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The flexible job shop scheduling problem with parallel batch processing operation (FJSP_PBPO) in
this study is motivated by real-world scenarios observed in electronic product testing workshops.
This research aims to tackle the deficiency of effective methods, particularly global scheduling
metaheuristics, for FISP_PBPO. We establish an optimization model utilizing mixed-integer
programming to minimize makespan and introduce an enhanced walrus optimization algorithm
(WaOA\) for efficiently solving the FISP_PBPO. Key innovations of our approach include novel
encoding, conversion, inverse conversion, and decoding schemes tailored to the constraints of
FJSP_PBPO, a random optimal matching initialization (ROMI) strategy for generating diverse

and high-quality initial solutions, as well as modifications to the original feeding, migration, and
fleeing strategies of WaOA, along with the introduction of a novel gathering strategy. Our approach
significantly improves solution quality and optimization efficiency for FJSP_PBPO, as demonstrated
through comparative analysis with four enhanced WaOA variants, eleven state-of-the-art algorithms,
and validation across 30 test instances and a real-world engineering case.
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The flexible job shop scheduling problem (FJSP), first explored by Brucker and Schlie! and Brandimarte?, evolved
from the classic job shop scheduling problem (JSP). This problem poses a complex combinatorial optimization
challenge involving multiple equalities and inequalities constraints. Due to its wide range of engineering
applications and inherent complexity, FJSP has consistently attracted significant research attention®*.

The FJSP with parallel batch (p-batch) processing operation (FJSP_PBPO), explored in this study enables
multiple jobs to be processed jointly on the same machine, thus posing a challenge to the traditional constraint
of the FJSP, where each machine can handle only one job at a time. This problem is motivated by real-world
scenarios observed in electronic product testing workshops. In electronic product testing, the workshop devises
an overarching testing process plan for prototypes of the same product model. These prototypes are grouped
into distinct categories, and each group undergoes sequential testing operations according to specified sub-
routes within the plan. Figure 1 illustrates a performance testing process plan for a mobile phone, where 14
prototypes are divided into 7 groups. Each group of prototypes is treated as a single job. However, certain
prototypes necessitate cross-group combination testing, leading to parallel batch processing operation (PBPO)
on the same machine, as illustrated by (O, ,, O,,) and (O,,, O s ) in Fig. 1 The introduction of PBPO to the FJSP
further complicates the already NP-hard nature of the FJSP*°, making it significantly challenging to find viable
and optimal solutions, which urgently needs resolution in electronic product testing workshops.

Recently, swarm-based metaheuristic algorithms have gained significant attention for addressing FJSP due to
their efficiency in producing high-quality solutions®1°. Integrating FJSP_PBPO characteristics with advanced
swarm-based metaheuristic mechanisms shows promise for improving optimization in this area. The walrus
optimization algorithm (WaOA) is a relatively recent metaheuristic inspired by the behavior of walruses. It is
known for its strong exploration capabilities and a balanced approach between exploration and exploitation.
This balance allows the algorithm to avoid local optima and effectively explore the solution space, making it
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Fig. 1. Performance testing process plan of the mobile phone.

particularly well-suited for tackling global optimization problems. However, the algorithm uses a continuous
encoding scheme, making it unsuitable for directly solving the FJSP_PBPO addressed in this study. Additionally,
the No Free Lunch theorem asserts that no single algorithm is universally effective for all optimization problems,
indicating that strong performance on one problem does not guarantee similar results on others!!. In industrial
applications, the selection, design, and fine-tuning of metaheuristic algorithms must consider the unique
demands and characteristics of specific problems to optimize performance effectively'?. Therefore, this study
aims to leverage the potential of WaOA and improve it to better address the FJSP_PBPO and enhance its solution
quality. The specific innovative contributions are as follows:

(1) An optimization model for FJSP_ PBPO is formulated using mixed-integer programming (MIP).

(2) An enhanced WaOA (eWaOA) is proposed specifically for FJSP_PBPO.

(3) New encoding, conversion, inverse conversion and decoding schemes tailored to FJSP_PBPO are devel-
oped.

(4) Arandom optimal matching initialization (ROMI) strategy is designed to generate diverse and high-quality
initial solutions.

(5) Enhancements to feeding, migration, and fleeing strategies, coupled with the introduction of a novel gath-
ering strategy, enhance the algorithm’s effectiveness in both global exploration and local exploitation.

The subsequent sections are structured as follows: “Related works” section reviews literature on FJSP with
p-batch processing and swarm-based metaheuristic algorithms for FJSP. “Description and modeling of FJSP_
PBPO” section presents the problem description and model of FJSP_PBPO. “Walrus optimization algorithm”
section details the mathematical modeling of WaOA. “The proposed improved WaOA for FJSP_PBPO” section
outlines the design of the eWaOA, encompassing encoding, conversion and inverse conversion technique,
decoding, population initialization, enhancements of WaOA's strategies, and newly designed gathering strategy.
“Computational experiments and real-word case study” section presents the created benchmark instances, along
with the conducted experiments, engineering case study, and results. “Conclusion and future research” section
provides the conclusions and the future work.

Related works

FJSP and FJSP with p-batch processing

Since its inception in the beginning of the 90s"2 the FJSP has evolved significantly over the past three
decades. During this time, researchers have incorporated additional resource constraints, including transport
resources'>1¢, molds!’, and dual human-machine resources!®!?. Furthermore, new time-related constraints, such
as setup times 2° and uncertain processing times®"?2, have been introduced. These advancements continuously
broaden the applicability of FJSP, aligning the problem more closely with the optimization demands of real-
world workshops®. In addition, the FJSP with p-batch processing has also been extensively studied*®, with a
primary focus on wafer fabrication environments.

According to the standard three-field a|B|y notation in scheduling, introduced by Graham et al.?3, the FJSP
with p-batch processing can be represented as FJ|p-batch |y, where y denotes the objective to be optimized. The
objectives in these studies mainly include minimizing makespan (C,,, ), total weighted tardiness (TWT), total
tardiness (TT), total completion time (T'C), total weighted completion time (TWC), maximum lateness (L
maximum tardiness (T, ), and number of tardy jobs (NTJ).

Many studies have proposed heuristic methods based on disjunctive graph (DG), with the most widely
explored being variations of the shifting bottleneck heuristic (SBH) initially introduced by Adams et al.*.
Mason et al.?>2 presented a modified SBH to address the FJ| p-batch |TWT. Experimental results show that their
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modified SBH outperforms dispatching rules and surpasses an MIP heuristic in all but small instances. To reduce
computational costs, Monch and Drieflel?”?® adopted a two-layer hierarchical decomposition approach, using a
modified SBH?” and a SBH enhanced by a genetic algorithm (GA)*® for sub-problems optimization. Ménch and
Zimmermann?® further applied the SBH to the same problem in a multi-product setting. Barua et al.>* developed
a SBH to optimize L, , TT, TC of the problem within a stochastic and dynamic environment using discrete-
event simulation, demonstrating superior performance compared to traditional dispatching methods. Upasani et
al.3! streamlined the problem by focusing on bottleneck machines in the DG while representing non-bottlenecks
as delays, effectively balancing solution quality and computational effort. Sourirajan and Uzsoy*? introduced a
SBH that employs a rolling horizon approach to create manageable sub-problems. Upasani and Uzsoy?? further
integrated this rolling horizon strategy with the reduction approach proposed by Upasani et al.>!. Pfund et al.*
expanded the SBH to optimize TWT, C,  , and TC, employing desirability functions to evaluate criteria at both
the sub-problems and machine criticality levels. Yugma et al.>* proposed a constructive algorithm for a diffusion-
area FJSP, incorporating iterative sampling and simulated annealing (SA), which demonstrated effectiveness on
real-world instances. Knopp et al.*® introduced a new DG and a greedy randomized adaptive search procedure
(GRASP) metaheuristic combined with SA, yielding excellent results on benchmark and industrial instances.
Ham and Cakici*”*® developed an enhanced optimization model employing MIP and constraint programming
(CP) for the FJ| p-batch |Cmax, which was solved using IBM ILOG CPLEX. The computational results demonstrate
that the proposed MIP model significantly reduces computational time compared to the original model, while
the CP model outperforms all MIP models. Wu et al.** introduced an efficient algorithm based on dynamic
programming and optimality properties for scheduling diffusion furnaces. The developed algorithm not only
surpasses human decision-making but also enhances productivity compared to existing methods.

The FJ|p-batch |y has also been investigated across various other industrial environments. Boyer et al.*’
investigated this problem in seamless rolled ring production, where jobs are processed in batch furnaces, often
in a first-in, first-out sequence, resulting in a PBPO structure. Zheng et al.#! examined the JSP with p-batch
processing, inspired by practical military production challenges, and proposed an auction-based approach
combined with an improved DG for solution optimization. Xue et al.**> developed a hybrid algorithm integrating
variable neighborhood search (VNS) with a multi-population GA to address this problem, validated in a heavy
industrial foundry and forging environment. Ji et al.** constructed a novel multi-commodity flow model for the
FJ|p-batch |C__, introducing an adaptive large neighborhood search (ALNS) algorithm with optimal repair and
tabu-based components (ALNSIT) to effectively solve large-scale instances.

The above research provides valuable references for this study. However, existing optimization methods for
FJSP with p-batch constraints are challenging to apply directly to the scheduling requirements of electronic
product testing workshops. The main reasons are as follows: (1) Most of the research above, particularly studies
on wafer fabrication scheduling, primarily focuses on batch processing machines (BPMs) scheduling and multi-
level local optimization. In contrast, electronic product testing requires integrated scheduling of all jobs and
machines throughout the workshop. (2) Except for the studies by Xue et al.*? and Ji et al.*?, the process plans
of all jobs are similar, and all jobs require processing through BPMs (e.g., acid bath wet sinks, heat treatment
machines). In contrast, in this study, job process plans vary significantly, and only the jobs forming the PBPO
need to undergo specified p-batch processing in the BPMs. (3) In existing studies, batch processing decisions are
dynamically made based on each job’s ready time and the capacity of the BPMs. In contrast, p-batching in this
study pertains to specific operations from different jobs that must be processed jointly according to a predefined
testing process plan.

Swarm-based metaheuristic algorithms for FJSP

Swarm-based metaheuristic algorithms are inspired by the collective behaviors observed in natural phenomena
among mammals, birds, insects, and other organisms. Prominent examples include particle swarm optimization
(PSO) (PSO)*, ant colony optimization (ACO)*, and artificial bee colony (ABC)*, which are considered
classical swarm-based metaheuristic algorithms. These algorithms have been extensively applied to the FJSP.
For instance, Ding and Gu developed an enhanced PSO for addressing the FJSPY". Shi et al.*® proposed a two-
stage multi-objective PSO to tackle a dual-resource constrained FJSP. Zhang and Wong*® addressed the FJSP in
dynamic environments using a fully distributed multi-agent system integrated with ACO. Li et al.* introduced
a reinforcement learning (RL) variant of the ABC for the FJSP with lot streaming.

