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Accurate space object pose estimation is crucial for various space tasks, including 3D reconstruction, 
satellite navigation, rendezvous and docking maneuvers, and collision avoidance. Many previous 
studies, however, often presuppose the availability of the space object’s computer-aided design model 
for keypoint matching and model training. This work proposes a generalized pose estimation pipeline 
that is independent of 3D models and applicable to both instance- and category-level scenarios. The 
proposed framework consists of three parts based on deep learning approaches to accurately estimate 
space objects pose. First, a keypoints extractor is proposed to extract sub-pixel-level keypoints 
from input images. Then a multichannel matching network with triple loss is designed to obtain the 
matching pairs of keypoints in the body reference system. Finally, a pose graph optimization algorithm 
with a dynamic keyframes pool is designed to estimate the target pose and reduce long-term drifting 
pose errors. A space object dataset including nine different types of non-cooperative targets with 
11,565 samples is developed for model training and evaluation. Extensive experimental results indicate 
that the proposed method demonstrates robust performance across various challenging conditions, 
including different object types, diverse illumination scenarios, varying rotation rates, and different 
image resolutions. To verify the demonstrated approach, the model is compared with several state-of-
the-art approaches and shows superior estimation results. The mAPE and mMS scores of the proposed 
approach reach 0.63° and 0.767, respectively.

A critical aspect for the success of in-space servicing and debris removal operations is the 3D reconstruction 
of non-cooperative target objects, which relies heavily on minimal equipment. One of the key steps in 3D 
reconstruction involves precise pose estimation-determining and tracking the relative position and orientation 
of the target. Accurately establishing the approach trajectory and adapting control systems in real time are 
fundamentally dependent on performing onboard pose estimation as part of the 3D reconstruction process. 
Many space missions are already in applied or planned in this field1–3. Deep learning-based pose estimation 
has become a research hotspot in recent years4. Most existing space object pose estimation approaches mainly 
estimate the relative pose between a space object and a reference frame using the current frame, with an implicit 
assumption of possessing a CAD model for a given object instance. The availability of specific CAD models for 
individual satellites poses challenges in extending the generalization of the approach to novel and previously 
unseen space instances.

To address this issue, some studies employ category-level models to estimate the pose of the space target. They 
typically train on a multitude of CAD data within that specific category to enhance the model’s generalizability 
within that category. However, this approach comes with certain limitations. Firstly, these models are influenced 
by the diversity of categories present in the learning dataset, leading to suboptimal generalization to unknown 
category targets. Additionally, the construction of the 3D CAD database used for training models often 
necessitates manual effort and domain knowledge.

An alternative approach involves leveraging SLAM technology for pose estimation, where non-cooperative 
target objects are reconstructed in real-time, eliminating the necessity for pre-existing 3D models of the objects. 
Nevertheless, employing SLAM directly for space object pose estimation encounters two challenges. Firstly, in 
scenarios where non-cooperative targets exhibit rapid rotation, traditional feature point matching methods often 
yield suboptimal results. Additionally, errors tend to accumulate when integrating observations with inaccurate 
pose estimates during tracking via reconstruction. These accumulated errors adversely impact subsequent 
frame-to-frame model tracking.
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To address the aforementioned limitations, this study aims to achieve accurate and robust 6D pose estimation 
without reliance on instance- or category-level 3D models, laying the groundwork for subsequent tasks such 
as 3D reconstruction and capture of non-cooperative targets. The comparison between the proposed method 
with other methods are shown in Fig. 1. We propose a model-free estimation pipeline consisting of three parts 
to accurately estimate the target pose. First, an image segmentation method and hierarchical shape matching is 
proposed to obtain the initial object location and rotation. Then, a keypoints extractor is proposed to extract 
sub-pixel-level keypoints from input images. And a multichannel superglue network with triple loss is designed 
to obtain the matching pairs of keypoints in the body reference system, following by a non-iterative mismatch 
removal approach to further enhance the matching accuracy. After that, a pose graph optimization algorithm 
with a dynamic keyframe pool is designed to reduce long-term cumulative pose errors.

The proposed model offers the following advantages over existing algorithms: 

	1.	� An integrated approach for non-cooperative space target pose estimation is proposed, and a SegFormer 
based segmentation model integrated with a localized-class-region-learning module is proposed to extract 
the initial target mask.

	2.	� A feature point extraction and matching algorithm based on multi-dimensional subpixel convolution fea-
tures is proposed, addressing the issue of inaccurate feature point matching caused by the rapid rotation of 
non-cooperative targets.

	3.	� A graph optimization method based on a dynamic keyframe memory pool is proposed, reducing the cumu-
lative error in long-term pose estimation drift.

	4.	� A new non-cooperative target dataset is created. The dataset contains nine different types of non-cooperative 
targets, and most of the models are from the catalogue of 3D models from NASA. The targets in space are 
collected under different illumination conditions, with different rotation rates and different image resolu-
tions, to train and verify the proposed models.The rest of this paper is structured as follows: related research 
on object pose estimation is discussed in “Related work” section. The pipeline for pose estimation based on 
keypoint matching and graph optimization is presented in “Methodology” section. The experimental results 
and discussions are presented in “Experiment results and discussion” section. The conclusions of the work 
are presented in “Conclusion” section.

Related work
Depending on whether or not to use predefined 3D models, research on non-cooperative space object pose 
estimation can be categorized into the following two groups: CAD-known methods and model-free pose 
estimation methods.

