
Conflict-based strategy combined
integrated optimal conflict
avoidance algorithm
Kejin Jia, Cheng Peng, Yun Du, Hongwei Wen, Yufei Gao & Zhe Zhang

This paper presents a Conflict-Based Strategy - Combined Integrated Optimal Conflict Avoidance (CBS-
CIOCA) algorithm for more efficient multi-robot path planning. The algorithm first refines the conflict
types in the high-level model of the traditional CBS algorithm and introduces two conflict categories:
avoidable conflicts and unavoidable conflicts. Next, the low-level model of the traditional CBS
algorithm is improved, transforming the path search process into two distinct algorithms with different
focuses. Finally, based on the different conflict categories, two optimized algorithms are proposed:
a space-time A* algorithm enhanced by diagonal improvements and a dynamic adaptive space-
time A* algorithm incorporating dynamic adaptive factors. Experimental results demonstrate that,
compared to the traditional CBS algorithm, the CBS-CIOCA algorithm achieves maximum reductions
of 97.37% and 94.99% in time and node expansion, respectively, in both traditional warehouse and
fishbone-shaped warehouse environments, as well as 88.37% and 88.41% in a dynamic large-obstacle
environment.

Keywords  Multi-robot path planning, Conflict-Based Strategy - Combined Integrated Optimal Conflict
Avoidance, Space-time A* algorithm, Diagonally improved, Dynamically adaptive

Multi-agent pathfinding (MAPF), also referred to as multi-robot path planning, is a critical and complex
problem in modern intelligent systems. In this task, multiple robots must navigate from a specified starting
point to a target location within a predefined, complex environment, while avoiding collisions with each other1.
In recent years, Multi-Agent Path Finding (MAPF) has found extensive applications in various domains, such as
autonomous driving2, airport scheduling3–5, drone swarm formation6, and agricultural production management
systems7,1.

In multi-robot global path planning, the key performance indicators for evaluating path planning algorithms
include the total path length after all robots reach their target, the computational complexity of the path planning
process, and the success rate of the multi-robot system in unknown environments8–10. In recent years, several
robot path planning methods have been proposed to enhance efficiency under various conditions. Manny
Shankar11 et al. introduced a hybrid approach for mobile robot path planning, combining Particle Swarm
Optimization (PSO) and Artificial Potential Field (APF) methods. This approach overcomes the problem of local
minima encountered when using the APF algorithm alone and the slow planning speed of the PSO algorithm
when used independently. However, its performance is suboptimal in more complex map environments. Lei et
al.12 proposed a graph-based robot path planning method using the improved Seagull Optimization Algorithm
(iSOA) and developed an enhanced Douglas-Peucker (mDP) algorithm. This method approximates irregular
obstacles in rugged terrain as polygonal shapes based on environmental images. Experimental results demonstrate
that this approach effectively addresses path planning challenges in complex map environments; however, the
experimental setup did not consider the effects of dynamic obstacles or other unforeseen environmental factors
on the algorithm’s performance. Pham et al.13 introduced the Multi-ST model, which enhances the adaptability,
efficiency, and collaboration of multi-robot systems through spatiotemporal optimization and task allocation.
This model is particularly suited for task allocation and path planning in dynamic environments during multi-
robot collaborations. However, as the number of robots and task complexity increase, the model may face
challenges due to high computational complexity when efficiently managing task scheduling in multi-robot
collaborative operations. Xidias et al.14 tackled uncertainty in task allocation and motion planning by using
fuzzy time windows, enabling multi-robot systems to collaborate under more flexible time constraints. Despite
this advantage, the method faces challenges when handling large-scale multi-robot systems due to its high
computational complexity. In contrast, Sharon et al.15 proposed the Conflict-Based Search (CBS) algorithm, a

School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050800, China. email:
Yunny7503@163.com

OPEN

Scientific Reports | (2025) 15:5670 1| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-89549-1&domain=pdf&date_stamp=2025-2-15

two-layer method that has proven to be one of the best solutions for the MAPF problem in recent years. In this
approach, conflict detection and constraint setting are managed at the high level, while the low level searches
for paths that meet these constraints. Jin et al.16 improved the CBS approach by replacing the traditional A*
algorithm with the Dlite algorithm, decoupling conflict management from path planning and coordination.
They introduced the CBS-d algorithm, which incorporates a strategy for waiting and looping, enhancing the
success rate of pathfinding and obstacle avoidance in the traditional CBS approach while reducing the number
of time steps required.The methods of application and limitations of some of the algorithms discussed in the
aforementioned literature are more clearly explained in Table 1.

Although the methods mentioned above are effective for solving multi-agent path planning problems, they
mainly rely on traditional single-path planning algorithms to manage different types of conflicts at a higher level
of abstraction. This approach may cause issues in multi-robot path planning, such as a robot’s path becoming
trapped in a local optimum, which in turn increases the overall path length17,18. Furthermore, neglecting collision
resolution can lead to deadlocks, and as both the number of robots and the complexity of the environment
increase, the likelihood of collision resolution failure also rises. To address these issues, this paper proposes an
improved collision-based strategy-the Comprehensive Optimal Collision Avoidance (CBS-CIOCA) algorithm,
designed specifically for robot path planning in large and complex environments. Unlike the traditional CBS
algorithm, which focuses only on two higher-level types of collisions, the CBS-CIOCA algorithm clarifies the
classification of high-level collisions by adjusting collision types based on the robots’ different operational
states, categorizing them into two main collision attributes. Additionally, while the traditional CBS algorithm
uses a single path planning model, the CBS-CIOCA algorithm improves the underlying path planning logic
by introducing two specialized path planning algorithms. Each algorithm is optimized for different collision
attributes, overcoming the limitations of a single path planner. This enhancement allows the CBS-CIOCA
algorithm to redefine collision attributes at a high level and optimize the lower-level path planning logic, offering
a more flexible and efficient collision resolution strategy. This significantly reduces the risk of deadlocks and
greatly improves path planning efficiency in highly dynamic and complex warehouse environments. Compared
to traditional methods, the proposed algorithm exhibits superior performance in large-scale, multi-robot
systems, especially in highly dynamic and complex environments, ensuring both the efficiency and reliability
of path planning.

The contributions of the CBS-CIOCA algorithm are summarized below:
 The CBS-CIOCA algorithm enhances the accuracy and efficiency of conflict management by redefining

conflict types according to the robot’s various operational states and by refining the classification of high-level
conflicts into two distinct conflict attributes.

 The CBS-CIOCA algorithm improves on the traditional CBS by integrating two specialized path planners,
each optimized for different conflict types. This enhancement boosts efficiency and conflict resolution, especially
in complex environments, overcoming the limitations of a single path planner.

