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Early detection of pancreatic cancer (PC) remains challenging largely due to the low population 
incidence and few known risk factors. However, screening in at-risk populations and detection of early 
cancer has the potential to significantly alter survival. In this study, we aim to develop a predictive 
model to identify patients at risk for developing new-onset PC at two and a half to three year time 
frame. We used the Electronic Health Records (EHR) of a large medical system from 2000 to 2021 
(N = 537,410). The EHR data analyzed in this work consists of patients’ demographic information, 
diagnosis records, and lab values, which are used to identify patients who were diagnosed with 
pancreatic cancer and the risk factors used in the machine learning algorithm for prediction. We 
identified 73 risk factors of pancreatic cancer with the Phenome-wide Association Study (PheWAS) 
on a matched case–control cohort. Based on them, we built a large-scale machine learning algorithm 
based on EHR. A temporally stratified validation based on patients not included in any stage of the 
training of the model was performed. This model showed an AUROC at 0.742 [0.727, 0.757] which 
was similar in both the general population and in a subset of the population who has had prior cross-
sectional imaging. The rate of diagnosis of pancreatic cancer in those in the top 1 percentile of the 
risk score was 6 folds higher than the general population. Our model leverages data extracted from 
a 6-month window of time in the electronic health record to identify patients at nearly sixfold higher 
than baseline risk of developing pancreatic cancer 2.5–3 years from evaluation. This approach offers an 
opportunity to define an enriched population entirely based on static data, where current screening 
may be recommended.
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Despite the relatively low incidence of pancreatic adenocarcinoma (PC) of 13.2 per 100,000, it now ranks as 
the third leading cause of cancer death1. While advances continue to be made in therapy most patients are 
diagnosed with advanced and incurable disease. Early detection offers a critical path toward improved overall 
survival. Pancreatic cancer diagnosed at an early stage has been associated with significantly greater survival 
and when PC is detected in a screening program, it is associated with significantly better outcomes2. However, 
due to the low prevalence and current lack of effective non-invasive screening modalities, population-level 
screening has not been endorsed by the US Preventative Services Task Force. Currently, most patients who 
are enrolled in a screening program are identified based on family history or known germline mutation status 
(referred to as high-risk individuals; HRI3) or after an incidental diagnosis of a cystic neoplasm. However, 
only 10–20% of patients diagnosed with PC would have been eligible for screening based on family history 
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or germline mutations and no more than 15% of cancers arise from cystic lesions. Therefore, the majority of 
patients ultimately diagnosed with PC would not have been offered screening according to current practices. In 
addition, significant disparities exist in the recognition and testing of HRI, which further decreases the efficacy 
of current screening recommendations4. Our goal was to develop a model that can help identify individuals at 
risk for PC in addition to HRIs or those with known cystic lesions.

Previous studies have identified additional risk factors that are associated with PC, some of which using 
machine learning models such as logistic regression and random forest29,31, and some utilizing deep learning 
based approaches, including deep neural network and gated recurrent unit models28,30. However, none of these 
have sufficiently high odds to help identify a population at high-risk, while deep learning based models often 
require substantially large training datasets without significant improvement in performance.

Risk associations were developed based on the combination of several of these risk factors and their 
dynamic change during a period preceding the diagnosis of cancer23,24. In addition, some of these risk factors 
were specifically applied to cohorts with existing pancreatic conditions that are associated with PDAC such 
as chronic pancreatitis or cystic neoplasms25–27. Recent studies have highlighted the opportunities offered by 
machine learning approaches to mining of the EHR data and the unselected general population (summarized 
in Supplemental Table 1). A recent transformer model-based study, trained on a Danish cohort and validated 
in the US Veterans Affair Health System28, used a prediction time of 0–5 years and another US-based study 
built a prediction model with a more defined but relatively short time frame between evaluation and diagnosis 
(180–365  days)29. Another recent study evaluated an even shorter lead time of 3  months30. Although these 
models yield promising results, their varying time spans and exclusion criteria may not yet align perfectly with 
the practical needs of clinical screening timelines.

