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Ratiometric fluorescence
nanoprobe based on nitrogen-
doped carbon dots for Cu?* and Fe3*
detection

Chunlei Yang™, Guiju Xu, Chenghao Hou & Hongwei Zhang™*

Heavy metal ions pollution in environmental waters has an increasing impact on human health. As
two common metal ions, copper ions (Cu?*) and ferric ions (Fe3*) widely exist in nature and play a vital
role in life process. Therefore, it is significant to design sensitive and simple detection approaches for
Cu?* and Fe3*. In our work, the ratiometric fluorescence analysis method (denoted as N-CDs/OPD) was
established for Cu?* and Fe3* detection. The N-CDs exhibited a Cu?* and Fe?* fluorescence quenching
response properties. The o-phenylenediamine (OPD) may be oxidized to 2,3-diaminophenazine (DAP)
by Cu?* and Fe3*. With addition of Cu?* or Fe3*, the fluorescence of N-CDs (436 nm) was quenched

and a new peak at 556 nm (DAP) appeared, which realized fluorescent ratiometric detection of Cu?*
and Fe3*. The Cu?* concentration shows a good linear correlation versus fluorescence ratio (F,36/Fss6)
in the range of 10 to 30 uM (R?=0.9981) with detection limit (LOD) of 0.86 uM. In addition, a good
linear relationship between fluorescence ratio (F,,/F...) and Fe3* concentration in the range of 20 to
80 uM (R?=0.9880) with LOD of 7.12 uM. This nanoprobe realizes the detection of authentic samples
successfully, which is expected to serve as a testing kit for analysis in water samples.
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With the development of modern industry, heavy metal ions pollution in environmental waters has an
increasing impact on animals, plants and human health. As two common metal ions, copper ions (Cu?*") and
ferric ions (Fe>*) widely exist in nature and play a significant role in life process'~>. The formation of intracellular
oxidoreductase in the body requires sufficient amounts of copper?. However, excessive Cu?* intake has been
linked to several physical disorders, including Wilson’s disease and Alzheimer’s disease>®. The irreversible liver
and kidney damage may be caused by long-term accumulation of copper’. Unfortunately, due to widespread use
of Cu?" in industrial production and daily life, which has been enrolled in the EPA’s pollutant list of toxic metal
species®. Fe>* plays critical roles in cellular metabolism, electron transfer, enzyme catalysis, oxygen hemoglobin
production’. Both of its deficiency or excess can cause Huntington!® or Parkinson's disease!!. Therefore, analysis
of heavy metal ions, especially Cu** and Fe’*, is of great significance for environmental protection and clinical
research.

Different analytical methods have been proposed for heavy metal ions detection, including atomic absorption
spectrometry'?, electrochemical analysis!?, inductively coupled plasma mass spectroscopy'?, colorimetry'> and
fluorometry'®!”. Among those ways, fluorescent probes show benefits of simplicity, high sensitivity, low cost
and background signals'®!°. Traditional fluorescence methods are based on intensity of individual emission
peak to quantitatively analyze ions, which is susceptible to environmental interferences and results in inaccurate
detection?*~22, To ensure the accurate detection, ratiometric fluorescence probes have self-calibration capabilities.
Two emission bands can act as internal reference, removing a majority of interfering factors, including probe
concentration, environmental conditions photobleaching and instrumental efficiency?*?*. However, the largest
number of ratiometric fluorescent probes usually focus on detecting a single heavy metal ion specifically. The
increased and complex detection requirements of multiple heavy metal ions are urgently needed.