 Experimental results demonstrate that the CBS-CIOCA algorithm outperforms other approaches in terms
of runtime, number of expanded nodes, and system robustness.

Description and modeling of the MAPF problem
Description of the MAPF problem

	(1)	� The input is a directed graph G(V, E), as illustrated in Fig. 1. Here, V denotes the set of vertices, and E
represents the set of edges connecting these vertices.Mapping s : [1, ..., k] −→ V indicates that each agent

The name of the algorithm Approaches of the algorithm Limitations of the algorithm

An integrated framework of
decision making and motion
planning with oscillation-free
capability

The main contribution of this study is to propose an integrated decision and
motion planning framework that can ensure oscillation-free and safe driving in
dynamic environments.

The limitation of the proposed approach lies in its reliance
on assumptions about vehicle dynamics and the handling of
soft constraints

A hybrid path planning approach A Hybrid Approach to Mobile Robot Path Planning Combining Particle Swarm
Optimization (PSO) Techniques and Artificial Potential Field (APF) Methods Performs poorly in more complex map environments

Improved seagull optimization
algorithm (iSOA)

Use the modified Douglas-Peucker (mDP) algorithm to approximate irregular
obstacles as polygonal obstacles based on environmental images in rugged
terrain, and then apply the iSOA method for path planning.

Lack of consideration of unknown environmental
information such as dynamic obstacles in experimental
setups

A novel coverage path planning
model (termed Multi-ST)

The model utilizes the spiral-spanning tree coverage algorithm with intelligent
reasoning and knowledge-based methods to achieve optimal coverage, obstacle
avoidance, and robot coordination.

As the number of robots and the complexity of tasks increase,
the model may face problems such as high computational
complexity and the inability to perform efficient task
scheduling with multiple robots operating in concert

Balanced task allocation and
motion planning of a multi-robot
system under fuzzy time windows

Handling uncertainty in task assignment and motion planning through fuzzy
time windows enables multi-robot systems to collaborate under more flexible
time constraints

There are problems such as high computational complexity
and difficulty in dealing with large-scale multi-robot systems

Conflict Based Search algorithm
(CBS)

The Conflict-Based Search (CBS) algorithm manages conflict detection and
constraint setting at a high level, while the low level searches for paths that meet
these constraints.

Lack of path planning ability in the presence of dynamic
obstacles and unknown environments

Conflict-based search with D* lite
algorithm

The traditional A* algorithm in CBS is replaced with the Dlite algorithm and a
wait-and-loop strategy is investigated.

Path planning under unknown map conditions is not
considered and has high computational complexity, making
it difficult to deal with large-scale multi-robot systems.

Table 1.  Key Algorithms and Their Approaches and Limitations.

Scientific Reports | (2025) 15:5670 2| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

is associated with a starting node, while mapping g : [1, ...k] −→ V indicates that each agent is associated
with a target node.

	(2)	� krobots are represented as a1, a2, ..., ak ,with each robot having a starting pointsi ∈ V and a target point
gi ∈ V .Mapping s : [1, ..., k] −→ V specifies that each agent is associated with a starting node, while map-
ping g : [1, ...k] −→ V specifies that each agent is associated with a target node.

	(3)	� let lt
i represent the position of robot ai at time step t,and let Pi =

{
s0

i , s1
i , ..., sT −1

i

}
 denote the set of

waypoints for robot ai from si to gi.

In the MAPF (Multi-Agent Pathfinding) problem, time is typically discretized into time steps. The path
planning begins with a directed graph G = (V, E) where m robots are distributed, represented by the set
A = {a1, a2, ..., ak}. Each robotai ∈ A must find a path Pi = {si, gi} from a given start point to a specified
end point. T = {1, 2, ..., t} denotes the discrete time sequence, and Pi represents the path of robot ai. The
function T → V maps the time sequence T to the vertex set V, with li(t) indicating the position of robot ai at any
time t ∈ T . At each time step, every robot can perform one of five possible actions: move up, move down, move
left, move right, or wait.Point conflict between two robots is defined as the scenario where both robots visit the
same point at the same time step, denoted as li(t) = lj(t) Edge conflict occurs when both robots simultaneously
traverse the same edge, represented by li(t) = lj(t+1) and li(t+1) = lj(t). The term cost (li) represents the cost
of the path li, measured in terms of time. Let ts denote the start time and te denote the end time of the robot’s
path li. The optimization objective, known as the sum-of-costs (SOC), refers to the cumulative total of the time
steps required for all robots to reach their target points, including any additional time steps spent beyond the
target, expressed as:

	 SOC =
∑m

i=1 cost (li)

Additionally, the MAPF problem should encompass more than just minimizing time steps. The objective of this
paper is to provide a feasible solution for each robot to find a path from its starting position to its destination,
while minimizing the overall cost as much as possible.

As illustrated in Fig. 2, robots ai and aj encounter a vertex conflict at t=2 because they occupy the same location.
Additionally, robots aj and ak face an edge conflict during the time intervals t=1, 2, and 3 as they traverse the
same edge. Hence, the MAPF approach should not only focus on finding the optimal paths but also address
potential conflicts with other robots during the path planning process.

Environmental modeling
In the classic MAPF model, various types of environmental maps are considered, such as traditional warehouse
layout maps, fishbone-style warehouse layout maps, and complex maze layout maps. This paper utilizes the
fishbone-style warehouse layout map for environmental modeling, following the same map modeling procedures
as those used in subsequent experiments.

As shown in Fig. 3, in the research on mobile robot path planning, the grid method is an effective approach
for modeling the workspace. This method involves dividing the working environment of the mobile robot into
equally sized grids. White grids denote traversable areas, while black grids indicate obstacles. The robot navigates
by moving along the centerlines of the traversable grids. This method is both straightforward and effective,

Fig. 1.  Directed graphical models.

Scientific Reports | (2025) 15:5670 3| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

exhibiting strong adaptability to obstacles and significantly reducing environmental complexity. Hence, this
paper employs this method for environmental map modeling.

To facilitate research and experimentation, the following assumptions are made:
1.The map and obstacle boundaries are established with consideration for the safety distance of mobile robots.

Therefore, in simulations or experiments, the mobile robot can be treated as a point-like entity and will move
within the grid map boundaries. 2.During the mobile robot’s movement within the grid map, the surrounding
environment is assumed to remain static. 3.The mobile robot is capable of moving to other unoccupied grid cells
within the grid map, even in the presence of obstacles, by moving diagonally to the top-left, bottom-left, top-
right, or bottom-right directions.

