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This paper presents a Conflict-Based Strategy - Combined Integrated Optimal Conflict Avoidance (CBS-
CIOCA) algorithm for more efficient multi-robot path planning. The algorithm first refines the conflict 
types in the high-level model of the traditional CBS algorithm and introduces two conflict categories: 
avoidable conflicts and unavoidable conflicts. Next, the low-level model of the traditional CBS 
algorithm is improved, transforming the path search process into two distinct algorithms with different 
focuses. Finally, based on the different conflict categories, two optimized algorithms are proposed: 
a space-time A* algorithm enhanced by diagonal improvements and a dynamic adaptive space-
time A* algorithm incorporating dynamic adaptive factors. Experimental results demonstrate that, 
compared to the traditional CBS algorithm, the CBS-CIOCA algorithm achieves maximum reductions 
of 97.37% and 94.99% in time and node expansion, respectively, in both traditional warehouse and 
fishbone-shaped warehouse environments, as well as 88.37% and 88.41% in a dynamic large-obstacle 
environment.

Keywords  Multi-robot path planning, Conflict-Based Strategy - Combined Integrated Optimal Conflict 
Avoidance, Space-time A* algorithm, Diagonally improved, Dynamically adaptive

Multi-agent pathfinding (MAPF), also referred to as multi-robot path planning, is a critical and complex 
problem in modern intelligent systems. In this task, multiple robots must navigate from a specified starting 
point to a target location within a predefined, complex environment, while avoiding collisions with each other1.
In recent years, Multi-Agent Path Finding (MAPF) has found extensive applications in various domains, such as 
autonomous driving2, airport scheduling3–5, drone swarm formation6, and agricultural production management 
systems7,1.

In multi-robot global path planning, the key performance indicators for evaluating path planning algorithms 
include the total path length after all robots reach their target, the computational complexity of the path planning 
process, and the success rate of the multi-robot system in unknown environments8–10. In recent years, several 
robot path planning methods have been proposed to enhance efficiency under various conditions. Manny 
Shankar11 et al. introduced a hybrid approach for mobile robot path planning, combining Particle Swarm 
Optimization (PSO) and Artificial Potential Field (APF) methods. This approach overcomes the problem of local 
minima encountered when using the APF algorithm alone and the slow planning speed of the PSO algorithm 
when used independently. However, its performance is suboptimal in more complex map environments. Lei et 
al.12 proposed a graph-based robot path planning method using the improved Seagull Optimization Algorithm 
(iSOA) and developed an enhanced Douglas-Peucker (mDP) algorithm. This method approximates irregular 
obstacles in rugged terrain as polygonal shapes based on environmental images. Experimental results demonstrate 
that this approach effectively addresses path planning challenges in complex map environments; however, the 
experimental setup did not consider the effects of dynamic obstacles or other unforeseen environmental factors 
on the algorithm’s performance. Pham et al.13 introduced the Multi-ST model, which enhances the adaptability, 
efficiency, and collaboration of multi-robot systems through spatiotemporal optimization and task allocation. 
This model is particularly suited for task allocation and path planning in dynamic environments during multi-
robot collaborations. However, as the number of robots and task complexity increase, the model may face 
challenges due to high computational complexity when efficiently managing task scheduling in multi-robot 
collaborative operations. Xidias et al.14 tackled uncertainty in task allocation and motion planning by using 
fuzzy time windows, enabling multi-robot systems to collaborate under more flexible time constraints. Despite 
this advantage, the method faces challenges when handling large-scale multi-robot systems due to its high 
computational complexity. In contrast, Sharon et al.15 proposed the Conflict-Based Search (CBS) algorithm, a 
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two-layer method that has proven to be one of the best solutions for the MAPF problem in recent years. In this 
approach, conflict detection and constraint setting are managed at the high level, while the low level searches 
for paths that meet these constraints. Jin et al.16 improved the CBS approach by replacing the traditional A* 
algorithm with the Dlite algorithm, decoupling conflict management from path planning and coordination. 
They introduced the CBS-d algorithm, which incorporates a strategy for waiting and looping, enhancing the 
success rate of pathfinding and obstacle avoidance in the traditional CBS approach while reducing the number 
of time steps required.The methods of application and limitations of some of the algorithms discussed in the 
aforementioned literature are more clearly explained in Table 1.

Although the methods mentioned above are effective for solving multi-agent path planning problems, they 
mainly rely on traditional single-path planning algorithms to manage different types of conflicts at a higher level 
of abstraction. This approach may cause issues in multi-robot path planning, such as a robot’s path becoming 
trapped in a local optimum, which in turn increases the overall path length17,18. Furthermore, neglecting collision 
resolution can lead to deadlocks, and as both the number of robots and the complexity of the environment 
increase, the likelihood of collision resolution failure also rises. To address these issues, this paper proposes an 
improved collision-based strategy-the Comprehensive Optimal Collision Avoidance (CBS-CIOCA) algorithm, 
designed specifically for robot path planning in large and complex environments. Unlike the traditional CBS 
algorithm, which focuses only on two higher-level types of collisions, the CBS-CIOCA algorithm clarifies the 
classification of high-level collisions by adjusting collision types based on the robots’ different operational 
states, categorizing them into two main collision attributes. Additionally, while the traditional CBS algorithm 
uses a single path planning model, the CBS-CIOCA algorithm improves the underlying path planning logic 
by introducing two specialized path planning algorithms. Each algorithm is optimized for different collision 
attributes, overcoming the limitations of a single path planner. This enhancement allows the CBS-CIOCA 
algorithm to redefine collision attributes at a high level and optimize the lower-level path planning logic, offering 
a more flexible and efficient collision resolution strategy. This significantly reduces the risk of deadlocks and 
greatly improves path planning efficiency in highly dynamic and complex warehouse environments. Compared 
to traditional methods, the proposed algorithm exhibits superior performance in large-scale, multi-robot 
systems, especially in highly dynamic and complex environments, ensuring both the efficiency and reliability 
of path planning.

