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Panax japonicus C. A. Mey. is a rare and endangered Class II important protected wild medicinal 
plant in China with a wide range of pharmacological activities. The development of the fruit is 
special, only the apical capitulum can develop into fruit normally, and the color trait changes during 
the maturation process showed a pattern from green to red and from red to purple-black. In order 
to reveal the phenomenon of color trait changes during fruit development, this paper analyzed 
the correlation between color trait changes and pigment contents (chlorophyll, carotenoids) and 
secondary metabolite contents (anthocyanin, flavonoids, and total phenols) of the fruits, and used 
transcriptome sequencing to explore the correlation between color trait changes and synthetic genes, 
and then verified the fluorescence quantification with qRT-PCR. The results showed that chlorophyll 
was gradually converted and carotenoids began to appear in the pericarp when the fruit entered 
the color change stage from the green fruit stage; the content of anthocyanin, flavonoids and total 
phenolic substances gradually increased during fruit ripening. Transcriptome sequencing obtained 
transcriptome data of 15 samples from five periods of color trait changes in Panax japonicus fruits 
93.94 Gbp, with 462,117 functionally annotated Total Unigenes; the total number of DETs generated 
by intercomparison of the five periods (G, Y, R, B, P) was 17,895 (up-regulated 9435 and down-
regulated 8460). Weighted gene co-expression network analysis (WGCNA) indicated that 448 were 
hub differential genes (DETs) associated with common involvement in the color changes (carotenoids, 
anthocyanins, flavonoids, total phenols) in the fruits of Duchess. GO and KEGG were enriched to 
participate in the photosynthesis—antenna protein pathway 19; involved in flavonoid biosynthesis 
a total of 205. The results of qRT-PCR fluorescence quantitative validation showed that chlorophyll 
degradation related 6 candidate genes PjCAB and fruit color change flavonoid biosynthesis 6 candidate 
genes PjF3’H, PjCHI, PjCHS, PjDFR, PjANS, and PjC3’H at five periods were consistent with the 
transcriptome sequencing results.
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Fruit color in plants is an important signal for fruit ripening and plays an important role in the ecosystem. The study 
of fruit phenotypic traits and transcriptome to reveal the mechanism of fruit coloration is an important issue of 
special interest in the field of botany. In the study of fruit color in plants, many scholars have found that chlorophyll, 
carotenoids, flavonoids, anthocyanin, etc. are the main physiological indicators of fruit color, and this system of 
indicators has been confirmed in the color of fruits of a variety of plants, such as chilli peppers1, kiwifruit2–4, 
begonias5, tomatoes6,7, mandarins8, peaches9, and so on. Transcriptome analysis of the molecular mechanism of 
plant fruit coloring elucidated the molecular mechanism of fruit discoloration through flavonoid pathway and 
gene co-expression network analysis (WGCNA)10. Key enzyme genes involved in fruit coloration were identified in 
passion fruit11, jujube12, red mango13, blood orange14, apricot15, grapefruit16 and cranberry17.Panax japonicus (Panax 
japonicus C. A. Mey.) is a wild endangered valuable medicinal plant under Grade II protection in China, and is a 
perennial herb of the genus Ginseng in the family Wugazhidae; it has the effect of supplementing blood with Panax 
ginseng and supplementing qi with ginseng, so it is also called bamboo Panax ginseng and Panaxnotoginseng18. The 
special requirements of its living environment limit the distribution range and migration ability of this species to 
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a certain extent, resulting in a narrow ecological range, which is mainly distributed in the southwestern region of 
China (Yunnan, Guizhou, Sichuan) and Enshi, Hubei19. The fruit is a spherical berry, which is usually green when 
the flower fades for half a month, and then starts to change color from light green to red when the fruit matures, 
with the upper part purple-black and the lower part red20,21. In this study, we measured the physiological indexes 
and pigment content changes in the fruits of Salvia miltiorrhiza, and based on RNA-Seq sequencing analysis, we 
obtained the candidate transcripts and key functional genes of metabolic pathway biosynthesis related to the change 
of color traits in Panax japonicus fruits. We also revealed the physiological and molecular aspects of the metabolic 
pathways related to color changes in Panax japonicus fruits, and the key functional genes of the metabolic pathway 
biosynthesis related to color changes in Panax japonicus fruits. This study reveals the causes of the changes in fruit 
color traits and its molecular regulation mechanism, and provides reference for further exploration of the key genes 
for the changes in fruit color traits in ginseng plants of the family Ginseng, Araliaceae (Fig. 1).