CAD-known methods
When the CAD data of the space object is available, significant progress has been made in non-cooperative target 
pose estimation7,8. Tae et al.9 first combined the CNN-based architecture to extract the object keypoints from a 
single image, and a PnP model is designed to calculate the relative pose from the 2D keypoints and the associated 
3D model coordinates. Similarly, Huo et al.10 introduced a new one-stage neural network to detect the object 
and estimate the 2D locations of the projected keypoints from the reconstructed 3D data. Subsequently, the 
satellite pose is calculated by the 2D-3D correspondences generated by keypoints regression model. Hu et al.11 
designed a feature pyramid network (FPN) to extract keypoints at various scales and regress the 2D projections 
of predefined 3D points following by the PnP solver. Wang et al.12 designed a transformer-based keypoints 

Fig. 1.  Comparison of the proposed method with other methods. (a) keypoint matching method: Requires 
precise 3D models and can only perform pose estimation for specific targets5. (b) SLAM-based method: 
Performs poorly in in rapid rotations or other dynamic movements of the nonoperative target6. (c) Proposed 
method: Utilizes image segmentation and shape prior to obtain initial frame mask, followed by deep feature 
point matching to achieve pose tracking in scenarios with rapid rotations.
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generation network and constructed the integrated loss function to estimate the correct object keypoints. Then 
estimate the satellite pose with 3D-2D projection. Besides, Liu et al.13 processed the LIDAR sensor data and 
estimated the satellite pose in close range.

Some researchers also estimate object pose in a regression way. Sumant et al.14 used a convolutional neural 
network (CNN) comprising three heads to estimate the object location, classify its discrete coarse attitude labels, 
and regress coarse attitude into a finer estimation. Deng et al.15 introduced the YOLOv5 and HRNet models 
to detect the object and classify its attitude. In order to enhance the pose estimation precision with various 
illumination conditions in a space environment, Afshar et al.16 devised a transfer learning method incorporating 
object augmentation to directly classify the satellite class and regress its pose.

Model-free methods
In the case of non-cooperative space targets with unknown three-dimensional structures, several algorithms first 
reconstruct the space target to generate the 3D model and then estimate the object pose. Lei et al.17 developed an 
integrated framework to estimate spacecraft pose with three branches. One branch is dedicated to estimating the 
satellite pose from the current image, and another part simultaneously extracts keyframes. The final branch is 
responsible for establishing the local 3D map. Li et al.18 designed a point cloud pose graph optimization algorithm 
to maintain the global satellite structure. Subsequently, an extended Kalman filter is introduced to calculate 
the object pose and inertia values by the motion sensors. Hai et al.19 proposed a shape-constraint recurrent 
matching framework for 6D object pose estimation. Zhang et al.20 designed a novel solution by reframing 
category-level object pose estimation as conditional generative modeling. The algorithms most similar to the 
proposed method are BundleTrack21 and BundleSDF22. BundleTrack proposes a general framework for 6D pose 
tracking of novel objects without relying on 3D models, leveraging deep learning for segmentation and feature 
extraction, along with memory-augmented pose graph optimization for spatiotemporal consistency, achieving 
state-of-the-art performance in challenging scenarios and real-time processing at 10 Hz. Similarity, BundleSDF 
is a near real-time 6-DoF tracking method for unknown objects from monocular RGBD video, incorporating 
neural 3D reconstruction, which handles large pose changes, occlusions, and untextured surfaces without prior 
information, outperforming existing methods on HO3D, YCBInEOAT, and BEHAVE datasets.

There is limited research on model-free methods for space-object pose estimation. In the domain of everyday 
object pose estimation, researchers explore pose studies through methods such as 3D reconstruction and pose 
graph optimization. Specifically, approaches like frame-model Iterative Closest Point (ICP)23,24, 3D likelihood 
maximization25 and probabilistic data association26 have enhanced the accuracy of 3D model reconstruction. 
Additionally, methods such as those proposed in27,28 use optimization techniques based on bundle adjustment 
to correct long-term cumulative errors in the pose estimation process. In general, existing model-free models 
for daily object pose estimation typically employ dense point features for matching and bundle adjustment. 
BundleTrack and BundleSDF struggle to adapt to the issue of large-angle matching when both the chaser and 
the target undergo pose changes in space, and they also do not consider the problem of determining the target’s 
position and rotation under initial frame conditions. Given the complexities arising from different rotation 
speeds and varying lighting conditions in the context of non-cooperative space objects, a novel framework is 
required to achieve robust and accurate pose estimation.

Methodology
To reduce feature matching errors under different rotation speeds of the target and minimize long-term 
drift estimation error, this work aims to efficiently and accurately estimate the space target pose. We suggest 
an integrated pose estimation framework to achieve high estimation accuracy. The image input sequence is 
first processed by object detection model to extract target position and remove the background. To extract 
the subpixel level keypoints from detecrted image area, a keypoint extraction module and subpixel block are 
then proposed. The matched pairs of keypoints in the body reference system are obtained using a triple-loss 
multichannel matching network. The target rotation matrix is then extracted using the keypoints that were 
successfully matched, and a mismatch removal method is then suggested to further improve the matching 
accuracy. Finally, a pose graph optimization with dynamic keyframe pool is proposed to obtain the target pose 
relative to initial frame. The overview of the suggested approach is depicted in Fig. 2.

Initial pose estimation
Consider a rigid space object that lacks both a specific 3D model and a category-level model database for 
training purposes. The goal in this paper is to track the object’s 6D pose changes from the start of tracking, 
meaning tracking the relative transformation P0 → τ  in SE(3), where τ  is any frame from the initial time p = 0 
up to current time t. The algorithm have three inputs, which include: (1) Iτ : RGB-D data sequence from time 0 
to time t. (2) B: A segmentation mask in the initial frame I0 that defines the region of the target object. (3) P C

0
: The object’s initial pose in the camera’s coordinate frame C .

In order to obtain the segmentation mask B in the initial frame I0, we propose a SegFormer based 
segmentation model to obtain the target mask from the image, as shown in Fig. 2a. Considering the unknown 
shapes of various non-cooperative targets, the segmentation model is trained by public spacecraft dataset29 to 
ensure it can effectively detect various types of non-cooperative targets and segment different parts of the targets, 
including the main body, solar panels, etc.