The contributions of the CBS-CIOCA algorithm are summarized below:
 The CBS-CIOCA algorithm enhances the accuracy and efficiency of conflict management by redefining 

conflict types according to the robot’s various operational states and by refining the classification of high-level 
conflicts into two distinct conflict attributes.

 The CBS-CIOCA algorithm improves on the traditional CBS by integrating two specialized path planners, 
each optimized for different conflict types. This enhancement boosts efficiency and conflict resolution, especially 
in complex environments, overcoming the limitations of a single path planner.

 Experimental results demonstrate that the CBS-CIOCA algorithm outperforms other approaches in terms 
of runtime, number of expanded nodes, and system robustness.

Description and modeling of the MAPF problem
Description of the MAPF problem

	(1)	� The input is a directed graph G(V, E), as illustrated in Fig. 1. Here, V denotes the set of vertices, and E 
represents the set of edges connecting these vertices.Mapping s : [1, ..., k] −→ V indicates that each agent 

The name of the algorithm Approaches of the algorithm Limitations of the algorithm

An integrated framework of 
decision making and motion 
planning with oscillation-free 
capability

The main contribution of this study is to propose an integrated decision and 
motion planning framework that can ensure oscillation-free and safe driving in 
dynamic environments.

The limitation of the proposed approach lies in its reliance 
on assumptions about vehicle dynamics and the handling of 
soft constraints

A hybrid path planning approach A Hybrid Approach to Mobile Robot Path Planning Combining Particle Swarm 
Optimization (PSO) Techniques and Artificial Potential Field (APF) Methods Performs poorly in more complex map environments

Improved seagull optimization 
algorithm (iSOA)

Use the modified Douglas-Peucker (mDP) algorithm to approximate irregular 
obstacles as polygonal obstacles based on environmental images in rugged 
terrain, and then apply the iSOA method for path planning.

Lack of consideration of unknown environmental 
information such as dynamic obstacles in experimental 
setups

A novel coverage path planning 
model (termed Multi-ST)

The model utilizes the spiral-spanning tree coverage algorithm with intelligent 
reasoning and knowledge-based methods to achieve optimal coverage, obstacle 
avoidance, and robot coordination.

As the number of robots and the complexity of tasks increase, 
the model may face problems such as high computational 
complexity and the inability to perform efficient task 
scheduling with multiple robots operating in concert

Balanced task allocation and 
motion planning of a multi-robot 
system under fuzzy time windows

Handling uncertainty in task assignment and motion planning through fuzzy 
time windows enables multi-robot systems to collaborate under more flexible 
time constraints

There are problems such as high computational complexity 
and difficulty in dealing with large-scale multi-robot systems

Conflict Based Search algorithm 
(CBS)

The Conflict-Based Search (CBS) algorithm manages conflict detection and 
constraint setting at a high level, while the low level searches for paths that meet 
these constraints.

Lack of path planning ability in the presence of dynamic 
obstacles and unknown environments

Conflict-based search with D* lite 
algorithm

The traditional A* algorithm in CBS is replaced with the Dlite algorithm and a 
wait-and-loop strategy is investigated.

Path planning under unknown map conditions is not 
considered and has high computational complexity, making 
it difficult to deal with large-scale multi-robot systems.

Table 1.  Key Algorithms and Their Approaches and Limitations.
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is associated with a starting node, while mapping g : [1, ...k] −→ V  indicates that each agent is associated 
with a target node.

	(2)	� krobots are represented as a1, a2, ..., ak ,with each robot having a starting pointsi ∈ V and a target point 
gi ∈ V .Mapping s : [1, ..., k] −→ V  specifies that each agent is associated with a starting node, while map-
ping g : [1, ...k] −→ V  specifies that each agent is associated with a target node.

	(3)	� let lt
i  represent the position of robot ai at time step t,and let Pi =

{
s0

i , s1
i , ..., sT −1

i

}
 denote the set of 

waypoints for robot ai from si to gi.

In the MAPF (Multi-Agent Pathfinding) problem, time is typically discretized into time steps. The path 
planning begins with a directed graph G = (V, E) where m robots are distributed, represented by the set 
A = {a1, a2, ..., ak}. Each robotai ∈ A must find a path Pi = {si, gi} from a given start point to a specified 
end point. T = {1, 2, ..., t} denotes the discrete time sequence, and Pi represents the path of robot ai. The 
function T → V  maps the time sequence T to the vertex set V, with li(t) indicating the position of robot ai at any 
time t ∈ T . At each time step, every robot can perform one of five possible actions: move up, move down, move 
left, move right, or wait.Point conflict between two robots is defined as the scenario where both robots visit the 
same point at the same time step, denoted as li(t) = lj(t) Edge conflict occurs when both robots simultaneously 
traverse the same edge, represented by li(t) = lj(t+1) and li(t+1) = lj(t). The term cost (li) represents the cost 
of the path li, measured in terms of time. Let ts denote the start time and te denote the end time of the robot’s 
path li. The optimization objective, known as the sum-of-costs (SOC), refers to the cumulative total of the time 
steps required for all robots to reach their target points, including any additional time steps spent beyond the 
target, expressed as:

	 SOC =
∑m

i=1 cost (li)

Additionally, the MAPF problem should encompass more than just minimizing time steps. The objective of this 
paper is to provide a feasible solution for each robot to find a path from its starting position to its destination, 
while minimizing the overall cost as much as possible.

