
Multi-modal Language models 
in bioacoustics with zero-shot 
transfer: a case study
Zhongqi Miao1, Benjamin Elizalde2, Soham Deshmukh2, Justin Kitzes3, Huaming Wang2, 
Rahul Dodhia1 & Juan Lavista Ferres1

Automatically detecting sound events with Artificial Intelligence (AI) has become increas- ingly 
popular in the field of bioacoustics, ecoacoustics, and soundscape ecology, particularly for wildlife 
monitoring and conservation. Conventional methods predominantly employ supervised learning 
techniques that depend on substantial amounts of manually annotated bioacoustic data. However, 
manual annotation in bioacoustics is tremendously resource- intensive in terms of both human labor 
and financial resources, and it requires considerable domain expertise. Moreover, the supervised 
learning framework limits the application scope to predefined categories within a closed setting. The 
recent advent of Multi-Modal Language Models has markedly enhanced the versatility and possibilities 
within the realm of AI appli- cations, as this technique addresses many of the challenges that inhibit 
the deployment of AI in real-world applications. In this paper, we explore the potential of Multi-
Modal Language Models in the context of bioacoustics through a case study. We aim to showcase the 
potential and limitations of Multi-Modal Language Models in bioacoustic applications. In our case 
study, we applied an Audio-Language Model–—a type of Multi-Modal Language Model that aligns 
language with audio / sound recording data—–named CLAP (Contrastive Language–Audio Pretraining) 
to eight bioacoustic benchmarks covering a wide variety of sounds previously unfamiliar to the model. 
We demonstrate that CLAP, after simple prompt engineering, can effectively recognize group-level 
categories such as birds, frogs, and whales across the benchmarks without the need for specific model 
fine-tuning or additional training, achieving a zero-shot transfer recognition performance comparable 
to supervised learning baselines. Moreover, we show that CLAP has the potential to perform tasks 
previously unattainable with supervised bioacoustic approaches, such as estimating relative distances 
and discovering unknown animal species. On the other hand, we also identify limitations of CLAP, such 
as the model’s inability to recognize fine-grained species-level categories and the reliance on manually 
engineered text prompts in real-world applications.
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The world is currently experiencing a rapid loss of global biodiversity due to habitat destruction, climate change, 
and various human impacts1–4. To effectively study and monitor the intricate patterns, underlying drivers, and 
extensive consequences of these changes, ecologists are increasingly resorting to automated data collection and 
monitoring methods. By utilizing sensors such as cameras and acoustic recorders, they can now monitor species 
of interest across spatial and temporal scales previously unattainable5–11. 

Among these methods, automated sound recorders (ASRs) or autonomous recording units (ARUs) are being 
increasingly utilized for surveys of sound-producing animals not easily monitored through image-based devices. 
This includes animals like birds, frogs, bats, insects, and marine mammals12–14. The applications of ARUs are 
expanding in scope, with some projects now amassing and analyzing hundreds of thousands of audio/ sound 
recordings15,16. Given that manual review of such a vast collection of audio data (i.e., sound recording data) is 
impractical, automated analysis techniques are essential for extracting valuable ecological information.

Modern artificial intelligence (AI) techniques are increasingly applied to automated detection and localization 
of bioacoustic events. These techniques involve identifying sound events of interest within audio recordings and 
providing timestamps for the start and end times of these events17–24. In bioacoustics, common approaches 
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for sound event detection and categorical classification often rely on computer vision and deep learning 
methods like Convolutional Neural Networks (CNNs)25,26or Vision Transformers (ViTs)27,28within supervised 
learning frameworks. However, supervised learning depends on a large amount of manually annotated and 
time-stamped data for every sound of interest. This is necessary to train models capable of producing reliable 
predictions23,24,29–31. Assembling sufficient manually annotated audio data presents challenges mainly due to: 
(1) the ambiguity in defining the precise beginning and end of bioacoustic events, (2) the need for specialized 
domain expertise in bioacoustics for accurate annotations, and (3) the typically extended duration of bioacoustic 
recordings. Consequently, citizen scientists and crowdsourcing labeling services like Amazon Mechanical Turk 
have been less involved in the annotation of bioacoustic recordings than in labeling datasets from imagery 
sources, such as those collected by camera traps and satellites11,32–36. Moreover, unlike tasks like human speech 
recognition, field recordings can encompass a broad array of sounds from diverse animals such as birds, frogs, 
whales, insects, and bats, each requiring specifically annotated datasets for training37,38. These constraints not 
only limit the applicability of supervised models in bioacoustics but also hamper their ability to recognize classes 
absent from the training set, known as open set or novel species recognition.