Results and analysis
Pigment and physiological index content of Panax japonicus fruit
To determine the dynamic changes of chlorophyll, carotene, anthocyanin, flavonoids and total phenols in the 
pericarp of Panax japonicus fruits during five different color trait change periods by enzymatic assay, and to reveal 
the causes of color trait changes in Drosera fruits from physiological indexes. The results showed Chlorophyll 
content showed a decreasing trend in fruit G to P. The chlorophyll content ranged from 0.164 to 0.743 mg.g−1 
over the five color change periods, with G being the highest at 0.743 mg.g−1, Y chlorophyll content being the 
next highest, and P chlorophyll content being the lowest (Fig. 2a). The carotenoid content showed an increasing 
trend from G to P. However, the carotenoid content of the pericarp was synthesised slowly from G to B, and 
the highest value of carotenoid content was reached at P pericarp. The carotenoid content ranged from 0.042 to 
0.234 mg.g−1 during the five color change periods, with P having the highest content of 0.234 mg.g−1, followed by 
B carotenoids, and G carotenoids being the lowest (Fig. 2b). The anthocyanin content showed a gradual increase 
from G to P, with a slow rate of synthesis from G to B. The highest anthocyanin content was reached in the P 

Fig. 2.  The physiological index content of Panax japonicus fruit in 5 different periods.

 

Fig. 1.  Changes of fruit color traits of Panax japonicus in 5 periods.
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pericarp. The anthocyanin content ranged from 0.200 to 3.393 mg.g−1 during the five color change periods, with 
the highest content of 3.393 mg.g−1 at the ripening stage, followed by the average anthocyanin content of B, and 
the lowest average anthocyanin content of G (Fig. 2c). The synthesis of flavonoid content showed an exponential 
increase from G to P. Flavonoid content ranged from 1.713 to 7.256 mg.g−1 during the course of the five color 
change periods, with the highest content of 7.256 mg.g−1 during the ripening period, followed by the average 
flavonoid content of B, and the lowest average flavonoid content of G. The flavonoid content of G was the highest 
during the ripening period (Fig. 2d). The total phenolic content showed a gradual increase from G to P. The trend 
was the same as that of the anthocyanin content, with total phenolic content ranging from 0.940 to 2.790 mg.
g−1 during the five color-presentation phases, with the highest content at the maturity phase of 2.790 mg g−1, 
followed by the average total phenolic content of B, and the lowest average total phenolic content of G. The total 
phenolic content of G was the highest at the maturity phase (Fig. 2e). In summary, the results showed that the 
chlorophyll in the fruit was gradually destroyed, carotenoids began to appear in the pericarp, and anthocyanin, 
flavonoids and total phenolics began to be synthesized and played a decisive role in the color change during the 
maturation process of the fruit of Panax japonicus.

Sequencing data quality control and transcript splicing clustering
The transcriptome data of 15 samples for the color trait variation of Panax japonicus fruits were obtained by 
sequencing on the Illumina platform 93.94 Gbp, the values of Q30 were all greater than 99%, the GC contents 
were all greater than 42%, and the sequence error rate was 0.03% < 0.1%, which indicated that the quality of 
sequencing of these values was qualified (Supplementary Table 1). Trinity [6] was used to splice the clean reads 
and the longest Cluster sequences were obtained by Corset hierarchical clustering for analysis. The lengths of 
transcript and unigene sequences were counted separately (Supplementary Fig. 1). The most lengths were 200–
400 bp, 311,390 and 177,932, respectively; followed by lengths of 400–600 bp, with the numbers of 93,869 and 
89,119; the number of transcripts and unigenes with sequence lengths longer than 2Kbp was 51,614, and the 
least number was in the interval of 1.8–2Kbp. The number of transcripts and Unigenes in the 1.8–2Kbp interval 
was 9773.

Functional annotation of identified transcripts
The 462,117 unigenes were annotated, and the sequence information in the NR database annotated the most 
239,867 unigenes, accounting for 51.91% of the total number; the GO database annotated the least 116,105 
unigenes, accounting for 25.12% of the total number (Supplementary Table 2). Plotting venn diagram through 
five databases (Fig. 3A), there were 133,297 unigene sequences co-annotated to five databases, 20,986 unigene 
sequences annotated to the Nr database, 16,063 unigene sequences annotated to the Nt database, 1,135 sequences 
annotated to the KOG database, 26 sequences annotated to the Swiss-prot database, 26 sequences annotated 
to the Uniprot database, and 1,135 sequences annotated to the Nt database (KOG database). 26 entries, and 
2 entries to the Uniprot database. Nr Homlogous Species Distribution annotations were performed to obtain 
information on the gene sequences of bamboo ginseng fruits and gene functions, and the analysis revealed 
that Daucus carota subsp. sativus (37.43%), Actinidia chinensis var. chinensis (6.63%), Camellia sinensis var. 
sinensis (3.07%), and Vitis vinifera (5.11%) (Fig. 3B). Functionally enriched GOs were classified one level below 
the three major categories (BP Biological process, CC Cellular component, MF Molecular Function) (Fig. 3C; 
Supplementary Table 3) while all Unigenes in the KOG database were annotated in the KOG database (Fig. 3D), 
and were classified according to the KEGG metabolic pathways they participated in (Fig. 3E; Supplementary 
Table 4), It was divided into five broad categories, cellular processes, environmental information processing, 
genetic information processing, metabolism and organic systems, with the highest percentage of genes annotated 
in the metabolism category at 9.88%, followed by secondary metabolite biosynthesis at 5.04%, and microbial 
metabolism in different environments at 2.26%.To further investigate the transcription factors that may be 
involved in the color trait changes in Panax japonicus fruits, all the assembled transcripts were predicted using 
iTAK [30] software to screen the transcription factors that may be involved in the color trait changes in Panax 
japonicus fruits. As a result, 10,139 transcripts encoding TFs were identified and classified into 93 different 
TF families including subfamilies (Supplementary Table 5). Due to the large number of predicted transcript 
families, the top 20 predicted more abundant families were selected for histogram display, among which the 
most abundant TFs were MYB-related, AP2/ERF-ERF, C2H2, bHLH, C3H, and WRKY families (Supplementary 
Fig. 2).