In our study, we chose a longer time frame then most prior studies between the evaluation period and the 
predicted diagnosis of pancreatic cancer. This 2.5–3 year time frame was chosen both based on biological data 
(which has suggested a 3–4 year time between progression from high grade premalignant lesions to cancer5–7) 
and also to increase the potential for clinical impact. A shorter interval may limit the ability to identify early 
stage lesions and a much longer interval would have been difficult given the timeframe of use of the EHR.

We used the Electronic Health Record (EHR) of our large medical system at [redacted for anonymization] 
that serves the [redacted for anonymization] Area and vicinity to identify patients who were diagnosed with 
pancreatic cancer and had a presence for three or more years in the health record preceding the event. We 
based our model on the presence of diagnostic codes, abnormal laboratory values and demographic variables, 
specifically to enhance the general applicability and transferability of this model. We also established a framework 
of selecting significant features from the population data using PheWAS analysis by identifying case and control 
cohorts and discover top relevant features that can be utilized towards predictive modeling.

Our model identifies individuals at risk of pancreatic cancer based on readily available diagnostic codes, lab 
values and demographic information. If implemented in any similar EHR it may help identify a broader group 
of individual who may benefit from screening, beyond those with family history, genetic syndromes or known 
cysts. The main contribution of this work lies on the establishing a predictive model using much common 
population data as a way of early screening of high-risk pancreatic cancer patients, instead of merely relying on 
family histories or incidental diagnoses of a cystic neoplasm. Compared with previous works that utilize deep 
learning models and EHR data for prediction, our logistic regression based approach is more data efficient and 
interpretable while achieving similar to better performances. In addition, our approach is more robust to the 
imbalanced dataset of pancreatic cancer, making it more suitable to deep learning based approaches in practice. 
We also established a framework of selecting significant features from the population data using PheWAS 
analysis by identifying case and control cohorts and discover top relevant features that can be utilized towards 
predictive modeling. This prediction model can bring the capability of early detection of pancreatic cancer to 
improve the survival of this disease.

Methods
Study design
This predictive modeling study was performed based on EHR at New York University (NYU) Langone Health. 
This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 
reporting guideline for cohort studies. The overview of our approach is described in Fig. 1. We first identify 
patients with pancreatic cancer and at least three years of records prior to their pancreatic cancer disease onset 
(N = 1923). We then matched these patients to a set of control patients (N = 7728) based on demographic 
features and based on presence in the database for at least three years. We used phenome-wide association 
methodology on this matched case–control set, to identify factors that are statistically significantly associated 
with pancreatic cancer (73 diagnosis codes and 5 lab values were selected). Our training or discovery dataset was 
based on a patient population who last visited NYU before or in 2015 (N = 527,027). Our performance results 
are then reported on a temporally heldout validation cohort, of a new set of patients who visited NYU after 2015 
(N = 469,357). This temporally-stratified validation mimics real-world scenarios of training and deploying the 
model.

Instead of a black box approach, we first perform a statistically rigorous PheWAS feature selection step on 
a carefully matched PC case–control sub-cohort. We match each pancreatic cancer (PC) patient with non-PC 
patients based on age, sex, length of history in the EHR, and the number of ICD codes, using k-nearest neighbor 
algorithm with a 1:4 case-to-control ratio. We then train the model based on the selected features on the full 
dataset. Furthermore, we validate our model on a heldout cohort that is also temporally different compared to 
the training and development cohort. This further strengthens the generalizability estimate of the model, given 
that the practice of medicine and documentation changes, and major world events such as COVID-19 pandemic 
create a large distribution shift in the data distribution over time.
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Overall population, pancreatic cancer definition, and definition of included variables
We identified individuals with at least 3 years of continuous presence in the EHR between January 2000 and 
January 2021 in the NYU Langone Health system. The EHR data analyzed in this work consists of patients’ 
demographic information, diagnosis records, and lab values. Pancreatic adenocarcinoma diagnoses were 
determined through specific diagnostic codes (ICD-10 codes: C25.0, C25.1, C25.2, C25.3, C25.7, C25.8, C25.9), 
detailed in Supplemental Table 2. Any presence of these ICD-10 codes indicated the presence of pancreatic 
cancer. The onset of pancreatic cancer was marked by the encounter where these diagnostic codes first appeared 
in the patient’s records.