The recent emergence of Multi-Modal Language Models39–44has spurred a transformative paradigm 
shift within the realm of AI applications, offering unparalleled model flexibility and potential. These Multi-
Modal Language Models primarily focus on aligning language concepts with other forms of data modalities, 
especially perceptual ones such as images and audio. This alignment marks a stark difference from traditional 
machine learning models that rely on supervised learning, which emphasizes sample-to-label mapping45, or 
unsupervised learning, which lacks a direct connection to language semantics46,47. This paradigm shift opens 
up new possibilities for innovative solutions to overcome the challenges posed by current supervised-learning 
techniques in bioacoustics sound event detection: the dependency on extensive manually annotated data and the 
limitation to a predefined label space in a restricted setting.

One of the most noteworthy advancements of the Multi-Modal Language Model technique is its zero-shot 
recognition capability (i.e., being able to recognize categories without seeing similar data during training)39,48,49. 
This paper explores this zero-shot capability of Multi-Modal Language Models in the context of bioacoustics 
through a case study that employs an Audio-Language Model–a type of Multi-Modal Language Model that 
aligns language with audio data–named CLAP (i.e., Contrastive Language-Audio Pretraining)50. We’ve applied 
CLAP to eight different bioacoustics benchmarks of group-level categories such as birds, frogs, whales, meerkats, 
and gun-shots, curated from established bioacoustics datasets such as BEANS51, Warblr18, and Freefield52. Our 
experiments show that, after simple prompt engineering, CLAP exhibits comparable recognition performance 
to fully supervised baselines on six out of the eight bioacoustics benchmarks without dedicated model fine-
tuning, despite these benchmarks being novel to the model. Additionally, CLAP shows promise in tasks such as 
recognizing unknown or novel animal species and estimating relative distances, all without the requirement of 
dedicated model training. On the other hand, we also identify limitations of CLAP and Multi-Modal Language 
Models in general in the applications of bioacoustics, such as the model’s inability to recognize fine-grained 
species-level categories and the challenges of using manually engineered text prompts in real-world applications. 
We then propose potential future research directions to address these limitations. The objective of this paper is 
to introduce the Multi-Modal Language Model technique to the bioacoustics community and to examine its 
potential and limitations.

Methods
Multi-modal Language models
Recent years have witnessed a surge of interest in the study of multi-modal models, primarily because of 
their unique ability to process and generate a range of data modalities simultaneously–including vision, 
audio, and language39,50. Among the various combinations of multi—modalities53–55, Multi-Modal Language 
Models39–43have become especially prominent. These models mainly focus on aligning language concepts with 
other data modalities (e.g., imagery and audio)39,50, an area of research invigorated by the successes of large 
language model (LLMs) development44.

Traditional supervised learning protocols often struggle with mapping training data to language concepts 
or semantics39,41. For instance, categorical supervised learning labels data with discrete numerical labels, which 
often oversimplifies the complex language concepts they aim to represent. Take ImageNet56, one of the most 
widely applied datasets for image classification, as an example; even though there are 120 categories of dog 
breeds in the dataset, these categories are indistinguishable from categories such as cars or fish when encoded 
as discrete labels (Fig. 1(a)). Ultimately, this oversimplification leads to artificial decision boundaries within a 
continuous feature space, complicates the learning of semantic relationships, and often confines the models to 
predefined label spaces45.

In contrast, Multi-Modal Language Models circumvent these limitations by directly aligning features of data 
modalities with language concepts through maximizing the feature similarities of different data modalities39. 
This results in a continuous feature space that inherently encodes semantic relationships, thanks to the natural 
semantic continuity facilitated by the learning process in LLMs. For instance, in Vision-Language Models (a type 
of Multi-Modal Language Model that aligns vision and language features), the visual features of both the Golden 
Retriever and Border Collie breeds are compelled to exhibit closer proximity in the feature space, even before 
the models generalize from visual similarities, due to the presence of language features. This process enables 
the model to group data from both categories as subspecies of dogs, highlighting their semantic difference from 
categories like cars. Additionally, the continuous semantic feature space facilitates nuanced recognition and data 
generation tasks41,42. For example, it becomes feasible to identify unique amalgamated concepts, such as dog-
like cars, without requiring dedicated training data, as long as the concepts of dogs and cars are sufficiently 
represented and appropriately aligned with the language features in the multi-modal feature space. Consequently, 
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Multi-Modal Language Models are free from traditional sample-to-label mapping because categorical labels for 
project-specific inference can be defined after the models are trained (see Fig. 1(b) and (c)).