Differential gene expression analysis
In order to identify the genes involved in the variation of color traits in the fruits of Panax japonicus, transcriptome 
differential gene expression (DEG) analysis was performed. The results indicated that the total number of DEGs 
generated by comparing each of the five periods (G, Y, R, B, P) with each other was 17,895, of which groupGvsgroupB 
had the highest number of 3,115 DEGs, including 1,794 up-regulated and 1,321 down-regulated genes (Fig. 4). The 
distribution of DEGs with different color change periods was further screened, and the results of 10 subgroups were 
compared and plotted in Venn diagrams. Comparing the Y, R, B, and P color change periods using the G period as 
a control, 129 shared differential genes were obtained (Fig. 4A); 29 shared differential genes were obtained using the 
Y period as a control (Fig. 4B); 18 shared differential genes were obtained using the R period as a control (Figure 
4C); and 25 shared differential genes were obtained using the B period as a control (Fig. 4D); 220 shared differential 
genes were obtained using the P period as a control (Fig. 4E). It is worth noting that 129 differential genes were 
differentially expressed from the G to P stage of fruit in the comparison of fruit ripening color trait changes in 
Panax japonicus, which can be used as a candidate gene pool for fruit color trait changes in the next step of research.

Scientific Reports |        (2025) 15:13950 3| https://doi.org/10.1038/s41598-025-89508-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


WGCNA analysis of differential genes (DETs)
A clustering tree was constructed based on the correlation of expression between genes and divided into 
modules, genes have similar expression changes in a physiological process, then these genes may be functionally 
related, defining them as a module (module), and the longitudinal distance represents the distance between 
two nodes (between genes) (Fig.  5A). Heat map of module-trait relationship, when the correlation between 
module and trait is significant, the redder the color of the square, the stronger the correlation.The correlation 
between MElightcyan module and G-phase and chlorophyll trait is significant at 0.98 and 0.91 respectively, the 

Fig. 3.  Functional annotation of fruit transcripts of Panax japonicus.
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correlation between Mecyan module and Y-phase is significant at 0.96, the correlation between Mered module 
and R-phase is significant at 0.90, and the correlation between Meblue module and B-phase is significant at 0.90. 
correlation was significant at 0.90. It is noteworthy that the MEblack module was significantly correlated with P 
phase, carotenoids, anthocyanins and flavonoids traits of 0.80, 0.84, 0.81, 0.77, 0.84, respectively (Fig. 5B), which 
may be correlated with the changes in the color traits of the Panax japonicus fruits. The 448 relevant sequences 
from the MEblack module were subjected to KEGG Pathway analysis, which revealed seven enrichments for the 
biosynthesis of secondary metabolites and four additional enrichments for the metabolism of terpenoids and 
polyketides (Fig. 5C).

GO enrichment analysis of differential genes
The total number of DETs obtained during the process of fruit color trait changes in Panax japonicus, was 17,895, 
of which 9435 were up-regulated and 8460 were down-regulated. In order to obtain the functional annotation of 
the differential genes, GO enrichment histogram analysis was carried out using DETs, and because of the large 
number of GO terms annotated, 15 of the three categories were selected for the graph (Supplementary Table 
6), and in the four subgroups groupGvsgroupY, groupGvsgroupR, and groupGvsgroupB, groupGvsgroupP, 
groupGvsgroupR, groupGvsgroupB, and groupGvsgroupP DETs enriched the highest number of biological_
processes in the Term was flavonoid metabolic process; among them, groupGvsgroupB enriched the most 45 
genes (Fig.  6A), followed by groupGvsgroupB enriched 45 genes. GroupGvsgroupB was the most enriched 
group with 45 genes (Fig. 6A), followed by groupGvsgroupR with 31 genes (Fig. 6B), groupGvsgroupY with 20 
genes (Fig. 6C), and groupGvsgroupP with the least enriched group with 12 genes (Fig. 6D). A Wayne diagram 
using the DETs of the enriched flavonoid metabolism process in each subgroup revealed five common DETs in 
four subgroups, and nine common DETs in three other subgroups, except for the groupGvsgroupP subgroup 
(Fig. 6E). Heat map analysis of these shared differential genes indicated that there were significant differences 
in flavonoid metabolism processes in the color traits of Panax japonicus fruits, and that these genes went from 

Fig. 4.  Statistical histogram and Venn diagram of differential gene number.
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non-expression or low expression at the very beginning to high expression at the time of fruit ripening. These 
genes were preliminarily predicted to be candidate genes for the variation of fruit color traits in Panax japonicus 
(Fig. 6F).