In the past decade, swarm-based metaheuristic algorithms have seen rapid development, with new algorithms
continually emerging. Notable examples include grey wolf optimization (GWO)>!, whale optimization algorithm
(WOA)*2, satin bowerbird optimizer (SBO)*, emperor penguin optimizer (EPO)>, squirrel search algorithm
(SSA) 33, harris hawks optimization (HHO)>®, red deer algorithm (RDA)*’, tuna swarm optimization (TSO),
remora optimization algorithm (ROA)*, African vultures optimization algorithm (AVOA)®, white shark
optimizer (WSO) ¢, WaOA%2, and walrus optimizer (WO)!2 Some of these algorithms provide novel approaches
for addressing (F)JSP.

Luo et al.® introduced an advanced multi-objective GWO (MOGWO) aiming at minimizing both makespan
and total energy consumption for the multi-objective FJSP (MOFJSP). Lin et al.% introduced a learning-based
GWO tailored for stochastic FJSP in semiconductor manufacturing. It employs an optimal computing budget
allocation strategy to enhance computational efliciency and adaptively adjust parameters using RL.

Liu et al.” combined the WOA with Lévy flight and differential evolution (DE) strategies to tackle the JSP. The
Lévy flight boosts global search and convergence during iterations, while DE enhances local search capabilities
and maintains solution diversity to avoid local optima. Luan et al.* proposed an improved WOA (IWOA) for the
FJSP, focusing on minimizing makespan. The IWOA features a conversion method to translate whale positions
into scheduling solutions and employs a chaotic reverse learning strategy for effective initialization. Additionally,
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it integrates a nonlinear convergence factor and adaptive weighting to balance exploration and exploitation, and
incorporates a VNS for enhanced local exploitation.

Ye et al.8 addressed the FJSP with sequence-dependent setup times and resource constraints by introducing a
self-learning HHA (SLHHO) aimed at minimizing makespan. The SLHHO employs a two-vector encoding for
machine and operation sequences, introduces a novel decoding method to handle resource constraints, and uses
RL to intelligently optimize key parameters. Lv et al.! developed an enhanced HHO for both static and dynamic
FJSP scenarios. This enhanced algorithm incorporates elitism, chaotic mechanisms, nonlinear energy updates,
and Gaussian random walks to reduce premature convergence.

Fan etal.*® introduced the genetic chaos Lévy nonlinear TSO (GCLNTSO) for the FJSP with random machine
breakdowns, focusing on minimizing a combined index of maximum completion time and stability. He et al.%
developed an improved AVOA for the dual-resource constrained FJSP (DRCFJSP). Enhancements to the AVOA
include employing three types of rules for population initialization, establishing a memory bank to store optimal
individuals across iterations for improved accuracy, and implementing a neighborhood search operation to
further optimize makespan and total delay. Yang et al.® developed a hybrid ROA with VNS aimed at optimizing
FJSP makespan. The algorithm incorporates a machine load balancing-based hybrid initialization method to
enhance initial population quality and a host switching mechanism to improve exploration capabilities.

The advancements in FJSP research and engineering applications are notable, but the existing studies did
not address PBPO constraints, which limits their applicability to FJSP_PBPO. Thus, new research is required to
integrate the unique aspects of FJSP_PBPO with the selected swarm-based metaheuristic algorithms.

Description and modeling of FISP_PBPO

The FJSP_PBPO extends the classic NP-hard problem FJSP>. It involves processing N jobs on M machines,
with each job following a specific process plan composed of sequentially ordered operations. Each operation
can be executed on a set of alternative machines with defined processing times. Additionally, some machines
can process multiple operations from different jobs simultaneously, subject to PBPO constraints. The primary
objective of the FJSP_PBPO is to determine the optimal processing order of each “task” (encompassing both
operations and PBPO) on each machine to minimize the makespan (C__ ), while also respecting precedence
relationships among operations within the same job and among tasks on the same machine. Building on the
complexities of FJSP, FJSP_PBPO further increases problem intricacy by incorporating PBPO constraints. Table
1 presents an example of an FJSP_PBPO scenario with four jobs and four machines, where the values under each
machine indicate the processing time for each task. As with FJSP, FJSP_PBPO assumes that:

(1) Alljobs can start processing at time 0, and all the jobs have the same priority.

(2) All machines are available at time 0.

(3) Each machine can handle only one task at a time.

(4) Each job is processed on only one machine at a time.

(5) Once a task begins on a machine, it must be completed without interruption.

(6) Each task can only start processing after its preceding tasks have been completed.
(7) All operations that form the PBPO must start and finish simultaneously.

The FJSP_PBPO is defined using specific notations. Below, we provide a concise overview of these notations and
the corresponding problem formulations.
M: total number of machines;

Alternative
machines
Jobs | Tasks M1 | M2 | M3 | M4
0, s |- |7 |-
]1 Ozz 5 B B B
0, 10 [- |12 |-
0, 14 (13 |- |14
0, 8 |- |7 |0
),
0,, s |7 |- |s
0, 4 |7 |6 |-
I, |0, 8 |12 |- |-
o, 5 |- [3 |s
0, 4 |- |7
]4 042 6 B 7 B
0, - 12 |- |8
]2’ ]3 {Ozz’ 033} 7 4 B B
Iy, [ 10,0015 |3 |6 |-
Table 1. Instance of FJSP_PBPO. J, represents job i, O, represents the jth operation of J, {O,,, O,;} and {O,,,
O,;} are two PBPOs.
Scientific Reports|  (2025) 15:5699 | https://doi.org/10.1038/s41598-025-89527-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

N: total number of jobs;

m: machine index;

T'u: the task set for all the jobs;

w: task index,u € Tu;

J P[u]: the immediate job predecessor task(s) of u, u € Tu;

P.": the processing time of task u, u € T'u on machine m;

S,: the processing time of task u, u € T'y;

C',: the completion time of task u, u € T'u;

P the corresponding processing time of specific operation o, 0 € « on machine m;
S, the start time of specific operation o0, 0 € u;

C,,: the completion time of specific operation 0, 0 € u;

C™: the completion time of the last task on machine m;

Chax: makespan;

Q : a sufficiently large integer;

X" decision variable representing whether task u is processed on the machine m;

™ — 1 machine m is assigned to task u
w10 elsewise ’

Y.+ decision variable representing the order of two different tasks processed on the same machine;
if the task u is processed before

Yo = the task v on the same machine
0 elsewise
Based on this, an optimization model is constructed using MIP, with the objective of minimizing the
maximum completion time.

Cmaz = min{max{C™}},1 <m < M. (1)
Subject to:
Cy— Su =P x X' Vu,m, (2)
M
X =1, 3)
m=1
Cu < Craz,Yu, m, (4)
Cu < S, +Q x (1 —Yyu),Yu,v,m, (5)
S, > max{Cy },Ym,u' € JP[u], (6)
(8w 2 0)U(Cy = 0)Vu,m, 7
(S, = Sy )U(C, =C,),¥m,0 € u,0 € u. (8)

Equation (1) represents the optimization objective function. Equation (2) indicates that tasks cannot be
interrupted during processing. Equation (3) states that each task can only be processed on one machine.
Equation (4) ensures that the completion time of any task does not exceed the maximum completion time Crnaz
. Equation (5) ensures the precedence order between tasks on the same machine. Equation (6) guarantees the
precedence order between tasks of the same job. Equation (7) asserts that the start and completion time of any
task is non-negative. Equation (8) specify that the various operation of task # must start and finish simultaneously.

Walrus optimization algorithm

In WaOA, each walrus serves as a candidate solution in the optimization problem. Therefore, the position of
each walrus within the search space determines the candidate values for the problem variables. The optimization
process begins with a population of randomly generated walruses X, representing by D-dimensional random
vectors, as defined by Eq. (9).

Xp = b+ rand(ub — Ib)
X,=[ Xp1 . Xp; o Xpp ] )
I1<p<P1<j<D,

where, X, is the pth initial walrus (candidate solution), Ib and ub are the lower and upper boundaries of the
problem, rand is a uniform random vector in the range 0 to 1, X, ;,1 < j < D is the value of the jth decision
variable of the initial walrus X, P is the number of walruses in the population, i.e., the population size, D is
number of decision variables. Based on the suggested values for the decision variables, the objective function of
the problem can be evaluated, and the resulting fitness function F'(X,),1 < p < P can be obtained.
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Walruses are agents that perform the optimization process. Their positions are iteratively updated using feeding,
migration, fleeing strategies until a termination condition is met. Each iteration follows a structured approach
divided into three phases. In Phase 1, the WaOA utilizes feeding strategy to explore globally. In this phase, the
best candidate solution so far is identified as the strongest walrus X, according their fitness. Other walruses
adjust their positions under the guidance of X, according to the Egs. (10) and (11).

XH =Xy +randp; x (X — Ip; x Xp3),1<p< P,1<j <D, (10)

D,J

i = { s RO SRS an

X!, else,

where X ;4;1 is the new position for the pth walrus on the jth dimension, X, ; is the current position for the pth
walrus on the jth dimension, rand jisa random number lies in the range (0 1), X4, ; is the position for the
strongest walrus X ;,. on the jth dimension, I, ; is an integer selected randomly between 1 or 2.

In Phase 2, each walrus migrates to a randomly selected walrus position in another area of the search space and
the new position for each walrus can be generated according to Egs. (12) and (13).

St X: +mndjx(XkJ—1jwa), 1<pk<P1<j<D,if F(X})>F(X}) (12)
L X} i +randy; x (X5 5 — Xi. ), 1<pk<P1<j<D,if F(X})<F(X}) ’
t+1 t t+1
t+1 _ ) XU, F(X)) < F(X)T)
X { X!, pelse, : (13)

where X7},

1<
Xltc,j71§kg

k < P and k # p is the position of the selected walrus to migrate the pth walrus towards it,
P,1 < j < Disits jth dimension, and F'(X}) is its objective function value.
In Phase 3, the WaOA utilizes fleeing strategy to adjust the positions of each walrus within its neighborhood

radius. This strategy is used to exploit the problem-solving space around candidate solutions. The new position
can generate randomly in this neighborhood using Egs. (14) and (15).

X:z:‘;l = X]ta,] + (lbfocal,j + (Ubfocal,j —rand - lb?ocal,j))

- Plocar, ;=i /t "
local bound : { bt —ubj/t

local,j

X, else, (15)

X4 = { X5 R(XE) < F(XET)
where [b; and ub; are the lower and upper bounds of the jth position, respectively, lbfocal, ; and ubfocal, ; are
allowable local lower and upper bounds for the jth position, respectively. The pseudocode for WaOA is shown
in Algorithm 1.
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1: Input the information of the optimization problem
2: Set the population size of walruses (P) and the maximum iterations (7)
31 Initialize P search agents X ,,1< p< P With D decision variables according Eq. (9), X?, =Xp,1<p<P
4:  Calculate the fitness of each search agent and set X, as the best search agent
S: for =1: T
6: for p=1:P
7: Phase 1: Feeding strategy(exploration)
8: Calculate X4,1<j<D using Eq. (10)
9: Update X" using Eq. (11)
10: Phase 2: Migration strategy(exploration)
11 Randomly choose an immigration destination X, for the pth walrus X 2, p#k
12: Calculate X;,f}-,l < j<D using Eq. (12)
13: Update X, using Eq. (13)
14: Phase 3: Fleeing strategy (exploitation)
15: Calculate X;,fjl»,l < j<D using Eq. (14)
16: Update x4 using Eq. (15)
17: end for
18: Update X, if there is a better solution
19: t=t+1
20:  end for

22 Output X,

Algorithm 1. Walrus optimization algorithm (WaOA).