The paper employs a method that integrates the rectangular coordinate system with indexing to identify
grids, where each grid is assigned a unique identifier and corresponding coordinates. As illustrated in Fig. 4, the
mobile robot operates within a 37 × 18 grid map. The numbering of the grids begins at the top-left corner of
the map, proceeding from top to bottom and from left to right. Grid coordinates increase from top to bottom
and from left to right, respectively. The relationship between each grid’s coordinates and its identifier is defined
by formula:

	

{
Rx = ceil

(
N

rows

)
Ry = Rx ∗ rows − N + 1 � (1)

Fig. 3.  Obstacle inflation in grid-based maps.

Fig. 2.  Diagram of path conflicts in multi-Robot systems.

Scientific Reports | (2025) 15:5670 4| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In the formula, rows denote the number of vertical grid cells in any column of the grid map. (Rx, Ry) indicates
the coordinates (row and column) of any grid cell within the map. N represents the index of this grid cell in the
map, ceil is an upward rounding operator.

The traditional warehouse layout, constructed using the grid map method, is illustrated in Fig. 4. This type
of warehouse features straight main aisles as the core structure, complemented by parallel auxiliary pathways. In
the figure, white hollow squares represent storage points, which are abstracted as obstacles and final destinations
in the grid map method. Gray solid squares denote access points for storage and serve as the initial starting
positions for the robots. When there are more than five robots, random tasks are generated on the map to
simulate the emergence of tasks during robot operations. Red circles indicate the robots, and each intersection
of the grid lines marks a potential path that the robots can traverse.

Conflict-based strategy - combined integrated optimal conflict avoidance algorithm
Conflict-based search algorithm
In multi-AGV path planning, the CBS algorithm solves the problem using a two-tier approach. At the lower tier,
the algorithm employs a constrained single-agent path planning method to address the path planning issues
of each individual AGV, typically utilizing the A* algorithm. The upper tier then reviews the paths planned by
the lower tier to identify any conflicts. If conflicts are detected, constraints are imposed to adjust the lower-tier
planning until all paths are free of conflicts, as shown in the algorithmic flow in Fig. 5.

As the scale of the map and the number of robots increase, the traditional A* algorithm often explores
numerous unnecessary path nodes during the path planning process. This inefficiency can lead to increased
solving times for the CBS algorithm and may even result in cases that are unsolvable. Furthermore, in traditional
CBS algorithms, the conflict detection and resolution process is complicated by frequent conflicts and complex
paths in the upper-level planning phase. The upper-level detection algorithm often merges various conflict
types into a single constraint for the lower-level pathfinding algorithm. This conflation prevents the lower-level
algorithm from effectively adjusting to different types of conflicts, leading to wasted computational resources
and longer path lengths.

The paper first enhances the CBS algorithm by replacing its underlying pathfinding algorithm with the diagonal
space-time A* algorithm and the dynamic adaptive space-time A* algorithm. The diagonal spatiotemporal
A* algorithm offers faster search speeds and ensures optimal routing compared to the traditional space-time
A* algorithm. In contrast, the dynamic adaptive space-time A* algorithm may utilize suboptimal routes as a
trade-off, which significantly reduces the search time and the number of expanded nodes. Subsequently, during
the conflict detection and resolution phase of the CBS algorithm, different types of conflicts are classified, and
various underlying pathfinding algorithms are applied based on the specific characteristics of each conflict. This
approach significantly enhances the overall system efficiency and success rate of the new algorithm.

Improvements for the underlying pathfinding algorithm
Space-time A* algorithm
The overall structure of the Spatial-temporal A* algorithm is similar to that of the A* search algorithm. Both
algorithms perform pathfinding by repeatedly calculating the F values for nodes in the Open and Closed lists.
They select the node with the lowest F value from the Open list as the starting point for the next iteration, and

Fig. 4.  Grid map of warehouse layout.

Scientific Reports | (2025) 15:5670 5| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

continue updating until they reach the target node and identify all path nodes. The Open list stores the nodes
that are expanded during the search, while the Closed list contains nodes with the minimal cost encountered
during the search. The formulas for both the Spatio-temporal A* algorithm and the A* search algorithm are
represented by:

	 f (n) = g (n) + h (n)� (2)

Fig. 5.  CBS algorithmic framework.

Scientific Reports | (2025) 15:5670 6| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

f (n) represents the estimated cost to reach the goal state from the initial state through state n. g (n) denotes the
actual cost incurred to travel from the initial state to state n within the state space. h (n) indicates the estimated
cost of the optimal path from state n to the goal state.

The traditional A* algorithm, when applied to search in a two-dimensional spatial map, only requires recording
the positions of expanded nodes. However, when extending the search to include a time dimension, it becomes
necessary to also record the time at each position in addition to the spatial coordinates. In contrast, the Spatial-
temporal A* algorithm integrates time as a state within the graph, where time progresses linearly. This approach
transforms the graph into a spatiotemporal tree, where each level of the tree corresponds to an increment in
time. In environments with a single Automated Guided Vehicle (AGV), conflicts do not arise as the environment
is static, and path planning is performed solely within the two-dimensional spatial map. Conversely, when
multiple AGVs are present, each operating AGV becomes a dynamic obstacle for others. Consequently, the
spatiotemporal A* algorithm controls vehicles in both spatial and temporal dimensions, expanding the two-
dimensional map into a three-dimensional spatiotemporal map to accommodate this complexity.

Using the small-scale map depicted in Fig. 6 as an example, we assume that the cost between each pair of
adjacent points is uniform. When point A represents the starting location of the Automated Guided Vehicle
(AGV) and point E represents the destination, the search tree generated by the Space-time A* algorithm is
illustrated in Fig. 7.

In the tree diagram, each branch point is labeled with letters that indicate node positions, while the associated
numbers represent the time points at which these nodes are reached. The search begins at time 0, with each
transition to an adjacent node taking one unit of time. As illustrated in Fig. 6, node A only connects to node
B, thus the next level of the tree comprises node B and its corresponding time point of 1. Node B connects to
nodes F and C; therefore, the subsequent level includes nodes F and C with a time point of 2. Using the four-
neighborhood approach, node C connects to nodes H, G, and D, and node F connects to node H. Consequently,
the next level of the tree includes nodes H, G, and D, each with a time point of 3. This process continues iteratively
until the target node E is reached.

Improved diagonal space-time A* algorithm
The estimated cost function h (n) represents the cost from the current node n to the goal node. The choice of
heuristic function for h (n) can significantly impact the operational efficiency of different pathfinding algorithms.
To ensure that the search algorithm finds the shortest path while minimizing the number of expanded nodes,
selecting an appropriate heuristic function is crucial.