To enhance the segmentation model’s adaptability to different contexts and varying space lighting conditions, 
this paper designs a localized-class-region-learning module to improve the segmentation performance. 
Specifically, given x, we utilize the semantic segmentation network φ to extract the feature maps of the two 
partially overlapping patches. We denote the overlapping region as O1 and O2 from Crop1 and Crop2 
respectively. We argue that the output features of the overlapping regions should be insensitive to the context. 
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Therefore, we constrain each feature in O1 to be consistent with the corresponding feature at the same location 
in O2, which can be formulated as:

	
L Loc = 1

|Npatch|

Npatch∑
k=1

r (φ(O1)k, φ(O2)k)� (1)

where φ(O1)k  denotes i-th feature in the overlapping region O1, r denotes the exponential function of the 
cosine similarity as the one in pixel contrast.

After the segmentation mask is obtained, the object’s initial pose in the camera’s coordinate frame C  is retrieved 
by two optional methods. One is using the default identity matrix as the initial pose. In this scenario, the part 
segmentation mask from the model’s initial frame can also provide additional prior information for subsequent 
capture tasks. Another way is to determine the object’s absolute pose based on the hierarchical shape prior model, 
proposed by Ren et al.30. As shown in Fig. 2 Firstly, some common predefined non-cooperative target shapes, 
such as adjacency, reflective symmetry, and rotational symmetry, are predefined. These shapes include various 
configurations that align with the typical component types and constraints found in space object structures, 
providing a foundational model for understanding and reconstructing the physical makeup of these objects. The 
prebuilt hierarchical shape model is established from the structural laws of space objects, which is defined as O
. O  is a 2-tuple:

	 O = (V, C),

where V  represents the types of object components and C  indicates the constraints among object components30. 
By matching the predefined shapes and initial target mask, the optimal pose T ∗ is determined by maximizing 
a posterior probability that integrates the object’s structural probability, conditional probability of types of 
constraints given their components, and the match degree between the input image and the projected object’s 
features30. It is worth noting that the image segmentation method mentioned in this paper for initial pose 
determination exhibits a certain degree of robustness, which is particularly relevant for damaged satellites-a 
common scenario in space capture, repair, and other related tasks.

Keypoints extraction method
Inspired by SuperPoint31, This paper propose a CNN based keypoints descriptor to extract the local features from 
the space target images. The model performs detection and description using a single CNN model that shares 

Fig. 2.  Overview of the proposed framework.
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a backbone and has multiple heads for keypoints and description maps. By using a homographic matching 
process, the detector head is trained in a self-supervised manner. By locating keypoints on various distorted 
versions of the same image and combining them, the true keypoints are created. The model learns to predict the 
locations of the keypoints by including cross-entropy loss. True correspondences between points in an image 
and its distorted version can be established through the application of random homographies. The objective of 
the descriptor head is to minimize the spatial gap between descriptors for each pair of keypoints.

The output of the keypoints extraction network includes a score map with the shape of H × W , and a 
description map with the shape of H × W × 256. The score map describes the probability that each pixel in 
the original image is a feature point. The feature points are then extracted based on the score threshold, and the 
coordinates are pixel-level integer coordinates, which limits the accuracy of keypoints location accuracy and 
following pose estimation precision. To solve this problem, this paper integrate the keypoint extraction network 
with a sub-pixel module. Firstly, a feature point coordinate sub-pixelization module is designed, which integrates 
the neighborhood pixel features with the original feature points to achieve sub-pixel precision for each feature 
point. The descriptor is then modified to calculate the corresponding sub-pixel descriptions with the modified 
feature points. A bilinear interpolation approach and an L2 regularization method are built to improve the 
descriptor precision. The proposed keypoints extraction module with the subpixel module is demonstrated in 
Fig. 3.

As shown in Fig. 3, the score map S is generated by the feature encoder-decoder backbone. For each non-
overlapping N × N  pixel window, a non-maximum value suppression is designed to obtain the coarse feature 
map SNMS , the non-maximum value suppression equation is shown in Eq. (2):

	
s =

{
smax, s = smax
0, s < smax

,� (2)

where smax = max(s(i, j)), 0 ⩽ i, j < N , and s is the pixel window.

After NMS, pixel points that larger than threshold th are extracted as the integer coordinate set p. For each 
feature point pi = (x0, y0)i in p, its 5 × 5 local pixel window reflects the probability of the point as a feature 
point, and a integral regression is applied on the local window to calculate the keypoint coordinate expectation. 
Besides, in order to maintain differentiable characteristics, we introduce a Softargmax method for the calculation 
of the coordinate expectations. The subpixel offset expectations (δx, δy) in the x and y directions are obtained 
separately, as shown in the Eq. (3).

	
δx =

∑
j

∑
i
es(xi,yj)i

∑
j

∑
i
es(xi,yj) , δy =

∑
j

∑
i
es(xi,yj)j

∑
j

∑
i
es(xi,yj) � (3)

where i and j represent the pixel offsets in the x and y directions, respectively. And their values are −2, −1, 1, 2
. (xi, yi) means the keypoint coordinates with bias. By obtaining subpixel offset (δx, δy), the revised subpixel 
level keypoints coordinates(x′, y′) are expressed as:

	
(
x′, y′) = (x0, y0) + (δx, δy)� (4)

Figure 3 also shows the modified descriptor decoder with the sub-pixel module. The bilinear interpolation 
operation for the generated sub-pixel keypoint is carried out by the descriptor decoder in this paper. Each 
keypoint has a 256-dimensional vector serving as its descriptor. The L2 normalization method is then used to 
regularize these vectors to produce the final 256-dimensional descriptor. The equation is shown below:

Fig. 3.  The sketch of the proposed sub-pixel based key-points extraction method.
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xnor = x√∑256
i=1 x2

i

� (5)

where xnor is the normalized keypoints descriptor.