The proposed improved WaOA for FJISP_PBPO

Framework of the eWaOA

Due to the introduction of new constraints by FJSP_PBPO, existing encoding, conversion, and decoding
methods for swarm-based metaheuristics used in FJSP are not directly applicable. Consequently, we first develop
new encoding, conversion, inverse conversion and decoding schemes tailored to these constraints. Preliminary
experiments have identified several shortcomings of the original WaOA when applied to FJSP_PBPO, such as
premature convergence to local optima and inefficient updates. To address these issues, this study first create
new initialization strategy and then enhance the WaOA's feeding, migrating, and fleeing strategies. Additionally,
a gathering strategy is introduced to enhance both global and local optimization capabilities. The framework for
the proposed eWaOA is illustrated in Fig. 2 and detailed below.

Step 1—Data input: Operation set, operation sequence for the N jobs, alternative machines with their
associated processing times for each operation, and the PBPOs, with both operations and PBPOs collectively
described as tasks.

Step 2—Parameter setting: Population size (P) of walruses, termination parameter (maximum iterations
maxT or time limit T), control factor A, and matching parameter K for ROMI.

Step 3—Population initialization: The optimization process begins with P randomly generated walruses based
on the ROMI strategy according to the parameter K. Each walrus is encoded as a real vector X,,1 <p < P
and an integer vector X,, 1 < p < P. On this basis, segmented conversion are developed to convert the X, to
X ,'], while the inverse conversion method is created to transform the XI'J into X,. The XI', are decoded using a
designed semi-active decoding method to generate feasible scheduling scheme.

Step 4—Update the position of each walrus. Walruses serve as search agents in the optimization process,
with their positions continuously updated through enhanced feeding, migration, fleeing strategies, or through
the enhanced feeding and introduced gathering strategy. The decision between choosing the gathering strategy
or the migration and fleeing strategies is controlled by A. For the feeding, migration, and fleeing strategies, real
vectors X are updated directly during each iteration, with simultaneous conversion of the updated real vector
Xpew into corresponding integer vector X,.,,. Conversely, gathering strategy involve direct updates of X’ to
generate X,.,,, followed by inversely converting it to corresponding Xne.. This ensures synchronization in
updating the X and X at each iteration.

Step 5—Updating the strongest walrus: Each X, are decoded into a feasible semi-active schedule for
FJSP_PBPO, and the fitness values of the walruses is assigned the reciprocal of makespan corresponding to the
schedule. And the walrus with the highest fitness so far is update as the strongest walrus X ..

Step 6—Termination criterion: If the iterations reaches its preset maxT or the runtime reaches its preset 7,
the best solution is output, and the iteration stops; else, it proceeds to Step 4.
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Integer sub-vector for 2 [ 4
machine assignment (/VM)

v

Initialize P walruses(x x) as population
Initialization: ROMI strategy

Encoding: Two vectors (X, X') and task-
based encoding scheme

Converting: Segmented conversion and
inverse conversion

Decoding: Semi-active decode

v

Update (X,,.X,.) by
enhanced fleeing strategy

—> X:)(nuwa X'= X'

new

T

| Update (X, X" iteratively |

) ) Update (X, X ) 10 (X, X,0,) I

Input flexible process plan of each job i by enhanced feeding strategy |

v : Yes y No I

Set the population size P, max iterations g g I
ime limi [ [Update (X,,,X,.) by Update (X, X,.,) by

max7 or time limit 7, 4 , =1, K | enhanced migration strategy gathering strategy :

| |

I I

. I

A 4
Determine or update the strongest walrus
(X,,X,) if there is a better solution

Output the best En d)
solution ’ (

i Padded 0

Integer sub-vector | 4+0 [2.0 [ 1.0]3.0]1L0]
for task (/V'T) l
3

Fig. 3. An instance of two integer sub-vectors code for the FJSP_PBPO.

Representation of walrus and FISP_PBPO

In our eWaOA, a vector X, = { X 1, Xp2,...Xp,p} is represented as a D-dimensional real vector, constrained
by the specific requirements of the problem. FJSP_PBPO involves two sub-problems: task sequencing and
machine assignment. Therefore, X should encompass information from both aspects. Let TN denote total
number of all tasks in the F]SP_PIIJ?»PO, then D=2TN. The first half part X1, = {X,1, Xp2,...Xp, 7N} of
X, represent task sequencing, while the second half part X2, = {X, rnv+1, Xp 7N+2,...Xp,2rN } describes
machine assignment for each task. Specifically, X, j,1 < j < TN denotes the value of the jth task decision
variable in the vector X, X, ;, TIN < j < 2T'N represents the machine assignment decision variable for the
(j-TN)th task of X . The X1, is defined as the real sub-vector for task (RVT) and X2, is defined as the real sub-
vector for machine assignment (RVM) in this study. Additionally, the value of X, j,1 < j < 2T'N is bound to
be in the real range (-N, N), where N is the total number of jobs.

The WaOA is designed for continuous functions but is not directly applicable to discrete problems such
as FJSP_PBPO. Additionally, the presence of PBPO implies that a single position in X1, may correspond to
multiple operations across different jobs. Consequently, decoding X, into a feasible schedule and evaluating the
objective function value presents significant challenges. To address these issues, we further propose a task-based
encoding method for FJSP_PBPO. This encoding scheme consists of an integer vector divided into two parts. The
first part, the integer sub-vector for tasks (IVT), represents each position with job ID(s). To maintain consistency,
the number of elements in each position is set to s = max{|PBPO,|}, Vk, and the length of the vector is set to
the number of tasks (TN), where | PBPO;| is the number of operations in the k-th PBPO. Positions with fewer
than s elements are padded with zeros. If a position contains more than one job ID, it indicates that the position
corresponds to a PBPO. For simplicity, padded zeros are omitted in the subsequent description. The second
part, the integer sub-vector for machine assignment (IVM), has positions with potential values ranging from 1
to M. Each position in IVM corresponds to the processing machine for the task indicated by the same position
in IVT. Figure 3 illustrates the integer vector code for FJSP_PBPO, showing the specific operations or PBPOs
in IVT and their corresponding processing times. Thus, each walrus contains both continuous encoding vector
X, = [RVT, RV M] and integer vector X, = [IVT, IV M].
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Conversion and inverse conversion scheme

The conversion process transforms a real vector to integer vector, allowing the eWaOA to solve FJSP_PBPO. The
ranked order value (ROV) rule, originally designed for FJSP or JSP, uses order relationships and random keys to
map a real vector into an integer operation sequence, which outlines the order of operations on all machines and
forms a scheduling scheme”*>. However, the inclusion of PBPO in the FJSP_PBPO renders the traditional ROV
method unsuitable. To address this, a novel segmented conversion algorithm is developed to convert the real
vector X, = [RV'T RV M] into integer vector X, = [IVT, IV M]. This algorithm introduces a task template
(TP) segmented into three sections: the first section corresponds to tasks from jobs without PBPO; the second
section consists of sequential PBPO tasks; and the third section includes tasks from jobs with PBPO, excluding
the PBPOs themselves. For each segment, elements in the RVT are categorized and converted based on the
methods outlined in Table 2 ensure that the constraints are maintained. Additionally, when converting the RVM
to the IVM, the machine index for each task must be determined first, with the conversion formula provided in
Eq. (16):

(RVM; + N) x 5(j)
2N

sz_L J+LTN+1§;’§2TN, (16)

where N denotes the number of jobs, TN represents total number of all tasks,s(j) indicates the total number
of alternative machines for the task IVT;_rn, TN + 1 < j < 2T N. The segmented conversion algorithm is
described as follows:

Type Diagram and conversion formula Example

B=0.36 represents value of PBPO {O24, Os3} in the RVT, while A=0.52
denotes the value of Os2 as a job predecessor task of this PBPO, then

a |
—— 1 A'=%x4‘52—4=—1‘54,
t t t t %
Predecessor -N ‘/4\;"_? __________ jl N a=4.52 J
b=4.36
P — [
4 154 036 0.52 4

A=0.04 denotes the value of -O:x:x-a-s-e;r; ‘immediate job successor task of

a 3.64
A'=4-""—x3.96=220
« b PBPO {024, O3}, and xd

Successor N 4 B ;l\ N a=3.96
Lomommmmmmmm o2 b=3.64
b K
A'=N-—-a + 4 +
2N -4 0.04 036 220 4
e N
B=-0.03 and C=0.36 represents the values of PBPO { O22, O33} and {O2a,
Ou3} in the RVT respectively. 4=1.32 is the value of O23 as a middle task
'|< 4 o )'I between the two PBPOs. Then the value of 4'in CRVT can be calculated
< ’ 0.39
) N t A C t N by 4'=—=x5.32-0.03=0.23
Middle - B A 4 8
"""""" * a=5.32
4= B 5c=0.39
2AT 1 I 1 1

4 003 023 o036 132 4
.2 :

Table 2. Categorization and post-processing strategy of a RVT.
B and C represent the values of PBPOs. A is the value of either a job predecessor, successor of B, or the middle
task between A and B. N denotes the number of jobs.
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1:  Inputareal vector X, =[RVT RVM] for FISP_ PBPO with N jobs and TN tasks, task template (7P)

R

LetTP;,t<j<t' correspond to positions in the second section of TP, divide RV'T into three sections following the TP structur
Copy RVT to CRVT
Sequentially update the Predecessor of 7F;,Z<j<t" in the second section of CRV'T according to the strategy in Table 2

Sequentially update the Predecessors, Middles and Successors of 7F;,?<j<t' in the third section of CRV'T according to

the strategies outlined in Table 2
The ROV of CRVT are obtained and stored in the ROV vector. Then, in ascending order of the ROV vector, job IDs are

sequentially copied from the corresponding positions in the 7P to construct an /V'T without padded zeros

Compute machine index M7;,7N +1< j<27TN using Eq.(16), and set the machine ID corresponding to Mis; to
IVMj,TN+1£jS2TN

8:  Output the x' =(1vr 1M

Real sub-vector

value (ROV) vector | s 3,
[ 1

Int b-vect 2 ¥ ¥
nteger sub-vector ' i | > I 1

Algorithm 2. Segmented conversion.

