact 
angle of the droplet, and the contact angle was measured. Additionally, FTIR analysis was used to investigate the 
presence of nanoparticles in the membrane matrix as well as identify the polymer used in membrane fabrication. 
Then, in FESEM analysis, the morphology of the cross-sectional and surface of the prepared membranes was 
examined. For this purpose, small pieces of the membranes were fractured in the liquid nitrogen and then coated 
with gold to form a thin and conductive layer. The samples were placed on a sample holder for imaging, and the 
analysis was performed. AFM analysis was used for precise analysis of morphology and surface roughness. For 
AFM imaging, the membranes were cut into 1 × 1 cm sizes, attached to a slide, and images were captured using 
the AFM device.

In this research, experiments were conducted under variable transmembrane pressure (TMP), pH, 
temperature, and Reynolds number using a dead-end filtration system, and changes in flux and salt rejection 
under different conditions were investigated. In dead-end filtration, the fluid passes through the membrane, and 
particles larger than the pore size of the membrane are retained on the membrane surface.

In order to improve the removal of minerals and the recovery of whey protein from whey solution using 
a convolutional neural network, the performance of a pure PES membrane is compared with a modified 
nanocomposite membrane with single-layer GO in a dead-end filtration system (laboratory scale).

Experimental setup
The experimental design of the conducted studies involved applying various levels of influential parameters 
using the response surface methodology and the Design Expert software to enhance data quality and reduce 
unnecessary experiments. This design was performed with four inputs (TMP, temperature, pH, and Reynolds 
number) and two outputs (flow rate at different time intervals and rejection of minerals), employing factorial 
and central composite designs with two and five repetitions, respectively.

Optimizing process variables has a significant impact on controlling membrane-salt interactions and thereby 
improving filtration performance under optimal energy conditions. The effect of various process variables such 
as feed pH, TMP, temperature, and Reynolds number (affected by flow pattern) on the performance of sweet 
whey protein filtration was evaluated. The effect of pH was investigated within the range of 4.6 to 6. The process 
temperature ranged from 20 to 40 °C. The Reynolds number in the stirred cell is directly related to the cell radius 
(r) and angular velocity (ω). The cell radius was set at 2 centimeters, and the stirrer speed ranged from 300 to 
1000 revolutions per minute. Then, the Reynolds number was calculated for the dead-end cell.

For the filtration studies, a laboratory-scale dead-end NF device (Nanofiltration cell, USA) was used. The 
effective membrane area in this filtration device is 7.065 cm2. Prior to laboratory studies, the PES membrane was 
pressurized with distilled water for 4 h under constant high-pressure conditions to compact it. The flux of pure 
water was calculated using Eq. (1) and measured by changing the pressure.

	 Jw = Q/A� (1)

Q: seepage flow rate (m3/s). A: effective cross-sectional area of the membrane (m2).
To investigate the concentration of salts in both permeate (Cp) and retentate (Cr) environments, the electrical 

conductivity of samples was measured at a temperature of 20 °C using a Conductometer. Since the electrical 
conductivity of a solution is strongly dependent on the ambient temperature, all samples were first kept at 20 °C 
for 30 min before measurement. Subsequently, measurements were taken. Finally, the percentage of mineral salt 
rejection was estimated using Eq. (2).

	
Salts retention coefficient =

(
1 − Cp

Cr

)
× 100 � (2)

In CNN architecture, data of each input variables such as TMP, Reynolds number and feed pH were initialized 
by neuron connections through weighted input parameter such as weights (Wij) and bias (bi). The generalized 
representation of output function of neuron8 to input and weighted input are expressed in Eq. (3).
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y (i) = λ

n∑
i=1

Xj.W ij + bi� (3)

where xj and n are the input variables and number of input variables, respectively. Wij is the interconnected 
weight of i and j th neuron. λ is the activation factor. Activation function is a stimulating factor in conversion of 
weighted inputs into output function for each neuron.