Among fluorescent probes, various fluorescent nanomaterials attract extensive interest, such as metal
nanoclusters, quantum dots (QDs) and carbon dots (CDs), etc?®. The CDs are new carbon-based nanomaterials,
the size of which less than 10 nm with spherical particles?®. Compared with QDs, CDs have better performance,
including low toxicity, low cost, simple synthesis, photo stability, adjustable optical properties, good
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biocompatibility and water solubility?’. Herein, we innovatively developed a N-doped carbon dots (N-CDs)-
based ratiometric fluorescent nanoprobe (N-CDs/OPD) for detection of Cu?** and Fe** in aqueous solution
(Fig. 1). The N-CDs were synthesized via one-step solvothermal treatment of methionine and formamide. Due
to inter filter effect (IFE) between metal ion and carbon dots, the N-CDs exhibited a Cu?** and Fe?* fluorescence
quenching response properties. After Cu?* and Fe** mixed with this probe, the fluorescence of N-CDs (436 nm)
was quenched and a new peak at 556 nm (DAP) appeared. Cu?*/Fe3* would quench CDs’ fluorescence and oxidize
o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP). This strategy realized the fluorescence ratiometric
detection of Cu?* and Fe** in authentic samples successfully, which broadens the potential application of carbon
dots.

Experimental section

Materials and apparatus

o-phenylenediamine (OPD), methionine and formamide and were obtained from Shanghai Aladdin Biochemical
Techonology Co., Ltd. Phosphoric acid (H,PO,) and acetic acid (HAc) were purchased from Sinopharm
Chemical Reagent Co. Cu®* standard solution, Fe** standard solution, boric acid (H,BO,), NaOH, cobalt
chloride hexahydrate (CoCl,-6H,0), ferrous sulfate heptahydrate (FeSO,-7H,0), nickel (II) sulfate hexahydrate
(NiSO,-6H,0), barium chloride dihydrate (BaCl,-2H,0), chromium (III) nitrate nonahydrate (Cr(NO,),-2H,0),
KCI, CaCl,, NaCl, MgCl,, MnCl, and ZnCl, were acquired from Shanghai Macklin Biochemical Technology Co.,
Ltd. The section of “apparatus” was in “supplementary information”

Synthesis of N-doped carbon dots

N-doped carbon dots (N-CDs) were synthesized by solvothermal synthesis approach with precursors of
methionine and formamide. 0.2093 g of methionine was dissolved in 12.5 mL of formamide with ultrasound for
30 min. This mixed solution was added into a Teflon-lined stainless steel autoclave (50 mL) for 1 h with 180 °C.
After the system cooling to room temperature, the light brown supernatant was filtered by filter membrane of
0.22 pm to remove large particles. Then, the solution was purified with dialysis bag (molecular weight cut-off of
1000 Da) for 8 h. And finally, the purified product stored in a refrigerator at 4 °C for further use.

Fluorescent detection of Cu2+ and Fe3+

The stock solution concentrations of Cu®* and Fe** standard solution was 10 mM, respectively. 150 uL of Britton-
Robinson buffer [pH 5.3(Cu?*) 5.8(Fe**), 40 mM], ultrapure water, 150 uL of o-phenylenediamine solution (1
mM), various concentrations of Cu?*/Fe>* solution were blended and diluted to 1.4 mL. After 60 min/10 min
still standing at room temperature, 100 uL of N-doped carbon dots was added to above system. Fluorescence
measurements were carried out under the excitation wavelength at 360 nm. It was used as the ordinate that the
ratio of fluorescence intensity at 436 nm and 556 nm wavelengths (F,, /F.. ). Concentrations of Cu**/Fe** were
regarded as horizontal ordinate and drawing standard curve for Cu** and Fe** detection.
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Fig. 1. Schematic illustration of ratiometric fluorescent nanoprobe (N-CDs/OPD) for Cu?* and Fe** detection.
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In order to realize the Cu?* and Fe** detection in tap water, samples were spiked with various concentrations
of Cu?* (20 uM, 30 uM) and Fe** (40 uM, 60 uM). After that, the samples were measured by this probe using the
same experimental procedures as above. These fluorescent spectra were measured and concentrations of spiked
samples were calculated by corresponding standard curve.

Selectivity of the proposed nanoprobe

150 pL of Britton-Robison buffer (pH 5.3, 40 mM), 150 pL of o-phenylenediamine solution (1 mM), the same
concentration of Cu?*/Fe®* standard solution, or pure water sample as blank sample, various metal interference
ions (K*, Na*, Ca?*, Mg?*, Ba**, Zn?*, Co?*, Mn**, Fe?*, Ni?* and Cr’**) mixed well and diluted to 1.4 mL. 100 pL
of N-CDs were added to the above mixture after standing for 60 min. These fluorescent spectra were collected
under 360 nm excitation wavelength.