As illustrated in Fig. 2, robots ai and aj  encounter a vertex conflict at t=2 because they occupy the same location. 
Additionally, robots aj  and ak  face an edge conflict during the time intervals t=1, 2, and 3 as they traverse the 
same edge. Hence, the MAPF approach should not only focus on finding the optimal paths but also address 
potential conflicts with other robots during the path planning process.

Environmental modeling
In the classic MAPF model, various types of environmental maps are considered, such as traditional warehouse 
layout maps, fishbone-style warehouse layout maps, and complex maze layout maps. This paper utilizes the 
fishbone-style warehouse layout map for environmental modeling, following the same map modeling procedures 
as those used in subsequent experiments.

As shown in Fig. 3, in the research on mobile robot path planning, the grid method is an effective approach 
for modeling the workspace. This method involves dividing the working environment of the mobile robot into 
equally sized grids. White grids denote traversable areas, while black grids indicate obstacles. The robot navigates 
by moving along the centerlines of the traversable grids. This method is both straightforward and effective, 

Fig. 1.  Directed graphical models.
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exhibiting strong adaptability to obstacles and significantly reducing environmental complexity. Hence, this 
paper employs this method for environmental map modeling.

To facilitate research and experimentation, the following assumptions are made:
1.The map and obstacle boundaries are established with consideration for the safety distance of mobile robots. 

Therefore, in simulations or experiments, the mobile robot can be treated as a point-like entity and will move 
within the grid map boundaries. 2.During the mobile robot’s movement within the grid map, the surrounding 
environment is assumed to remain static. 3.The mobile robot is capable of moving to other unoccupied grid cells 
within the grid map, even in the presence of obstacles, by moving diagonally to the top-left, bottom-left, top-
right, or bottom-right directions.

The paper employs a method that integrates the rectangular coordinate system with indexing to identify 
grids, where each grid is assigned a unique identifier and corresponding coordinates. As illustrated in Fig. 4, the 
mobile robot operates within a 37 × 18 grid map. The numbering of the grids begins at the top-left corner of 
the map, proceeding from top to bottom and from left to right. Grid coordinates increase from top to bottom 
and from left to right, respectively. The relationship between each grid’s coordinates and its identifier is defined 
by formula:

	

{
Rx = ceil

(
N

rows

)
Ry = Rx ∗ rows − N + 1 � (1)

Fig. 3.  Obstacle inflation in grid-based maps.

 

Fig. 2.  Diagram of path conflicts in multi-Robot systems.
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In the formula, rows denote the number of vertical grid cells in any column of the grid map. (Rx, Ry) indicates 
the coordinates (row and column) of any grid cell within the map. N represents the index of this grid cell in the 
map, ceil is an upward rounding operator.

The traditional warehouse layout, constructed using the grid map method, is illustrated in Fig. 4. This type 
of warehouse features straight main aisles as the core structure, complemented by parallel auxiliary pathways. In 
the figure, white hollow squares represent storage points, which are abstracted as obstacles and final destinations 
in the grid map method. Gray solid squares denote access points for storage and serve as the initial starting 
positions for the robots. When there are more than five robots, random tasks are generated on the map to 
simulate the emergence of tasks during robot operations. Red circles indicate the robots, and each intersection 
of the grid lines marks a potential path that the robots can traverse.

Conflict-based strategy - combined integrated optimal conflict avoidance algorithm
Conflict-based search algorithm
In multi-AGV path planning, the CBS algorithm solves the problem using a two-tier approach. At the lower tier, 
the algorithm employs a constrained single-agent path planning method to address the path planning issues 
of each individual AGV, typically utilizing the A* algorithm. The upper tier then reviews the paths planned by 
the lower tier to identify any conflicts. If conflicts are detected, constraints are imposed to adjust the lower-tier 
planning until all paths are free of conflicts, as shown in the algorithmic flow in Fig. 5.

As the scale of the map and the number of robots increase, the traditional A* algorithm often explores 
numerous unnecessary path nodes during the path planning process. This inefficiency can lead to increased 
solving times for the CBS algorithm and may even result in cases that are unsolvable. Furthermore, in traditional 
CBS algorithms, the conflict detection and resolution process is complicated by frequent conflicts and complex 
paths in the upper-level planning phase. The upper-level detection algorithm often merges various conflict 
types into a single constraint for the lower-level pathfinding algorithm. This conflation prevents the lower-level 
algorithm from effectively adjusting to different types of conflicts, leading to wasted computational resources 
and longer path lengths.

The paper first enhances the CBS algorithm by replacing its underlying pathfinding algorithm with the diagonal 
space-time A* algorithm and the dynamic adaptive space-time A* algorithm. The diagonal spatiotemporal 
A* algorithm offers faster search speeds and ensures optimal routing compared to the traditional space-time 
A* algorithm. In contrast, the dynamic adaptive space-time A* algorithm may utilize suboptimal routes as a 
trade-off, which significantly reduces the search time and the number of expanded nodes. Subsequently, during 
the conflict detection and resolution phase of the CBS algorithm, different types of conflicts are classified, and 
various underlying pathfinding algorithms are applied based on the specific characteristics of each conflict. This 
approach significantly enhances the overall system efficiency and success rate of the new algorithm.

Improvements for the underlying pathfinding algorithm
Space-time A* algorithm
The overall structure of the Spatial-temporal A* algorithm is similar to that of the A* search algorithm. Both 
algorithms perform pathfinding by repeatedly calculating the F values for nodes in the Open and Closed lists. 
They select the node with the lowest F value from the Open list as the starting point for the next iteration, and 

Fig. 4.  Grid map of warehouse layout.
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continue updating until they reach the target node and identify all path nodes. The Open list stores the nodes 
that are expanded during the search, while the Closed list contains nodes with the minimal cost encountered 
during the search. The formulas for both the Spatio-temporal A* algorithm and the A* search algorithm are 
represented by:

	 f (n) = g (n) + h (n)� (2)

Fig. 5.  CBS algorithmic framework.
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f (n) represents the estimated cost to reach the goal state from the initial state through state n. g (n) denotes the 
actual cost incurred to travel from the initial state to state n within the state space. h (n) indicates the estimated 
cost of the optimal path from state n to the goal state.