One-layer convolutional neural network method is used to train datasets and convolutionary layers. The 
prediction of the CNN model for share dynamic performance is assessed using statistical parameters such as 
Coefficient of Determination (R2) and mean squared error (MSE). The statistical parameters were determined 
using the following equations:

	
R2 = 1 −

∑n

k=1 (ŷk − yk)2

∑n

k=1 (yk)2 � (4)

	
MSE = 1

N

n∑
k=1

(ŷk − yk)2 � (5)

where yk  and ŷk  are the experimental flux and model predicted flux, respectively. N is the size of the dataset.

CNN modeling, training, and performance evaluation
Dataset preparation
Artificial neural networks and the Python programming language will be used for process modeling in order to 
forecast the dynamic behavior of the NF process. For training the networks, a version of the gradient descent 
algorithm was utilized. In the hypothesis of this design, CNN consists of an input layer, a convolutional layer, a 
fully connected layer, and an output layer. Generally, CNN requires a large dataset to cope with overfitting and 
ensure accurate predictions. Then, the fitted experimental dataset was randomly split into training and testing 
data. 75% of the initial experimental data were used for training, and the remaining percentage was used for 
testing.

Artificial neural networks and the Python programming language will be employed for process modeling 
to forecast the dynamic behavior of the NF process. A version of the gradient descent algorithm was utilized 
for training the networks. In this design, the Convolutional Neural Network (CNN) consists of an input layer, 
a convolutional layer, a fully connected layer, and an output layer. Generally, CNNs require a large dataset to 
mitigate overfitting and ensure accurate predictions. The fitted experimental dataset was then randomly split 
into training and testing data, with 75% of the initial experimental data used for training and the remaining 25% 
allocated for testing.

Neural network design
Modeling with Convolutional Neural Networks (CNNs) is inspired by the neural networks of the human brain, 
involving the training of input data through neurons to achieve an optimal solution. The CNN model consists of 
three main structures: the input layer, the hidden layers, and the output layer (Fig. 2). As illustrated in Fig. 2, the 
CNN architecture includes an input layer that receives the input data, a convolutional layer with 64 filters and a 
kernel size of 3 that extracts local features, a MaxPooling layer with a window size of 2 to reduce dimensionality 
and increase efficiency, and a Flatten layer that transforms the extracted features into a 1D vector.

Fig. 2.  Architectural schematic of the model used.
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The ReLU activation function is employed in the hidden layers, while a linear activation function is used for 
the output layer. L2 regularization with a rate of 0.001 and dropout techniques are applied to prevent overfitting. 
For training, the stochastic gradient descent (SGD) algorithm is utilized with a learning rate of 0.001 and a 
momentum of 0.9. The dataset is split in a ratio of 75–25 between training and testing sets.

To optimize the 1D CNN model, several experiments were conducted to tune hyperparameters. These 
hyperparameters included the number of filters in the convolutional layer, kernel size, learning rate, momentum, 
and dropout rate. The number of filters for the convolutional layer was determined experimentally; different 
values (such as 32, 64, and 128) were tested, with the best value (64) selected based on the minimum error 
observed in the validation set. The kernel size was set to 3 due to its effectiveness in extracting local features 
from the data.

As part of the SGD optimization process, various learning rates (such as 0.001, 0.005, and 0.01) were 
evaluated, with a rate of 0.001 identified as optimal. The momentum was also maintained at 0.9 to facilitate 
faster and more stable convergence.

The main advantage of CNN is that output data are also considered input data to identify optimal solutions 
for more complex and regular applications. Therefore, CNN is preferred in this study to model the dynamics of 
whey permeate flow over time. Python software was used for the simulation. In this neural network, input data at 
three different levels, including pH (4.6, 5.3, 6), sample temperature (20, 30, 40), Reynolds number (1290, 2791, 
4292), and TMP (5, 7.5, 10) were considered as network inputs to evaluate the best conditions for achieving flux 
and salt rejection in whey permeate. Then, experimental laboratory data and results were used to train and test 
the artificial neural network. Therefore, the data were first divided into two parts: training data and testing data. 
75% of the data were considered training data, and 25% were considered testing data. The testing data are used 
separately to evaluate the model, and during the training process, these data are not involved, and the model 
does not see them. This approach is for accurate and realistic model evaluation. To prevent model errors in 
assigning importance to certain parameters that have larger numbers and neglecting other parameters, the data 
were standardized. For this purpose, the MinMaxScaler function from the scikit-learn library was used, and all 
data were standardized to a range between zero and one.