Figure 8 illustrates the commonly used heuristic functions for estimating h (n), which include the Manhattan
distance, Euclidean distance, and diagonal distance.

The Manhattan distance algorithm calculates the distance between the current node and the target node as
the sum of the absolute differences in their x and y coordinates. This distance is represented by the heuristic
function:

	 hManhattan = |x (s) − x (g)| + |y (s) − y (g)|� (3)

Fig. 6.  Example of a simple map.

Scientific Reports | (2025) 15:5670 7| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The Euclidean distance measures the true distance between the current node and the target node, calculated
as the square root of the sum of the squared differences between their horizontal and vertical coordinates. The
heuristic function is given by:

	 hEuclid =
√

[x (s) − x (g)]2 + [y (s) − y (g)]2� (4)

Diagonal distance is a specific case of Euclidean distance, commonly applied in path planning problems within
grid or coordinate spaces. It represents the shortest distance between two points, measured as the maximum of
the absolute differences in their horizontal and vertical coordinates. The heuristic function is given by:

	 hdiagonal = |x (s) − x (g)| + |y (s) − y (g)| +
(√

2 − 2
)

∗ min (|x (s) − x (g)| , |y (s) − y (g)|)� (5)

Fig. 8.  Diagrams of three distance measurement methods in a 2D space.

Fig. 7.  Diagram of the time tree.

Scientific Reports | (2025) 15:5670 8| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In the CBS pathfinding algorithm, grid maps are used for global path planning, assuming that robots can move
in four directions. In this context, the Manhattan distance may not ensure the optimal path, while the Euclidean
distance tends to expand many unnecessary nodes. The algorithm performs optimally when the distance
between the starting and target nodes closely matches the cost of moving between nodes. To address this, an
optimization factor is introduced into the diagonal distance, which provides a more accurate representation
of distance compared to Manhattan and Euclidean distances, particularly for complex warehouse maps.(k is a
variable, k = 1 − min(dx,dy)

max(dx,dy)). The formula for the improved diagonal distance is as follows:

	 himproved diagonal = |x (s) − x (g)| + |y (s) − y (g)| + k ∗
(√

2 − 2
)

max (|x (s) − x (g)| , |y (s) − y (g)|)� (6)

We propose an enhanced version of the spatiotemporal A* algorithm, where the traditional Manhattan distance
heuristic is replaced with an improved diagonal distance formula. This algorithm is referred to as the Improved
Diagonal Spatiotemporal A* (IDSA*) algorithm. This enhanced spatiotemporal A* algorithm serves as the
foundational pathfinding component within the Conflict-Based Search (CBS) framework, which we refer to as
the Improved Diagonal CBS (IDCBS) algorithm.

Dynamic weighted space-time A* algorithm
In practical applications, the CBS algorithm’s upper layer identifies conflicts that are suitable for rapid path re-
planning. Consequently, we propose a bottom-level path search algorithm designed for efficient path planning.
During the initial phase of path search, the algorithm must rapidly navigate to various positions. However, as
the search nears completion, it becomes increasingly important to ensure both precise and swift movement
to the target point. To address this, we introduce a weight δ (δ ≥ 1) into the heuristic function. This weight is
progressively reduced as the search nears the target, thereby diminishing the heuristic function’s influence and
enhancing the relative importance of the actual path cost. The modified objective function is:

	
himproved = δ

[
d (p)improved +

cross ∗ d (p)improved

d (s)

]
� (7)

himproved denotes the objective function used by the Spatial-temporal A* algorithm for node expansion;
d (p)improved refers to the distance from the current node to the goal node during the search process, measured
using an enhanced diagonal distance; the term “cross” signifies the crossover influence factor, which guarantees
the generation of a unique and deterministic path when multiple equally valid paths are present; d (s) represents
the diagonal distance between the start point and the goal point.

The specific steps to enhance the objective function are as follows:
Employ the improved diagonal distance, as described earlier, to quantify the distance between the current

point and the target point. This distance is denoted by:

	 diag (node) = dx + dy +
(√

2 − 2
)

∗ max (dx, dy) ∗ k� (8)

where k is a variable value, specifically defined as k = 1 − min(dx,dy)
max(dx,dy)

Incorporate an additional term into the objective function. Specifically, let −→a represent the vector from the
initial point to the target point, and

−→
b represent the vector from the current point to the target point. The dot

product of these two vectors is used as an additional term for the objective function h, with the dot product
expressed as:

	 Cross P roduct = a⃗ ∗ b⃗� (9)

To modify the heuristic function, a weight factor δ (δ ≥ 1) is introduced. In this context, d (s) refers to the
Manhattan distance from the start point to the goal, while d (p)improved represents the improved diagonal
distance from the current point to the goal. As the algorithm approaches the goal, the value of d (s) remains
unchanged, whereas d (p)improved gradually decreases. This means that as the algorithm nears the target, the
weight factor δ is reduced, thereby decreasing the influence of the objective function and increasing the relative
significance of the actual path cost. The weight factor δ is defined as follows:

	
δ = 1 +

d (p)improved

d (s)
� (10)

In the heuristic of the IDSA* algorithm, we incorporate a dynamic weight factor, leading to the Dynamic
Weighted Spatiotemporal A* (DWSTA*) algorithm. When this algorithm is applied as the underlying path
search strategy within the CBS framework, it is referred to as the Dynamic Weighted CBS (DWCBS) algorithm.

Scientific Reports | (2025) 15:5670 9| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Improvements in the conflict resolution mode of the CBS algorithm
In the CBS algorithm, the upper layer detects two types of conflicts-edge conflicts and vertex conflicts-during
the execution of best-first search and conflict resolution, as illustrated in Fig. 9. The lower layer treats these
conflicts as constraints, imposes them on the conflicting robots, and re-plans their paths to select the one with
the least cost. However, in real-world warehouse environments, conflict types are typically more complex. Firstly,
robots are classified based on their operational status as either load-bearing or non-load-bearing. Secondly,
the combination of different operational statuses and various types of conflicts further complicates the conflict
scenarios. Using a single path planning algorithm to address all conflict types results in inefficiency for the entire
path planning process.

To address the aforementioned issues, this paper introduces a new classification scheme for robots in path
planning, distinguishing warehouse robots into load-carrying and empty-carrying types. In addition, unlike
the traditional CBS algorithm, which identifies only two types of upper-level conflicts, this approach refines
the classification of vertex conflicts into four distinct categories, as illustrated in Fig. 10. In the Fig. S1 denotes
the starting points of specific segments of robot ai path, while G1 represents the endpoints of these segments.
Similarly, S2 denotes the starting points of specific segments of robot aj path, and G2 represents their respective
endpoints.