In the context of bioacoustics applications, during inference, various sets of categories can be defined in 
words or descriptive phrases to suit the requirements and interests of a specific project after an Audio-Language 
Model (a Multi-Modal Language Model that aligns audio and language features) is trained (e.g., bird songs and 
noise). Categorical classification is conducted by measuring the similarities between the feature embeddings 
of the testing samples and the text embeddings of these post-defined words and phrases and does not rely on 
predefined decision boundaries39. Particularly, if the training data contain bird calls, regardless of the species, an 
Audio-Language Model has the potential to recognize calls from almost any bird species that produce regular-
sounding calls, including those not present in the training data, by setting up a post-defined category called bird 
during inference. The Audio-Language Model compares the feature/embedding similarity of the testing audios 
(i.e., sound recordings) with existing semantic concepts learned through LLMs and summarize the samples 
into categories (bird in this case). Since the model does not have a specified bird category during training, and 
this post-defined category can be applied to any unseen datasets with bird calls, this process is known as Zero-
Shot Transfer39 (Fig. 1(c)). The ability to define categories post-training offers substantially greater flexibility 
compared to traditional supervised learning approaches, which restrict models to predefined labels45, and 
unsupervised or self-supervised learning, where models are unable to generate feature spaces linked to semantic 
or text categories46,47.

Moreover, post-defined categories (or text prompts, to be more specific39) are not limited to single categorical 
definitions. Text prompts can be any combinations of phrases or existing semantics in the LLMs. For instance, 
they might include “This is the sound of an animal mumbling” or “This is the sound of a bird singing in the 

Fig. 1.  (a) In conventional supervised learning, input samples are typically mapped to digital labels, often 
discrete in nature for categorical classification. Each label represents a single category, and there are no 
inherent semantic relationships encoded within this labeling system. Furthermore, all categories must be 
explicitly defined prior to training and remain unchanged during inference, leading to considerable limitations 
on the applications of such models in real-world. (b) Multi-Modal Language Models (Audio-Language 
Models in this example) align audio embeddings and their corresponding language description embeddings 
into a shared feature space. This learning paradigm does not rely on fixed sets of predefined categories as text 
descriptions are usually unique to each audio sample and are not confined to categorical concepts. In the above 
text description example, not only are concepts of “wheel rolling”, “adults talking”, and “birds singing” encoded, 
but relational concepts like “over footsteps” are also encoded and associated with corresponding sounds. (c) In 
the absence of categorical labels in training and due to the similarity-based nature of this learning paradigm, 
we can define a set of text categories during inference (Bird and Noise in this example) to determine which 
language embedding of these post-defined categories the audio sample is most similar to. In the above example, 
the embedding of a bird audio is more similar to the language embedding of the text prompt, “This is a sound 
of Bird.” Consequently, we can classify this audio as a sound of birds.
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background.” Such descriptive text prompts allow researchers to undertake certain tasks that are not easily 
achievable with traditional AI methods in bioacoustics, such as relative distance estimation and the discovery 
of animal species (i.e., detecting sound events of semantics that do not exist in pre-trained models for novel 
categories).

In this paper, we explore the zero-shot transfer and recognition abilities of Multi-Modal Language Models in 
bioacoustics through a case study. The details of the experiments are in the following sections.

Contrastive Language-Audio Pretraining (CLAP)
In this project, we use CLAP (Contrastive Language-Audio Pretraining)50as our multi-modal model for the 
case study on eight bioacoustics datasets curated from established bioacoustics benchmarks such as BEANS51, 
Warblr18, and Freefield52. These datasets are manually annotated and validated by human experts in their 
original studies. CLAP is an Audio-Language Model (ALM)39,50,57,58 that aims to align (i.e., enhance the 
embedding similarities) features of audio samples and their associated text descriptions through learning from 
large quantities of audio-text pairs. These audio-text pairings are unique to each pair of samples and are not 
restricted to specific categories. Therefore, any relevant text description and audio clip can be used to train the 
model, allowing for the inclusion of extensive online data sources in the training process.

A trained CLAP model can identify audio samples that are similar to those it has encountered during training 
and associate them with semantic concepts learned from the corresponding training text descriptions. This 
means that the model can use any relevant words semantically similar to the existing training text descriptions 
and associate these words (i.e., post-defined categories) with the test audios, enabling the procedure of zero-
shot transfer. The whole process is solely similarity-based, therefore, no decision boundaries are learned during 
training, and the inference is conducted by measuring the similarity between the test audio embeddings and the 
text embeddings of the post-defined categories (Fig. 1 (c)).