The main advantage of Convolutional Neural Networks (CNNs) is that the output data can also be considered 
input data, which helps identify optimal solutions for more complex and regular applications. Therefore, CNNs 
are preferred in this study to model the dynamics of whey permeate flow over time. Python software was used 
for the simulation.In this neural network, input data at three different levels were considered as network inputs: 
pH (4.6, 5.3, 6), sample temperature (20, 30, 40), Reynolds number (1290, 2791, 4292), and Transmembrane 
Pressure (TMP) (5, 7.5, 10). These inputs were evaluated to determine the best conditions for achieving flux and 
salt rejection in whey permeate.Experimental laboratory data and results were then used to train and test the 
artificial neural network. The data were first divided into two parts: training data and testing data. 75% of the 
data were designated as training data, while 25% were reserved for testing. The testing data were used separately 
to evaluate the model; during the training process, these data were not involved, ensuring that the model did 
not have prior exposure to them. This approach supports accurate and realistic model evaluation.To prevent 
errors in the model due to the varying scales of certain parameters—where parameters with larger numerical 
values might be assigned undue importance while others are neglected—the data were standardized. For this 
purpose, the MinMaxScaler function from the scikit-learn library was employed, standardizing all data to a 
range between zero and one.

Statistical and optimization methods
For building the neural network model, the sequential function from the Keras library was utilized, which 
consists of 8 dense layers: input, dropout, embedding, MaxPooling1D, and batch normalization. This model was 
implemented on a computer equipped with an Intel Core i5 CPU processor and 16 gigabytes of RAM memory, 
running on Windows 11. In designing the intelligent model, a one-dimensional convolutional neural network 
and fully connected layers were employed. The ReLU activation function was utilized in this model, and the 
linear activation function was used in the output layer. The Mean-Squared-Error loss function was employed, 
and for optimization, Adam, Nadam, and RMSprop methods with a learning rate of 0.001 were used. Since the 
data in this experiment were numerical, the Conv1D neural network was utilized in the model. In this study, 
the convolution layer consisted of 64 neurons with a kernel size of 3 and a dilation rate of 1. During the model 
training phase, 200 epochs were used for training iterations. Additionally, in the model evaluation section, the 
MSE and R2-Score evaluation metrics were utilized. After analyzing the data and categorizing them into training 
and testing sets with a ratio of 75 to 25, the constructed model using the one-dimensional convolutional neural 
network was evaluated using the testing data. The model achieved 100% accuracy with an R2-Score metric in 
predicting the examined materials using the four selected features, and the loss function reached 0.44 using the 
MSE, which is considered acceptable and superior compared to the results of similar studies and articles based 
on the investigation results.

For building the neural network model, the Sequential function from the Keras library was utilized, which 
consists of eight dense layers: input, dropout, embedding, MaxPooling1D, and batch normalization. This model 
was implemented on a computer equipped with an Intel Core i5 CPU and 16 gigabytes of RAM, running on 
Windows 11. In designing the intelligent model, a one-dimensional convolutional neural network (CNN) and 
fully connected layers were employed. The ReLU activation function was utilized in this model, while the linear 
activation function was used in the output layer. The Mean Squared Error (MSE) loss function was employed, 
and for optimization, the Adam, Nadam, and RMSprop methods with a learning rate of 0.001 were used. Since 
the data in this experiment were numerical, the Conv1D neural network was utilized in the model. In this study, 
the convolution layer consisted of 64 neurons with a kernel size of 3 and a dilation rate of 1. During the model 
training phase, 200 epochs were used for training iterations. Additionally, in the model evaluation section, the 
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MSE and R² Score evaluation metrics were utilized. After analyzing the data and categorizing it into training 
and testing sets with a ratio of 75 to 25, the constructed model using the one-dimensional convolutional neural 
network was evaluated using the testing data. The model achieved 100% accuracy with an R² Score metric in 
predicting the examined materials using the four selected features, and the loss function reached 0.44 using 
MSE, which is considered acceptable and superior compared to the results of similar studies and articles based 
on the investigation results.