Feature selection with phenome-wide association (PheWAS) analysis
In this section, we introduce feature selection with PheWAS. We first defined the inclusion criteria of positive 
and negative samples for pancreatic cancer. From them, we matched a case–control cohort under the control of 
other confounding factors. Then a PheWAS analysis was conducted on the case cohort against the control cohort 
to select features.

Inclusion criteria and prediction time for pancreatic cancer patients
The timeline of developing pancreatic cancer (PC) is critical in this study. The date of PC diagnosis was defined 
as the first date at which the PC criteria was observed in the patient records. To predict PC within a 3-year 
timeframe, we only included PC patients that had at least 3 years’ worth of data prior to the first PC diagnosis 
time. We then defined a date for each patient, called prediction time, assuming that we made predictions on that 
date based on historical data prior to this date. Patients without any records prior to the prediction time were 
excluded.

Inclusion criteria and prediction time for pancreatic cancer-free patients
For each patient without Pancreatic Cancer, a random encounter date was selected as the “prediction time”. 
Inclusion criteria were defined as having 3 years follow-up at NYU Langone after that “prediction time”. Patients 
without any history prior to the prediction time were excluded.

Fig. 1.  The pipeline of our model and the timeline of designing case–control and model building cohort.
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Included variables for PheWAS analysis
Disease records from a 6-month window prior to the “prediction time”, in addition to the latest lab and 
physiological data (unrestricted by time, any time prior to the “prediction time”) were used to construct variables 
for the PheWAS stage (see Fig.  1). Previous diseases of patients prior to “prediction time” were represented 
as 19,304 ICD-10 codes derived from the EHR. The following 10 lab results or physiological data of patients 
were included, based on the clinical potential to be a risk factor of PC25,32,33. These lab values include A1C, 
Glucose, Hemoglobin, Albumin, Lipase, Amylase, AST, CA19-9, and BMI. We binarized lab values referring to 
the standard normal ranges (Supplemental Table 3), and bucketed BMI into underweight (BMI < 18.5), normal 
(BMI 18.5–25), overweight (BMI 25–30), and obese (BMI > 30).

Phenome-wide association analysis
We introduce Phenome-wide association study (PheWAS)8,9 to conduct feature selection among thousands of 
diagnosis variables and lab values. PheWAS is designed to measure the association between a set of phenotypes 
and target outcomes, with the aim of identifying links between known phenotypic traits (including molecular, 
biochemical, cellular, and clinical diagnoses) and the target outcomes of interest. However, PheWAS can be 
influenced by various confounding variables, such as age and sex. To address this, we conducted a case–control 
subcohort analysis to match each pancreatic cancer (PC) patient with a non-PC patient based on age, sex, length 
of history in the EHR, and the number of ICD codes. We matched each included PC patient with a non-PC 
patient using the k-nearest neighbor algorithm, and we used a 1:4 case-to-control ratio. We used the PheWAS 
approach to test the association between the new onset PC and the included 19,304 diagnosis variables and 10 
lab values and physiological measures. Statistically significant variables were used in the subsequent predictive 
modeling.

Statistical analysis
In the PheWAS analysis, we reported the odds ratios (unadjusted), the corresponding p-values and confidence 
intervals of the association between the condition and new onset PC in a three-year follow-up. For binary 
disease indicators (documented at ICD-10), the unadjusted odds ratios (UOR) and p-values of the association 
were computed based on the Chi-square test; for bucketed numerical values, the UORs were computed on the 
sub-cohort of patients who had undergone the lab test. The p-values and confidence intervals of the UORs 
were computed using the proportion z-test. Correction for multiple hypothesis testing was performed using 
Bonferroni correction, with the level of significance (*) adjusted after Bonferroni correction. Statistically 
significant diagnosis variables were selected based on the p-values with the threshold of 0.01 after correction for 
multiple hypothesis testing.