Technical details of CLAP and Zero-Shot Transfer are provided in the Appendix.

Datasets for CLAP pretraining
CLAP is trained using audio-text pairs, rather than traditional audio-label datasets. These pairs are sourced from 
various standard audio datasets that span different domains, including environmental sounds, speech, emotions, 
actions, and music. Even though these datasets were not explicitly annotated for bioacoustics research, they still 
encompass a wide range of animal sounds such as those of lions, tigers, birds, dogs, wolves, rodents, insects, frogs, 
snakes, and whales. This diversity of sound sources enables CLAP to effectively perform Zero-Shot Transfer on 
most bioacoustics benchmarks. However, since most of the standard data do not have detailed animal species-
level annotations, and it is challenging to collect audios for every single possible animal species on Earth, CLAP 
does not have the ability to differentiate species-level sounds, out-of-the-box. Instead, it is possible to recognize 
group-level sounds, such as birds, whales, frogs, and meerkats.

In this project, we train CLAP with a Transformer-based audio encoder (Hierarchical Token Semantic 
Audio Transformer, HTS-AT59) with different numbers of data for performance comparisons on the scales of 
pretraining data. We also have a third version of CLAP pretrained with a CNN-based audio encoder (Pretrained 
Audio Neural Networks, PANN60) and a smaller scale of pretrained data for a fully zero-shot experiment (i.e., 
even similar sounding calls from similar animals do not exist in the training data), and faster experiment 
turnover rate.

The details of the pretraining audio-text datasets for the three versions of CLAP are listed below:

•	 CLAP-HTS-AT (450 K): For the HTS-AT-based model, the first version is pretrained on 450,000 audio- text 
pairs curated from FSD50k61, ClothoV262, AudioCaps63, and MACS64, SoundDescs65,  BigSoundBank66, 
SoundBible66, FMA67, NSynth68, and findsound.com.

•	 CLAP-HTS-AT (2.1 M): The second version of HTS-AT-based CLAP is pretrained with additional 1,650,000 
audio-text pairs (2.1 million audio-text pairs in total) curated from CMUMOSI69, MELD70, IEMOCAP71, 
MOSEI69, MSPPodcast72, CochlScene73, AudioSet (Filtered)74,  Kinetics70075,  Freesound76, and ProSound-
Effects77.

•	 CLAP-PANN (128K): The smaller scaled PANN-based model is pretrained on 128,000 audio-text pairs curat-
ed from FSD50k61, ClothoV262, AudioCaps63, and MACS64 for faster experiment turnover.

Additional information about these datasets can be found in the Appendix.

Supervised baselines
Since existing supervised bioacoustics benchmarks such as The Benchmarks of Animal Sounds (BEANS)51are 
mostly about species level recognition, we need to prepare group-level supervised benchmarks for the evaluation 
of CLAP. We use ResNet-1878as our supervised learning baseline model, primarily due to the relatively small 
dataset sizes present in most of the benchmarks within this project, as well as its broad application in both 
bioacoustic research and other AI conservation projects51. We didn’t choose larger deep learning models 
because it has been reported that deeper models, such as ResNet-5078, Inception79, and Vision Transformers27,28, 
tend to overfit more easily on smaller datasets and their performance gains are often limited80. Nevertheless, 
we demonstrate that ResNet-18 offers a representative example of fully supervised performance across all 
benchmarks.
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Benchmark datasets
We use seven public bioacoustics benchmark datasets to demonstrate the out-of-the-box group-level zero-shot 
transfer animal sound recognition ability of CLAP across different sound sources. There are four datasets for bird 
call detection (Jackdaw81, Enabirds82, Freefield52, and Warblr18), one dataset for both birds and frogs (Rfcx83), 
one for Minke whales (Hiceas51), and one for meerkats (Meerkat81).

We also include a benchmark dataset for gunshot detection in the rain forest area (Tropical-Gunshots84). 
Although the focus of this dataset is not exclusively on bioacoustics, the detection of gunshots in the wild—
particularly in rain forests–shows promise as an automated approach for anti-poaching efforts. Incorporating 
this dataset al.lows us not only to broaden the applications of CLAP within the realm of general animal audios 
but also to assess its capability to generalize across a spectrum of sounds, including those not related to animals.