KEGG pathway enrichment analysis of differential genes
KEGG Pathway enrichment bubble map analysis was performed with 17,895 DETs for the color trait of Panax 
japonicus fruits to further elucidate their potential biological functions in the variation of color traits in 
Panax japonicus fruits. The results showed that the metabolic pathways enriched in DEGs compared in group 
GvsgroupY were photosynthesis, carbon metabolism, flavonoid biosynthesis, photosynthesis-haptoglobin, 
glyoxylate and dicarboxylic acid metabolism (Fig. 7A); The metabolic pathways enriched in DEGs compared in 
groupGvsgroupR are, Flavonoid biosynthesis, Carbon metabolism, Carbon fixation in photosynthetic organisms, 
Photosynthesis, Glycine, serine and threonine metabolism, Photosynthesis—antenna proteins (Fig.  7B). The 

Fig. 5.  WGCNA analysis of differentially expressed genes in fruit color traits of Panax japonicus.
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metabolic pathways enriched in DEGs compared in groupGvsgroupB are Carbon metabolism, Carbon fixation 
in photosynthetic organisms, Glycine, serine and threonine metabolism, Photosynthesis, Flavonoid biosynthesis, 
(Fig. 7C); The metabolic pathways enriched in groupGvsgroupP are Carbon metabolism, Carbon fixation in 
photosynthetic organisms, Protein processing in endoplasmic reticulum, Protein processing in endoplasmic 
reticulum, Propanoate metabolism, Glycolysis/Gluconeogenesis, Citrate cycle (TCA cycle). Glyoxylate and 

Fig. 6.  Differential gene GO enrichment histogram.
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dicarboxylate metabolism (Fig.  7D). It is noteworthy that the metabolic pathway for color trait changes in 
Drosera fruits, Flavonoid biosynthesis, was enriched in all three subgroups (groupGvsgroupY, groupGvsgroupR, 
groupGvsgroupB), while the metabolic pathway for chlorophyll degradation, Photosynthesis—antenna proteins, 
was only enriched in groupGvsgroupG and groupGvsgroupR. photosynthesis—antenna proteins) were only 
enriched in groupGvsgroupY and groupGvsgroupR.

Candidate genes for photosynthesis-antenna proteins and qRT-PCR validation
Screening of differential candidate genes for chlorophyll degradation in fruit through the KEGG-enriched 
photosynthesis—antenna proteins metabolic pathway. The total number of DETs enriched for the five color trait 
change periods was 30 (Supplementary Table 7), of which groupGvsgroupY was enriched by up to 11 (Fig. 8A); 
in addition, the 30 genes enriched were collated for gene expression, and the top 10 genes with higher expression 
were selected for heatmap clustering analysis. The clustered heat map of the expression of the selected genes showed 
that the expression of the first seven genes was highest at the green fruit stage (G) and decreased as the fruit color 
began to change, the last three genes were not expressed in the fruit (G), were expressed during the (Y, R, B) 
period, and were not expressed up to the fruit ripening stage (P) (Fig. 8B). To validate the RNA-Seq results, among 
the 10 candidate genes clustered in the heat map, six highly expressed candidate genes of the photosynthesis-
antenna protein metabolism pathway were selected for expression analysis by qRT-PCR. The results showed 
that the expression of all six candidate genes was significantly higher in the (G) period than in its (Y, R, B, P) 
period, which was highly consistent with the transcript expression (Fig. 8a–f), and these photosynthesis-antenna 
protein metabolism pathway candidate genes conformed to the pattern of the gradual decrease of chlorophyll in 
the color trait of the fruits of Panax japonicus. Sequence comparison was performed using NCBI database, and 
the information of six candidate genes were obtained, all of which were highly similar to chlorophyll a/b binding 
(CAB), and they were named as PjCABI, PjCABII, PjCABIII, PjCAB1, PjCAB2 and PjCAB3 key candidate genes, 
respectively.