Multi-dimension keypoints matching model
Inspired by Superglue32, this paper proposes a self-attention multi-dimensional keypoints matching model. 
The core idea of the self-attention keypoints matching is to transform the matching problem into an optimal 
transportation problem to joint encode the vectors of keypoints and descriptors. The Sinkhorn algorithm33 is 
applied to iteratively obtain the best matching scores. The proposed matching model is shown in Fig. 4. Due to 
their repeating location, the keypoints extracted from the input image are first categorized and processed. By a 
NMS process, the processed keypoints set becomes:

	 Pi = (Po, Pd, Po,d),� (6)

where Po,d means the keypoints both in RGB and depth feature maps. Po and Pd represent the keypoints from 
the RGB feature map and depth map, respectively. The camera intrinsics are used to convert keypoints from the 
image coordinate reference to the body coordinate reference in order to unify the keypoint coordinate system.

The keypoints set is then introduced separately into the matching backbone to extract the matching descriptors 
by the cross-attention and self-attention modules. A score matrix based on the matching descriptors can be used 
to compute the assignment map A. We design the multi-dimensional pairwise score as the similarity of matching 
descriptors; the score map is shown in Eq. (7).

	

Si,j =< fo
A
i , fo

B
j > +λ1 < fd

A
i , fd

B
j >

+ λ2 < fodA
i , fodB

j >, ∀(i, j) ∈ A × B.
� (7)

where < · > means the inner product. λ1 and λ are the super parameters to control the weights between the 
RGB score map, the depth score map, and the integrated score map. The magnitude of the matching descriptors 
represents the estimation confidence of the keypoints extractor.

To find the correct matching pairs from the matching score, the optimization problem is treated as the optimal 
transport problem related with the two discrete distributions a and b with scores S. Its entropy-regularized 
representation inherently yields the desired soft allocation, and the Sinkhorn algorithm can solve it quickly34. 
While our multi-dimensional matching approach introduces additional computation in the preprocessing stage, 
this overhead is limited to a one-time cost matrix generation before the Sinkhorn algorithm begins.

The proposed matching model is trained in a supervised way from true matches M. The matching pairs are 
generated from ground truth poses. Specifically, the image keypoints are firstly extracted from both RGB and 
depth images, and transformed into body coordinate with camera intrinsic. The groundtruth rotation matrix 
is applied to project the keypoints into another image. And the reverse transformation process is applied to 
generate image coordinate keypoints. The L2 distance formula is utilized to find the best matching pair between 
the two keypoints set. To help the model learn the correct matching scores, we design an integration loss function 
that combines the triple loss and negative log-likelihood (nll) loss. The loss is shown in Eq. (8):

	
L = −

∑
(i,j)∈M

log Ai,j − max(Dap − Dan + margin, 0) � (8)

Fig. 4.  The sketch of the proposed multi-dimensional matching model.
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where A represents the assignment matrix. The Dap and Dan mean the matching score with positive distance 
and negative distance. In other words, Dap is the sum of matching scores for true matching pairs, and Dan is 
the matching scores for the mismatching pairs with the highest scores margin is the non-negative factor. The loss 
function is applied to increase the Dap and decrease the Dan.

By applying the keypoints extractor and matching module, the matching keypoints are prepared to estimate the 
target pose. However, due to the pixel error and mismatched points, the pose accuracy usually cannot meet the 
requirement. This work proposed non-iterative approaches to accelerate the estimation process and enhance 
the pose precision. The details of the algorithm are illustrated in Algorithm 1:

Algorithm 1.

As shown in Algorithm 1, the matched pairs (Mi, Mj) are the outputs from the proposed matching model. 
And the generated matched keypoints (Mkptsi, Mkptsj) are sampled by the farthest point sampling algorithm 
(FPS). The farthest point sampling algorithm is first proposed by PointNet35. It samples the farthest point for each 
sample and performs distance updating to enhance the pose estimation accuracy. The adjusted FPS approach36 
is introduced to reduce the processing time while keeping its performance. After that, a Hessian matrix H is 
produced by the two pairs of matched keypoints, and the rotation matrix R is generated by the singular value 
decomposition algorithm. Then the pose value P is generated from the rotation matrix R by Rodrigues’ rotation 
formula37 and the translation T from the object detection results. To remove the mismatching points, we predict 
the Mkpts

′
j  of image j from image i by the retrieved rotation matrix. The keypoints distance between Mkpts

′
j  

and Mkptsj  are sorted, and the mismatched keypoints are removed from Mkptsi and Mkptsj . The pose are 
then estimated by the selected keypoint pair. After removing the mismatching keypoints, a preliminary pose is 
computed by Pt = Pt−1P t−1

t  where P t−1
t  is the best estimated pose between the two match pairs.

Pose graph optimization (GO) with dynamic keyframe pool
A pose graph optimization step is subsequently proposed to refined Pt and reduce the long-term drifting pose 
error. The pose graph can be represented as G = {V, E}, |V | = k + 1, where each node means the target pose 
at the current frame and k selected frames τ ∈ {t, t − t1, t − t2, . . . , t − tk}. Each pose can then be indicated 
as Ti, i ∈ |V |, where V includes current pose and previous k poses. Spatiotemporal coherence is established by 
minimizing the overall energy of the graph E. The equation is as follows:

	
E =

∑
i∈|V |j∈|V |,j ̸=i

(ωiEf (i, j))� (9)
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where The energy Ef  represents the errors computed from feature matching results. The equation of the Ef  is:

	

Ef (i, j) =
∑

(m,n)∈Ci,j

ρ
(∥∥T−1

i pm − T−1
j pn

∥∥
2

)
� (10)

where Ci,j  is the corresponding keypoint between frames i and j. Ti is the preliminary pose. p represents the 
unprojected 3D points in the camera reference, and ρ means the M-estimator. ωi is the corresponding keypoint 
confidence weights. The goal of the graph optimization is to find the optimal poses, such that:

	
ξ∗ = argmin

ξ

ρ(E(ξ))� (11)

where ξi = log (Ti) ∈ is the pose expressed in Lie Algebra, comprising three parameters for translation and 
three parameters for rotation. A typical Gauss-Newton algorithm with the Preconditioned Conjugate Gradient 
solver38 is introduced to solve the nonlinear least squares optimization process.