Predictive modeling
Inclusion criteria for predictive modeling with temporal cohort stratification
Different inclusion criteria of patients and included variables are introduced to simulate the real-world predictive 
operation. We used temporal stratification to separate the development and validation set because we can only 
use the past data for model development in practice. The development cohort for predictive model development 
included patients older than 40 years (at their last visit), with or without PC whose last record in EHR was in 
2015, who matched the following inclusion criteria (see Fig. 1): For PC patients, we required at least 3 years 
of data prior to the first date where any record of PC was observed. For PC-free patients, any patient with at 
least 3 years of records were included. For PC patients, 2.5 years prior to the first PC record was selected as 
the prediction time. For PC-free patients, “prediction time” was selected as 3 years prior to their last visit. An 
independent cohort of new patients, not used during the development stage, was similarly constructed, from 
patients whose last visit happened between 2015 and 2022.

Included variables for predictive modeling
During the predictive modeling, variables selected as significant during the PheWAS stage were constructed for 
all included patients from all records prior to the “prediction time”.

Model development
We built two predictive models, based on regularized logistic regression models with elastic net based 
regularization10. Note that the case–control cohorts defined in PheWAS for identifying significant features are 
not used for predictive modeling. Instead, the broader cohort which matched inclusion criteria (n = 996,384) is 
used in predictive modeling. The first model was trained on the full population that is older than 40 years old 
(N = 527,027). The second model was trained and validated only on patients with no known or documented 
pancreatic conditions or cross-sectional imaging. We trained with predictive model with regularized Logistic 
Regression to estimates the probability of pancreatic cancer by P (y = 1) = 1/(1 + e

−(β0+
∑m

i=1
βixi)), 

where x1, · · · , xm are feature variables from EHR, β0 is the intercept, and β1, · · · , βm are the coefficients. 
We tuned the regularization penalty by elastic net (the combination of L1 and L2 regularization). To mitigate 
the class imbalance shown in Table 1, we applied balanced class weight in logistic regression model. During the 
development stage, we split the development data set into a training cohort and held-out validation cohort and 
performed fivefold cross-validation on the training cohort with a 20% validation set. We then reported results on 
the temporally separate (new patient) held-out cohort described in the previous section.
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Statistical analysis
In predictive modeling, we evaluated the model performance on the held-out validation set with Areas Under 
the Receiver Operating Characteristic Curve (AUROC). This binary classification metrics is used in similar 
studies28,30. Additional metrics, including Positive Predictive Value (PPV), Negative Predictive Value (NPV), 
sensitivity, and specificity were computed at different probability thresholds on the predictions, to facilitate 
the identification of the optimal threshold for screening. These classification metrics are also used in previous 
work30,31. We also reported the fully adjusted odds ratios (OR) and p-values of the variables associated with PC 
onset based on the logistic regression analysis, as similarly reported by a related work34.

Sensitivity analysis
The accuracy of our data relies heavily on the accuracy of the use of diagnosis codes, which is a manual chart 
review of randomly selected cases and controls we found to be approximately 80% accurate. Therefore, to 
examine the stability of our model on data noise, we conducted a sensitivity analysis by retraining the model 
based on simulated data where we randomly flipped the labels of 20% cancer samples and the same number of 
cancer-free samples. We reported the mean and standard deviation 10 times of such experiments to analyze 
incorrect EHR labels’ impact.

Results
Identification of cohorts for PheWAS and predictive modeling
537,410 patients were eligible to be included, where 1932 patients with PC were matched to 7728 PC-free patients 
based on demographics and length of presence in the database. The characteristics of the case and control cohort 
are summarized in Table 1.

PheWAS analysis results
After performing PheWAS analysis on the matched case–control, based on 19,304 disease records and 10 
laboratory tests or physiological signs (BMI, A1C, Hemoglobin, fasting glucose, CA19-9, Lipase, Amylase, 
AST, ALT, Albumin), we identified 73 diagnosis codes and 5 lab values that showed significant association with 
PC onset. Table 2 shows the top 20 variables and S4 Table shows the comprehensive list. Figure  2 provides 
visualizations of diagnosis and lab value features within the top 20 variables. Most of the features have been 
associated with pancreatic cancer in the past, however, we included all of these features in predictive modeling. 
We noted that several of the highly significant features could only have been recognized in patients with either a 
past medical history of pancreatic diseases or cross-sectional imaging (e.g. pancreatic cyst). As this represented 
a minority but a potentially distinct and higher-risk population, we developed a model for all eligible individuals 
(Model 1) and a separate model for those without pancreatic disease or cross-sectional imaging in the time 
period of feature selection (Model 2).