1)Intersection vertex conflict

	




(ai, aj , V, t)
V(ai,t+1) ̸= V(aj ,t−1)
V(ai,t−1) ̸= V(aj ,t+1)

� (11)

Specifically, if Robot ai and Robot aj both occupy vertex V at time t, there are two possible scenarios: either the
position of Robot ai at time t + 1 differs from the position of Robot aj at time t − 1, or the position of Robot
ai at time t − 1 differs from the position of Robot aj at time t + 1.

2)Pursuit vertex conflict

	

{
(ai, aj , V, t)

V E
(ai,t) = V L

(aj ,t)
� (12)

At time t,both the empty robot ai and the load-carrying robot aj occupied the same vertex. In this context, E
denotes the empty robot and L denotes the load-carrying robot.Specifically, the speed of the unladen robot ai is
typically 1.5 times faster than that of the laden robot aj . Therefore, when both robots occupy the same corridor
at a given time, the unladen robot ai will occupy the same vertex V as the laden robot aj at time t. In this case,
the high-level path planning algorithm will prioritize planning the path of the unladen robot ai to resolve the
potential conflict.

3)Map vertex intersection conflict

	




(ai, aj , V, t)
V(ai,t+1) = V(aj ,t−1)
V(ai,t−1) = V(aj,t+1)

� (13)

Fig. 9.  Types of conflicts.

Scientific Reports | (2025) 15:5670 10| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

At time t, both robots ai and aj are located at vertex V. Additionally, the position of robot ai at time (t + 1)
coincides with the position of robot aj at time (t − 1), and conversely, the position of robot ai at time (t − 1)
matches the position of robot aj at time (t + 1). Since this situation represents a cross conflict at a map vertex,
there are precisely two viable paths around this conflict. Consequently, this type of map vertex cross conflict is
defined as a special case of edge conflict.

4)Opposing vertex conflict

	




(ai, aj , V, t)
V(ai,t+1) = V(aj ,t−1)
V(ai,t−1) = V(aj,t+1)

� (14)

At time t, both robots ai and aj are located at vertex V. Additionally, the position of robot ai at time (t + 1)
coincides with the position of robot aj at time (t − 1), and conversely, the position of robot ai at time (t − 1)
matches the position of robot aj at time (t + 1).

The types of edge conflicts are classified into two categories: edge conflict and pursuit edge conflict, as illustrated
in Fig. 11.

1)Edge conflict

	 (ai, aj , X, t)� (15)

At time t, Robot ai and Robot aj both shared edge X.

Fig. 10.  Four distinct subtypes of vertex conflicts in the CBS-CIOCA algorithm.

Scientific Reports | (2025) 15:5670 11| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

2)Pursuit edge conflict

	

{
(ai, aj , X, t)

XE
(ai,t) = XL

(aj ,t)
� (16)

The unloaded robot ai and the loaded robot aj jointly occupy the edge X at moment t. E denotes that the robot
is in the empty state, and L denotes that the robot is in the loaded state. Specifically, the speed of the unladen
robot ai is typically 1.5 times faster than that of the laden robot aj . Therefore, when both robots occupy the same
corridor at a given time, the unladen robot ai will occupy the same edge X as the laden robot aj during the time
interval t. In this case, the high-level path planning algorithm will prioritize planning the path of the unladen
robot ai to resolve the potential conflict.

In summary, based on the nature of the robot tasks, we classify conflicts into two primary categories, as shown
in Fig. 12: Avoidable Replanning Path Conflicts (ARP) and Unavoidable Replanning Path Conflicts (URP). ARP
refers to conflicts that can be resolved without modifying the original path, simply by introducing delays before
the conflict occurs. Conversely, URP refers to conflicts that cannot be avoided by delay strategies and require
replanning.
Based on different conflict attributes, we select appropriate path search algorithms. To address ARP conflicts
in the MAPF problem, we employ an enhanced spatiotemporal A* algorithm that incorporates diagonal
optimization. This enhancement facilitates more effective path replanning, producing paths closer to the optimal
solution. For handling UPR conflicts, we utilize a dynamic adaptive spatiotemporal A* algorithm that introduces
an adaptive weight factor during node expansion. This approach allows for the acceptance of suboptimal paths
when resolving edge conflicts, significantly reducing both path search time and the number of node expansions.
The algorithm flowchart is shown in Fig. 13. After modifying the CBS (Conflict-Based Search) algorithm, the
proposed method is referred to as the “Conflict-Based Strategy with Comprehensive Optimal Conflict Avoidance
(CBS-CIOCA) Algorithm.” Algorithm 1 presents the pseudocode of the CBS-CIOCA algorithm.

Algorithm 1.CBS-CIOCA algorithm

1 input: Plan();

2 Initialize();

3 paths = cell (robot’s paths);

4 for i = 1:numel(robots);

5 paths{i} = space-time AStar(map, robots(i).start, robots(i).goal);

6 while true

7 If no conflict

8 Break;

9 end

10 conflictType = detectConflictType;

11 switch conflictType

12 Case vertex_conflict type

13 If the conflict direction attributes are the same

14 conflictType = ’vertex_cross’;

Fig. 11.  Edge conflicts and pursuit edge conflicts.

Scientific Reports | (2025) 15:5670 12| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 13.  The algorithm flowchart of CBS-CIOCA is illustrated below.

Fig. 12.  Multiple conflict attribute types for ARP and URP in the CBS-CIOCA algorithm.

Scientific Reports | (2025) 15:5670 13| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 1.CBS-CIOCA algorithm

15 elseif

16 conflictType = ’vertex_opposing’;

17 else

18 conflictType = ’map vertex_cross’;

19 end if

20 Case edge_conflict type

21 conflictType = ’edge_conflict’;

22 if conflictType = ’vertex_cross’or ‘vertex_opposing’

23 conflictAttributes = ’ARP’;

24 paths = replanPaths_IDSTA*(map, paths, ’ARP’);

25 elseif

26 conflictAttributes = ’URP’;

27 paths = replanPaths_DWSTA*(map, paths, ’ARP’);

28 disp(paths);

29 end if

30 end switch

31 end while

Simulation results
This study aims to assess the performance of the CBS-CIOCA algorithm in multi-AGV path planning in complex
maps and large warehouse environments through ablation experiments. First, we evaluate the computational
time and the number of nodes expanded during the path search of the CBS and CBS-CIOCA algorithms in
single-path planning scenarios using 20x20 and 30x30 complex obstacle maps. Subsequently, multi-robot
path planning experiments were conducted using the 35x18 fishbone-shaped map and the 37x18 traditional
warehouse map. These experiments were compared against the traditional CBS algorithm, the IDCBS algorithm,
and the DWCBS algorithm as reference methods to evaluate the comprehensive performance of the CBS-CIOCA
algorithm in terms of planning time and the number of expanded nodes.Finally, to test the robustness of the
CBS-CIOCA algorithm, large-scale maps of 30x60 and 30x30, containing 10% to 30% randomly distributed
obstacles and randomly chosen starting points, were used to evaluate the algorithm’s stability under unknown
conditions.