The traditional A* algorithm, when applied to search in a two-dimensional spatial map, only requires recording 
the positions of expanded nodes. However, when extending the search to include a time dimension, it becomes 
necessary to also record the time at each position in addition to the spatial coordinates. In contrast, the Spatial-
temporal A* algorithm integrates time as a state within the graph, where time progresses linearly. This approach 
transforms the graph into a spatiotemporal tree, where each level of the tree corresponds to an increment in 
time. In environments with a single Automated Guided Vehicle (AGV), conflicts do not arise as the environment 
is static, and path planning is performed solely within the two-dimensional spatial map. Conversely, when 
multiple AGVs are present, each operating AGV becomes a dynamic obstacle for others. Consequently, the 
spatiotemporal A* algorithm controls vehicles in both spatial and temporal dimensions, expanding the two-
dimensional map into a three-dimensional spatiotemporal map to accommodate this complexity.

Using the small-scale map depicted in Fig. 6 as an example, we assume that the cost between each pair of 
adjacent points is uniform. When point A represents the starting location of the Automated Guided Vehicle 
(AGV) and point E represents the destination, the search tree generated by the Space-time A* algorithm is 
illustrated in Fig. 7.

In the tree diagram, each branch point is labeled with letters that indicate node positions, while the associated 
numbers represent the time points at which these nodes are reached. The search begins at time 0, with each 
transition to an adjacent node taking one unit of time. As illustrated in Fig. 6, node A only connects to node 
B, thus the next level of the tree comprises node B and its corresponding time point of 1. Node B connects to 
nodes F and C; therefore, the subsequent level includes nodes F and C with a time point of 2. Using the four-
neighborhood approach, node C connects to nodes H, G, and D, and node F connects to node H. Consequently, 
the next level of the tree includes nodes H, G, and D, each with a time point of 3. This process continues iteratively 
until the target node E is reached.

Improved diagonal space-time A* algorithm
The estimated cost function h (n) represents the cost from the current node n to the goal node. The choice of 
heuristic function for h (n) can significantly impact the operational efficiency of different pathfinding algorithms. 
To ensure that the search algorithm finds the shortest path while minimizing the number of expanded nodes, 
selecting an appropriate heuristic function is crucial.

Figure 8 illustrates the commonly used heuristic functions for estimating h (n), which include the Manhattan 
distance, Euclidean distance, and diagonal distance.

The Manhattan distance algorithm calculates the distance between the current node and the target node as 
the sum of the absolute differences in their x and y coordinates. This distance is represented by the heuristic 
function:

	 hManhattan = |x (s) − x (g)| + |y (s) − y (g)|� (3)

Fig. 6.  Example of a simple map.
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The Euclidean distance measures the true distance between the current node and the target node, calculated 
as the square root of the sum of the squared differences between their horizontal and vertical coordinates. The 
heuristic function is given by:

	 hEuclid =
√

[x (s) − x (g)]2 + [y (s) − y (g)]2� (4)

Diagonal distance is a specific case of Euclidean distance, commonly applied in path planning problems within 
grid or coordinate spaces. It represents the shortest distance between two points, measured as the maximum of 
the absolute differences in their horizontal and vertical coordinates. The heuristic function is given by:

	 hdiagonal = |x (s) − x (g)| + |y (s) − y (g)| +
(√

2 − 2
)

∗ min (|x (s) − x (g)| , |y (s) − y (g)|)� (5)

Fig. 8.  Diagrams of three distance measurement methods in a 2D space.

 

Fig. 7.  Diagram of the time tree.
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In the CBS pathfinding algorithm, grid maps are used for global path planning, assuming that robots can move 
in four directions. In this context, the Manhattan distance may not ensure the optimal path, while the Euclidean 
distance tends to expand many unnecessary nodes. The algorithm performs optimally when the distance 
between the starting and target nodes closely matches the cost of moving between nodes. To address this, an 
optimization factor is introduced into the diagonal distance, which provides a more accurate representation 
of distance compared to Manhattan and Euclidean distances, particularly for complex warehouse maps.( k is a 
variable, k = 1 − min(dx,dy)

max(dx,dy) ). The formula for the improved diagonal distance is as follows:

	 himproved diagonal = |x (s) − x (g)| + |y (s) − y (g)| + k ∗
(√

2 − 2
)

max (|x (s) − x (g)| , |y (s) − y (g)|)� (6)

We propose an enhanced version of the spatiotemporal A* algorithm, where the traditional Manhattan distance 
heuristic is replaced with an improved diagonal distance formula. This algorithm is referred to as the Improved 
Diagonal Spatiotemporal A* (IDSA*) algorithm. This enhanced spatiotemporal A* algorithm serves as the 
foundational pathfinding component within the Conflict-Based Search (CBS) framework, which we refer to as 
the Improved Diagonal CBS (IDCBS) algorithm.