T0 is chosen as the base pose since the initial frame remains unaffected by tracking drift. During the dynamic 
keyframe updating process, this paper set the frame number of the dynamic keyframe pool as k. When the frame 
number is less than k, we process the current frame and add it to the keyframes. When the num reaches k, the 
criterion for updating keyframes is based on the minimum rotation angle error compared to the current frame. 
Specifically, the rotation angle error is calculated between the current frame and each historical frame, and 
the k frames with the smallest errors are selected as keyframes. The updated keyframes are then incorporated 
as nodes in the pose graph optimization. The optimized results simultaneously update the poses of both the 
current frame and the keyframes. Taking into account the scenario of loop closure detection, the initial frame 
is consistently placed within the dynamic keyframe pool. When the rotation angle meets the conditions for 
loop closure, employing direct matching with the initial frame proves effective in eliminating accumulated pose 
estimation error. Compared to the traditional matching methods, the proposed dynamic keyframe pool enables 
discontinuous matching, allowing the current frame to be associated with multiple historical frames, which is 
crucial for handling abrupt occlusions and target reappearances, which are common in space operations.

The rotation matrix of the non-cooperative targets is retrieved in the chaser’s camera frames, implying that 
the observed change in pose is a combination of the target’s and the chaser’s rotations. Considering that the 
pose of the chaser serves as prior knowledge and is already known, it is possible to establish the true target pose 
through in-orbit measurement of its relative motion, as perceived by the chaser. According to the description 
in39, the target rotation matrix is shown in Eq. (12):

	 Rtarget = R̂ ⊗ Rchaser � (12)

where Rchaser  is the relative rotation of the chaser, and the R̂ is the retrieved rotation matrix from the proposed 
pose estimation model.

Experiment results and discussion
Data setup
In this research, nine different types of non-cooperative targets are designed to generate the non-cooperative 
target datasets. The targets are shown in Fig. 5. The 8 types of targets include Aura, Cubesat, Dawn, Hubble, 
Jason, Deep Impact, Cloudsat, and Acrimat. Most of the models are taken from NASA’s catalogue of 3D models, 
and other models are obtained from the public CAD model library. In these targets, Cloudsat, Jason and Cubesat 
have simple geometries with fewer strong features, while Aura, Acrimat and Dawn have more intricate geometry 
but more strong image features. Finally, the Deep Impact and Hubble model include difficult contours and 
curved surfaces, which are relatively difficult for keypoints matching. The mission satellite (chaser) is assumed 
to orbit the target in a circular trajectory, as shown in Fig. 6. The camera configuration from the chaser, the orbit 
lighting condition, and the target rotation rate are adjusted and tested to verify the robustness of the proposed 
method.

To train and evaluate the deep learning-based pose estimation algorithms, seven of the nine targets are 
sampled with different rotations at an interval of 1°. For each image, we randomly select another five different 
images with same target as image matching pairs. The random rotation difference between the two images in 
one image pair is within 30°. The dataset is randomly separated into a training set and a test set. The training 
set contains 9252 image pairs, while the test set contains 2313 image pairs. To further verify the generalization 
ability of the proposed model, the other two targets (including CloudSat and Acrimsat, not used in the training 
set) are sampled to generate the unsupervised test dataset, which contains 660 image pairs. The original RGB and 
Depth images from all data sets are with the size of 1920 × 1080.

This paper employs Blender with Python scripts to simulate the perception images. The proposed deep 
learning based models are implemented using the Pytorch framework, and the graph optimization algorithm 
is achieved based on Ceres Solver. All experiments are conducted using a GeForce RTX 3090 GPU and 24GB 
of RAM, as well as an i7 CPU with 16GB of RAM. The learning rate is initialized as 1 × 104. Some important 
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superparameters, such as the keypoint extraction threshold and criteria for filtering outlier keypoints, are 
obtained by employing the grid search method to find their optimal values.

Evaluation metrics
This work introduces the area under curve (AUC)40, recall, the Mean pose error, and the matching scores31 to 
analyze the performance of the proposed pose estimation methods.

The definition of the area under curve is as follows:

Fig. 6.  The mission satellite trajectory with different lighting condition.

 

Fig. 5.  The proposed dataset with nine different type of non-cooperative space target.
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Area =

n∑
i=1

f (ci) · ∆x� (13)

where ci is the point of the box that hits the curve, f (ci) is the function value at that point, and ∆x is the width 
of the base of each rectangle. In the matching task, recall is the fraction of the correct matching points that were 
retrieved. And the Matching Score (MS) is the average ratio of correct matches to the total detected keypoints. 
The definition is:

	
MS =

∑N

i=1 Ci∑N

i=1 Di

� (14)

where Di and Ci is the detection number points and the correct matches related to image i, respectively. N is 
the total number of images.

The average mean pose error is defined by the mean square error between the predicted pose and the true pose. 
The definition is shown below:

	
MPE = 1

n

n∑
i=1

(
Pi − P̃i

)2
� (15)

where Pi is the true groundtruth, and P̃i is the predicted pose by the proposed model.