None of these benchmarks have been used in CLAP’s training, and there are distinct quality and perceptual 
differences, or domain discrepancies, between these benchmarks and CLAP’s training datasets. In addition, 
there is no guarantee that there is an overlap on the animals species between these benchmarks and CLAP’s 
training data. In other words, these benchmarks are considered unfamiliar and novel to CLAP. Furthermore, 
sounds of meerkat, or any other relevant species, do not exist in the 128k training audio-text pairs for the CLAP-
PANN model making meerkat sounds completely unknown to the smaller scaled model. Therefore, we use the 
PANN model on the Meerkats data for a fully zero-shot experiment.

In our experiments, we utilize the training-validation splits defined by the original studies of these 
datasets18,51,52,84 to train and validate the baseline supervised models. The testing splits, also defined by each 
original study, are used to evaluate the performance of both CLAP and the supervised baselines.

For the Jackdaw, Enabirds, Rfcx, Hiceas, and Meerkats datasets, since they are directly from the BEANS 
benchmark, we segment the audios following BEANS’ default definition of window sizes. The Freefield, Warblr, 
and Tropical-Gunshots datasets are already pre-segmented, therefore, we directly use the audio segments in our 
experiments. We resample all the benchmarks to 44.1 kHz using the PyTorch default Sinc interpolation method 
to match the CLAP models’ training data and avoid statistical discrepancies between the training and testing 
data. Details of all the datasets can be found in the Appendix.

Since most of these benchmarks are originally species-level, we group them into group-level categories such 
as birds, frogs, whales, and meerkats to evaluate CLAP’s performance. We label each segment from the majority of 
benchmarks as either positive (indicating the presence of events of interest) or negative (indicating the absence 
of such events). However, the Rfcx dataset, which comprises recordings of both bird and frog sounds, is treated 
differently. We utilize the Rfcx dataset to assess CLAP’s capability to differentiate between distinct animal species 
(birds or frogs in this case). Consequently, we conduct experiments exclusively using sound segments containing 
bird and frog sounds. Within this benchmark, a segment is annotated as positive if it contains only bird sounds, 
and as negative if it includes only frog sounds. In essence, the Rfcx experiments aim to demonstrate CLAP’s 
recognition ability in a dataset that features multiple groups of animal sounds.

Experiment settings
Following BEANS, we simplify the timestamp-based sound event detection task by converting it into a sound 
event existence classification task within fixed-window-size audio segments of long recordings–a common 
approach in bioacoustic research (see Fig.  218,20,21,51). This method circumvents the technical challenges 
associated with predicting the exact start and end times of sound events in audio recordings. Specifically, we use 
the CLAP model as a classifier for sound events and evaluate its performance on eight bioacoustic benchmark 
datasets that are new to CLAP.

We employ the Zero-Shot Transfer protocol39 to evaluate CLAP’s performance (see Fig. 1(c)). Specifically, 
during the inference or testing phase, we utilize data the model has not encountered during training and define 
categories using text prompts post-training under the setting of zero-shot transfer. To demonstrate CLAP’s 
capability at detecting post-defined sound event categories, we compare its performance against fully supervised 
baseline models that have been fine-tuned on benchmark datasets, which serve as the upper bounds.

For evaluation, we use Average Precision (AP)51. The details of how we calculated these metrics are reported 
in the Appendix.

Text prompts for zero-shot transfer
In order to perform zero-shot transfer, Audio-Language Models like CLAP require text prompts to define 
the categories for recognition post training. In addition, instead of fully automated classification, manually 
engineered text prompts for each benchmark are also needed to ensure optimal performance. We identify this as 
one of the biggest challenges in deploying Multi-Modal Language Models in real-world applications85,86.

However, in this project, our main objective is to demonstrate the potential of Multi-Modal Language Models 
in bioacoustics, therefore, we manually engineer text prompts for each benchmark using the validation sets. The 
text prompts for each benchmark are detailed in Table 1.

Results
In this section, we present the results of benchmark comparisons between CLAP and supervised baselines, along 
with corresponding discussions on the experimental details of CLAP, limitations of the technique, and future 
directions.

Zero-shot transfer
Table 2 shows that the two CLAP models exhibit overall comparable AP to the fully supervised ResNet-18 baselines 
on most benchmarks, without the need for model fine-tuning or additional training on the target.  datasets. 
Furthermore, the Transformer-based CLAP model pre-trained with 2.1 million audio-text pairs (CLAP-HTS-
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AT 2.1  M) performs better than or equally to the supervised baselines on six out of the eight benchmarks. 
These results underscore the potential of CLAP to detect bioacoustic signals from a variety of sound sources 
after simple prompt engineering, provided that the model has been exposed to relevant concepts such as birds, 
whales, frogs, and gunshots during pre-training, regardless of the species.