Figure 4 illustrates an example of the segmented conversion process from RVT to IVT. First, the task template
TP is created with three sections according to the job process plan: the first section, from 7T'P; to TPy, contains
tasks for jobs without PBPO; the second section consists of sequentially arranged PBPO tasks 7'Ps and 7' Fs;
and the third section, from T P7 to T' P14, includes tasks for jobs with PBPO but excludes the PBPOs themselves.
The RVT is divided into three sections according to the TP structure, and its elements of RVT is copy to CRVT.
Next, related values in the second and third sections of the CRVT are updated according to the conversion
formulas given in Table 2. In this example, since O,, in {O,,, O,.} is a predecessor of O, , in {0, ,, O,.}, the value
3.28 in RVT for {O,,, O,,} is initially converted to -0.03 in CRVT using the “Predecessor” conversion formula.
Subsequently, the “Predecessor”, “Middle”, and “Successor” conversion formulas are applied sequentially to
convert the predecessor tasks for {O,,, O,.} and {O,,, O,.}, as well as the tasks O,, (middle of the two PBPOs)
and the successor tasks. The original RVT values and their converted counterparts in the CRVT for the example
in Table 2, are highlighted in red in Fig. 4 Finally, the ranked values of each element in the CRVT are obtained to
generate the ROV vector. Following the ascending order of the ROV vector, job IDs are sequentially copied from
corresponding positions in the TP to construct the IVT.

The inverse conversion is designed to transform X, to X, while ensuring that the updates of X, remains
consistent with the update of X;,. When converting the IVT to the RVT, a randomly generated RV T is introduced,
and the ROV is determined based on the TP and IVT. Then, the RVT is reordered according to the ROV, and
the corresponding values in RVT are updated based on the categorization strategies in Table 3, forming the new
RVT. When converting IVM to RVM, the value corresponding to each task are first obtained using the following
Eq. (17).
2x N x (MI; ‘1) NXS(J)}—i—l,TN—i-lSjSZTN, (17)
s(7) s(7)

where M I; is the machine index of the j — T'N th task, the mean of N, TN and s(j) consistent with those in
Eq. (16). This inverse conversion process is detailed in Algorithm 3.

RVM; = |

Predecessor tasks Successor tasks Middle tasks
| of PBPOs [ of PBPOs [] PBPOwmsk [ "ot preos |
[¢-Tasks of jobs have no PBPOp¢—— PBPOs —p¢————Tasks of jobs with PBPO but exclude PBPOs ———) |

[r T 12713 14 J22:33[2443] 20 [ 23 [ 31 [ 327347 41 ] 42 ] 44 ]

N A R S S S S S S S N

[031 T-1.97]-265] 156 | 328 [ 036 [-1.74] 1.32 [-049 ] 049 [ 0.01 [-2.56 [ 0.52 [ 0.04 ] |

e v ORGSO S e S o o

[031 ]-197]-265] 156 | -003 | 036 |-288]0

S S S S S S
10 ?I

31 -226]-177] 199 |-323]-154 ] 2.20 |

)
+ v ¥ ¥ 4+ 3 3
9 [ 4 ] 6 | 13 ] : [ 7 ] 14 ||

|3|1|3|4|2,3|2|1|2,4|1|3|4||

| [ 2] 8 [ 11 ]

Fig. 4. Example of the segmented conversion from RVT to IVT.
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Type Diagram and conversion formula Example

B=1.80 represents value of PBPO {Oa4, O3} in the RV'T, while 4'=0.17
denotes the value of PBPO {022, O33} as a job predecessor task of {O24,

c b 3
. 0w, then 4 (017+4)8 , o
-+ —t t t 43}, then A'=—— 2" _4=1,
Predecessor N /?_____B_ ____________ ’/2 N >80 5=5.80
", %
JoAENN — " '
b -4 0,1L7 L5180 4
A'=2.65 denotes the value of O34 as an job successor task of PBPO {Ox2,
4-2.65)x8
k—2—5  Os}, then 4= G208 4_01); =118
N 4 B A4 N b=383
Successor A e i : | —
o 4 017 118 2.65
ey & Ab)sz wo P
g 4m269x8 o
4-0.17
B=0.17 and C=1.80 represents the values of PBPO {022, O33} and {O2a,
Ous3} in the RV T respectively. 4'=1.36 is the value of O3 as a middle task
' ' ; R " i Y (1.36-0.17)x8 i
N B {1" c /{\4 N between the two PBPOs, then A=——————-4=1.84
Middle R . (1.80-0.17)
o A=BX2N bc=1.63
be } : t +— }
-4 0.17 136 1.801.84 4
[
Table 3. Categorization and post-processing strategy of a RVT for inverse conversion.
M Rvr [ 216 | -2.11 ] -161[-027 ] 026 | -018 [-0.13] 0.17 [ 136 [ 164 | 180 [ 243 [ 265 ] 3.51 | l
vr 41 20 | 3 o2 ] 32 [ 42 12233 23 | 13 [ 2443 ] 14 ] 34 | 44

>

1
H
H
H >

i
e L1 | 12 | 13 | 14 [22:33[2443 ] 21 | 23 [ 31 [ 32 ] 34 [ 41 ]| 42 | 44 |
|Z

Reordered Ry -1.61 [-026 [ 1.64 [ 243 ] 0.17 | 180 [-211] 136 [-027 [-018 ] 265 [-2.16[-1.13 ] 351 |

|

I

|
|§R0Vvector|3|5|10|12|8|1||z|9|4|6|13|||7|14
I

I

NewRVT [-1.61]-026] 1.64 [243 ] 175 | 180 [-037] 184 [3.16 [ 333 [ 1.18 [-146]-0.04] 2.22 |

Fig. 5. Example of the inverse conversion from IVT to RVT.

1: Input the template 7P, X‘p =[IVT,IVM] and its corresponding sequence of machine index M/

2:  Obtain the corresponding ROV vector of IV'T based on the 7P

3: ReorderedRVT <—Randomly generate a RV'T vector, and reorder the RVT according to the ROV vector

4:  Copy Reordered RVT to NewRVT

5: Let TP;,1< j<t' correspond to positions in the second section of 7P

6: Sequentially update the Predecessors, Middles and Successors of 71,#<j<t' in the third section of NewRVT according to
the strategies in Table 3

70 Sequentially update the Predecessor of 7P;,7< j<r' in the second section of NewRVT according to the strategy in Table 3

Compute RVM ;,TN +1< j <2TN using Eq.(17)
Output XP =[NewRVT,RVM]

Algorithm 3. Inverse conversion.
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Figure 5 illustrates an example of the inverse conversion from IVT to the RVT. First, the positions of each TP
element within the IVT are recorded to construct the ROV vector. For instance, the 12th and 7th elements of
TP, with values (4, 1) and (2, 1) respectively, rank first and second in the IVT. Consequently, the 12th and 7th
positions in the ROV vector are assigned the values 1 and 2, respectively. Next, a Reordered RVT is generated
by sorting the RVT according to the ROV vector. For example, as shown in the figure, the first and second
elements of the ROV vector are 3 and 5, respectively, so the third and fifth elements of the RVT are placed into
the first and second positions of the Reordered RV T. Subsequently, the values in the Reordered RVT are converted
according to the strategies outlined in Table 3 to generate NewRVT. The conversion process first applies to non-
PBPO predecessor tasks, O,, (between the two PBPOs {0, ,, O,.}, {O,,, O,,}), as well as the successor tasks for
both PBPOs. Then, the conversion is performed for {Ozz, 033}, the predecessor tasks for {024, 043}. The red-
highlighted text in the Reordered RVT and NewRV'T in Fig. 5 indicates the corresponding values before and after
the inversion conversion, as shown in Table 3.

24

Semi-active decoding

Bierwirth and Mattfeld®” introduced decoding methods that transform encoded permutations into semi-active,
active, non-delay, and hybrid schedules. Among these, the semi-active schedule is particularly straightforward
to implement, provides high decoding efficiency, and frequently produces high-quality solutions. Therefore,
the semi-active decoding is adopt to decode the X, = [IVT IV M] for a walrus. This decoding approach
ensures that each task adheres to the precedence constraints both within the same job and on the same machine.
However, for the FJSP_PBPO, it is crucial to thoroughly evaluate the completion times of all predecessors for
each job in the PBPO. The constraints considered during the decoding process become more complex. The
specific semi-active decoding designed for FJSP_PBPO is outlined in Algorithm 4.

D e Al > e

—_
e

Input integer sub-vector for tasks (//'7T) and assignment machine (/VM)

Determine the task sequence (7) and the processing time sequence (P7S)

Initialize CMP = zeros(M) | and scheduling plan SPlan= | k=1// M is the number of machines
for k=1:|1VT|

Retrieve the task u, machine m and processing time 2" from 7S(k), {VM (k) and PTS(k), respectively.
S, =max{C,.,CMP{m]},u'€ JPlu],1<m<M,C,=S,+P" /[ JPlu] isthe immediate job predecessor(s) of task u
CMP[m]=C,,SPlan = SPlan U {u,m,S,,C,}
k=k+1
end for

Return SPlan and the maximum G,

Algorithm 4. Semi-active decoding.Random optimal matching-based initialization

To quickly obtain high-quality initial solutions, it is necessary to comprehensively balance the quality and
diversity of the initial population during the initialization. For the optimization of FJSP_PBPO, the quality of
the corresponding initial population is related to the matching of task and machine assignment. Based on this, a
ROMI method is proposed to initialize the population. Specifically, for each walrus X;,, 1 < p < P/2in the first
half of the population, one RVT and K RVM are generated randomly accordingly to RVT = —N + rand(2N)
, RVM; = —N + rand(2N),1 < k < K, respectively, where N is the number of jobs. Then, segmented
conversion and semi-active decoding are employed to determine the makespan of the matched RV'T and
RV My,1 <k < K, and the pair of RVT and RV M), with the smallest makespan is selected to initialize
X, = [RVT,RVM,],1<p< P/2.

Conversely, for each walrus in the second half of the population X,,, P/2 + 1 < p < P,KRVTand one RVM
are generated randomly accordingly to RVTy, = —N + rand(2N),1 < k < K, RVM = —N + rand(2N)
, respectively. Similarly, the pair of RVT}, and RVM with the smallest makespan is selected to construct
Xp = [RV Ty, RV M]. Since the RVT in the first half and the RVM in the second half of the population are
generated randomly, the randomness and diversity of the initial population generation are ensured.

Enhanced feeding strategy

In the original feeding strategy of WaOA, each walrus moves toward the strongest individual X, in the
population. And a random number rand_. within the interval (0,1) controls how each dimension of a walrus
approaches the X ¢, limiting the solution space. Preliminary experiments indicate that when solving the FJSP_
PBPO, walruses often get stuck in local optima and experience a slower convergence speed. To enhance the
global search capability and efficiency of WaOA, Lévy flight®® is incorporated into the feeding strategy. Many
animals, including walruses, perform fine-grained searches within a localized area for a period, followed by
longer movements to explore other regions. Lévy flight, which alternates between short-distance searches and
occasional long-range moves, effectively models this behavior and aligns well with the natural feeding patterns
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of walruses. The feeding strategy, now integrated with Lévy flight for updating walrus positions, can be expressed
by modifying the previous formula as follows:

XU = X} + signfrandy j — 0.5] X (Xyi; — Ipj x X5 ;) @ Levy(s), 1<p<P1<j<D, (18)

where sign [rand — 0.5] can take one of three values: -1, 0, or 1. @ means entry wise multiplication.