Results and discussion
Microscopic examination of the membranes
The FESEM images presented in Fig. 3 depict a layered structure with stacked sheets, indicating the widespread 
presence of GO. The surfaces exhibit large dimensions, likely resulting from the expansion of interlayer spacings 
or the delamination of layers due to severe oxidation. FESEM images of GO with different magnifications are 
shown in Fig. 3. The layered structure of GO sheets with smooth surfaces can be seen well in the images. These 
plates have a low thickness in nanometer dimensions. The layered structure of GO, along with functional groups 
on its surface, helps to actively remove substances from the membrane containing it. To examine the structure 
and morphology of the top surface layer and cross-sectional section of the fabricated membranes and the effect of 
adding GO, FESEM analysis was utilized. The results of the analysis are provided in Figs. 4 and 5, corresponding 
to the surface and cross-sectional images of the membranes, respectively. The images are presented with two 
different magnifications for better clarity.

On the surface of the GO-containing membrane, pores were created, and numerous fine particles were 
visible, indicating the presence of GO nanostructures. The presence of porosity and pores can also be observed 
at higher magnifications on the membrane surface. In the cross-sectional image of the neat PES membrane, 
sponge-like porous structures are depicted, and no foreign bodies are observed on the walls of the pores at higher 
magnifications. In contrast, in the membrane containing GO, in the cross-sectional morphology, finger-like 
pores appeared, and at higher magnifications, GO particles were recognizable (Fig. 4). The neat PES membrane 
has a smooth surface without any impurities. However, at higher magnification, protrusions of the same polymer 
material are visible, attributed to the uneven edge of the film casting in some areas (Fig. 5).

The water contact angle
To determine the surface hydrophilicity of the membrane, the contact angle of water droplets with the membrane 
surface was measured, and the results of this test are presented in Fig. 6. The results indicate that the use of GO 
nanoparticles leads to a decrease in the contact angle of the nanocomposite membranes (57°) compared to the 

Fig. 3.  FESEM images of GO nanoparticles.
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pure membrane (65°). This reduction can be attributed to the presence of functional groups such as carboxyl, 
hydroxyl, and epoxy on the surface of GO nanosheets, which enhance the interaction between water molecules 
and the membrane surface.

FTIR analysis
FTIR analysis was utilized to identify the functional groups present in both the pure membrane and the 
membrane modified with GO and its output consists of spectra containing distinctive peaks across a range of 
wavelengths. The peak positions are used in the identification of functional groups. The results are depicted in 
Fig. 7. Distinct peaks for PES as the membrane matrix appear at 3091, 2996, 1582, 1486, 1239, and 1148 cm–1, 
corresponding to the stretching vibrations of aromatic C-H bonds, aliphatic C-H bonds, double bonds C=C 

Fig. 4.  FESEM images of membranes surface.
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present in the aromatic ring, and the stretching vibrations of the S = O double bonds, respectively. In the sample 
of the nanocomposite membrane containing GO, these peaks are also observed, and additionally, a distinct 
peak appears at 1710 cm–1, related to the C=O double bond present in GO. The presence of this additional peak 
confirmed the incorporation of GO into the matrix and the surface of the membrane.

AFM results
To investigate the surface morphology of the membranes and obtain information about surface roughness, AFM 
images of the membrane surfaces for two samples, a pure PES membrane and a PES membrane containing GO, 
were obtained and presented in Fig. 8. The results reveal that the pure PES membrane has a smooth surface 
with minimal roughness, whereas the membrane containing GO exhibits higher protrusions and depressions, 

Fig. 5.  FESEM images of cross section of pure PES and PES modified with GO membranes.
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resulting in greater surface roughness. This roughness may arise due to the presence of GO nanostructures on 
the surface. These findings are consistent with observations from FESEM images of the membrane surfaces.