Considering practical production constraints, the time for solving each experiment was limited to 5 minutes.
If the system failed to generate a valid path solution within this time frame, the experiment was considered
inconclusive. The experiments were conducted on a 2.10 GHz AMD Ryzen 5 3550H processor, and programming
was performed using MATLAB 2021b.

Complex obstacle map environment experiment
We assessed the path planning capabilities of two algorithms for single robots using two complex obstacle maps,
specifically sized 20 × 20 and 30 × 30. Additionally, we evaluated these algorithms’ performance in multi-robot
path planning using a complex obstacle map of size 60 × 30. The results of the single robot path planning tests
are presented in Figs. 14 and 15, and detailed in Table 2.

In Figs. 14 and 15, the blue paths represent the CBS algorithm, while the red paths represent the CBS-CIOCA
algorithm. In the 20 × 20 complex obstacle map environment with a single robot, both algorithms produce paths
of equal length from start to finish. However, the CBS-CIOCA algorithm demonstrates a 94.83% improvement
in execution time over the CBS algorithm and reduces the number of expanded nodes needed for path planning
by 90.01%, as detailed in Table 2. In the 30 × 30 complex obstacle map environment, while the CBS-CIOCA
algorithm shows a slight increase in path cost compared to the CBS algorithm, it achieves a 95.69% reduction in
pathfinding time and an 86.52% reduction in the number of expanded nodes.

Figures 16 and 17 illustrate the path solution sets produced by two different algorithms with 15 robots. As
shown in Table 3, the improved algorithm reduced the running time to 197.71 seconds compared to 2576.4
seconds for the previous version, representing a 92.33% decrease in planning time. According to the criteria
established at the start of the experiment, the path planning was considered unsuccessful if the planning time
exceeded certain limits. The results demonstrate that the enhanced algorithm significantly improves time
efficiency in path planning for both single and multiple robots, thus greatly reducing the likelihood of path
planning failures.

Results of multi-Robot testing in two warehouse layouts
To evaluate the performance of the CBS-CIOCA algorithm versus the original algorithm in multi-robot
warehouse environments, we conducted experiments using two warehouse layouts: a traditional layout of
37 × 18 and a fishbone-type layout of 35 × 18.

For objective and reliable results, each algorithm was tested 10 times with different numbers of robots, and
the average results were recorded. For experiments involving only five robots, the starting point was fixed at the
gray square, designated as the storage and retrieval point. When the number of robots exceeded five, simulations

Scientific Reports | (2025) 15:5670 14| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

involved randomly assigning delivery tasks to other robots in the warehouse, while the starting positions of
robots numbered 1-15 remained fixed as detailed in Table 4.

Figures 18, 19, 20 and 21 show the path maps of 15 robots using the traditional CBS algorithm and the CBS-
CIOCA algorithm on traditional warehouse layouts and fishbone-shaped warehouse layouts.

Fig. 15.  Paths generated by two algorithms on a 30 × 30 complex obstacle map.

Fig. 14.  Paths generated by two algorithms on a 20 × 20 complex obstacle map.

Scientific Reports | (2025) 15:5670 15| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

According to the data from Fig. 22 for the traditional warehouse layout, it can be observed that the CBS-
CIOCA algorithm significantly outperforms the traditional CBS algorithm in terms of average runtime and
node expansion volume. When the number of robots is small, the average runtime and node expansion volume
of the DWCBS algorithm are similar to those of the CBS-CIOCA algorithm. However, as the number of robots
increases, the average runtime and node expansion volume of the DWCBS algorithm are less than those of
the CBS-CIOCA algorithm. This is because as the number of robots increases, the number of conflicts also
increases, leading to more frequent calls to the diagonally improved Space-time A* algorithm in CBS-CIOCA.
Consequently, the CBS-CIOCA algorithm tends to select more optimal paths, which slightly reduces its
performance when the number of robots is large.

As shown in Fig. 23, when the number of robots is greater than or equal to 9, the CBS-CIOCA algorithm
expands more nodes than the DWCBS algorithm. This occurs because, in the process of planning random start
and end points for multiple robots, the underlying pathfinding algorithm, which utilizes IDSA*, is invoked
more frequently as the number of robots increases, leading to a higher number of nodes being expanded by
the CBS-CIOCA algorithm compared to the DWCBS algorithm. However, compared to other algorithms, the
CBS-CIOCA algorithm shows superior performance in terms of both average runtime and node expansion in
fishbone-type warehouse layouts. Specifically, the CBS-CIOCA algorithm is able to minimize the number of
expanded nodes while ensuring optimal route planning, thus achieving the highest efficiency in finding the
optimal path for each robot.

Based on the results presented in Figs. 22 and 23, it can be observed that the CBS-CIOCA algorithm
outperforms the CBS algorithm in both execution time and the number of expanded nodes within the traditional
warehouse layout compared to the fishbone-type warehouse layout. The fishbone-type layout, although having
a smaller overall spatial extent, contains more obstacles, making pathfinding more complex. While the initial
positions of the robots in these two warehouse layouts are not standardized and vary, the experimental data
shown in Figs. 22 and 23 clearly indicate that the CBS-CIOCA algorithm consistently performs better than the
CBS algorithm in both types of layouts.

Based on the traditional warehouse layout map data presented in Fig. 24, increasing the number of robots
results in notable reductions in path planning time and node expansion for the CBS-CIOCA and DWCBS

Fig. 16.  Path generated by the CBS algorithm in a 60 × 30 complex obstacle map.

Map size Path Search Algorithm Time (seconds) Node Expansion Cost Steps

20 × 20 complex obstacle map CBS 3.5617 3864 38

20 × 20 complex obstacle map CBS-CIOA 0.1841 386 38

30 × 30 map of complex obstacles CBS 10.86 7181 57

30 × 30 map of complex obstacles CBS-CIOA 0.4678 968 61

Table 2.  Comparative analysis of CBS and CBS-CIOCA algorithms in two different complex obstacle map
scenarios.