Lévy flight is a kind of non-Gaussian random process, and its step length obeys a Lévy distribution.
Levy(s) ~ [s| 77, 0<p <2, (19)

where s represents the step length of the Lévy flight, and 8 is an index parameter. The value of s can be calculated
using Mantegna’s algorithm as follows:

_v
~ [o[1/B (20)

where 3 is set to be 1.5, and both y and v follow normal distributions.

— (14 p) x sin(n(/2) i/
T((1+8)/2) x 8 x 206-D/2

; (21)

where I denotes the standard Gamma function. According to Eqgs. (18)-(21), Eq. (18) can be reformulated as:

Xt = X} ; + sign[rand, ; — 0.5] x X (Xgprj — I x Xp;), 1<p<P1<j<D. (22

u
ERE

Enhanced migration strategy

In the original migration strategy of the WaOA, each walrus randomly selects another walrus from the population
as its migration destination. Throughout the iteration process, the updates of the walruses lack an adaptive
adjustment mechanism, leading to slower convergence speeds or entrapment in local optima. To enhance global
exploration in the early stages and strengthen local exploitation in the later stages of iteration, the migration
strategy of WaOA is modified by introducing a self-adjusting factor C to replace rand in Eq. (12). The position
update formula for walrus can then be rewritten as:

1§ Xp i +COx (X, — Iy XX;,]),lgng,lg <2TN, if F(X}{ ;) > F(X};) (23)
- X, +Cx(X);— X5 ;),1<p<P1<j<2TN ,sz(ij)<F(X£’J) ’
1
C= [5 + cos (g X %)} X rand, (24)

where ¢ denotes the current iteration number and T represents the maximum number of iterations. In the
early stages, when ¢ is relatively small, the value of C is large, allowing individuals to explore with a greater
step size during position updates. This facilitates rapid coverage of a broader search space and enhances global
exploration. As the iterations progress, ¢ gradually increases while C decreases. In the later stages, a smaller value
of C promotes fine local exploitation within these improved regions, enhancing the algorithm’s convergence
efficiency.

Enhanced fleeing strategy

The original update expression for the fleeing strategy is shown in Egs. (14) and (15). However, the local lower
bound and upper bound in the Eq. (14) is controlled by the inverse proportional function Ib},.q; j = lbj/tand
Ubfpeqr,; = ubj /t respectively. The inverse proportional function prioritizes global exploration at the begmnmg
of the algorlthms iterations, with a larger radius to discover optimal regions within the search space. However,
the neighborhood radius of the inverse proportional function decays rapidly, leading to a quick decline in
global exploration capability, which makes it difficult for the fleeing strategy to play an exploitation role in
the later stages of the algorithm. Therefore, this study replaces the original inverse proportional function with
an arctangent function to control the local bound in fleeing. Then the fleeing strategy can be mathematically
modelled by the Eq. (25).

X;t):gl = X;tLJ + (lbfocal,j + (U‘b?ocal 7 rand - lbfocal,j))

0.5
I — Xw (25)
new local bound : ocal, 0.5.7. 3
ubt = by w

where the mean of t and T consistent with those in Eq. (24).
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Gathering strategy

Walruses enhance their foraging and movement efficiency by interacting and sharing location information
with one another. To model this behavior, we propose a “gathering strategy” in which walruses form pairs and
exchange information, thereby improving the herd’s ability to identify areas with higher food availability. To
assess this information-sharing process, walruses are paired through a random selection method. Based on
these paired walruses, such as Xp't and X ;t,, the position of each individual is updated according to the following
Algorithm 5.

1: Input X ”,, =(X ”,;_le ”,7.2 ----- X ”[7./"""X ”,7.11.\') . X ”p' =(X ”p'.l’X '/p'.l ----- X 'L;'.,’---’X ";;‘.21.\ ) . 1< j<2IN
2: Create a vector X ',' of length 27N initialized with zeros
3: for i=1:TN
4 it R =U(0,1)>0.5
5 X X Xy < X'y, find the first occurrence index /' of X ', in X ", delete X .o X iz s X s X
6: else
7 X e X Xy« X, find the first occurrence index J' of X . in X, , delete X % X Vs X 0 X iy
8 end
9 Output X )" « arg max {F (X ), F(X /), F (X ™)}
Algorithm 5. Gathering strategy.

A control factor, denoted as A4, is introduced to regulate the population’s updating strategy. If A reaches or
exceeds 0.4 after the feeding strategy, walruses will adopt migration, fleeing strategies to explore and exploit
search area. Conversely, if A falls below 0.4, a gathering strategy will be employed. In this strategy, walruses
search for new territories in pairs. Multiple pairs will form within the walrus population, thereby further
enhancing search range. The value of A is controlled by the Eq. (26):

_ plt=1)/T1?
A= |sin(27 x rand)|, (26)
e—1
where the rand denotes a random number between 0 and 1.
Enhanced WaOA for FJSP_PBPO
Based on the above improvements, the pseudocode of the proposed eWaOA for FJSP_PBPO in this study is
outlined in Algorithm 6. The eWaOA is initialized using the ROMI strategy, and the mathematical models for
the enhanced feeding, migration, fleeing strategies are shown in Egs. (18)-(25), in combination with Egs. (11),
(13), and (15). The gathering strategy is described in Algorithm 5.
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A

10:
11:

12:

13:

14:

15:
16:
17:

18:

19:

20:

21:
22:
23:

24:

25:

26:
27:

28:
29:
30:

31:

Input flexible process plan of each job, the PBPOs, set population size P, max iterations max7, 4=0, =1

Initialize P walruses (X?,,X;)) ,1< p< P, based on the ROMI approach. Let X, is the best search agent

for t=1:maxT
Phase 1: Feeding strategy (exploration)

+l

Calculate )(;Lj,lﬁpSP,lﬁjSZZN using Eq. (22)

Convert Xgl,lgng to Xéﬂ,l <p<P by the Algorithm 2 in Section 5.3

Decode X ]§+l,1 < p<P and evaluate each walruses by Algorithm 4 in Section 5.4

Update XZA,]SPSP using Eq. (11)
if A<X0.4 then
Phase 2: Migration strategy(exploration)

Randomly choose an immigration destination X, for the pth walrus X;,,lﬁ pP<P,p#k
Calculate XZ:},lSpSP,]SjSZYN using Eq. (23)

Convert Xgl,lgpgp to X;Ll,l < p<P by the Algorithm 2 in Section 5.3

Decode X 15+l,1 < p<P and evaluate each walruses by Algorithm 4 in Section 5.4

Update X5,1<p<P using Eq. (13)

Phase 3: Fleeing strategy (exploitation)

end if

Calculate Xg},lﬁpﬁP,léjﬁﬂN using (25)
Convert XZAJSPSP to X;rl,l < p<P by the Algorithm 2 in Section 5.3
Decode X [§+l,1 < p<P and evaluate each walruses by Algorithm 4 in Section 5.4

Update Xgl,lﬁpSP using Eq. (15)

if A>0.4 then
Phase 2: Gathering strategy (enhancing phase)

end if

Generate X1§+1 , X;ﬂ using Algorithm 5 based on the randomly selected X ; and X}ﬁu

Convert Xl€+1 to X;,H R XZ'H to X;}Ll by the Algorithm 3 given in Section 5.3

Update X, if there is a better solution

=t+l

Compute 4 using Eq. (26)

end for

Output X,

. and its objective function value makespan

Algorithm 6. eWaOA for FJSP_PBPO.

Computational complexity analysis

In the proposed eWaOA, the key components contributing to computational complexity include conversion and
inverse conversion, population initialization, decoding, an enhanced feeding strategy, an enhanced migration
strategy, an enhanced fleeing strategy, and a gathering strategy. Notably, population initialization, decoding,
as well as the enhanced feeding, migration, fleeing, and gathering strategies, all involve either conversion or
inverse conversion operations. Let P denote the population size, D represent the dimension of each individual,
TN denote the total number of all tasks in the FJSP_PBPO (where D=2TN), K be the parameter in the ROMI
strategy, and T be the maximum number of iterations.

Conversion involves task template partitioning, data duplication, updating CRVT-related values, constructing
the IVT, and determining machine indices, each with a time complexity of O(D). The corresponding inverse
conversion process includes obtaining the ROV vector, generating random vectors, updating NewRVT values,
and computing the RVM, all with a time complexity of O(D). Therefore, the time complexity of both conversion
and inverse conversion is O(D). For decoding, the primary time consumption is spent iterating through the task
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sequence. For each task, it is necessary to retrieve the task, machine, and processing time, as well as determine
the task’s start and completion time. Since the loop runs for a total of TN tasks, the time complexity is O(TN).

The computational complexity of population initialization using the ROMI strategy is O(PKD). For each
individual in the first half of the population (a total of P/2 individuals), 1 task sequence random vectors (RV'T5)
and K machine assignment random vectors (RVMs) are generated. For each individual in the second half of the
population (a total of P/2 individuals), K RVTs and 1 RVM are generated. The time complexity of generating
each random vector is O(TN). Since the initialization process for each individual involves both conversion and
decoding operations, their respective time complexities are O(D) and O(TN). Therefore, the total time complexity
of generating random vectors is O(P/2(1 + K) x (TN+ TN+ D) + P/2(1 + K) x (TN + TN+ D) = O(PKD).

The enhanced feeding, migration, fleeing, and gathering strategies each have a computational complexity
of O(PD) per iteration. This complexity arises because, for each dimension of every walrus, calculating the
new position involves operations such as multiplication, addition, and random number generation, all with a
constant time complexity of O(1). Furthermore, the conversion or inverse conversion process for each walrus
has a complexity of O(D). Given a population size of P, updating the positions of all walruses leads to a total time
complexity of O(PD). Hence, the overall complexity of these strategies is O(PD).

Therefore, the overall computational complexity of the eWaOA is expressed as O(PDK + TPD). Since the value
of K is generally much smaller than the maximum number of iterations T, the total computational complexity
can be simplified to O(TPD).

Computational experiments and real-word case study

We first develop 30 test instances based on existing benchmark FJSP instances. We then compare the performance
of original WaOA with WaOA that incorporates the ROMI initialization strategy (WaOA-R) to assess the
effectiveness of the ROMI approach. Subsequently, we design and conduct experiments with four enhanced
WaOA variants and eleven state-of-the-art (SOTA) metaheuristic algorithms across these test instances,
followed by a real-world engineering case study to evaluate the superiority of eWaOA. To ensure the stability
and reliability of the results and minimize the effects of randomness, we run each test instances and engineering
case ten times. The experiments are performed using MATLAB R2018a on a desktop computer equipped with
an Intel Core i7-8700 processor, 16 GB of RAM, and Windows 10.