The salt rejection and permeate flux
In Tables 3 and 4, the experimental design and the results related to the salt rejection percentage and whey 
solution flux in the dead-end filtration device using a pure PES membrane and the membrane modified with 
GO under various temperature, transmembrane pressure, Reynolds number, and pH conditions are presented. 
According to the results obtained in Tables 3 and 4, it is observed that under similar experimental conditions, 
the permeate flux increased with an increase in process temperature. The permeate flux increased by 29.3% as 
the temperature of the feed increased from 20 to 40 °C. The increase in permeate flux due to temperature rise is 
attributed to the decrease in feed viscosity and the increase in molecular diffusion coefficient. The increase in flux 
with temperature rise can also be justified by the increased mobility of polymer chains in polymer membranes, 
leading to a decrease in membrane resistance to mass transfer. It was found that the permeate flux of the NF 
process increases with temperature and an increase in pressure difference17. On the other hand, with increasing 
temperatures, the ability of membranes to retain salts decreased. In an experimental study, the groundwater NF 
process was investigated within the temperature range of 10 to 30 °C. The water flux at 30 °C was 1.5 times higher 
than at 10 °C. In their study, the rejection of monovalent ions (sodium, chloride, and potassium) significantly 
decreased within the specified temperature range, while the rejection of divalent ions (calcium, magnesium, and 
sulfate) was hardly affected by temperature18. In another study conducted by Schaep et al., the observed changes 
in ion passage are interpreted based on the increase in salt diffusion coefficient with temperature, while Nilsson 
et al. justify their observations based on membrane charge effects19.

To compare the performance of pure PES membranes and nanocomposite membranes containing GO 
nanostructures, the sample with the optimal result (with the highest salt rejection rate) was studied. The highest 
rejection was obtained in run 2 with the following the following conditions: T = 30 °C, TMP = 7.5 bar, pH = 5.3, 
and Re number = 4292.

Based on the data in Tables 3 and 4, the amount of rejection in the nanocomposite membrane increased by 
23% and reached from 21% in the pure PES membrane to 31% in the nanocomposite membrane. This increase 
was due to the active effect of nanostructures on the absorption of salts. GO has hydroxyl and carboxylic acid 
functional groups that can play a role in the chelating of cations. On the other hand, GO with a layered structure 
was also effective in blocking the passage of cations and increasing the rejection of salts.

Permeate flux is directly related to the pressure difference across the membrane surface17. The results obtained 
from other studies showed that with an increase in the driving force of the process, the permeate flux increases. 
Abbas, A. et al. observed that at constant concentration and temperature, with an increase in process pressure in 
reverse osmosis from 20 to 60 bar, the permeate flux increased17.

Fig. 6.  The results of the water contact angle test of pure and nanocomposite membrane.
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From Tables 3 and 4, it can be observed that the flux increases with pressure for both types of membranes. 
With an increase in applied pressure, the fluid flow resistance decreases. The highest flux values were observed 
for pure PES and modified membranes (5.4 Kg/m2h and 6.75 Kg/m2h, respectively) at 10 bar pressure, while the 
lowest flux values were obtained (2.69 Kg/m2h and 3.33 Kg/m2h) for pure and modified membranes, respectively, 
at 5 bar pressure in the filtration system’s closed end.

The graph of flux changes over time for two samples is shown in Fig.  9. As can be seen, the initial flux 
of the nanocomposite membrane was higher than that of the pure PES membrane. The flux improvement in 
the nanocomposite membrane was due to the increased hydrophilicity of the membrane, which facilitated the 
passage of water through the pores of the membrane. Examining the trend of flux changes over time showed 
that the rate of flux reduction was higher in the pure membrane. Condensation of the porous structure of the 
membrane due to the application of pressure and the occurrence of the fouling phenomenon are the effective 
factors in reducing the flux with the passage of time in the membranes. In the nanocomposite membrane, the 
addition of GO to the structure improved the mechanical strength of the membrane, and less condensation 
occurred. On the other hand, with the increase in the hydrophilic nature of the membrane, the amount of 
protein absorption on the surface of the membrane and fouling decreased, and as a result, less flux loss was seen 
in the nanocomposite membrane.