Performance of the prediction model
For the first model, we trained and evaluated the regularized logistic regression in Model 1 between 2000 and 2021 
(N = 996,384). As described in the Methods section, this cohort was temporally stratified into training (patients 
before 2015) and held-out validation (temporally distinct, new patients after 2015) set. The characteristics of the 
training set and the held-out validation set are summarized in Table 3. We observe that the dataset is imbalanced 
and is heavily skew towards negatives for both training cohort and heldout-validation cohort.

Table 4 and Supplemental Table 5 show the coefficients of logistic regression in Model 1 in the temporarily 
held-out validation cohort. Figure 3 shows the Receiver Operating Characteristic (ROC) curve of Model 1 (the 
performance of the second model with exclusion is reported in Supplemental Fig. 1). The Areas Under the ROC 
curve (AUROC) was 0.742 [0.727, 0.757] and this was not significantly different than the performance in Model 
2 (Supplemental Fig. 1). As the prevalence of pancreatic cancer is low, the Positive Predictive Value (PPV) is 
crucial for selecting a reasonable threshold for screening. The PPV of the model at different predicted risk levels 
is shown in Fig. 4 and Supplemental Fig. 1. Screening the top-1 and top-5 percent of the patients with the highest 
risks would achieve around 6 and 4 times higher PPV, respectively, than the general patient population in the 
EHR. We also compared this to the PPV in individuals with Type II Diabetes (T2D; defined as either having any 

Patient characteristics
Eligible overall cohort (% of 
n = 537,410)

Pancreatic cancer free (% of 
n = 535,478)

New-onset pancreatic cancer (% 
of n = 1932)

Matched 
controls (% 
of n = 7728)

Age, mean (sd) 49.67 (20.10) 49.59 (20.09) 70.25(12.81) 70.01 (12.57)

Sex, n (%)

Female 335,960 (62.51%) 334,875 (62.54%) 1085 (56.16%) 4358 (56.39%)

Male 201,377 (37.47%) 200,530 (37.45%) 847 (43.84%) 3370 (43.61%)

Unknown 73 (0.01%) 73 (0.01%) 0 (0.00%) 0 (0.00%)

Number of ICD-10 Codes, mean (sd) 3.38 (6.79) 3.36 (6.77) 6.26 (10.57) 6.01 (10.32)

Length of medical history (days), mean (sd) 969.57 (1279.87) 968.3 (1276.89) 1298.43 (1874.38) 1298.30 
(1873.54)

Table 1.  Demographic and overall characteristics of all eligible individuals, pancreatic cancer patients, all 
cancer-free individuals and matched cohorts, used during the PheWAS analysis.
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Fig. 2.  The prevalence of the top (a) diagnosis features, and (b) lab features that are associated with the 
development of pancreatic cancer, compared between control and case groups. *The statistically significant 
features after Bonferroni correction are marked.

 

Diagnosis features Control (%) Case (%) P-value

Unadjusted 
odds ratio [95% 
confidence interval]

Disease of pancreas, unspecified (ICD10 K86.9) 2 (0.02%) 11 (0.53%) 5.61E−09 ** 22.11 [4.90, 99.83]

Malignant neoplasm of transverse colon (ICD10 C18.4) 1 (0.01%) 5 (0.24%) 1.05E−04 20.05 [2.34, 171.68]

Pseudocyst of pancreas (ICD10 K86.3) 6 (0.07%) 16 (0.77%) 6.04E−10 ** 10.74 [4.20, 27.48]

Hypertrophy of breast (ICD10 N62) 4 (0.05%) 9 (0.43%) 8.98E−06 ** 9.03 [2.78, 29.37]

Neoplasm of unspecified behavior of digestive system (ICD10 D49.0) 8 (0.10%) 16 (0.77%) 1.05E−08 ** 8.05 [3.44, 18.84]

Other specified diseases of pancreas (ICD10 K86.89) 11 (0.13%) 15 (0.72%) 1.50E−06 ** 5.49 [2.52, 11.96]