Instance generation
Due to the absence of benchmark for FJSP_PBPO, this study extends the MK01-MK15 benchmarks provided by
Brandimarte? by introducing one or two randomly selected PBPOs to create new test instances, resulting in the
EMKO1-EMK15 benchmarks for FJSP_PBPO. Detailed information about these PBPOs is presented in Table 4.
All other data remain consistent with the original benchmarks. For example, in EMKO2, the first PBPO
consists of tasks 0,, and Oy, which can be processed on machines 2, 5, and 6 with processing times of 4, 2, and
3 units, respectively. The second PBPO includes tasks O,, and O, ;), which are processed on machines 4 and
6 with processing times of 5 and 3 units, respectively. Test instances are identified with the suffixes “s” and “d”,
where “s” denotes instances considering only the first PBPO, and “d” denotes instances that include both PBPOs.
Accordingly, the test instances are EMKO01(s)-EMK15(s) and EMKO01(d)-EMK15(d), totaling 30 instances. The
extension to additional PBPOs follows the same principle as the scenario with two PBPOs, as these two PBPOs
are generated randomly.

Parameter setting and notations

The performance of an algorithm is significantly influenced by its parameter configurations, which are selected
based on extensive experimental validation and practical experience to ensure optimal results within a reasonable
time. In this study, the parameters are configured as follows: the walrus population size is set to 200, maximum
iterations is 250, different T are assigned based on the scale of each case when using time limit as the termination
criterion, the parameter K in the ROMI is set to 7, as determined by the experiments discussed in “Effectiveness
of ROMI” section.

To facilitate subsequent discussions and analyses, this paper standardizes the naming and descriptions for the
algorithm variants as follows: WaOA-R denotes the original WaOA enhanced with ROMI strategy; WaOA-RF
builds upon WaOA-R by incorporating the enhanced feeding strategy; WaOA-RFM further advances WaOA-RF
by implementing the enhanced migration strategy; WaOA-RFME, in turn, adds the improved fleeing strategy to
WaOA-RFEM. Finally, eWaOA integrates the gathering strategy into WaOA-RFME. For performance evaluation,
the following metrics are used for quantitative analysis in this section.

» B(C,,): the best makespan achieved across ten runs, assessing the optimal performance potential of algo-
rithm.

« Av: the average makespan over ten runs, indicating the algorithm’s overall performance.

+ Sd: the standard deviation of C, __across ten runs, measuring performance of stability and consistency.

o RPD (%): the relative percentage difference between the current algorithm and the best-performing algo-
rithm, calculated as RPD = 100% X (Cmax — Min)/Min, where Min is the smallest C, _value obtained
by all algorithms on the same test instance. A lower RPD value signifies closer proximity to the optimal solu-
tion and better search capability.

o SdMean: the average Sd value for each algorithm across all test instances of varying sizes, reflecting the algo-
rithm’s stability and consistency across different problem scales.

o RPDMean: the average RPD value across all test instances of varying sizes, providing a comprehensive evalu-
ation of the algorithm’s search capabilities across diverse problem scales.
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Instances | PBPOs Alternative machines | Processing times
EMKO1 0,,0,, M2/M4 3/5
04,045 M2/M4 3/5
EMKO2 0,,,04, M2/M5/Mé6 4/2/3
04013 | M4/M6 5/3
EMKO3 0,,,0, M2/M3/M4/M5 18/13/5/10
0,04, M4/M7/M8 13/2/18
EMKO4 0,,0, M3/M4/M7 9/4/5
0,505 | M7/M8 5/9
EMKO05 0,,,04, M2/M3/M4 6/9/5
0530, | MI/M2/M3 8/6/7
EMKO6 0,,,0;, M2/M7 8/5
0,,,0y, M1/M4/Mé6 6/6/2
EMKO7 0,,,0;, M1/M2 5/1
0,50, M2/M3 4/8
EMKOS 0,05 M1/M10 10/19
0,40, | M3/M4 19/5
EMKO0S 0,0, | M2/M6/M8 16/10/17
0,58O156) | M2/M3/M9 12/11/6
EMK10 0,704y | M2/M6/M7 5/5/15
05,055 | M2/M4/M7 16/13/14
EMKI1 0,;,0,, M4/M5 17/18
Ogs:Oyqy | M3/M4 28/22
EMK12 0,,,0;, M5/M10 22/15
0,50, M5/M7 18/24
EMKI3 OgOy5) | MI/MO 29/29
01560165 | M2/M10 21/18
EMK14 0,42yO15¢7) | M4IM13 16/10
0,510y | M5/M9 25/28
evs | OO M2/M15 25/27
0,,0,, M3/M4 24/28

Table 4. Description of the test instances.
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Fig. 7. Convergence for two initialization strategies in EMKO05(s).

WaOA WaOA-R WaOA WaOA-R

Instances | B(C, ) | Av sd | B(C,.) | Av Sd | Instances B(C,,,) | Av sd | B(C,.) | Av Sd

EMKOI1(s) |47 49.1 | 24 |46 48.1 1.7 | EMKO08(d) 550 569.4 | 13.7 | 536 558 14.7
EMKO1(d) | 44 47.7 | 3.1 |42 45.6 3.1 | EMKO09(s) 428 447.5 | 12.3 | 423 443.1 | 11.1
EMKO02(s) |40 45.2 2.8 |33 37.5 2.1 | EMK09(d) 423 458.7 | 16.5 | 415 449.3 | 18.2
EMKO02(d) | 39 428 | 2.6 |36 38.4 2.2 | EMK10(s) 368 384.6 | 15.8 | 355 378.2 | 14.2
EMKO3(s) | 238 258.6 | 9.4 | 236 249.8 | 11.2 | EMK10(d) 352 395.8 | 16.9 | 357 384.9 | 11.3
EMKO03(d) | 260 2743 6.4 | 231 251 10.0 | EMK11(s) 675 691.2 | 20.4 | 675 689.3 | 17.2
EMKO4(s) | 82 953 | 39|75 80 2.9 | EMK11(d) 676 689.4 | 17.6 | 654 673.4 | 19.8
EMKO04(d) | 82 92.7 | 42 |78 80.8 2.1 | EMKI12(s) 564 598.3 | 23.7 | 553 584.5 | 21.2
EMKO5(s) | 195 203.8 | 5.1 | 186 196 3.2 | EMK12(d) 579 591.3 | 24.8 | 589 599.1 |20.4
EMKO5(d) | 202 2246 | 8.5 | 189 197 6.7 | EMK13(s) 569 625.2 | 40.7 | 558 617.4 | 33.5
EMKO6(s) | 124 1483 | 7.5 [ 112 125 7.0 | EMK13(d) 576 623.8 | 21.6 | 589 633.3 | 243
EMKO6(d) | 122 134.5 | 11.7 | 119 130.1 | 8.9 | EMKI14(s) 758 792.3 | 32.8 | 752 788.2 | 28.6
EMKO07(s) | 173 1874 | 85 (173 185.6 | 8.2 | EMKI14(d) 773 810.2 | 36.2 | 778 806.6 | 31.2
EMKO07(d) | 194 208.7 | 10.4 | 175 189.2 | 10.2 | EMKI5(s) 567 587.5 | 24.1 | 562 584.1 | 25.2
EMKO8(s) | 566 584.1 | 10.5 | 547 568 14.8 | EMK15(d) 532 581.1 | 27.2 | 521 572.8 | 19.8

Table 5. Comparison between WaOA-R and WaOA. Significant values are in bold.

Effectiveness of ROMI

To determine the optimal value for the “K” in the ROMI, experiments are conducted using the EMKO05(s)
benchmark. The “K” values range from 2 to 10, resulting in nine distinct experimental setups. The results,
depicted in Fig. 6, show that when “K” is set to 7, the algorithm consistently achieves lower B(C,, , ) and Sd values
across the ten runs. Therefore, 7 is selected as the optimal parameter for the ROMI strategy. Figure 7 illustrates
a detailed comparison of convergence processes for WaOA-R and WaOA, with walruses initialized by ROMI
converging faster and more efficiently to a better makespan than those initialized randomly in WaOA.

Table 5 presents the comparative experimental results of WaOA-R and the original WaOA across 30 test
instances. The comparison reveals that incorporating the ROMI strategy improves B(C, ) in 25 instances,
with 1 instance yielding identical results and only 4 instances performing worse. For Av, improvements are
observed in 28 instances, with only 2 instances performing worse. Regarding the Sd metric, 22 instances show
improvement, and 8 instances perform worse. These comparisons, illustrated in Table 5 and Fig. 7, suggest that
WaOA-R with the ROMI strategy not only demonstrates superior search capability but also exhibits improved
stability and consistency compared to WaOA, while further enhancing the algorithm’s convergence efficiency.

Comparative experiments with enhanced WaOA variants

To validate the effectiveness and advantages of the enhanced feeding, migration, and fleeing strategies and the

proposed the gathering strategy, we compare the metrics B(C,, ), Av and Sd across ten runs for the algorithms

WaOA-R, WaOA-RE WaOA-REM, WaOA-RFMF and eWaOA. The experimental results are detailed in Table 6.
Table 6 shows that WaOA-RF surpasses WaOA-R in terms of B(C, ) for 20 out of 30 test instances, with 8