Dynamic weighted space-time A* algorithm
In practical applications, the CBS algorithm’s upper layer identifies conflicts that are suitable for rapid path re-
planning. Consequently, we propose a bottom-level path search algorithm designed for efficient path planning. 
During the initial phase of path search, the algorithm must rapidly navigate to various positions. However, as 
the search nears completion, it becomes increasingly important to ensure both precise and swift movement 
to the target point. To address this, we introduce a weight δ (δ ≥ 1) into the heuristic function. This weight is 
progressively reduced as the search nears the target, thereby diminishing the heuristic function’s influence and 
enhancing the relative importance of the actual path cost. The modified objective function is:

	
himproved = δ

[
d (p)improved +

cross ∗ d (p)improved

d (s)

]
� (7)

himproved denotes the objective function used by the Spatial-temporal A* algorithm for node expansion; 
d (p)improved refers to the distance from the current node to the goal node during the search process, measured 
using an enhanced diagonal distance; the term “cross” signifies the crossover influence factor, which guarantees 
the generation of a unique and deterministic path when multiple equally valid paths are present; d (s) represents 
the diagonal distance between the start point and the goal point.

The specific steps to enhance the objective function are as follows:
Employ the improved diagonal distance, as described earlier, to quantify the distance between the current 

point and the target point. This distance is denoted by:

	 diag (node) = dx + dy +
(√

2 − 2
)

∗ max (dx, dy) ∗ k� (8)

where k is a variable value, specifically defined as k = 1 − min(dx,dy)
max(dx,dy)

Incorporate an additional term into the objective function. Specifically, let −→a  represent the vector from the 
initial point to the target point, and 

−→
b  represent the vector from the current point to the target point. The dot 

product of these two vectors is used as an additional term for the objective function h, with the dot product 
expressed as:

	 Cross P roduct = a⃗ ∗ b⃗� (9)

To modify the heuristic function, a weight factor δ (δ ≥ 1) is introduced. In this context, d (s) refers to the 
Manhattan distance from the start point to the goal, while d (p)improved represents the improved diagonal 
distance from the current point to the goal. As the algorithm approaches the goal, the value of d (s) remains 
unchanged, whereas d (p)improved gradually decreases. This means that as the algorithm nears the target, the 
weight factor δ is reduced, thereby decreasing the influence of the objective function and increasing the relative 
significance of the actual path cost. The weight factor δ is defined as follows:

	
δ = 1 +

d (p)improved

d (s)
� (10)

In the heuristic of the IDSA* algorithm, we incorporate a dynamic weight factor, leading to the Dynamic 
Weighted Spatiotemporal A* (DWSTA*) algorithm. When this algorithm is applied as the underlying path 
search strategy within the CBS framework, it is referred to as the Dynamic Weighted CBS (DWCBS) algorithm.
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Improvements in the conflict resolution mode of the CBS algorithm
In the CBS algorithm, the upper layer detects two types of conflicts-edge conflicts and vertex conflicts-during 
the execution of best-first search and conflict resolution, as illustrated in Fig. 9. The lower layer treats these 
conflicts as constraints, imposes them on the conflicting robots, and re-plans their paths to select the one with 
the least cost. However, in real-world warehouse environments, conflict types are typically more complex. Firstly, 
robots are classified based on their operational status as either load-bearing or non-load-bearing. Secondly, 
the combination of different operational statuses and various types of conflicts further complicates the conflict 
scenarios. Using a single path planning algorithm to address all conflict types results in inefficiency for the entire 
path planning process.

To address the aforementioned issues, this paper introduces a new classification scheme for robots in path 
planning, distinguishing warehouse robots into load-carrying and empty-carrying types. In addition, unlike 
the traditional CBS algorithm, which identifies only two types of upper-level conflicts, this approach refines 
the classification of vertex conflicts into four distinct categories, as illustrated in Fig. 10. In the Fig. S1 denotes 
the starting points of specific segments of robot ai path, while G1 represents the endpoints of these segments. 
Similarly, S2 denotes the starting points of specific segments of robot aj  path, and G2 represents their respective 
endpoints.

1)Intersection vertex conflict

	




(ai, aj , V, t)
V(ai,t+1) ̸= V(aj ,t−1)
V(ai,t−1) ̸= V(aj ,t+1)

� (11)

Specifically, if Robot ai and Robot aj  both occupy vertex V at time t, there are two possible scenarios: either the 
position of Robot ai at time t + 1 differs from the position of Robot aj  at time t − 1, or the position of Robot 
ai at time t − 1 differs from the position of Robot aj  at time t + 1.

2)Pursuit vertex conflict

	

{
(ai, aj , V, t)

V E
(ai,t) = V L

(aj ,t)
� (12)

At time t,both the empty robot ai and the load-carrying robot aj  occupied the same vertex. In this context, E 
denotes the empty robot and L denotes the load-carrying robot.Specifically, the speed of the unladen robot ai is 
typically 1.5 times faster than that of the laden robot aj . Therefore, when both robots occupy the same corridor 
at a given time, the unladen robot ai will occupy the same vertex V as the laden robot aj  at time t. In this case, 
the high-level path planning algorithm will prioritize planning the path of the unladen robot ai to resolve the 
potential conflict.

3)Map vertex intersection conflict

	




(ai, aj , V, t)
V(ai,t+1) = V(aj ,t−1)
V(ai,t−1) = V(aj,t+1)

� (13)

Fig. 9.  Types of conflicts.
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At time t, both robots ai and aj  are located at vertex V. Additionally, the position of robot ai at time (t + 1) 
coincides with the position of robot aj  at time (t − 1), and conversely, the position of robot ai at time (t − 1) 
matches the position of robot aj  at time (t + 1). Since this situation represents a cross conflict at a map vertex, 
there are precisely two viable paths around this conflict. Consequently, this type of map vertex cross conflict is 
defined as a special case of edge conflict.

4)Opposing vertex conflict

	




(ai, aj , V, t)
V(ai,t+1) = V(aj ,t−1)
V(ai,t−1) = V(aj,t+1)

� (14)

At time t, both robots ai and aj  are located at vertex V. Additionally, the position of robot ai at time (t + 1) 
coincides with the position of robot aj  at time (t − 1), and conversely, the position of robot ai at time (t − 1) 
matches the position of robot aj  at time (t + 1).