Genetic susceptibility to other malignant neoplasm (ICD10 Z15.09) 10 (0.12%) 13 (0.62%) 1.17E−05 ** 5.23 [2.29, 11.94]

Genetic susceptibility to malignant neoplasm of breast (ICD10 Z15.01) 9 (0.11%) 11 (0.53%) 8.97E−05 4.91 [2.03, 11.86]

Malignant neoplasm of unspecified ovary (ICD10 C56.9/57.00) 6 (0.07%) 7 (0.33%) 2.27E−03 4.68 [1.57, 13.94]

Acute pancreatitis without necrosis or infection, unspecified (ICD10 K85.90) 7 (0.08%) 7 (0.33%) 4.98E−03 4.01 [1.41, 11.45]

Family history of malignant neoplasm, unspecified (ICD10 Z80.9) 18 (0.22%) 15 (0.72%) 2.51E−04 3.35 [1.69, 6.66]

Primary osteoarthritis, unspecified hand (ICD10 M19.049) 10 (0.12%) 8 (0.38%) 9.46E−03 3.21 [1.26, 8.14]

Malignant neoplasm of unspecified kidney, except renal pelvis (ICD10 C64.9) 14 (0.17%) 10 (0.48%) 7.89E−03 2.87 [1.27, 6.46]

Cerebral infarction due to unspecified occlusion or stenosis of unspecified cerebral artery 
(ICD10 I63.50) 24 (0.29%) 15 (0.72%) 3.88E−03 2.51 [1.31, 4.79]

Malignant neoplasm of unspecified site of unspecified female breast (ICD10 C50.919) 101 (1.21%) 43 (2.06%) 2.89E−03 1.72 [1.20, 2.46]

Lab value features Control (%) Case (%) P-value

Unadjusted 
odds ratio [95% 
confidence interval]

Lipase > 234.0 29 (12.61%) 20 
(25.64%) 6.54E−03 2.39 [1.26, 4.53]

Glucose > 126.0 208 
(29.80%)

106 
(46.70%) 3.01E−06** 2.06 [1.52, 2.81]

Obesity (BMI > 30) 1136 
(28.32%)

291 
(38.70%) 1.17E−08** 1.60 [1.36, 1.88]

Type II diabetes (E11.9 + A1C) 459 (5.49%) 164 
(7.84%) 4.71E−05* 1.47 [1.22, 1.76]

Overweight (BMI 24 ~ 30) 1294 
(32.25%)

280 
(37.23%) 7.70E−03 1.25 [1.06, 1.47]

Table 2.  The top 20 variables that are associated with the development of pancreatic cancer. The unadjusted 
odds ratios on the case–control cohort and the unadjusted odds ratios of the two models on the overall cohort 
are shown. *Note that the statistically significant features after Bonferroni correction are marked (*** means 
corrected p-value < 0.001; ** means corrected p-value < 0.05; * means corrected p-value < 0.1).
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A1c > 6.5, or an E11.9 diagnosis code) based on published risk assessment and found that this model would have 
around 3 and 2 times higher PPV than T2D among the top-1 and 5 percent of the patients with highest risk, 
respectively (Table 5).

Sensitivity analysis
We conducted the sensitivity analysis with 10 trials that repeated training and validation with simulated datasets 
by randomly flipping outcomes. The AUC of simulated experiments was 0.718 [0.713, 0.722], which is not 
significantly different from the performance of the original dataset. The sensitivity analysis demonstrated that 
the model is robust under some noises in EHR.

Discussion
Although screening and early detection of pancreatic cancer hold a realistic promise to impact the survival of 
this disease, most patients diagnosed with cancer would not have been recommended to undergo screening. 
An important reason for this is the absence of strong risk factors that have precluded the identification of 
populations at risk11,12. Although high-risk populations have been identified based on familial or genetic risk, 
it is estimated that only a minority of patients diagnosed with pancreatic cancer have a currently identifiable 
predisposition13,14. Due to the absence of an effective screening tool or modality and the low prevalence (which 

Description P-value Adjusted odds ratio [95% confidence interval]

Intercept 3.495E−01 0.811 [0.417, 1.206]