instances achieving identical results and only 2 instances showing slightly lower performance. For the Av metric,
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WaOA-R ‘WaOA-RF ‘WaOA-RFM ‘WaOA-RFMF eWaOA
Instances | B(C, ) | Av sd |B(C,,) | Av sd |B(C,,) | Av sd |B(C,,) | Av sd |B(C,,) | Av Sd
EMKOI1(s) | 46 48.1 1.7 | 45 47.6 2.7 | 43 46.3 22 |42 44.3 1.9 |42 42.0 | 0.0
EMKO1(d) | 42 45.6 3.1 | 42 46.3 2.8 |39 43.6 1.8 | 40 42.8 1.5 |39 39.1 | 0.3
EMKO02(s) |33 37.5 2.1 |35 39.2 25 (34 37.9 23 |34 37.1 2.0 |27 28.1 | 0.7
EMKO02(d) | 36 38.4 2.2 |36 41.3 33|35 385 2.7 |32 358 2.6 |28 28.6 | 0.8
EMKO3(s) | 236 249.8 | 11.2 | 230 248.1 | 8.5 | 227 241 7.1 | 226 2344 | 7.4 | 204 204.0 | 0.0
EMKO03(d) | 231 251 10.0 | 232 2529 | 9.7 | 228 2454 | 83 | 217 2292 | 7.5 | 187 187.0 | 0.0
EMKO4(s) |75 80 29 |74 82.1 32173 79 25|73 76 2.5 | 66 68.1 | 2.5
EMKO04(d) | 78 80.8 2.1 |74 78.3 1.6 | 74 77.7 29|73 75.8 2.4 | 66 68.3 | 2.5
EMKO5(s) | 186 196 54 | 186 192.2 | 4.7 | 186 193.7 | 4.1 | 184 187.7 | 3.3 | 173 1753 | 1.7
EMKO5(d) | 189 197 6.7 | 188 195.7 | 6.8 | 188 193.5 | 5.7 | 180 1884 | 4.1 | 171 172.7 | 1.0
EMKO6(s) | 112 125 7.0 | 112 1239 | 85 | 111 1219 | 6.8 | 107 1198 | 6.0 |72 75.8 | 2.7
EMKO06(d) | 119 130.1 8.9 | 117 1254 | 8.5 | 114 122.1 | 10.6 | 110 119.6 | 8.1 |69 75.7 | 3.5
EMKO07(s) | 173 185.6 | 8.2 | 170 184.8 | 11.8 | 175 1834 | 9.5 | 166 179.1 | 8.2 [ 138 1425 | 2.5
EMKO07(d) | 175 189.2 | 10.2 | 173 185.5 | 8.4 | 169 183.3 | 6.0 | 171 1789 | 5.2 | 137 142.2 | 3.7
EMKO08(s) | 547 568 14.8 | 545 565.6 | 16.5 | 545 563 14.5 | 533 554.8 | 13.6 | 523 532.0 | 3.0
EMKO08(d) | 536 558 14.7 | 536 557.5 | 18.9 | 534 557.3 | 17.2 | 523 5452 | 16.7 | 513 521.0 | 4.0
EMKO09(s) | 423 443.1 | 11.1 | 409 428.7 | 21.6 | 387 413.8 | 21.0 | 380 402.2 | 21.3 | 319 327.8 | 6.3
EMKO09(d) | 415 449.3 | 18.2 | 410 441.2 | 17.0 | 407 436.1 | 15.3 | 391 413.5 | 149 | 318 3299 | 5.7
EMKI10(s) | 355 378.2 | 14.2 | 351 371.3 | 15.6 | 347 368.5 | 19.5 | 334 370.8 | 20.3 | 241 250.6 | 7.7
EMK10(d) | 357 384.9 | 11.3 | 347 375.1 | 12.7 | 338 366.6 | 18.4 | 325 359.7 | 20.7 | 228 248.0 | 3.9
EMK11(s) | 675 689.3 | 17.2 | 661 681.8 | 16.4 | 656 673.3 | 14.1 | 639 664.3 | 13.7 | 615 619.2 | 2.9
EMK11(d) | 654 6734 | 19.8 | 654 673.2 | 15.2 | 646 671.1 | 15.9 | 646 666.7 | 14.4 | 613 624.5 | 2.5
EMK12(s) | 553 584.5 | 21.2 | 542 576 14.7 | 535 572 10.5 | 540 554.6 | 10.0 | 508 513.8 | 9.2
EMK12(d) | 589 599.1 | 20.4 | 571 587.4 | 22.8 | 567 579.1 | 19.7 | 532 561.5 | 19.9 | 508 517.5 | 7.1
EMK13(s) | 558 617.4 | 33.5 | 558 603 27.4 | 554 598.1 | 20.6 | 552 578.8 | 19.9 | 421 452.1 | 9.1
EMK13(d) | 589 633.3 | 24.3 | 572 602.9 | 17.5 | 544 595.5 | 17.1 | 568 592.6 | 16.7 | 417 448.6 | 6.8
EMK14(s) | 752 788.2 | 28.6 | 739 787.2 | 27.3 | 745 784.6 | 26.4 | 694 730.6 | 20.3 | 694 694.0 | 0.0
EMK14(d) | 778 806.6 | 31.2 | 757 783.4 | 21.8 | 745 784.6 | 21.3 | 694 734.9 | 22.7 | 694 694.0 | 0.0
EMK15(s) | 562 584.1 | 25.2 | 549 562.5 | 23.6 | 520 549.7 | 22.0 | 539 567.2 | 21.7 | 366 3959 | 5.1
EMKI15(d) | 521 572.8 | 19.8 | 521 571.7 | 18.3 | 519 547 17.5 | 549 570.8 | 21.4 | 382 404.6 | 5.0

Table 6. Results obtained by different WaOA variants. Significant values are in bold.

WaOA-RF demonstrates superior performance in 25 instances compared to WaOA-R, while 5 instances exhibit
relatively lower Av values. Regarding the Sd metric, WaOA-RF outperforms WaOA-R in 17 instances, with 13
instances exhibiting comparatively higher Sd values. These results suggest that incorporating Lévy flight into
WaOAss feeding strategy enhances both makespan and solution stability. The key benefit of Lévy flight is its
combination of short- and long-distance moves, which enables more effective exploration of the search space
and better balance between exploration and exploitation.

The comparative analysis between WaOA-RFM and WaOA-RF highlights a significant performance
improvement due to the enhanced migration strategy. For the B(C,, ) metric, 24 test instances show notable
improvement, with 2 instances experiencing a minor decline and 4 remaining unchanged. Similarly, in the
Av metric, 28 test instances demonstrate performance gains, while only 2 show slight declines. Regarding the
Sd metric, WaOA-RFM outperforms WaOA-RF in 25 instances, with 5 instances exhibiting relatively higher
Sd values. These findings underscore the enhanced migration strategy’s effectiveness in achieving an optimal
makespan, along with improved stability and consistency. This improvement is likely due to the self-adjusting
factor in the migration strategy, which promotes global exploration in early iterations and strengthens local
exploitation in later stages.

Comparing WaOA-RFMF with WaOA-RFM reveals that the enhanced fleeing strategy positively impacts
WaOA. Specifically, for the B(C, ) metric, 21 test instances show performance gains, 6 instances experience slight
declines, and 3 instances remain unchanged. In the case of the Av metric, 27 test instances show improvements,
while only 3 instances perform worse than with the original fleeing strategy. For the Sd metric, 23 instances
show improvements, while 7 instances perform relatively worse. These results conclusively demonstrate that the
fleeing strategy with arctangent function-controlled local bounds significantly outperforms the original strategy,
enhancing makespan, maintaining algorithmic consistency and stability, and reducing variability across runs.

Table 6 shows that eWaOA significantly improves the B(C,,, ) metric in 27 test instances compared to WaOA-
RFME, with performance in the remaining 3 instances being comparable. This result robustly demonstrates
eWaOASs potential in global optimization. Additionally, eWaOA consistently improves the Av metric across all
test instances. For the Sd metric, eWaOA achieves lower values in 28 instances, with 1 instance showing the
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same value as WaOA-RFME, and only 1 instance showing a minor 0.1 increase. These findings strongly indicate
that the gathering strategy significantly enhances WaOA's ability to achieve a globally optimal makespan while
markedly improving stability and consistency across multiple executions and diverse test scenarios.

The evolutionary trajectories of these algorithms on EMKO09(s) are analyzed to assess whether the
refined strategies accelerate WaOA’s convergence, as illustrated in Fig. 8a. This figure demonstrates that each
improvement, relative to the baseline (WaOA-R), enhances convergence speed and achieves a better makespan.
As shown in Fig. 8b, Curve 1, representing the difference between WaOA-RF and WaOA-R, displays fluctuations
in the early and middle iterations, suggesting that Lévy flight significantly enhances WaOA’s global exploration
capabilities. In the later stages, the differences in results continue to increase until reaching stability, indicating
that Lévy flight also strengthens exploitation in the middle and later iterations, allowing the algorithm to escape
local optima through occasional long-distance moves.

Curve 2, representing the difference between WaOA-RFM and WaOA-RE, oscillates above the baseline with a
broader range of values than Curve 1 during the early and middle stages. This pattern indicates that the enhanced
migration strategy strengthens WaOA-R’s global exploration through the introduced adaptive parameter. In the
middle and later stages, the differences continue to increase, reaching values significantly higher than those of
Curve 1. This trend demonstrates that the adaptive parameter also facilitates more effective local search guidance.

Curve 3, which represents the difference between WaOA-RFMF and WaOA-R, shows pronounced
fluctuations in the early and middle stages before transitioning into a phase of steady, stepwise improvement.
Notably, Curve 3 consistently remains above Curve 2 throughout the process. This suggests that introducing
the arctangent function to replace the inverse proportional function in the fleeing strategy does not diminish
the global exploration capability provided by the enhanced feeding and migration strategies. Instead, it further
enhances WaOAss local search capacity in the middle and later stages. This improvement is mainly attributed to
the extended global search range produced by the combined effect of the three enhanced strategies in the early
and middle stages. The arctangent function expands the local bound, enabling the algorithm to perform more
detailed local searches within a larger search space, thereby enhancing solution optimization in the later stages.

The combined application of all three enhanced strategies substantially improves WaOA-R's exploration
and exploitation capabilities, leading to a reduced makespan. However, results indicate that WaOA still risks
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Fig. 8. The diversity curves for the five algorithms to solve EMKO09(s).
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becoming trapped in local optima, with local search improvements progressing slowly during the middle and
later stages. The proposed gathering strategy effectively addresses this issue. As shown in Fig. 8b, Curve 4,
representing the difference between eWaOA and WaOA-R, remains consistently above Curve 3 throughout the
process. Alongside Fig. 8a, it is clear that the algorithm demonstrates strong global search capabilities, leading
to a rapid reduction in makespan and producing significantly better results than WaOA-RFMF in the early and
middle stages. In the mid-to-later stages (e.g., after 75 generations), the stepwise increases in Curve 4 occur
more frequently than in Curve 3, stabilizing around 200 iterations. Overall, the gathering strategy significantly
enhances both exploration and exploitation in WaOA. The primary advantage of the gathering strategy lies in
its random pairing of agents for positional information exchange, which prevents excessive concentration in
specific regions and reduces the risk of becoming trapped in local optima. As iterations progress into the middle
and later stages, shared positional information among paired agents converges, allowing individuals to refine
their positions within localized areas. This process enhances both convergence speed and solution accuracy.

Figure 9 depicts the variation in the value of A according to Eq. (26) over iterations when solving EMKO09(s),
showing that in the early stages, the gathering strategy is highly likely to be employed, thereby enhancing WaOA’s
exploration capability. Conversely, in the middle and later stages, the probability of using the gathering strategy
decreases, shifting the focus toward improving exploitation. Thus, this strategy effectively balances exploration
and exploitation throughout different phases. Figure 10 shows the Gantt chart for EMKO09 (d), generated using
the eWaOA algorithm. The chart illustrates that all operations comply with both the sequential order constraints
of the process plan and the PBPO requirements. This demonstrates that the proposed methods for encoding,
conversion, inverse conversion, and decoding effectively can handle the constraints of FJSP_PBPO.

Comparative experiments with other metaheuristic algorithms

Due to the novelty of FJSP_PBPO, there are no publicly available algorithms for direct comparison. Meanwhile,
the eWaOA proposed in this study is a standalone algorithm rather than a hybrid one. Therefore, this study
selected 11 SOTA standalone metaheuristic algorithms for evaluation. Each algorithm uniformly employs
the encoding scheme, conversion scheme and semi-active decoding method. The main differences among
the algorithms lie in their initialization and iterative processes. These algorithms can be categorized into four
groups: evolutionary-based, swarm-based, physics-based, and human-based. Evolutionary-based algorithms
mimic natural evolution using selection, crossover, and mutation to optimize solutions. The GA and DE®,
renowned for their robust global search capabilities, are the most prevalent evolutionary-based algorithms. They
are widely applied in scheduling optimization and are chosen as comparison algorithms for this study. Swarm-
based metaheuristic algorithms are developed by modeling the collective behaviors seen in natural phenomena.
This study compares classic swarm-based metaheuristic algorithms, including PSO** and GWO"!, alongside
newer algorithms such as HHO®, artificial rabbits optimization (ARO)”, and the latest WO'2. Physics-
based algorithms utilize principles from physics to address optimization challenges. In this paper, multi-verse
optimization (MVO)’! and optical microscope algorithm (OMA)” are chosen as comparison algorithms within
the physics-based category. Human-based algorithms, inspired by human cognitive processes and behaviors,
are represented here by the teaching learning based optimization (TLBO)”® and poor and rich optimization
(PRO)”2. To eliminate variations from differences in initial candidate solutions, enhance the repeatability and
stability of the experiments, and ensure fairness and consistency in evaluation, the initial population size is
uniformly set to 200. Other parameters are configured according to the default settings of each algorithm, with
the specific values presented in Table 7.