Results and discussion

Characterization and optical properties of N-doped carbon dots

The N-doped carbon dots (N-CDs) were synthesized by solvothermal method with a simple procedure. As
depicted in Fig. 2A, the TEM image indicates N-CDs have a monodisperse spherical structure with average
diameter of 2 nm. In order to certify element components of N-CDs, XPS measurement was performed. The
XPS full spectrum of N-CDs reflects five characteristic peaks, which represent C 1s, N 1s, O 1s, S 2s and S
2p, respectively (Fig. 2B). Atomic percentages of C, N, O and S were 52.23%, 8.06%, 31.01% and 8.71% by
calculation, which showing the major components of N-CDs and doped by S and N. The high-resolution XPS
spectra of N-CDs (C 1s, N 1s, O 1s and S 2p) are displayed in Fig. 2C-F. As shown in Fig. 2C, the high-resolution
XPS spectrum of C 1s was deconvolved into two characteristic peaks, which were attributed to C=0 (288.5 eV)
and C-O/C=C (285.6 eV) bonds. High-resolution spectra of N 1s (Fig. 2D) displayed three kinds of N: pyrrole
N (401.1 eV), amino N (400.3 eV) and pyridine N (399.3 eV)?*?. The high-resolution XPS spectra of O 1s
(Fig. 2E) locates peaks at 532.1 eV and 533.0 eV, which associate with C-O and C=0 bonds. As demonstrated
in Fig. 1F, the S 2p spectrum illustrates two major peaks of 164.8 eV and 163.7 eV, which correspond to S 2p1/2
and S 2p3/2 bonding™.

The FT-IR spectrum also shows the surface functional groups of N-CDs (Fig. 3A). A broad absorption bands
at 3200-3600 cm™ ! is attributed to stretching vibrations of O-H/N-H?3!. The peak located around 2876 cm™! and
1301 cm™! are regarded as stretching vibration of C-H3>%. Moreover, these specific peaks located at 1049 cm™!,
1387 cm™!, 1602 cm™! and 1665 cm™! represent the stretching vibration of C-O, C-N, C=C and C=0 groups,
respectively?>3*-3¢. These results demonstrate the surface of carbon dots is decorated by oxygen containing and
amino groups, and CDs doping with N are in accordance with FT-IR data. As demonstrated in Fig. 3B, these
fluorescence emission spectra of N-CDs with different excitation wavelengths were measured. The emission
peaks of N-CDs exhibit a slight red shift from 388 nm to 444 nm with the excitation wavelength from 310 to
370 nm, indicating the excitation-dependent emission of N-CDs. The property of excitation-dependence can be
caused by surface heterogeneity of functional groups®.

When N-CDs were excited at 360 nm, a maximum fluorescence emission intensity was acquired at 436 nm
(Fig. 3C). As depicted in inset photograph of Fig. 3C, the as-prepared N-CDs appear pale brown color under
daylight and emit bright blue fluorescence with 365 nm UV light. The N-CDs may be acted as a fluorescence
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Fig. 2. (A) TEM image of N-CDs, (B) XPS analysis of N-CDs, (C-F) High-resolution XPS spectra of C 1s, N

1s, O 1sand S 2p of N-CDs.
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Fig. 3. (A) FT-IR spectrum of N-CDs, (B) Fluorescence emission spectra of N-CDs with different excitation
wavelengths in range of 310 nm to 370 nm. (C) Fluorescence excitation (a) and emission (b) spectra of N-CDs,
UV-vis spectra of Cu?*(c) and Fe**(d). (D) Fluorescence emission spectra of N-CDs mixed with different metal
ions (from top to bottom: Zn?*, Mn?*, Fe?*, Mg?*, Na*, Ca?*, K*, blank, Co?*, Fe**, Cu?").
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Fig. 4. (A) Fluorescence lifetime curves of N-CDs in absence and presence of Cu?* and Fe**. (B) Fluorescence
spectra of a: N-CDs, b: N-CDs + Cu?*, ¢: N-CDs + OPD + Cu?, d: N-CDs + Fe**, e: N-CDs + OPD + Fe3*.