Figure 6.  (continued)
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Candidate genes for flavonoid biosynthesis and qRT-PCR validation
The Flavonoid biosynthesis pathway of KEGG-enriched DETs was used to screen candidate genes associated 
with changes in fruit color traits of Panax japonicus, mainly analysing the Flavonoid biosynthesis pathway, 
which starts with phenylpropane biosynthesis and ends with anthocyanin biosynthesis. The results showed 
that 90 genes were obtained from groupG vs groupY, 154 from groupG vs groupR, and 145 from groupG vs 
groupB, and a total of 290 flavonoid biosynthesis genes were obtained from each group (Supplementary Table 
8), which were analysed by using a Wayne diagram, and 81 common candidate genes were obtained that were 
associated with the changes in the color traits of the fruits of Panax japonicus, (Supplementary Fig. 3). Based on 

Fig. 7.  KEGG enrichment bubble diagram analysis.
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the flavonoid metabolic pathway map, 81 candidate genes were further examined for differences at the gene level 
during the five stages of color change in Drosera fruits, and five pathways of flavonoid biosynthesis genes were 
obtained (Supplementary Table 9); The top 6 highly expressed candidate genes of these 5 pathways were selected 
for heat map clustering analysis and these highly expressed candidate genes were subjected to NCBI database 
sequence comparison to obtain the gene information and were named as PjF3’H, PjCHI, PjCHS, PjDFR, PjANS, 
respectively. Mapping of flavonoid biosynthesis pathway was analysed to identify gene products in the flavonoid 
biosynthesis pathway; whether it is the PjCHS (Fig. 9A) and PjCHI (Fig. 9B) candidate genes upstream of PjF3’H 
candidate genes on the synthesis of coumaroyl CoA, naringenin chalcones, naringenin metabolites enriched 
in PjDFR (Fig.  9D) and PjANS (Fig.  9E) candidate genes downstream of PjF3’H (Fig.  9C) on the synthesis 
enrichment of dihydrosorbinol, dihydroquercetin, dihydromyricetin, white cornflowerin, cornflowerin, 
and white geranium glycoside ligand metabolite were all significantly upregulated (Fig.  9). Therefore, more 
substances were synthesized in the flavonoid biosynthesis pathway regarding the color trait changes in Panax 
japonicus fruits, and thus the whole flavonoid biosynthesis metabolism pathway was critically oriented in the 
promotion of color trait changes in the ripening of Panax japonicus fruits. In order to validate the RNA-Seq 
results, nine flavonoid biosynthesis-related candidate genes were randomly selected among the five categories of 
candidate genes, and expression analysis was carried out by qRT-PCR. The results pointed out that the relative 
expression levels of these candidate genes were highly consistent with their corresponding RNA-Seq expressions 
during the five periods of changes in the color traits in the fruits of Panax japonicus (Fig. 10a–i), thus confirming 
the validity of the RNA-Seq data. These candidate genes had the highest expression of PjDFR (Fig. 10i) and the 
lowest expression of PjC3’H (Fig. 10c) during the flavonoid biosynthesis of Panax japonicus fruits.

Fig. 8.  KEGG enriched the candidate differential genes of photosynthesis-antenna protein metabolic pathway.
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Conclusion and discussion
In this study, we used five different periods of color trait changes in the fruit of Panax japonicus as test material, 
and determined the effects of chlorophyll, carotenoids, anthocyanin, flavonoids and total phenols on the changes 
of fruit color traits during the growth and development of Panax japonicus by using enzyme labeling assay. The 
results of the physiological indexes of Panax japonicus fruits indicated that the pattern of chlorophyll content in 
the pericarp decreased with the color change of the fruits, which was verified in the process of color trait changes 
of fruits of chilli peppers22, yellow-fleshed kiwifruit23, and cherry tomatoes24, suggesting that in the maturation of 
the fruits of the plants, their chlorophyll content would gradually decrease and be converted into other pigments 
to show different colors; and the effect of chlorophyll content on the color trait changes of Drosera fruits during 
growth and development of Drosera fruits was determined by carotenoids and total phenols. This conclusion is the 
same as that of Guo Yong mei22, Huang Chunhui23 and Ruan Meiying24 in the study of chilli, kiwifruit and tomato; 
the changes in the content of anthocyanin in the fruits of Drosera showed a trend of gradual increase, while the 
synthesis of flavonoids and total phenolics showed a trend of increasing, then decreasing, and then increasing again. 
This phenomenon was also confirmed in the changes of fruit color traits of Viburnum25, Capsicum annuum26, 
blueberry27–29, apple30 and mulberry31. The above analysis pointed out that the gradual degradation of chlorophyll 
and the gradual accumulation of carotenoids in the ripening process of Drosera fruits, and the simultaneous 
synthesis of anthocyanin, flavonoids and total phenolic substances are conducive to the change of fruit color traits.