# Benchmarks Text prompts

1 Jackdaw Is this a sound of birds chirping or noise?

2 Freefield Is this a sound of birds chirping or noise?

3 Warblr Is this a sound of birds chirping or noise?

4 Rfcx Is this a sound of birds singing far in the background or frogs?

5 Hiceas Is this a sound of whale vocalizations or noise?

6 Enabirds Is this a sound of birds chirping or noise?

7 Meerkat Is this a sound of meerkats clucking or non-animal noise?

8 Tropical-Gunshots Is this a sound of gunshots in the distance or broken branches and noise?

Table 1.  Text prompts to perform zero-shot classification for each benchmark.

 

Fig. 2.  Illustration of fixed window sound event existence classification. In bioacoustics, a common approach 
to detect sound events of interest is classification of audio segments with fixed window sizes. The usual 
procedure begins with the conversion of raw audio into a visual representation, such as a spectrogram. 
Subsequently, the spectrogram is divided into segments using a fixed time window (e.g., 7 s in this example) 
and a window step size (e.g., also 7 s in this example). By employing a visual classification model, the presence 
or absence of the sound event of interest is predicted for each segment. Using these predictions, we can 
obtain approximate time stamps for the localization of sound events. In practice, step sizes are often smaller 
than window sizes for higher classification resolution. For example, under the BEANS setup, the Jackdaw 
benchmark has a 2-second window size with a 1-second step size51.
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In addition, the comparison between the two HTS-AT models shows that the 2.1  M model consistently 
outperforms the 450 K model, with an average AP increase of 0.05. This suggests that utilizing more pretraining 
data can enhance the performance of such foundational multi-modal models.

Source window size matters in audio segment classification
Transformer models typically rely on consistent input audio length between training and testing for optimal 
performance. The default input window size for our HTS-AT model during pretraining is seven seconds. 
Consequently, to utilize HTS-AT effectively, we must duplicate each input audio segment if the source samples 
are shorter than seven seconds, or truncate the audio if the samples exceed seven seconds. This process can result 
in unnatural sound duplication or lost information, potentially leading to degraded performance.

Table 3 presents performance comparisons across different source audio window sizes (i.e., the original audio 
segment length of the data). The HTS-AT models shows improvements when using a seven-second source audio 
window, compared to using either truncated or duplicated samples. Notably, on the Meerkat benchmark, the 
performance of the 2.1 M model increases from an AP of 0.87 to 0.98. Longer source window sizes remove 
unnatural audio duplications, and Transformer-based CLAP models perform better with these settings, 
achieving performance comparable to that of supervised baselines.

The importance of text prompts
One of the crucial factors affecting the performance of Multi-Modal Language Models, such as CLAP, is the 
engineering of text prompts. Changing text prompts can result in vastly different model prediction performance 
and can even enable the model to perform tasks beyond categorical classification.

Detailed descriptions can improve model performance
Table  1 shows that Rfcx-Birds and Tropical-Gunshots have relatively more complex text prompts compared 
to other benchmarks. Specifically, we use “birds singing far in the background” as the text prompt for CLAP to 
recognize most of the bird calls in the Rfcx-Birds dataset. As presented in Table 4a, using “birds” alone as the text 
prompt results in poor performance (0.54 AP) due to the dataset’s noisy nature. However, adding descriptive 
words such as “singing” improves recognition performance (0.63 AP). The most substantial improvement in 
performance is observed when we include the concept “in the background” (0.73 AP). And the word “far”further 
improved the performance (0.79 AP). Furthermore, the effectiveness of these text prompts suggests that CLAP 
is capable of differentiating between foreground and background sounds without specialized training in relative 
distance estimation, which represents a significant challenge in bioacoustics owing to limited training data87. 
However, there are still limitations to this capability, as the model may not be able to provide precise numerical 
distances of sound sources due to the similarity based mechanism of Multi-Modal Language Models. Therefore, 
there is still a long way before practical applications.

Similar patterns can be observed in the results for the Tropical-Gunshots dataset (Table  4b). Detecting 
gunshots within rain forests poses a significant challenge due to an array of similar-sounding events. For 
example, our analysis reveals that the most common sources of confusion, closely resembling gunshot sounds, 
are those of breaking tree branches. To mitigate this issue, we introduce the term “broken branches” to refine 
the characterization of non-gunshot sounds in the dataset. This enhancement leads to an improved zero-shot 
transfer performance, achieving a 0.67 AP, which surpasses the 0.64 AP of the supervised baseline.