(C) UV-Vis absorption spectra of a: N-CDs, b: N-CDs + Cu?*, c: N-CDs + OPD + Cu?*, d: N-CDs + Fe3*, e:
N-CDs + OPD + Fe?*.

probe for Cu?* and Fe** detection due to their optical property. To examine the selectivity of N-CDs for Cu?* and
Fe’*, different interfering metal ions were measured with N-CDs (Fig. 3D). The fluorescent intensity of N-CDs
with relevant metal ions had little changes, while fluorescence quenching occurred with Cu?* and Fe**. These
comparison data of fluorescence spectra demonstrate the excellent specificity of N-CDs.

Feasibility analysis and condition optimization

To testify the feasibility of this probe, the sensing mechanism need to be studied. The as-prepared N-CDs can be
exploited as a probe to detect cupric ion and ferric ion. We speculated that the fluorescence quenching mechanism
of N-CDs was static quenching, which can be strongly determined by fluorescence lifetime measurement. Static
quenching usually does not change the fluorescence lifetime®. As demonstrated in Fig. 4A, compared with
lifetime of N-CDs in the presence of Cu?* and Fe?*, the three lifetime curves almost overlap, which illustrates the
static quenching effect. In addition, the absorption peak of Cu?* and Fe** (Fig. 3C) and excitation peak of N-CDs
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overlap significantly. Based on the almost unaffected lifetime curve of N-CDs by metal ion, it is certified that the
existence of inter filter effect (IFE) between metal ion and carbon dots.

To realize the ratiometric fluorescent detection of Cu?* and Fe?*, we investigated the response mechanisms
by the UV-vis absorption and fluorescence spectra. As shown in Fig. 4B, after Cu?* and Fe** mixed with N-CDs/
OPD system, the fluorescence of N-CDs (436 nm) was quenched and a new peak at 556 nm (DAP) appeared.
Because Cu?*/Fe?* would quench the fluorescence of N-CDs and oxidize OPD to DAP. In Fig. 4C, N-CDs
exhibits an obvious UV-vis absorption peak at 319 nm. The N-CDs/OPD appeared new broad absorption peaks
attributed to DAP in the presence of Cu®* and Fe**, which overlaps significantly with the excitation spectrum
of N-CDs. These phenomena may be relative to Cu**/Fe>* react with OPD, causing the generation of new
substance. These results can explain the further fluorescence quenching occurs for N-CDs induced by Cu?* and
Fe* after the addition of OPD in Fig. 4B. In terms of theoretical mechanisms, Cu?* and Fe** both have a strong
oxidation in acidic conditions, which could oxidize OPD to DAP in this sensing system. The relevant reaction
process is shown in Fig. 1. Cu?* oxidized OPD to DAP and it was reduced to Cu*/ Cu’. Fe** oxidized OPD to
DAP and it was reduced to Fe?*.

Optimized experimental conditions (pH values, concentration of OPD and reaction time) were employed
to obtain optimal response for Cu?* and Fe>* detection. As illustrated in Fig. 5A and C, as pH values increase,
F 5/ Fss (the fluorescent peak of N-CDs at 436 nm and DAP at 556 nm) reduces and attains a stable condition.
Therefore, pH 5.3 and pH 5.8 are selected as proper pH values for Cu?* and Fe** detection respectively. To
investigate whether pH has an effect on the fluorescence of N-CDs, the fluorescence response of N-CDs under
different time with pH 7.0 and pH 5.3 were measured (Fig. S1). The N-CDs have an excellent fluorescent stability
in weak acidic and neutral environment. Meanwhile, the OPD concentrations of Cu?* and Fe** measurement
have similar change trend (Figs. S2, S3). Thus, 100 uM of OPD was chosen for next test. Furthermore, the
reaction time of Cu®* and Fe®" are shown in Fig. 5B and D. These values of F,, /F for Cu?* and Fe** remain
steady after 60 min and 10 min, respectively. Hence, 60 min and 10 min are selected as optimal reaction time for
Cu?* and Fe** detection.