High-throughput sequencing technology was used to sequence the transcriptome of Panax japonicus fruit for 
the first time, and a total of 93.94 Gbp of transcriptome data was obtained from 15 samples of Panax japonicus 
fruit color change, and 462,117 functional annotations were obtained after clustering by Corset hierarchy. 
Transcriptome sequencing analyses of Pentaphyllaceae plants revealed that Total Unigenes 135,235 single genes 
were obtained by transcriptome sequencing of flowers, leaves, roots and rhizomes of Panax japonicus32; and 
Panax notoginseng roots, leaves and flowers were transcribed and sequenced. Total Unigenes 107,340 single 
genes33; Panax quinquefolius root transcript sequencing annotated a total of 21,68434, which shows that the 
same genus of Pentaphyllum is differently organised and the results of transcript sequencing are different. The 
total number of DETs generated by comparing the five periods of G, Y, R, B, and P in the fruit of Duchess 
with each other was 17,895 (9435 up-regulated and 8460 down-regulated) differentially expressed Unigenes 
(DETs), respectively. Transcriptome sequencing of ’Ningqi No.1’ and ‘Ningqi No. 7’ fruits at the green fruit stage, 
color change stage and ripening stage obtained 2827, 2552 and 2311 differentially expressed genes at the green 
fruit stage, color change stage and ripening stage35; Sequencing of black fruit Lycium barbarum and white fruit 
Lycium barbarum obtained 25,279 differentially expressed genes of black fruit Lycium barbarum and white fruit 

Fig. 9.  KEGG enrichment of candidate differential genes in flavonoid biosynthesis pathway.
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Lycium barbarum36. It can be seen that the total number of DETs obtained by sequencing the transcriptome of 
the fruits of Panax japonicus is larger than that of ‘Ningqi No. 1’ and ‘Ningqi No.7’, but smaller than that of the 
black-fruit goji berry and white-fruit goji berry.

Weighted co-expression network analysis of color trait variations (DETs) in Panax japonicus fruits was 
carried out by WGCNA method to reveal candidate hub gene modules regulating color trait variations in Panax 
japonicus fruits. The results indicated that a total of 10 co-expression modules were obtained in the co-expression 
network analysis, and 448 hub genes related to carotenoids, anthocyanins, flavonoids and total phenols in 
DETs were identified in the MEblack module. In the study of Capsicum annuum fruit color traits, 17 modules 
were obtained for co-expression network analysis, of which 397 genes were involved in the accumulation of 
carotenoids in the ‘Darkgreen’ module37, and 14 co-expression modules were identified in nine developmental 
stages of Luffa aegyptiaca fruit, of which the Turquoise module was associated with fruit length and length. The 
Turquoise module was significantly correlated with fruit length and fruit diameter, and 10 candidate genes for 
the potential control of fruit length in lucerne were obtained38. Four of the 23 modules in the analysis of the 
gene coexpression network related to quality traits in okra were involved in regulation39, 15 modules in the 
gene coexpression network related to drought tolerance in the root system of potato, and a one-guinea gene 
coexpression module for root drought tolerance was obtained, and 15 modules were obtained from the Genetic 
Basis of Biological Functions of Maize Plant Height and Spike Height40. co-expression modules41. Six modules 
of gene co-expression were obtained in transcriptional regulators of banana fruit ripening42. It can be seen that 
different plant fruit traits (DETs) can be obtained as candidate genes for trait-related modules by the WGCNA 
method.

Anthocyanins are one of the important parts of pigments produced by the flavonoid biosynthetic pathway, 
and the key enzymes and structural genes involved in the flavonoid biosynthetic pathway have been confirmed 
accordingly in fruits43. GO and KEGG Pathway functional enrichment analyses of DETs for color trait changes in 
Panax japonicus fruits yielded 56 genes for flavonoid metabolism in the GO database and 149 genes for flavonoid 
biosynthesis in the KEGG Pathway database, which may be involved in the regulation of color trait changes in 

Fig. 10.  qRT-PCR of flavonoid biosynthesis pathway candidate genes enriched by KEGG.
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D. japonicus fruits during ripening;A total of 29 differentially expressed genes were significantly enriched in the 
isoflavonoid biosynthesis pathway by KEGG Pathway analysis of DETs at three stages of Capsicum annuum green 
ripening fruit color development37; Ficus carica pericarp transcriptome KEGG Pathway flavonoid biosynthesis 
has 74 differentially expressed genes enriched44, 4 different varieties of chilli pepper fruit color metabolome and 
transcriptome comprehensive analysis, KEGG Pathway based on the WGCNA method to identify 7 flavonoid 
synthesis candidate genes45. Studying five aubergines with different fruit color traits in KEGG Pathway obtained 
144 DETs enriched in aubergines, including flavonoid metabolites46; the flavonoid pathway enriched DETs in 
the fruits of Panax japonicus were all more than that of chilli pepper green ripening37,45, Figs.44 and aubergines46, 
which is also the process color trait variability. Secondly, KEGG Pathway enrichment of DETs for fruit color 
trait changes in Panax japonicus yielded 19 genes in the photosynthesis-antenna protein pathway, which may 
be involved in the chlorophyll metabolism pathway; the green color of aubergine pericarp is mainly affected by 
chlorophyll KEGG Pathway enrichment yielded 27 DETs related to chlorophyll metabolism, and wheat breeders 
indicated that the up-regulation of photosynthesis-antenna protein genes could maintain the green color of 
leaves for a long time46, wheat breeders indicated that the up-regulation of photosynthesis-antenna proteins 
genes can maintain the green color of leaves for a long time, KEGG Pathway enrichment found 46 differentially 
expressed genes involved in photosynthesis-antenna eggs47, in grape (Vitis vinifera) fruit study, 122 DETs were 
found in KEGG Pathway enriched photosynthetic antenna proteins48. The candidate genes enriched in the 
KEGG Pathway for photosynthesis-antenna proteins for color trait changes in the fruits of DETs were less than 
those of aubergine46, wheat47, and grapes48, suggesting that DETs’ unique growth environments of high altitude, 
high humidity, and high shade are inherently caused by the unique growth environment of DETs.