Novel categories and species discovery
As mentioned in the Methods section, we have a smaller scaled PANN model that is trained on 128,000 audio-
text pairs that do not contain any meerkat-related audios for a fully zero-shot experiment. Table 4c shows the 
performance of the CLAP-PANN (128 K) model on the Meerkat dataset, utilizing various text prompts to detect 

Settings Models

Rfcx-Bird
10-sec window 
7-sec window

Meerkat
2-sec window 
7-sec window

Supervised ResNet-18 0.88 0.89 0.94 0.97

Zero-Shot Transfer
CLAP-HTS-AT (450 K) 0.70(↓) 0.72(↓) 0.81(↓) 0.97(-)

CLAP-HTS-AT (2.1 M) 0.79(↓) 0.82(↓) 0.87(↓) 0.98(↑)

Table 3.  Average Precision (AP) comparisons of different source window sizes on BirdVox and Meerkat. 
Higher is better.

 

Settings Models Jackdaw Freefield Warblr Rfcx-Bird Rfcx-Frog Hiceas Enabirds Meerkat Tropical-Gunshots

Supervised ResNet-18 0.99 0.83 0.96 0.88 0.79 0.30 0.98 0.94 0.64

Zero-Shot Transfer
CLAP-HTS-AT (450 K) 0.95(↓) 0.82(↓) 0.96(-) 0.70(↓) 0.78(↓) 0.29(↓) 0.96(↓) 0.81(↓) 0.49(↓)

CLAP-HTS-AT (2.1 M) 0.96(↓) 0.84(↑) 0.96(-) 0.79(↓) 0.81(↑) 0.30(-) 0.98(-) 0.87(↓) 0.67(↑)

Table 2.  Average Precision (AP) comparisons between CLAP (growing number of pretraining pairs) and 
supervised baselines. Higher is better.
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meerkats. The sounds associated with meerkats being absent in the pretraining data means that the direct use 
of “meerkats” as the prompt key is ineffective for CLAP’s meerkat detection, resulting in a 0.56 AP. Yet, the 
integration of descriptive terms like “clucking” markedly improves the recognition performance to a 0.80 AP, up 
from 0.56 AP. This rise does not suggest that the model comprehends the concept of “meerkats,” given that the 
single use of “clucking” yields a superior 0.82 AP, surpassing the result of using the combined prompt “meerkats 
clucking,” which is 0.80 AP.

Nevertheless, the CLAP-PANN model does possess the concept of “animal”. By combining “animal” with 
descriptive words like “clucking” and “growling,” the model achieves its highest meerkat recognition performance 
at 0.88 AP in our experiments. These findings suggest that it is possible to narrow down targets and detect the 
majority of meerkat sounds, even without prior audio knowledge specific to meerkats within the model. In 
other words, when provided with appropriate descriptive words, CLAP has the potential (through the similarity 
calculation between features of input audio and language prompts) to identify previously unknown or ambiguous 
animal species in real-world scenarios.

Discussion
In this section, we discuss some of the limitations we have identified in the applications of CLAP and Multi-
Modal Language Models in general, as well as potential future directions for improvements.

Prompt-engineering-free zero-shot models
Based on the previous discussions, it is clear that the quality of manually engineered text prompts directly 
impacts the zero-shot recognition performance of CLAP making such methods far from practical deployment 
at the moment. In other words, even though the model can recognize unseen samples in a zero-shot manner, 
the performance is highly dependent on the quality of the text prompts human experts give to the model. 
However, besides manual prompt engineering on annotated validation datasets, there currently exists a lack of 
efficient and effective methods to acquire high-quality, detailed text prompts. In addition, the English language 
contains hundreds of words that can describe sounds, and some of these words may even yield better performance 
for tasks like meerkat identification. There is no straightforward method for conducting a large-scale vocabulary 
search either, as the number of possible word combinations could be practically infinite and it largely depend 
on the user’s own knowledge and vocabulary Consequently, most studies on Multi-Modal Language Models 
can only offer limited and sometimes anecdotal evidence based on manual prompt engineering88. In addition, 
the reliance on manual prompt engineering also largely restricts the practical application of Multi-Modal 
Language Models in real-world scenarios under zero-shot settings, as the process can be time-consuming and 
labor-intensive, especially when dealing with large-scale bioacoustic datasets. Furthermore, since the majority 
of existing Multi-Modal Language Models are primarily trained on English44, this limits the use of such methods 
in non-English-speaking communities. These limitations underscore the need for future research to develop 
prompt-engineering-free zero-shot models that can automatically generate high-quality text prompts for zero-
shot recognition tasks. Although several attempts at automatic text prompt generation have been made in the 
Vision-Language model domain, such as with K-LITE89and LENS90, there remains a notable gap in studies 
focused on the Audio-Language Model domain. This identifies a promising avenue for future research in this 
area.