The types of edge conflicts are classified into two categories: edge conflict and pursuit edge conflict, as illustrated 
in Fig. 11.

1)Edge conflict

	 (ai, aj , X, t)� (15)

At time t, Robot ai and Robot aj  both shared edge X.

Fig. 10.  Four distinct subtypes of vertex conflicts in the CBS-CIOCA algorithm.
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2)Pursuit edge conflict

	

{
(ai, aj , X, t)

XE
(ai,t) = XL

(aj ,t)
� (16)

The unloaded robot ai and the loaded robot aj  jointly occupy the edge X at moment t. E denotes that the robot 
is in the empty state, and L denotes that the robot is in the loaded state. Specifically, the speed of the unladen 
robot ai is typically 1.5 times faster than that of the laden robot aj . Therefore, when both robots occupy the same 
corridor at a given time, the unladen robot ai will occupy the same edge X as the laden robot aj  during the time 
interval t. In this case, the high-level path planning algorithm will prioritize planning the path of the unladen 
robot ai to resolve the potential conflict.

In summary, based on the nature of the robot tasks, we classify conflicts into two primary categories, as shown 
in Fig. 12: Avoidable Replanning Path Conflicts (ARP) and Unavoidable Replanning Path Conflicts (URP). ARP 
refers to conflicts that can be resolved without modifying the original path, simply by introducing delays before 
the conflict occurs. Conversely, URP refers to conflicts that cannot be avoided by delay strategies and require 
replanning.
Based on different conflict attributes, we select appropriate path search algorithms. To address ARP conflicts 
in the MAPF problem, we employ an enhanced spatiotemporal A* algorithm that incorporates diagonal 
optimization. This enhancement facilitates more effective path replanning, producing paths closer to the optimal 
solution. For handling UPR conflicts, we utilize a dynamic adaptive spatiotemporal A* algorithm that introduces 
an adaptive weight factor during node expansion. This approach allows for the acceptance of suboptimal paths 
when resolving edge conflicts, significantly reducing both path search time and the number of node expansions. 
The algorithm flowchart is shown in Fig. 13. After modifying the CBS (Conflict-Based Search) algorithm, the 
proposed method is referred to as the “Conflict-Based Strategy with Comprehensive Optimal Conflict Avoidance 
(CBS-CIOCA) Algorithm.” Algorithm 1 presents the pseudocode of the CBS-CIOCA algorithm. 

Algorithm 1.CBS-CIOCA algorithm

1 input: Plan();

2 Initialize();

3 paths = cell (robot’s paths);

4 for i = 1:numel(robots);

5 paths{i} = space-time AStar(map, robots(i).start, robots(i).goal);

6 while true

7 If no conflict

8 Break;

9 end

10 conflictType = detectConflictType;

11 switch conflictType

12 Case vertex_conflict type

13 If the conflict direction attributes are the same

14 conflictType = ’vertex_cross’;

Fig. 11.  Edge conflicts and pursuit edge conflicts.
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Fig. 13.  The algorithm flowchart of CBS-CIOCA is illustrated below.

 

Fig. 12.  Multiple conflict attribute types for ARP and URP in the CBS-CIOCA algorithm.

 

Scientific Reports |         (2025) 15:5670 13| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 1.CBS-CIOCA algorithm

15 elseif

16 conflictType = ’vertex_opposing’;

17 else

18 conflictType = ’map vertex_cross’;

19 end if

20 Case edge_conflict type

21 conflictType = ’edge_conflict’;

22 if conflictType = ’vertex_cross’or ‘vertex_opposing’

23 conflictAttributes = ’ARP’;

24 paths = replanPaths_IDSTA*(map, paths, ’ARP’);

25 elseif

26 conflictAttributes = ’URP’;

27 paths = replanPaths_DWSTA*(map, paths, ’ARP’);

28 disp(paths);

29 end if

30 end switch

31 end while
 

Simulation results
This study aims to assess the performance of the CBS-CIOCA algorithm in multi-AGV path planning in complex 
maps and large warehouse environments through ablation experiments. First, we evaluate the computational 
time and the number of nodes expanded during the path search of the CBS and CBS-CIOCA algorithms in 
single-path planning scenarios using 20x20 and 30x30 complex obstacle maps. Subsequently, multi-robot 
path planning experiments were conducted using the 35x18 fishbone-shaped map and the 37x18 traditional 
warehouse map. These experiments were compared against the traditional CBS algorithm, the IDCBS algorithm, 
and the DWCBS algorithm as reference methods to evaluate the comprehensive performance of the CBS-CIOCA 
algorithm in terms of planning time and the number of expanded nodes.Finally, to test the robustness of the 
CBS-CIOCA algorithm, large-scale maps of 30x60 and 30x30, containing 10% to 30% randomly distributed 
obstacles and randomly chosen starting points, were used to evaluate the algorithm’s stability under unknown 
conditions.

Considering practical production constraints, the time for solving each experiment was limited to 5 minutes. 
If the system failed to generate a valid path solution within this time frame, the experiment was considered 
inconclusive. The experiments were conducted on a 2.10 GHz AMD Ryzen 5 3550H processor, and programming 
was performed using MATLAB 2021b.

Complex obstacle map environment experiment
We assessed the path planning capabilities of two algorithms for single robots using two complex obstacle maps, 
specifically sized 20 × 20 and 30 × 30. Additionally, we evaluated these algorithms’ performance in multi-robot 
path planning using a complex obstacle map of size 60 × 30. The results of the single robot path planning tests 
are presented in Figs. 14 and 15, and detailed in Table 2.