Researchers have stated that the initial reduction in permeate flux is likely due to the formation of a 
concentration polarization layer near the membrane surface, which acts as secondary resistance, leading to a 
decrease in permeate flux. It is evident that the thickness of this layer is influenced by factors such as pressure 
difference, flow velocity, and temperature20. The maximum permeate flux in this study was measured at 8.37 kg/
m2h under operational conditions with a temperature of 40 °C, a pH of 4.6, an operational pressure of 10 bar, 
and a Reynolds number of 4292. Studies indicate that flux varies with distinct input variables and also exhibits 
complex nonlinear behavior over time. This is undesirable in downstream industrial applications.

pH
NF membranes have functional groups that can be charged based on the pH of the pH of the solution in contact 
with the membrane surface. Most available NF membranes have a negative charge at neutral pH, with an 
isoelectric pH in the range of 3–421. pH affects membrane hydrophilicity, membrane charge, and membrane 

Fig. 7.  FTIR analysis to identify functional groups of the membrane.
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fouling, and consequently membrane performance22. As observed from Tables 3 and 4, an increase in pH leads 
to a noticeable increase in flow rate. The isoelectric point of whey is 4.6. When the pH of whey is less than 4.6, 
the solution becomes positively charged. The solubility of proteins reaches its lowest point at the isoelectric point 
because proteins lose their solubility at this pH. pH, net protein charge, and electrostatic interaction between 
proteins are influenced by pH23. Beta-lactoglobulin, the main component of milk, constitutes about 50% of the 
weight of whey and 12% of its total protein content, with an isoelectric point of 5.18. Beta-lactoglobulin can 
complex with monovalent and divalent metal ions. When the pH is higher than the isoelectric point, Na+ can 
complex with the carboxyl and imidazole of beta-lactoglobulin24. In this experiment, by adjusting the pH of 
whey, a noticeable difference in the salt rejection of whey was observed at the isoelectric point of whey proteins. 
It can be seen that adjusting the pH of whey to 4.6 resulted in the highest salt rejection from whey. This fact can 
be explained by the protein’s isoelectric point theory. At the isoelectric point of whey protein, the interaction 
between the protein and ions is weak. Therefore, more ions can be separated from whey. Thus, under these 
conditions, salts can be easily removed through the NF process.

As the pH increased, the acidic groups in the polymer structure of the membrane and the modified GO were 
hydrolyzed, and the hydrophilicity of the membrane increased. This increase in hydrophilicity improved the 

Fig. 8.  AFM images of the above modified membrane and pure membrane.
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flux. However, due to the creation of chelating groups, the effect of these groups on salt cation adsorption has 
increased, and rejection has improved.

TMP and Reynolds number
With an increase in TMP difference, the amount of salt passage through the membrane surface increases, 
which is consistent with the results obtained by other researchers who have investigated the effect of pressure 
difference on salt rejection during NF. In both pure and modified membranes, the average flow rate increased 
with increasing Reynolds numbers, from 1290 in the laminar range to 4292 in the turbulent flow range. At 
pH 4.6 under maximum membrane pressure and constant temperature conditions, the average whey flux for 
Reynolds number 1290 was 5.34 kg/m2h, and for Reynolds number 4292, it was 6.78 kg/m2h. This increase was 
mainly limited by the increase in agitation speed and cross-flow velocity, which led to increased turbulence 
in the closed-end cell. Increasing Reynolds number at high stirring speeds reduced the deposition of protein 
molecules on the membrane surface. This phenomenon leads to an increase in forced convection and back 
diffusion of salts from the membrane solution to the bulk25. At pH 4.6 under maximum membrane pressure 
and constant temperature conditions, the salt rejection percentages for whey salts were observed to be 18% for 
the pure membrane at a Reynolds number of 1290 and 24% for the modified membrane at a Reynolds number 
of 4292. These experiments demonstrated a relative improvement in salt rejection with an increasing Reynolds 
number.