Image segmentation results
To obtain the initial segmentation mask, the proposed segmentation method is trained via the public dataset29 
consists of 3117 images with uniform resolutions of 1280 × 720 pixels. It includes masks of 10350 parts of 3667 
spacecrafts. The SegFormer MiT-B5 network is introduced as the backbone, which pretrained on ImageNet-1k 
dataset. The method is trained with the batch size of 3, and the training takes 40k iterations. After training, the 
model performs inference on the proposed dataset, obtaining the initial mask for each target. Samples of some 

Model Body Solar panel Antena

DeepLabV3+ xception 0.767 0.802 0.575

ASPOCNET 0.800 0.842 0.588

HRNetV2+ OCR+ 0.814 0.856 0.533

OCRNet 0.803 0.839 0.585

ResneSt101 0.834 0.868 0.600

ResneSt200 0.842 0.878 0.640

ResneSt269 0.830 0.870 0.65

Proposed 0.844 0.883 0.727

Table 1.  mIoU performances of different segmentation models. Significant values are in [bold].

 

Fig. 7.  Image segmentation result samples of different targets.
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inference results are shown in Fig. 7. It can be observed that the model demonstrates satisfactory segmentation 
results under various types of targets, different contextual conditions, and different lighting conditions.

To further verify the advanced nature of the proposed method, this paper compares it with other state-of-
the-art (SOTA) methods on the public spacecraft dataset29. The segmentation results are shown in Table 1. 
The comparison mIOU results29 in Table 1 shows that the proposed localized-class-region-learning module 
can effectively improve the mIOU scores of object part segmentation. Compared to the currently best methods, 
improvements of 0.2%, 0.5%, and 8.7% were achieved in the ’body,’ ’solar panel,’ and ’antenna’ categories, 
respectively.

Pose estimation results with different matching condition
Different matching models
Figure 8 shows the different ROC curves and AP scores by different image matching backbones. Seven SOTA 
keypoints extractor + image matching architectures, including the SIFT41, Superglue32, HardNet42, KeyNet43, 
LoFTR44. Figure 8a–c illustrate the matching results with different target rotation rate. As shown in Fig. 8a, the 
HardNet+Superglue model achieve the highest AUC score, while the proposed model obtain the second place 
AUC score, which is 0.85. Actually, most of comparison models achieves acceptable performance with the target 
rotation rate of 0–10°/s. As for the target rotation rate from 10 to 20°/s, and from 20 to 30°/s. Figure 8b and c 
have illustrated that the proposed method achieves the best performance from 10 to 30°/s. The AUC score of the 
proposed method achieve 0.70 when the target rotation rate ranges from 20 to 30°/s.

The AUC and APE scores in Table 2 have verified that the proposed method achieves competitive performance, 
especially with the large target rotation rate. The mAPE and mMS of the proposed method obtain 0.63◦ and 
0.767, respectively. Compared with the proposed method, the HardNet-superglue and the LoFTR approaches 
obtain the second-best performance. When the rotation rate less than 10◦. The HardNet-superglue and LoFTR 
approaches show their efficiency in extracting the local features from RGB images. When the rotation rate is 
higher, the proposed approach has advantages in extracting keypoints from both RGB images and depth images.

Large rotation rate
To further verify the effectiveness of the proposed method, the image pairs with rotation difference from 30◦ to 
45◦ is tested. The results in Fig. 9 and Table 3 verifies that the proposed remains the best performance when the 

Fig. 8.  Supervised pose estimation ROCs with different approaches. (a) ROC of Recall over pose error with 
pose difference from 0° to 10°; (b) ROC of Recall over pose error with pose difference from 10 to 20°/s; (c) 
ROC of Recall over pose error with pose difference from 20 to 30°/s.
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target rotation rate ranging from 30◦ to 45◦. The mUAC and mMS scores of the proposed method achieve 0.636 
and 0.418, respectively, which outperform the compared models with substantial advantages.

Figure 10a and b show the APE and AUC scores of the proposed method corresponding to the true rotation 
degree. According to Fig. 10a, the APE is less than 0.02 rad when the target true rotation rate is less than 25◦. 
When the rotation rate is larger than 25◦, the APE is slower increasing with the rotation rate. And the peak APE 
achieve 0.05 rad When the rotation rate is 44◦. The results is expected because with rotation become larger, the 
overlap area between the two image pairs are decreased, resulting in the less correct keypoints pairs between the 
two samples, and leading to the increase of the pose error. The AUC scores in Fig. 10b demonstrate a similar 
situation.

Methods mAUC APE mMS

Sift-Superglue 0.355 7.391 0.115

HardNet-smnn 0.334 13.18 0.000

KeyNet-mnn 0.278 10.08 0.090

LoFTR 0.415 4.354 0.165

Hardnet-Superglue 0.420 4.985 0.135

Sift-mnn 0.136 17.36 0.044

Superpoint-Superglue 0.208 30.02 0.069

Proposed 0.636 1.776 0.418

Table 3.  Unsupervised pose estimation results with different detection models on large pose dataset. 
Significant values are in [bold].

 

Fig. 9.  Unsupervised pose estimation ROCs with different approaches on large pose dataset.

 

Methods

(0–10)°/s (10–20)°/s (20–30)°

mAPE mMSAUC APE AUC APE AUC APE

Sift-Superglue 0.825 0.458 0.604 1.604 0.433 2.578 1.490 0.323

HardNet-smnn 0.809 0.572 0.597 2.865 0.402 5.615 2.979 0.270

KeyNet-mnn 0.827 0.572 0.527 2.349 0.314 4.756 2.464 0.299

LoFTR 0.848 0.007 0.627 1.375 0.417 2.464 1.375 0.366

Hardnet-
Superglue 0.858 0.007 0.633 1.203 0.462 2.464 1.318 0.335

Sift-mnn 0.782 0.745 0.467 3.953 0.221 7.735 4.011 0.242

Superpoint-
Superglue 0.790 0.745 0.560 2.291 0.368 4.011 2.292 0.180

Proposed 0.846 0.458 0.759 0.688 0.698 0.917 0.630 0.767

Table 2.  Supervised pose estimation results with different detection models on test dataset. Significant values 
are in [bold].
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Different lighting condition
The lighting condition is the crucial factor in the space environment that affects the image-based matching 
model. Four different lighting conditions are verified in this work, as shown in Fig. 6. In Fig. 6, lighting condition 
1 and 4 is the case where the sun angle is at 90◦ and 0◦ to the camera view orbit, while lighting condition 2 and 
3 is the case where the sun angle is at 60◦ and 30◦ to the camera view orbit. The pose estimation results are 
illustrated in Table 4. The results are expected, and the proposed model achieves the best scores under lighting 
condition 3. The APE scores of lighting conditions 1 and 4 are slightly reduced due to the shadows and occlusions 
under the lighting conditions.