Other specified diseases of pancreas (ICD K86.89) 0.00E + 00*** 6.429 [4.734, 8.124]

Neoplasm of unspecified behavior of digestive system (ICD D49.0) 6.99E−08*** 4.106 [2.243, 5.970]

Acute pancreatitis without necrosis or infection, unspecified (ICD K85.90) 8.44E−14*** 4.019 [1.568, 6.470]

Malignant neoplasm of unspecified kidney, except renal pelvis (ICD C64.9) 2.00E−15*** 3.947 [2.634, 5.259]

Primary osteoarthritis, unspecified hand (ICD M19.049) 1.39E−10*** 2.868 [1.984, 3.752]

Family history of malignant neoplasm, unspecified (ICD Z80.9) 2.22E−16*** 2.768 [2.136, 3.399]

Genetic susceptibility to other malignant neoplasm (ICD Z15.09) 0.00E + 00*** 2.159 [0.597, 3.720]

Cyst of pancreas (ICD K86.2) 2.44E−15*** 1.924 [1.127, 2.720]

Glucose > 126.0 1.45E−04* 1.910 [1.223, 2.596]

Malignant neoplasm of unspecified site of unspecified female breast (ICD C50.919) 0.00E + 00*** 1.880 [1.660, 2.100]

Type 2 diabetes mellitus without complications (ICD E11.9) 0.00E + 00*** 1.876 [1.749, 2.002]

Personal history of poliomyelitis (ICD Z86.12) 5.34E−02 1.797 [0.996, 2.597]

Cerebral infarction due to unspecified occlusion or stenosis of unspecified cerebral artery (ICD I63.50) 5.50E−03 1.780 [1.119, 2.442]

Genetic susceptibility to malignant neoplasm of breast (ICD Z15.01) 1.40E−05** 1.758 [0.714, 2.801]

Pseudocyst of pancreas (ICD K86.3) 4.41E−02 1.511 [0.871, 2.151]

Malignant neoplasm of unspecified fallopian tube (ICD C57.00) 4.87E−08*** 1.427 [1.241, 1.613]

Disease of pancreas, unspecified (ICD K86.9) 7.97E−04* 1.415 [1.135, 1.696]

Obesity (BMI > 30) 9.39E−02 1.238 [0.945, 1.531]

Lipase > 234.0 5.28E−01 1.111 [0.790, 1.431]

Overweight (BMI 24 ~ 30) 6.10E−01 1.087 [0.779, 1.395]

A1C > 6.5 4.76E−01 1.058 [0.905, 1.211]

Table 4.  The intercept, coefficients, and p-values of the positive features in the logistic regression model. 
*Note that the statistically significant features after Bonferroni correction are marked (***means corrected 
p-value < 0.001; ** means corrected p-value < 0.05; *means corrected p-value < 0.1).

 

Patient characteristics Overall cohort (% of n = 996,384) Training cohort (% of n = 527,027) Heldout-validation cohort (% of n = 469,357)

Age, mean (sd) 61.54 (12.49) 62.11 (12.76) 60.91 (12.16)

Sex, n (%)

Female 612,953 (61.51%) 324,481 (61.56%) 288,472 (61.46%)

Male 383,282 (38.46%) 202,436 (38.41%) 180,846 (38.53%)

Unknown 149 (0.03%) 110 (0.03%) 39 (0.02%)

Pancreatic cancer, n (%)

Positive 1600 (0.16%) 1238 (0.23%) 362 (0.07%)

Negative 994,784 (99.84%) 525,789 (99.77%) 468,995 (99.93%)

Table 3.  The characteristic table of the overall cohort for predictive modeling, as well as training and test set 
separately.
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Fig. 4.  The positive predictive value (scaled to depict rate of identification in 100,000 patients), of risk of new-
onset pancreatic cancer in 3-year follow-up, at different predicted risk levels.

 

Fig. 3.  The receiver operating characteristics curve (AUROC 0.742 [0.727, 0.757]) on the held-out validation 
set to predict new-onset pancreatic cancer in a 3-year follow-up.
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is likely associated with many false positive results), pancreatic cancer screening in the general population is not 
recommended15.