CNN model
In this study, the purpose of using the CNN model is to obtain optimal conditions on high production 
scales. Therefore, various parameters have been considered in the design of the experiment, and finally, for 
unknown conditions, the optimal parameters are determined by the model. One-dimensional convolutional 
neural networks (CNNs) have been used as a modeling tool to predict flux patterns based on various input 
variables. Overall, the ambiguous dataset available in other sections has made machine learning a suitable tool 
for finding solutions to industrial problems. The challenge of using machine learning techniques on datasets 
with a small number of samples is that it encompasses a very limited number of observations and is also prone 
to overfitting. Therefore, the median role plays an important role in presenting a solution for the final success of 
such applications. Developing an appropriate model to predict precise process conditions is essential for whey 
filtration.

Figures 10 and 11 depict the accuracy and error graphs of the model corresponding to the modified and pure 
membranes. The CNN model predicted the data well with both experimental flux datasets trained and tested for 
both pure and modified membranes. Furthermore, other statistical parameter values, such as MSE values, had a 
logical correlation with the predicted CNN model.

The obtained values indicate that the model has a strong ability to predict the actual values. Additionally, 
the scatter plots comparing the predicted and actual values (see Scatter Plot) demonstrate good agreement 
between the predictions and the actual values (refer to Fig.  12). Furthermore, the optimal conditions based 
on the highest salt rejection rate were identified as follows: best temperature: 30 °C, TMP: 7.5 bar, pH: 5.3, and 
Reynolds number: 4292.

The predicted CNN model for dynamic flux in the present study was compared with other membrane 
applications found in articles. As seen in Table 5, the predicted model for dynamic flux demonstrated satisfactory 
results with an R2 accuracy of 80% using minimal training datasets. Therefore, it can be inferred from these 
metrics that a one-dimensional convolutional neural network (CNN) can serve as a suitable membrane 
modeling technique for predicting membrane performance, as it can effectively work with a limited number of 
experiments in the dataset.

Compared to other traditional and modern methods, the CNN model performed better due to its ability to 
learn nonlinear and local features. The results presented in the article clearly demonstrate this superiority.

Conclusion
In the current study, de-mineralized whey was successfully extracted from the original whey solution using a 
dead-end filtration system. A nanocomposite PES membrane containing GO was used in this system to remove 
salts. An analysis was done on how process variables affected the flow and salt rejection from whey. The protein 
structure, membrane flux, and salt rejection from whey were all impacted by the feed’s pH. Better salt rejection 
from whey was found at pH levels above its isoelectric point, while higher pH levels were found to cause an 
increase in flux and a decrease in whey salt rejection. Flux increased as TMP increased. Furthermore, for both 
pure and modified membranes, the CNN demonstrated a strong correlation with experimental membrane flux 
dynamics.
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Fig. 9.  Whey flux changes in 1 h for the pure and nanocomposite membranes.
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Fig. 10.  Cost function diagrams of pure and modified membranes.
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Fig. 11.  R2-score graphs of pure and modified membranes.
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Row Membrane system Output variable Model Prediction accuracy Optimum flux References

1 Dead-end Flux ANN 0.987 19.30 26

2 Cross-flow Flux ANN genetic algorithm 0.999 216 27

3 Cross-flow Flux ANN 0.961 8 28

4 Dead-end Flux Gene expression 0.989 5.6 29

5 Cross-flow Flux Multiple regression analysis 0.999 110 30

6 Spinning basket Flux ANN 0.9952 41 31

7 Cross-flow Flux ANN 0.931 – 32

8 Cross-flow Fouling CNN 0.90 – 33

9 Cross-flow ANN 1.00 25.40 34

10 Dead-End Flux CNN 1.00 8.37 Current study

Table 5.  Comparison of prediction parameter with the literature.

 

Fig. 12.  Scatter plot of predicted data vs. actual data.
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