In order to further prove the reliability of the transcriptome data for the functional enrichment of key 
candidate genes for the color trait changes in the fruits of Panax japonicus, six highly expressed candidate genes 
of the photosynthesis-antenna protein pathway were selected by real-time fluorescence quantitative PCR (qRT-
PCR) for qRT-PCR validation. The results pointed out that with the same pattern of change of transcriptome 
data, the expression of green fruit stage (G) was the highest; the gene expression decreased gradually with 
the maturity of fruit. The information of the candidate genes was obtained and named as PjCABI, PjCABII, 
PjCABIII, PjCAB1, PjCAB2, PjCAB3 through NCBI database comparison. 9 highly expressed key candidate 
genes for color trait changes were selected in KEGG Pathway flavonoid biosynthesis metabolism pathway for 
qRT-PCR verification. The results pointed out the same results with the transcriptome data, and the information 
of key candidate genes were obtained and named as PjF3’H, PjF3’H1, PjCHI, PjCHI1, PjCHS, PjCHS1, PjDFR, 
PjANS, and PjC3’H through the comparison of NCBI database, and it is noteworthy that the PjDFR gene had the 
highest expression among the nine candidate genes. It was found that the chlorophyll content during kiwifruit 
fruit development was highly correlated with chlorophyll degradation-related genes, especially three chlorophyll 
a/b binding proteins (CABs) genes play an important role in chlorophyll degradation49. Chlorophyll a/b binding 
protein (CAB) genes were also obtained during peach fruit (Prunus persica ’ Hujingmilu ’) development as 
key degradation proteins for chlorophyll metabolism50. These studies are highly consistent with the decrease in 
chlorophyll content and expression of six CAB genes of the related photosynthesis—antenna protein pathway 
during fruit development in Panax japonicus. Flavonoid metabolites are important pigmentation factors that 
play important roles in leaf, flower, fruit and seed tissues51,52. The key enzyme genes CHI, CHS and F3′H were 
found to be the main factors affecting pericarp color in the color formation mechanism of passion fruit11. The 
key flavonoid biosynthesis genes F3’H and MiANS genes in the post-ripening process of green ripe fruits of the 
red mango variety Zill were also expressed in the variation of color traits13. All of these findings indicated the 
same as the nine candidate genes screened in the flavonoid biosynthesis pathway in Zill fruits, further suggesting 
that these candidate genes are the key enzyme genes for color trait changes in Panax japonicus fruits.

The changes of color traits in the fruit of Panax japonicus showed an opposite trend in the dynamic pattern 
of chlorophyll content and carotenoids, anthocyanins, flavonoids and total phenolics in physiological and 
biochemical aspects. 19 candidate genes in the photosynthesis-antenna protein pathway related to chlorophyll 
degradation were also obtained in the transcriptome analysis, and 6 key candidate genes for high-expression 
were verified by qRT-PCR, and 81 candidate genes were obtained in the flavonoid biosynthesis metabolic 
pathway, and 9 key candidate genes for high-expression were selected. 81 candidate genes were obtained in 
flavonoid biosynthesis metabolism pathway, and 9 highly expressed key candidate genes were selected for qRT-
PCR validation. Physiological, biochemical and transcriptomic analyses revealed the mechanism of fruit color 
trait changes in S. dubiae, and that the degradation of chlorophyll and the synthesis of carotenoids, anthocyanin 
and flavonoids were synchronized in the fruit.

Materials and methods
Plant material
Panax japonicus fruits were collected from the Conservation Base of Bamboo Ginseng Germplasm Resources of 
’Guizhou Innovation Centre of Mountain Specialty and Efficient Agriculture’ in Anshun university, Anshun City, 
Guizhou Province, China. Five different color change periods (G, Y, R, B, P) of the fruit were selected as shown in 
Fig. 1, and the fruit was washed with pure water, the excess water on the pericarp was sucked up by filter paper, 
and the seeds and pericarp were removed with a scalpel; the pericarp was frozen in liquid nitrogen for 15 min, 
and then the pericarp was grinded in a mortar and pestle, and then stored in a refrigerator at -80℃ for later use.