Fluorescent ratiometric detection of copper ions and ferric ions
The analytical performance of this probe for Cu?* and Fe** was evaluated under optimized experimental
conditions. As depicted in Fig. 6A, keeping the concentrations of N-CDs and OPD constant, the fluorescence
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Fig. 5. The effect of (A) pH values and (B) reaction time with Cu?* detection. The effect of (C) pH values and
(D) reaction time with Fe?* detection.
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The limit of detection (LOD) was determined by 3Sd/K, where Sd represents standard deviation of blank
samples and K represents slope of calibration line. The limit detection of Cu?* was calculated to be 0.86 pM.
Similarly, as shown in Fig. 6C, the fluorescent ratiometric response of this probe for Fe** shows same variation
trend with rising Fe3* concentrations (0-120 uM) with optimal experimental conditions. A steady reduction in

fluorescence ratio is recorded with Fe** concentration increasing (Fig.
/F..) and Fe®* concentration in range of 20 to 80 uM

(R?=0.9880) is obtained between fluorescence ratio (F
with LOD=7.12 pM.

436

S5). In Fig. 6D, a good linear relationship

In Fig. 7, to access the selectivity of Cu?" and Fe** detection, we performed fluorescent response of N-CDs/

OPD toward various potentially metal ions, including K*, Na*, Ca?*,

Mg2+, Ba2+, an*, C02+, Mn2+, Fe2+, Niz+

and Cr**. Figure 6 shows that only Cu?* and Fe** could lead to significant increase of fluorescence intensity ratio
and the influence of other metal ions is negligible. To examine the precision and accuracy of this nanoprobe,
tap water samples were spiked with Cu?* and Fe** ions and analyzed with this method in triple replicates with
same conditions. These relative standard deviations (RSD) and recoveries results for the spiked samples are
listed in Table 1. These results indicate a good consistency between added and found concentrations of Cu?*
and Fe3*. These recoveries in tab water samples are between 98.2% and 109.3%, and the RSD values are less than
1.40%. In order to strengthen scientific significance of this probe, standard addition detection of Cu?* and Fe**
in domestic wastewater were performed in Table S1, which acquired relatively good results. Therefore, these
results demonstrate the probe has a good accuracy and precision for the analysis of tracking Fe*>* and Cu?* in
real water. Compared with other analytical methods in Table S2, the detection performance of current method
was superior or comparable to previously reported probes for Cu** and Fe** detection. The above results indicate
that the simple and sensitive fluorescent ratiometric system has potential for monitoring the level of copper ions

and ferric ions in water.
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Fig. 7. Fluorescent intensity ratio of N-CDs/OPD in presence of different metal ions for Cu?* and Fe3*
detection (interfering and target ions from left to right: blank, Cu?*, Fe**, K¥, Na*, Ca?", Mg?*, Ba®*, Zn?*,
Co?*, Mn?*, Fe?*, Ni** and Cr’*, concentrations: 100 uM).

Samples | Spiked (uM) | Found (uM) | Recovery (%), n=3 | RSD (%), n=3
cu 20.00 21.86+0.16 | 109.3 0.71

30.00 29.46+0.27 98.2 0.88
e 40.00 41.95+0.61 | 104.9 1.40

60.00 59.36+0.61 98.9 0.92

Table 1. Results of the standard addition detection of Cu?* and Fe** in tap water.

Conclusion

In conclusion, a cost-effective N-doped carbon dots-based ratiometric fluorescent nanoprobe (N-CDs/OPD) is
designed for the detection of copper ions and ferric ions. The OPD could be oxidized to DAP by Cu?* and Fe’*.
The N-CDs have fluorescence quenching response characteristics of Cu** and Fe** because of inner filter effect.
After addition of Cu?* and Fe’*, the fluorescence of N-CDs (436 nm) is quenched and a new peak at 556 nm
(DAP) appears, which realizes fluorescence ratiometric change. Therefore, this strategy enables the fluorescence
ratiometric determination of Cu** and Fe** in authentic samples successfully, which has potential application
for point-of-care testing.

Data availability
The datasets used and analysed during the current study available from the corresponding author, Y.C. on rea-
sonable request.
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