(a) CLAP-HTS-AT (2.1M) performance of recognizing birds in the background. Higher is better

Is this a sound of {} or frogs? Ap

Birds
Birds singing
Birds singing in the background
Birds singing far in the background
Supervised baseline ap:

0.54
0.63
0.73
0.79
0.88

(b)CLAP-HTS-AT (2.1 M) performance of recognizing gunshot sounds in tropical rain forest. Higher is better

Is this a sound of {A} or {B}? Ap

A: Gunshots, B: Noise
A: Gunshots in the distance, B: Noise
A: Gunshots in the distance, B: Broken branches or noise
Supervised baseline ap:

0.36
0.57
0.67
0.64

(c) CLAP-PANN (128 K) performance of recognizing meerkat sounds using 2-second window

Is this a sound of {} or non-animal noise? Ap

Meerkats
Meerkats growling
Meerkats clucking
Meerkats clucking or growling
Growling
Clucking
Clucking or growling
Animals
Animals growling
Animals clucking
Animals clucking or growling
Supervised baseline ap:

0.56
0.68
0.80
0.79
0.63
0.82
0.78
0.85
0.82
0.86
0.88
0.94

Table 4.  Experiment results on text prompts.
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Dedicated bioacoustics datasets for ALMs
Since the current version of CLAP, as well as most other Audio-Language Models91, is trained mostly on urban 
and standard audio datasets, one approach to enhance performance on bioacoustic tasks is to incorporate 
bioacoustic datasets directly into the existing pool of training data. This inclusion would also account for 
ultrasonic sounds from animals like dolphins and bats that are currently unsupported. Such integration could 
enable the models to exhibit better generalization abilities when applied to diverse bioacoustic tasks. However, 
training Multi-Modal Language Models relies on the availability of text descriptions associated with the audio 
files. To the best of our knowledge, datasets that pair bioacoustic audio with descriptive text do not yet exist. 
Thus, the development of such datasets represents a promising direction for future progress in Multi-Modal 
Language Models for bioacoustics.

On the other hand, collecting large-scale, real-world bioacoustics datasets with accompanying text de- 
scriptions can be challenging. An alternative is the creation of large-scale synthetic datasets, which are also 
currently nonexistent. Despite the discrepancy between synthetic and real-world data, exploring the possibility 
of using synthetic data to train ALMs is still promising, considering the accessibility and control that synthetic 
datasets can provide.

Species-level recognition
Even though group-level recognition can work as a noise/empty filtering tool helping practitioners to focus 
on the most relevant parts of the audio recordings, it is still essential to recognize species-level categories for 
more detailed ecological studies. The current iterations of CLAP and other Audio-Language Models are not yet 
capable of recognizing fine-grained species-level categories, such as distinguishing between different species of 
woodpeckers or thrushes. The biggest reason is because the current training data set does not have any fine-
grained species names in its language descriptions. Therefore, there is no way the model can link species names 
with audio features, just like the word “meerkat”. Even within the Vision-Language model domain, fine-grained 
zero-shot recognition remains one of the biggest challenges and only preliminary studies have been carried out 
thus far90,92. Yet, the advancements in Vision-Language Models on fine-grained zero-shot recognition suggest 
that this task is possible with high quality of text prompts. For instance, the Kosmos-141 project has shown that 
detailed verbal descriptions can aid in distinguishing between similar animal species in images, like those of 
a three-toed woodpecker versus a downy woodpecker. How to transfer such techniques into the bioacoustics 
domain is a potential direction for future research on species-level zero-shot recognition with Audio-Language 
Models.

Data availability
 All the datasets used in this project are published datasets. Upon the publication of this manuscript, a merged 
dataset combining all the datasets mentioned in the paper will be made available.

Code availability
Code for this project is ready for peer review through Zenodo: https://zenodo.org/records/10565262 and will 
be published upon acceptance through Github: ​h​t​t​​​​p​s​:​​/​​/​g​i​​t​h​u​b​.​c​o​m​/​z​h​m​​i​a​o​/​Z​e​r​o​S​h​o​t​T​r​a​n​s​f​e​r​B​i​o​a​c​o​u​s​t​i​c​s​C​o​d​
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