Scientific Reports | (2025) 15:5670 16| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

algorithms compared to the original algorithm. Furthermore, the IDCBS algorithm also shows significant
enhancements in these metrics. Specifically, the IDCBS algorithm achieves up to a 78.83% reduction in path
planning time and up to a 76.92% decrease in node expansion. The DWCBS algorithm demonstrates up to a
97.85% reduction in path planning time and up to a 95.39% decrease in node expansion. Meanwhile, the CBS-

Fishbone Warehouse Layout Traditional Warehouse Layout

AGV Number AGV Starting Position AGV Ending Position AGV Number AGV Starting Position AGV Ending Position

1 (11,11) (11,3) 1 (8,2) (18,3)

2 (8,9) (7,6) 2 (4,13) (18,14)

3 (15,9) (10,4) 3 (16,10) (35,15)

4 (3,4) (5,3) 4 (14,2) (30,8)

5 (10,1) (16,3) 5 (28,17) (17,14)

6 (10,11) (7,12) 6 (31,10) (12,4)

7 (15,8) (24,11) 7 (7,4) (33,16)

8 (9,9) (21,16) 8 (11,12) (29,3)

9 (6,6) (30,6) 9 (25,12) (5,13)

10 (8,10) (13,10) 10 (30,6) (6,11)

11 (4,1) (16,8) 11 (4,1) (36,4)

12 (11,1) (24,17) 12 (11,1) (33,11)

13 (18,1) (14,9) 13 (18,1) (26,3)

14 (25,1) (6,5) 14 (25,1) (12,3)

15 (32,1) (34,18) 15 (31,1) (8,16)

Table 4.  Coordinates of the AGV starting position.

Map size Path Search Algorithm Time(seconds)

60 × 30 complex obstacle map
CBS 2576.40

CBS-CIOCA 197.71

Table 3.  Planning time comparison between CBS and CBS-CIOCA algorithms in a 60 × 30 complex maze
map.

Fig. 17.  Path generated by the CBS-CIOCA algorithm in a 60 × 30 complex maze map.

Scientific Reports | (2025) 15:5670 17| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

CIOCA algorithm realizes up to a 97.37% reduction in path planning time and up to a 94.95% decrease in node
expansion.

According to the data presented in Fig. 25, within the fishbone-shaped warehouse layout, as the number of
robots increases, the CBS-CIOCA algorithm demonstrates superior performance compared to the other two
improved algorithms. This superiority is evident in both the time improvement rate and the reduction in node
expansions. Specifically, the IDCBS algorithm achieves a maximum time improvement of 86.85% and a maximum
node expansion reduction of 80.23%. The DWCBS algorithm achieves a maximum time improvement of 88.22%
and a maximum node expansion reduction of 85.53%. In contrast, the CBS-CIOCA algorithm achieves the
highest maximum time improvement of 88.37% and the greatest reduction in node expansions at 88.41%.

Fig. 19.  Paths of 15 robots in Traditional Warehouse layout map based on CBS-CIOCA algorithm.

Fig. 18.  Paths of 15 robots in Traditional Warehouse layout map based on CBS algorithm.

Scientific Reports | (2025) 15:5670 18| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Figure 26 presents the average success rate of 100 trials, with 5 robots starting from randomly assigned
positions, on 30x30 and 30x60 unknown obstacle maps. The CBS algorithm, IDCBS algorithm, DWCBS
algorithm, and CBS-CIOCA algorithm were tested. It is evident that the DWCBS and CBS-CIOCA algorithms
significantly outperform the other two in terms of pathfinding success rate. In contrast, the IDCBS algorithm
falls behind the other two improved algorithms because it prioritizes maintaining path optimality, which limits
its performance. The CBS algorithm shows the lowest average success rate. These results demonstrate that the
CBS-CIOCA algorithm has stronger robustness compared to the original CBS algorithm.

Fig. 21.  Paths of 15 robots in Fishbone Warehouse layout map based on CBS-CIOCA algorithm.

Fig. 20.  Paths of 15 robots in Fishbone Warehouse layout map based on CBS algorithm.

Scientific Reports | (2025) 15:5670 19| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Conclusion
To enhance the time efficiency and success rate of multi-robot path planning, we propose an advanced algorithm:
the Conflict-based Comprehensive Optimization Conflict Avoidance Algorithm (CBS-CIOCA). The algorithm
first improves the space-time A* algorithm based on diagonals for the pathfinding phase of the CBS algorithm,
enabling the determination of optimal paths with fewer node expansions and reduced computation time.
Building on this, we integrate a dynamic adaptive factor, which leads to the development of a dynamic adaptive
space-time A* algorithm. While this algorithm may slightly sacrifice optimality, it substantially improves
path search efficiency and reduces the number of node expansions. In the conflict resolution phase, various
underlying pathfinding algorithms are applied according to the specific types of conflicts encountered. This
approach not only improves the success rate of path planning but also significantly enhances overall algorithmic
efficiency. Experimental results show that, across a range of map types and structures, the CBS-CIOCA algorithm
significantly outperforms the original CBS-STA algorithm in both path planning time and node expansion
metrics, demonstrating superior performance. By incorporating the conflict classification method outlined in
this study and combining it with the two underlying search algorithms, future multi-robot path planning can
benefit from further optimization.

This study focuses on multi-robot path planning and has achieved significant advancements in this field.
Future research will concentrate on path planning in dynamic environments with multiple moving obstacles.
It will also address challenges arising from the algorithm’s dependency on conflict classification systems, which
could lead to suboptimal paths in cases of inaccurate classification. Additionally, future work will aim to overcome
these issues while exploring the integration of machine learning or real-time deployment within robotic systems.

Fig. 23.  Comparative analysis of the performance of Fishbone Warehouse layout algorithms.

Fig. 22.  Comparative analysis of the performance of Traditional Warehouse layout algorithms.

Scientific Reports | (2025) 15:5670 20| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 25.  Improvement of three algorithms in Fishbone Warehouse layout environments.

Fig. 24.  Improvement of three algorithms in Traditional Warehouse layout environments.

Scientific Reports | (2025) 15:5670 21| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Data Availability
The datasets used and analyzed during the current study are available from the corresponding author on rea-
sonable request.