In Figs. 14 and 15, the blue paths represent the CBS algorithm, while the red paths represent the CBS-CIOCA 
algorithm. In the 20 × 20 complex obstacle map environment with a single robot, both algorithms produce paths 
of equal length from start to finish. However, the CBS-CIOCA algorithm demonstrates a 94.83% improvement 
in execution time over the CBS algorithm and reduces the number of expanded nodes needed for path planning 
by 90.01%, as detailed in Table 2. In the 30 × 30 complex obstacle map environment, while the CBS-CIOCA 
algorithm shows a slight increase in path cost compared to the CBS algorithm, it achieves a 95.69% reduction in 
pathfinding time and an 86.52% reduction in the number of expanded nodes.

Figures 16 and 17 illustrate the path solution sets produced by two different algorithms with 15 robots. As 
shown in Table 3, the improved algorithm reduced the running time to 197.71 seconds compared to 2576.4 
seconds for the previous version, representing a 92.33% decrease in planning time. According to the criteria 
established at the start of the experiment, the path planning was considered unsuccessful if the planning time 
exceeded certain limits. The results demonstrate that the enhanced algorithm significantly improves time 
efficiency in path planning for both single and multiple robots, thus greatly reducing the likelihood of path 
planning failures.

Results of multi-Robot testing in two warehouse layouts
To evaluate the performance of the CBS-CIOCA algorithm versus the original algorithm in multi-robot 
warehouse environments, we conducted experiments using two warehouse layouts: a traditional layout of 
37 × 18 and a fishbone-type layout of 35 × 18.

For objective and reliable results, each algorithm was tested 10 times with different numbers of robots, and 
the average results were recorded. For experiments involving only five robots, the starting point was fixed at the 
gray square, designated as the storage and retrieval point. When the number of robots exceeded five, simulations 
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involved randomly assigning delivery tasks to other robots in the warehouse, while the starting positions of 
robots numbered 1-15 remained fixed as detailed in Table 4.

Figures 18, 19, 20 and 21 show the path maps of 15 robots using the traditional CBS algorithm and the CBS-
CIOCA algorithm on traditional warehouse layouts and fishbone-shaped warehouse layouts.

Fig. 15.  Paths generated by two algorithms on a 30 × 30 complex obstacle map.

 

Fig. 14.  Paths generated by two algorithms on a 20 × 20 complex obstacle map.
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According to the data from Fig. 22 for the traditional warehouse layout, it can be observed that the CBS-
CIOCA algorithm significantly outperforms the traditional CBS algorithm in terms of average runtime and 
node expansion volume. When the number of robots is small, the average runtime and node expansion volume 
of the DWCBS algorithm are similar to those of the CBS-CIOCA algorithm. However, as the number of robots 
increases, the average runtime and node expansion volume of the DWCBS algorithm are less than those of 
the CBS-CIOCA algorithm. This is because as the number of robots increases, the number of conflicts also 
increases, leading to more frequent calls to the diagonally improved Space-time A* algorithm in CBS-CIOCA. 
Consequently, the CBS-CIOCA algorithm tends to select more optimal paths, which slightly reduces its 
performance when the number of robots is large.

As shown in Fig. 23, when the number of robots is greater than or equal to 9, the CBS-CIOCA algorithm 
expands more nodes than the DWCBS algorithm. This occurs because, in the process of planning random start 
and end points for multiple robots, the underlying pathfinding algorithm, which utilizes IDSA*, is invoked 
more frequently as the number of robots increases, leading to a higher number of nodes being expanded by 
the CBS-CIOCA algorithm compared to the DWCBS algorithm. However, compared to other algorithms, the 
CBS-CIOCA algorithm shows superior performance in terms of both average runtime and node expansion in 
fishbone-type warehouse layouts. Specifically, the CBS-CIOCA algorithm is able to minimize the number of 
expanded nodes while ensuring optimal route planning, thus achieving the highest efficiency in finding the 
optimal path for each robot.

Based on the results presented in Figs. 22 and 23, it can be observed that the CBS-CIOCA algorithm 
outperforms the CBS algorithm in both execution time and the number of expanded nodes within the traditional 
warehouse layout compared to the fishbone-type warehouse layout. The fishbone-type layout, although having 
a smaller overall spatial extent, contains more obstacles, making pathfinding more complex. While the initial 
positions of the robots in these two warehouse layouts are not standardized and vary, the experimental data 
shown in Figs. 22 and 23 clearly indicate that the CBS-CIOCA algorithm consistently performs better than the 
CBS algorithm in both types of layouts.

Based on the traditional warehouse layout map data presented in Fig. 24, increasing the number of robots 
results in notable reductions in path planning time and node expansion for the CBS-CIOCA and DWCBS 

Fig. 16.  Path generated by the CBS algorithm in a 60 × 30 complex obstacle map.

 

Map size Path Search Algorithm Time (seconds) Node Expansion Cost Steps

20 × 20 complex obstacle map CBS 3.5617 3864 38

20 × 20 complex obstacle map CBS-CIOA 0.1841 386 38

30 × 30 map of complex obstacles CBS 10.86 7181 57

30 × 30 map of complex obstacles CBS-CIOA 0.4678 968 61

Table 2.  Comparative analysis of CBS and CBS-CIOCA algorithms in two different complex obstacle map 
scenarios.
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algorithms compared to the original algorithm. Furthermore, the IDCBS algorithm also shows significant 
enhancements in these metrics. Specifically, the IDCBS algorithm achieves up to a 78.83% reduction in path 
planning time and up to a 76.92% decrease in node expansion. The DWCBS algorithm demonstrates up to a 
97.85% reduction in path planning time and up to a 95.39% decrease in node expansion. Meanwhile, the CBS-