Figure 11a and b shows some image matching results corresponding to Aura that affected by the lighting. 
Figure 11a demonstrates that the proposed method is verified its effectiveness under back-light condition. Figure 
11b demonstrate the blurring condition of the non-cooperative target under certain angle between the sun and 
the chaser camera. The matching results in Fig. 11a,b and Table 4 prove that the proposed approach shows stable 
matching performance under various lighting conditions

Different image resolution
In the approaching process of the chaser, the distance between the chaser and the target is varied due to different 
control strategies. And due to different camera configurations and divergent target sizes, the target’s image 
resolution is different in the captured images for different tasks. This work tested the matching performance 
of the proposed model with the different image resolutions of the target. Table 5 shows the matching results 
from the proposed dataset with different resolutions. According to Table 5, the matching performance is slightly 
decreased with the lower image resolution. The mAUC and the APE achieve 0.703 and 0.024, respectively, when 
the target size is 115 × 115 pix. In our opinion, the major reason for the APE score decreasing with the image 
resolution is the lack of keypoint pairs when the rotation rate is greater than 10◦. In practice, by equipping higher 
resolution cameras and integrating multi-band sensor information, this problem will be alleviated. The low-
resolution matching results in Fig. 11c have revealed that, despite the lack of matching keypoints, the proposed 
model finds the matching keypoints with acceptable precision.

Methods mAUC APE mMS

Lightingcondition1 0.849 0.573 0.908

Lightingcondition2 0.847 0.630 0.919

Lightingcondition3 0.873 0.229 0.977

Lightingcondition4 0.852 0.688 0.951

Table 4.  pose estimation results on different lighting condition. Significant values are in [bold].

 

Fig. 10.  Unsupervised pose estimation results by proposed approach on test dataset.
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Image res Target size mAUC APE mMS

1920× 1080 pix 920×920 0.879 0.516 0.730

960 × 540 pix 460×460 0.803 0.859 0.518

480 × 270 pix 230×230 0.619 1.146 0.911

240 × 135 pix 115×115 0.703 1.375 0.973

Table 5.  Pose estimation results on different image resolution.

 

Fig. 11.  Feature extraction and matching results under different conditions.
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Graph optimization (GO) results
Figure 12a and b show the pose estimation results with the proposed graph optimization results. The figure 
illustrates the cumulative pose estimation results for the test target rotating 720° at different rotation rates. 
As indicated by the dashed line in the figures, the estimated pose errors undergo accumulation through 
computation, leading to cumulative errors in the relative pose with respect to the initial frame. After applying 
the proposed pose GO algorithm, the pose estimation results undergo joint optimization, ensuring that the 
maximum error during a full rotation is within 1° in the second revolution. In detail, since the initial frame 
remains in the dynamic keyframe pool throughout the optimization, when the rotation angle exceeds 330°, there 
is feature overlap between the current frame and the initial. Consequently, direct matching with the initial frame 
is utilized to eliminate cumulative errors, preventing their accumulation into the next rotation cycle. The solid 
curves in the graph also indicate that cumulative errors gradually accumulate in the first stages, followed by a 
rapid decrease through direct matching with the initial frame by the proposed GO method.

The GO algorithm also performs a unified optimization on historical keyframes, improving the estimation 
accuracy for each keyframe. In the second revolution, pose information is directly obtained through the GO 
algorithm between the current frame and keyframes instead of cumulative acquisition (as in visual odometry), 
preventing subsequent errors from accumulating. The visualization of pose estimation results with 3D bounding 
boxes is presented in Fig. 12c. There is no feature overlap in the object when the cumulative pose changes from 
T0 + 90◦ to T0 + 300◦ in the first revolution; the pose errors are continuously accumulating. When the pose 
reaches around T0 + 330◦, there is feature overlap between the current frame and the initial frame. By applying 
the proposed GO algorithm, the joint pose optimization is achieved for the current frame, the initial frame, along 
with the intermediate keyframes. Then The current pose and the keyframes pose are both corrected after the first 
revolution. Figure 12d illustrates the visualized estimation results of the Aura satellite in the second revolution 
process. Due to the optimization process using multiple keyframes by the proposed model, each relative pose is 

Fig. 12.  Graph optimization results with different rotation rates on the test objects. (a) Acrimsat; (b) Cloudsat; 
(c) Visualized cumulative pose errors of the first revolution; (d) Visualized cumulative pose errors of the 
second revolution.
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optimized in a sequential order and the accumulated pose error remains within 1°. Through a similar process, it 
can be inferred that the pose error does not accumulate during the subsequent revolution process.

Ablation experiments
Table 6 is designed to express the quantitative results of different modules on the test dataset. In Table 6, with 
subpixel extractor and multi-dimension matching, the proposed matching model achieves 0.034 and 0.012 
scores, respectively. As for the mMS score, multi-dimension matching and postprocessing contributed to the 
improvement of scores of 0.206 and 0.003, respectively, which further verified the advantages of the proposed 
multi-dimension matching module. Above all, by integrating the subpixel extractor, the multi-dimension 
matching, and the non-iterative postprocessing modules, the designed method achieves the APE score of 0.011 
rad, and the mAUC score of 0.767.