Received: 31 October 2024; Accepted: 6 February 2025

References
	 1.	 Yang, L. et al. Multi-area collision-free path planning and efficient task scheduling optimization for autonomous agricultural

robots. Sci. Rep. 14, 18347. https://doi.org/10.1038/s41598-024-69265-y (2024).
	 2.	 Li, Z., Hu, J., Leng, B., Xiong, L. & Fu, Z. An integrated of decision making and motion planning framework for enhanced

oscillation-free capability. IEEE Trans. Intell. Transp. Syst. 25, 5718–5732. https://doi.org/10.1109/TITS.2023.3332655 (2024).
	 3.	 Shirini, K. et al. A comprehensive survey on multiple-runway aircraft landing optimization problem. Int. J. Aeronaut. Space Sci. 25,

1574–1602. https://doi.org/10.1007/s42405-024-00747-z (2024).
	 4.	 Shirini, K. et al. Modified imperialist competitive algorithm for aircraft landing scheduling problem. J. Supercomput. 80, 13782–

13812. https://doi.org/10.1007/s11227-024-05999-w (2024).
	 5.	 Shirini, K. et al. Multi-objective aircraft landing problem: A multi-population solution based on non-dominated sorting genetic

algorithm-ii. J. Supercomput. 80, 25283–25314. https://doi.org/10.1007/s11227-024-06385-2 (2024).
	 6.	 Nonut, A. et al. A small fixed-wing uav system identification using metaheuristics. Cogent Eng. 9, 2114196. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​8​

0​/​2​3​3​1​1​9​1​6​.​2​0​2​2​.​2​1​1​4​1​9​6​​​​ (2022).
	 7.	 Shirini, K., Taherihajivand, A. & Samadi Gharehveran, S. A review of algorithms for solving the project scheduling problem

with resource-constrained considering agricultural problems. Agric. Mech. 8, 1–14. https://doi.org/10.22034/jam.2023.55751.1227
(2023).

	 8.	 Tejani, G., Savsani, V., Patel, V. & Bureerat, S. Topology, shape, and size optimization of truss structures using modified teaching-
learning based optimization. Adv. Comput. Des.[SPACE]https://doi.org/10.12989/acd.2017.2.4.313 (2017).

	 9.	 Oskouei, A. G., Abdolmaleki, N., Bouyer, A., Arasteh, B. & Shirini, K. Efficient superpixel-based brain mri segmentation using
multi-scale morphological gradient reconstruction and quantum clustering. Biomed. Signal Process. Control 100, 107063. ​h​t​t​p​s​:​/​/​d​
o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​b​s​p​c​.​2​0​2​4​.​1​0​7​0​6​3​​​​ (2025).

	10.	 Tejani, G., Savsani, V. & Patel, V. Modified sub-population based heat transfer search algorithm for structural optimization. Cogent
Eng. 8, 1–23. https://doi.org/10.4018/IJAMC.2017070101 (2017).

	11.	 Shankar, M. & Sushnigdha, G. A hybrid path planning approach combining artificial potential field and particle swarm optimization
for mobile robot. IFAC-PapersOnLine 55, 242–247. https://doi.org/10.1016/j.ifacol.2023.03.041 (2022).

	12.	 Lei, T., Sellers, T., Luo, C., Carruth W, D. & Bi, Z. Graph-based robot optimal path planning with bio-inspired algorithms. Biomim.
Intell. Robot. 3, 100119. https://doi.org/10.1016/j.birob.2023.100119 (2023).

Fig. 26.  Comparison of the Performance of Four Algorithms in Unknown Environments.

Scientific Reports | (2025) 15:5670 22| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-024-69265-y
https://doi.org/10.1109/TITS.2023.3332655
https://doi.org/10.1007/s42405-024-00747-z
https://doi.org/10.1007/s11227-024-05999-w
https://doi.org/10.1007/s11227-024-06385-2
https://doi.org/10.1080/23311916.2022.2114196
https://doi.org/10.1080/23311916.2022.2114196
https://doi.org/10.22034/jam.2023.55751.1227
https://doi.org/10.12989/acd.2017.2.4.313
https://doi.org/10.1016/j.bspc.2024.107063
https://doi.org/10.1016/j.bspc.2024.107063
https://doi.org/10.4018/IJAMC.2017070101
https://doi.org/10.1016/j.ifacol.2023.03.041
https://doi.org/10.1016/j.birob.2023.100119
http://www.nature.com/scientificreports

	13.	 Pham, H. V. et al. Proposed multi-st model for collaborating multiple robots in dynamic environments. Machines 12, 197. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​m​a​c​h​i​n​e​s​1​2​1​1​0​7​9​7​​​​ (2024).

	14.	 Xidias, E. & Zacharia, P. Balanced task allocation and motion planning of a multi-robot system under fuzzy time windows. Eng.
Comput. 41, 1301–1326. https://doi.org/10.1108/EC-09-2023-0612 (2024).

	15.	 Sharon, G., Stern, R., Felner, A. & Sturtevant, N. R. Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219,
40–66. https://doi.org/10.1016/j.artint.2014.11.006 (2015).

	16.	 Jin, J. et al. Conflict-based search with d* lite algorithm for robot path planning in unknown dynamic environments. Comput.
Electr. Eng. 105, 108473. https://doi.org/10.1016/j.compeleceng.2022.108473 (2023).

	17.	 Zhou, Z., Abdi, E., Chea, C. P. & Bai, Y. Global path planning for autonomous construction vehicles in building construction: A
comparative study with a focus on vehicle kinematic characteristics. J. Build. Eng. 93, 109837. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​o​b​e​.​2​0​2​4​.​
1​0​9​8​3​7​​​​ (2024).

	18.	 Lin, S., Liu, A., Wang, J. & Kong, X. An improved fault-tolerant cultural-pso with probability for multi-agv path planning. Expert
Syst. Appl. 237, 121510. https://doi.org/10.1016/j.eswa.2023.121510 (2024).

Declarations

Ethics declarations
Competing interests The authors declare no competing interests

Additional information
Correspondence and requests for materials should be addressed to Y.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:5670 23| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

https://doi.org/10.3390/machines12110797
https://doi.org/10.3390/machines12110797
https://doi.org/10.1108/EC-09-2023-0612
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.compeleceng.2022.108473
https://doi.org/10.1016/j.jobe.2024.109837
https://doi.org/10.1016/j.jobe.2024.109837
https://doi.org/10.1016/j.eswa.2023.121510
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Conflict-based strategy combined integrated optimal conflict avoidance algorithm
	﻿Description and modeling of the MAPF problem
	﻿Description of the MAPF problem
	﻿Environmental modeling

	﻿Conflict-based strategy - combined integrated optimal conflict avoidance algorithm
	﻿Conflict-based search algorithm
	﻿Improvements for the underlying pathfinding algorithm
	﻿Space-time A* algorithm
	﻿Improved diagonal space-time A* algorithm
	﻿Dynamic weighted space-time A* algorithm

	﻿Improvements in the conflict resolution mode of the CBS algorithm
	﻿Simulation results
	﻿Complex obstacle map environment experiment
	﻿Results of multi-Robot testing in two warehouse layouts

	﻿Conclusion
	﻿References