Determination of physiological index items
Using the enzyme standard detection method, the powder samples of Panax japonicus pericarp stored in the 
ultra-low-temperature refrigerator at – 80 ℃ for five periods were taken out, and each sample was weighed 
into three portions of 0.1 g, and the extraction method was carried out in accordance with the (solarbio) kit 
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for the determination of the contents of chlorophylls (BC0995), carotenoids (BC4335), anthocyanin (BC1385), 
flavonoids (BC1335), and total phenols (BC1345). BC1345) content determination.

RNA extraction and detection
Total RNA was extracted from 15 samples of Panax japonicus pericarp (5 different fruit color traits, 3 biological 
replicates) using Tiangen Kit, RNAprep Pure. The integrity and quality of RNA was assessed by agarose gel 
(Agarose horizontal electrophoresis machine model DYCP-32C) and Agilent Agilent 2100 Bioanalyzer.

Library construction and sequencing
The first strand of cDNA was synthesised in M-MuLV reverse transcriptase system using fragmented mRNA 
as template and random oligonucleotides as primers, and the second strand of cDNA was synthesised using 
dNTPs as raw material. The double-stranded cDNA was purified and subjected to PCR amplification to finally 
obtain the library. Qubit2.0 Fluorometer was used for preliminary quantification, and the library was diluted to 
1.5 ng/ul. Agilent2100 bioanalyzer was used to insertsize the library to ensure the quality of the library. Quality 
control of sequencing data (Trimmomatic) and de-hosting sequences (Bowtie2)53 were performed to obtain 
valid analysed sequences (clean data).

Transcript splicing and clustering
After obtaining clean reads, the clean reads were spliced to obtain reference sequences for subsequent analyses. 
Trinity54 was used to splice the clean reads, and Corset55 aggregated the Shared Reads transcripts into many clusters, 
combining the transcript expression levels and the H-Cluster algorithm to create new clusters defined as ’Gene ’. 
Single-copy direct homologous gene pools were evaluated using BUSCO56 to ensure the integrity of the assembly.

Functional annotation and gene expression level analysis
The Trinity spliced Unigene sequence was used as the reference sequence (Ref), and the clean reads of each 
sample were compared towards the Ref to obtain the spliced transcripts using (RSEM57 software bowtie2 as 
the default parameter), and the transcripts were subjected to Nr, Nt, KOG, Swiss-prot, Uniprot, KEGG, and Nr, 
Nt, KOG, Swiss-prot, Uniprot, KEGG, GO functional annotations were performed on the transcripts to obtain 
functional information of the gene.

Differential gene expression analysis (DETs)
Normalisation (normalization) of the raw read count, which is mainly a correction for sequencing depth, was 
performed by statistical modeling for probability of hypothesis testing (P-value), and correction for multiple 
hypothesis testing (BH) was performed to obtain FDR values. Genes were considered to have expression 
differences if they differed in expression by more than twofold. Padj was introduced to correct the hypothesis 
test P-value, thus controlling the proportion of false positives.

WGCNA of differential genes (DETs)
The BioMorker Cloud Platform Weighted Gene Co-Expression Network Analysis (WGCNA) tool was used 
to mine gene module (module) information in the expression data. We uploaded genes.TMM.fpkm gene 
expression summary table and Trait file (analysis parameters: Fold 0.5, min ModuleSize 30, ntop 150) to explore 
the correlation between the modules and the phenotypes of color change traits and physiological indexes of the 
fruits of Panax japonicus for the identification of target network genes.

GO and KEGG pathway enrichment analysis of DETs
The GO enrichment analysis was performed by the enricher function of clusterProfiler, using padj < 0.05 as 
the significant enrichment, mapping all the differentially expressed genes to the Gene Ontology database 
term, and counting the number of genes significantly enriched for each GO term. KEGG Pathway integrates 
genome chemistry and systemic function. KEGG Pathway integrates genome chemistry and system function 
information content, and Pathway significant enrichment analysis was performed with absolute log2 (Foldc 
hange) > 1& padj < 0.05.

Quantitative RT-PCR (qRT-PCR) validation
The cDNA of Panax japonicus fruit was used as template for PCR reaction, and Primer3web version 4.1.0 was 
used to design gene-specific primers for the selected candidate genes (Supplementary Table 10). qRT-PCR was 
performed using a real-time fluorescence quantification instrument (LightCycler480II, 384). Actin (nei) was 
used as an internal reference gene to normalise the expression level58, and the relative expression level of each 
candidate gene was quantified using the 2−ΔΔCt method.

Data availability
The datasets generated during and/or analysed during the current study are available in the [NCBI] repos-
itory, [https://www.ncbi.nlm.nih.gov/]. Sequences：SAMN41987458 Nucleotide sequences: BankIt2843449 
PP953745- PP953760.
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