We also test the different matching performances of different targets, as shown in Fig. 13. According to Fig. 
13, Jason achieves the best APE score due to its obvious context feature and geometry structure. The highest APE 
score corresponds to Deep Impact, which is 0.029. As shown in Fig. 5, the soft material of the Deep Impact surface 
makes generating correct keypoints and descriptors difficult, resulting in relatively large pose estimation errors.

We also illustrate the generalization ability of the proposed model in Table 7. The Acrimsat and Cloudsat 
which not utilized in the matching training set are introduced to verify the pretrained model. In Table 7, the APE 
scores of the The Acrimsat and Cloudsat achieve 0.009 and 0.001, respectively. And their mMS scores are 0.971 
and 0.912, respectively. Fig. 11d and e have shown that the object keypoints are correctly matching under front 
light and back light, respectively. In conclusion, the matching performance of the proposed model on the unseen 
targets verifies its generalization ability on multiple non-cooperative targets.

The depth information of the object is typically provided by stereo cameras or depth cameras, often 
accompanied by some level of error. Errors in depth information can directly impact pose estimation. Table 8 
assesses the influence of random Gaussian errors in depth on pose estimation under different depth conditions. 

Methods mAUC APE mMS

Acrimsat 0.818 0.592 0.971

Cloudsat 0.858 0.400 0.992

Table 7.  Unsupervised pose estimation results on test targets.

 

Fig. 13.  Unsupervised pose estimation errors of different non-cooperative targets .

 

Modules mAUC APE mMS

Raw 0.570 2.292 0.180

+Subpixel extractor 0.613 1.948 0.523

+Multi-dimension matching 0.752 0.688 0.729

+Postprocessing 0.767 0.630 0.732

Table 6.  pose estimation results with different modules. Significant values are in [bold].
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The graph illustrates that the errors in pose estimation for different target poses increase with the growth of 
relative depth errors. When the relative error is no greater than 20%, the maximum relative error is within 2°. 
The results indicate that the pose estimation algorithm proposed in this paper demonstrates robustness to depth 
errors within a certain range. When the depth information was missing, the algorithm defaults to assuming that 
all points are at the same depth, leading to larger errors compared to scenarios with available depth information.

To further validate our method’s generalization capability, we conducted additional experiments using the 
SPEED++ dataset45. While SPEED++ offers limited target types and lacks depth information compared to our 
original dataset, it provides greater diversity in target structures and background variations, making it an ideal 
choice for testing our algorithm’s generalization ability. Figure 14 illustrates the experimental results on the 
SPEED++ dataset. Specifically, Fig. 14a demonstrates the algorithm’s capability to match objects at different 
scales, which is crucial for space applications where target distances can vary significantly. Figure 14b showcases 
the algorithm’s robustness under extreme lighting conditions and background variations, which is vital for space 
operations with dynamically changing illumination and backgrounds. These results not only prove our method’s 
adaptability to diverse space scenarios but also lay a solid foundation for subsequent pose estimation and bundle 
adjustment procedures, thereby enhancing the credibility and applicability of our research in real-world space 
applications.

While the primary focus of this paper is on algorithmic innovation and performance evaluation across 
various space scenarios, we have conducted preliminary embedded validation tests on common platforms 
like Jetson NX and RKNN 3588, achieving inference speeds of 4.76 FPS and 2.5 FPS respectively. These initial 
results not only suggest the feasibility of embedded deployment but also highlight the algorithm’s adaptability to 
resource-constrained environments, paving the way for future optimizations tailored to space-specific hardware 
and environmental conditions.

Fig. 14.  The matching results of samples from SPEED++ dataset45. (a) Matching results at different scales; (b) 
Matching results under extreme lighting conditions and significant background variations.

 

Error 0 10% 20% 50% No depth

Aura 0.214 0.235 1.420 12.203 9.787

Dawn 0.953 1.038 1.102 1.902 6.140

Acrimsat 0.592 0.762 1.026 2.610 7.592

Cloudsat 0.400 0.639 1.217 2.477 6.040

Table 8.  Pose estimation error with different relative depth error.
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Conclusion
In this paper, we present a deep learning model for predicting the pose change of unknown space targets. The 
segFormer based segmentation method is first designed to extract the initial target mask. The developed model 
then utilizes subpixel-based feature-extracting techniques to detect and extract keypoints features from RGB 
and depth images. And a multi-dimension matching based keypoints matching algorithm is proposed to achieve 
correct matching pairs. To further enhance the estimation accuracy, a non-iterative approach is designed to 
remove the outliers and generate the rotation matrix. Finally, the pose graph optimization method with dynamic 
keyframe pool is proposed to reduce the cumulative error in long-term pose estimation drift.

The model is compared with multiple SOTA approaches, showing outperforming estimation results. The 
mAPE and mMS scores of the proposed approach are 0.011 and 0.767, respectively. After pose graph optimization, 
the estimation error of the relative pose with respect to the initial frame has been reduced to within 2°. Multiple 
experiments have been applied, and the proposed algorithms have been tested under different lighting conditions, 
different rotation rates, different image resolutions, and with out-of-domain targets. The matching results from 
various experiments have shown its robustness and transferring ability. Depth information with various random 
errors are introduced to validate the performance of pose estimation under practice situation. In addition to our 
contributions to space object pose estimation, we believe that the methods proposed in our paper could also be 
beneficial for pose estimation of aerial targets, such as drones and airplanes, representing a promising direction 
for our future work.

There remain some further avenues to investigate. More work is needed to enhance the pose estimation’s 
accuracy and robustness. Also, algorithmic optimizations, parallel processing, and hardware acceleration are 
potential research topics to achieve faster optimization computation without compromising accuracy.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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