To comprehensively evaluate the performance of the algorithms across 30 extended test instances, we
conducted two experiments: one with a fixed maximum number of iterations (Experiment 1) and the other
with a time-limited termination criterion, where the algorithms terminate once the time limit is reached
(Experiment 2). These experiments assess each algorithm’s capability to find the global optimal solution and its
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Fig. 9. The value of A over iterations of a run while solving EMKO09(s).
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Fig. 10. Gantt chart of a scheduling scheme for EMKO09 (d).
Category Algorithm | Parameter (value) Category Algorithm | Parameter (value)
Cognitive coefficient (2)
GA &r&?gzzrrzze(gob% PSO Social coeflicient (2)
Evolutionary-based : Inertia weight (Linear reduction from 0.9 to 0.2)
DE E’Irl(l)tsst(i)srelrf;iggagii )Y ©02) GWO Convergence parameter (Linear reduction from 2 to 0)
OMA - Swarm-based HHO Escape energy (Linear reduction from 2 to 0)
Physics-based MVO WEP_Max (1) ARO Energy factor ([0.1, 2])
WEP_Min (0.2) Hiding parameter ([0.01, 0.5])
TLBO Teaching factor (1,2) WO Female ra}te ([0-4])
Human-based Danger signal (2)
PRO Mutation probability (0.06)

Table 7. Parameter settings for the comparison algorithms.

trade-off between solution quality and search efficiency. We compare the metrics B(Cmax), Av, Sd, RPD, SdMean,
RPDMean for all 12 algorithms.

The results of Experiment 1 are presented in Table 8. Notably, eWaOA achieves optimal values for the
B(Cmax), Ay, and PRD metrics across all 30 test instances. Specifically, eWaOA attains optimality in 26 instances
for B(Cmax), while in the remaining 4 instances, it ties with other top algorithms. For the Av metric, eWaOA
achieves optimality in all 30 instances. Furthermore, among the 12 algorithms, eWaOA records the lowest
Sd value in 22 of the test instances. In terms of SdMean and RPDMean metrics across all instances, eWaOA
demonstrates superior performance with values of 3.3 and 0, respectively. Table 9 presents the termination time
settings (Time) and the results of Experiment 2. As shown, eWaOA also demonstrates strong competitiveness.
Specifically, eWaOA achieves the minimum values for the B(Cmax), Av, and Sd metrics in 28, 30, and 15 instances,
respectively. Notably, eWaOA also performs well in the SdMean and PRDMean metrics, with the lowest values
of 3.9 and 0.1, respectively. These results indicate eWaOA's efficient optimization capability within a fixed
termination time.

For each algorithm, we select the iteration data with the minimum C, . from 10 runs and then plot the C, ,
variation curves for different test instances, as shown in Fig. 11. In this figure, eWaOA attains the lowest C,
in all 30 instances. Moreover, the eWaOA achieves better C, , values with significantly fewer iterations (less
than 50) for instances like EMKO01(s), EMK01(d), EMKO03(s), EMKO04(s), EMKO04(d), EMKO05(s), EMKO08(s),
EMKO08(d), EMK14(s), and EMK14(d). For instances EMKO03(d), EMKO05(d), EMKO07(s), EMK11(d), EMK12(s),
and EMK12(d), the convergence curve of eWaOA stabilizes within 50-100 iterations. For instances EMKO02(s),
EMKO07(d), EMKO09(s), EMK09(d), EMK13(d), EMK15(s), and EMK15(d), convergence stability is achieved

X
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within 100-200 iterations. For instances EMKO02(d), EMKO06(s), EMKO06(d), EMK10(d), EMK11(s), and
EMK13(s), stability is achieved before 250 iterations.

To highlight the remarkable advantages of eWaOA over other algorithms, a paired t-test was conducted at a
significance level of a=0.05 to explore the existence of statistically significant differences between eWaOA and
various comparative algorithms. The data for this paired t-test were obtained from the outcomes of running
eWaOA and each comparative algorithm 10 times per instance. Figure 12 shows the results of the paired ¢-test
regarding the C, = of eWaOA and comparative algorithms for each test instance. In this figure, each group on
the x-axis represents the paired t-test results of eWaOA against a specific comparative algorithm, and the log2FC
shown is calculated based on the average values of C_ . Specifically, we first determine the fold change of the
average C, . of eWaOA compared to that of each comparative algorithm and then take the logarithm to the base
2 of this fold change. Moreover, according to the p-values from the paired ¢-test, the scatter points in the graph
are divided into two groups: the group with a “p-value<0.05” is represented by red scatter points, indicating
a statistically significant difference, while the group with a “p-value>0.05” is shown by blue scatter points.
To avoid complete horizontal overlap of data points and improve the readability of the scatter plot, random
perturbations have been applied to each data point during the plotting process. As can be seen from the figure,
except for the EMK14(d) instance in the comparison between eWaOA and ARO, and the EMKO07(d) instance in
the comparison between eWaOA and TLBO, eWaOA shows highly significant differences from other algorithms
in most instances, as demonstrated by the distribution of red and blue scatter points as well as the values of
log2FC.

Based on the results in Tables 8 and 9, as well as Figd. 11 and 12, we conclude that the proposed eWaOA
significantly outperforms the 11 SOTA algorithms in both optimization effectiveness and efficiency. Specifically,
eWaOA demonstrates superior performance in terms of makespan, stability, consistency, and optimization
efficiency-achieving better results within the specified time.

Engineering case study

This study aims to further validate the proposed eWaOA by applying it to a practical engineering scenario
involving three distinct product categories tested at an electronic product performance lab. The products include
mobile phones (MP), in-vehicle navigators (IVNs), and unmanned aerial vehicles (UAVs). The performance
testing process plan for MP is illustrated in Fig. 1, while the testing process plan for IVNs and UAVs are detailed
in Tables 10 and 11, respectively.

The results obtained by applying the 12 algorithms to the engineering case are presented in Table 12. All
algorithms use an time-limited termination criterion, with the corresponding time limit set to 55(s). It is evident
that PSO, GWO, ARO, TLBO, and eWaOA yield the smallest B(C,, ), with eWaOA achieving the lowest Av
and Sd. This further demonstrates that eWaOA not only minimizes B(C nay) DUL also shows superior stability
and consistency. Figure 13 displays the Gantt chart of the optimal scheduling results from 10 runs of eWaOA,
with PBPOs highlighted in red boxes. The chart demonstrates that all operations adhere to the sequential order
constraints of the process plan and satisfy the PBPO requirements, reaffirming the feasibility and effectiveness
of eWaOA in solving the FJSP_PBPO.

Conclusion and future research

To optimize the makespan for the FJSP_PBPO problem, this study develops an optimization model using
MIP and introduces an enhanced swarm-based metaheuristic algorithm, eWaOA, which extends the WaOA
framework. In eWaOA, new schemes for encoding, conversion, inverse conversion, and decoding tailored to the
specific constraints of FJSP_PBPO are designed. Additionally, a ROMI strategy is designed to generate diverse
and high-quality initial solutions. Enhancements are made to the feeding, migration, and fleeing strategies of
WaOA, and a novel gathering strategy is introduced to improve both exploration and exploitation.

To evaluate these improvements, 30 test instance, extended from existing benchmark FJSP instances, are
used. The ROMI initialization strategy shows superior search capability, stability, and consistency compared
to WaOA, enhancing convergence efficiency. Comparisons are made with four enhanced WaOA variants and
eleven SOTA metaheuristic algorithms on the 30 test instances, followed by a real-world engineering case study.
Results from these comparisons confirm that the eWaOA effectively addresses the FJSP_PBPO, demonstrating
superior optimization capability, stability, consistency, and efficiency.

The proposed eWaOA primarily addresses the FJSP with PBPO. However, electronic product performance
testing introduces additional constraints, including multi-resource coupling and sequence-dependent setup
times. Future research will focus on enhancing eWaOA to effectively handle these constraints, extending its
applicability to more complex engineering scenarios.
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Fig. 12. The results of the paired ¢ -test between eWaOA and the other 11 SOTA algorithms for the 30 test

instances.

Tasks of IVN Machine | Processing time | Tasks of IVN Machine | Processing time

11 (Electrical performance test) M4 10 O,,(High temperature functional test) M3 13

1> (Button operation force test) M7 12 O,; (Low temperature exposure test) M6 17
0,, (Dimensional inspection) M2 14 0,, (Low temperature functional test) M8 17
0,, (Rapid thermal cycling test) M3 19 0, (Humidity and temperature cycling Test) | M7 19
0,, (Key operation durability test) M4 13 {0;,, O,4}(Dust test) M1 15
{05 0,,}(Drop impact test) M3 18 O, (Appearance function test) M5/ M8 | 15/15
O, (Static current test) M1 12 O, (Conductive emission test) M7 17
O,, (Operating voltage range test) M1 15 O, (Radiated emission test) M8 18
O,; (Alcohol screening) M2 17 Og; (Radiated immunity test) M3 15

54 (Fuel injector adhesion point inspection) | M5 17 s (Electrostatic discharge test) M3 16

15 (Artificial sweat test) Mé6 19 <5 (Temperature cycling test) Mé6 16
O, (Swabbing test) M2 12 ,, (Lifetime testing) M5/M8 | 16/16
O,,(High temperature exposure test) M4 15

Table 10. Process plan of the IVNs.
Tasks of IVN Machine | Processing time | Tasks of UAVs Machine | Processing time
O,, (High-low temperature charge-discharge test) | M1 17 O,, (Key/Button test) M4 18
O,, (High-low temperature flight test) M8 14 O,, (Transportation vibration Test) M6 17
O, ; (Swelling rainfall test) M4 15 0, (Handling Test) M2 19
0,, (Corrosion resistance test) M2 10 O, (Circuit bending test) M5/M8 | 12/12
0,, (Maximum load aging test) M5 19 O, (Battery insertion and removal test) | M2 14
O, (Spraying aging test) M3 16 O,,(Six-sided drop test) M7 12
{0,, O,,}(drop impact test) M2 10 O,; (Dustproof test) M1 17
, (Immersion water test) Meé 15

Table 11. Process plan of the UAVs.
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129 128.9 | 0.30 | 128 128.7 | 0.46 | 130 137.0 | 5.23 | 128 128.1 | 0.30

Table 12. Comparison of scheduling results for instance from testing workshop. Significant values are in bold.

Machines

MP-4(1) -

1 | | | 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100 110 120 130
Processing time

Fig. 13. Gantt chart of a scheduling scheme obtained by eWaOA for the practical example.
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