Fishbone Warehouse Layout Traditional Warehouse Layout

AGV Number AGV Starting Position AGV Ending Position AGV Number AGV Starting Position AGV Ending Position

1 (11,11) (11,3) 1 (8,2) (18,3)

2 (8,9) (7,6) 2 (4,13) (18,14)

3 (15,9) (10,4) 3 (16,10) (35,15)

4 (3,4) (5,3) 4 (14,2) (30,8)

5 (10,1) (16,3) 5 (28,17) (17,14)

6 (10,11) (7,12) 6 (31,10) (12,4)

7 (15,8) (24,11) 7 (7,4) (33,16)

8 (9,9) (21,16) 8 (11,12) (29,3)

9 (6,6) (30,6) 9 (25,12) (5,13)

10 (8,10) (13,10) 10 (30,6) (6,11)

11 (4,1) (16,8) 11 (4,1) (36,4)

12 (11,1) (24,17) 12 (11,1) (33,11)

13 (18,1) (14,9) 13 (18,1) (26,3)

14 (25,1) (6,5) 14 (25,1) (12,3)

15 (32,1) (34,18) 15 (31,1) (8,16)

Table 4.  Coordinates of the AGV starting position.

 

Map size Path Search Algorithm Time(seconds)

60 × 30 complex obstacle map
CBS 2576.40

CBS-CIOCA 197.71

Table 3.  Planning time comparison between CBS and CBS-CIOCA algorithms in a 60 × 30 complex maze 
map.

 

Fig. 17.  Path generated by the CBS-CIOCA algorithm in a 60 × 30 complex maze map.
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CIOCA algorithm realizes up to a 97.37% reduction in path planning time and up to a 94.95% decrease in node 
expansion.

According to the data presented in Fig. 25, within the fishbone-shaped warehouse layout, as the number of 
robots increases, the CBS-CIOCA algorithm demonstrates superior performance compared to the other two 
improved algorithms. This superiority is evident in both the time improvement rate and the reduction in node 
expansions. Specifically, the IDCBS algorithm achieves a maximum time improvement of 86.85% and a maximum 
node expansion reduction of 80.23%. The DWCBS algorithm achieves a maximum time improvement of 88.22% 
and a maximum node expansion reduction of 85.53%. In contrast, the CBS-CIOCA algorithm achieves the 
highest maximum time improvement of 88.37% and the greatest reduction in node expansions at 88.41%.

Fig. 19.  Paths of 15 robots in Traditional Warehouse layout map based on CBS-CIOCA algorithm.

 

Fig. 18.  Paths of 15 robots in Traditional Warehouse layout map based on CBS algorithm.
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Figure 26 presents the average success rate of 100 trials, with 5 robots starting from randomly assigned 
positions, on 30x30 and 30x60 unknown obstacle maps. The CBS algorithm, IDCBS algorithm, DWCBS 
algorithm, and CBS-CIOCA algorithm were tested. It is evident that the DWCBS and CBS-CIOCA algorithms 
significantly outperform the other two in terms of pathfinding success rate. In contrast, the IDCBS algorithm 
falls behind the other two improved algorithms because it prioritizes maintaining path optimality, which limits 
its performance. The CBS algorithm shows the lowest average success rate. These results demonstrate that the 
CBS-CIOCA algorithm has stronger robustness compared to the original CBS algorithm.

Fig. 21.  Paths of 15 robots in Fishbone Warehouse layout map based on CBS-CIOCA algorithm.

 

Fig. 20.  Paths of 15 robots in Fishbone Warehouse layout map based on CBS algorithm.

 

Scientific Reports |         (2025) 15:5670 19| https://doi.org/10.1038/s41598-025-89549-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusion
To enhance the time efficiency and success rate of multi-robot path planning, we propose an advanced algorithm: 
the Conflict-based Comprehensive Optimization Conflict Avoidance Algorithm (CBS-CIOCA). The algorithm 
first improves the space-time A* algorithm based on diagonals for the pathfinding phase of the CBS algorithm, 
enabling the determination of optimal paths with fewer node expansions and reduced computation time. 
Building on this, we integrate a dynamic adaptive factor, which leads to the development of a dynamic adaptive 
space-time A* algorithm. While this algorithm may slightly sacrifice optimality, it substantially improves 
path search efficiency and reduces the number of node expansions. In the conflict resolution phase, various 
underlying pathfinding algorithms are applied according to the specific types of conflicts encountered. This 
approach not only improves the success rate of path planning but also significantly enhances overall algorithmic 
efficiency. Experimental results show that, across a range of map types and structures, the CBS-CIOCA algorithm 
significantly outperforms the original CBS-STA algorithm in both path planning time and node expansion 
metrics, demonstrating superior performance. By incorporating the conflict classification method outlined in 
this study and combining it with the two underlying search algorithms, future multi-robot path planning can 
benefit from further optimization.

This study focuses on multi-robot path planning and has achieved significant advancements in this field. 
Future research will concentrate on path planning in dynamic environments with multiple moving obstacles. 
It will also address challenges arising from the algorithm’s dependency on conflict classification systems, which 
could lead to suboptimal paths in cases of inaccurate classification. Additionally, future work will aim to overcome 
these issues while exploring the integration of machine learning or real-time deployment within robotic systems.

Fig. 23.  Comparative analysis of the performance of Fishbone Warehouse layout algorithms.

 

Fig. 22.  Comparative analysis of the performance of Traditional Warehouse layout algorithms.
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Fig. 25.  Improvement of three algorithms in Fishbone Warehouse layout environments.

 

Fig. 24.  Improvement of three algorithms in Traditional Warehouse layout environments.
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Data Availability
The datasets used and analyzed during the current study are available from the corresponding author on rea-
sonable request.
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