Despite the rapidly progressing and aggressive nature of pancreatic adenocarcinoma, there are multiple lines 
of evidence showing the time frame of progression from advanced precursors or early-stage cancer to advanced 
cancer around 1.5–3 years5,7. In addition, several biomarkers (i.e. CA19-9, glycemic indices, and others) show a 
significant change 12–36 months prior to the ultimate diagnosis of cancer16–19. Perhaps equally important is the 
observation that survival following the diagnosis and treatment of these late precursors or early cancers is greater 
than would be expected from lead time bias alone. We therefore hypothesized that recognizing patients at risk 
for pancreatic cancer approximately three years prior to a clinical diagnosis would be a biologically reasonable 
time frame that may allow diagnosis of high-grade precursors or early cancers and ultimately impact survival.

We leveraged the large electronic health record of our institution to identify a model that can select patients 
at risk for pancreatic cancer based on diagnostic variables, laboratory results, and demographic information. We 
evaluated the presence of these variables in a six-month time period 30 months prior to the cancer diagnosis and 
matched this cohort at a 1:4 ratio with a control group.

The strength of our approach is that it did not rely on any known association with conditions or diseases 
although we did limit the inclusion of laboratory tests to those that would have potential clinical relevance 
to the diagnosis of pancreatic diseases. In our variable selection, we ultimately identified 78 variables; 73 of 
which were diagnostic codes. The majority of these diagnostic codes had a known or plausible association with 
an individual risk factor for pancreatic cancer although only a few of them alone could potentially prompt 
screening for pancreatic cancer. One set of such variables was the diagnosis of certain pancreatic conditions such 
as pancreatic cysts and pancreatitis. We therefore developed a second model where we excluded patients with a 
known history of pancreatic disease or a presumed evaluation that would’ve either identified pancreatic disease 
or confirmed the presence of a normal pancreas. However, ultimately this represented a small cohort and it had 
no major impact on model performance.

The identification of other malignancies and pancreatitis further supports the notion that certain genetic 
syndromes and pancreatic inflammation may predispose to pancreatic cancer. However, it is important to note 
that none of the variables identified alone would prompt consideration of PC screening in current practice 
guidelines.

The area under the curve of our model was 0.742. Our precision-recall curve shows that using our model, 
the top 1% risk percentile is associated with a nearly sixfold increased risk. As the accuracy of the screening 
instruments is limited (especially lacking the ability to detect precursor lesions), it is somewhat difficult to 
compare these numbers to other cancer screening. However, the rate of cancer diagnosis in colorectal cancer 
screening studies per patient in the general population ranges from 1:154–208 depending on the screening 
method20,21 and is 1:250 in lung cancer screening by CT scan22. This would suggest that the highest risk 
individuals in the model would constitute a sufficiently enriched cohort to offer screening.

Our study has several limitations. The setting and health record we studied is that of an academic institution 
and its affiliates and our data is entirely limited to patients who continue to get their care in this system. In any 
health care setting without a comprehensive EHR, implementation or evaluation of the model would be limited, 
although the reliance on static diagnostic codes and lab values may permit use of our model. Although ours is a 
diverse urban population, an analysis on a much greater scale or external validation in a different demographic 
will be essential. Additionally, our variables are static and changes in metabolic parameters such as weight or 
glycemic control are not considered. Although this makes the model easier to implement, future approaches 
will likely need to consider the impact of change. Also, although using diagnostic codes as labels is efficient on 
modeling large-scaled patient cohort, missingness and mistakes sometimes occur in EHR. Besides simulated 
sensitivity analysis, more controlled trials should be conducted in the future to validate it impact of the model. 
In addition, different time frames maybe considered in the future. Current evidence would not support either 
a longer or shorter time interval but with expansion of molecular and epidemiologic profiling of progression in 
PC a more exact time frame maybe possible to define.

Conclusion
In conclusion, our study shows that it is feasible to identify a patient population at sixfold higher risk for developing 
pancreatic cancer than the average population using static variables in a machine learning model. This approach 
offers an easily implementable approach toward finding an enriched population at sufficiently high baseline 
risk to warrant a discussion about screening. We believe that an EHR-based approach to identifying individuals 
coupled with a notification system [SD1] has the chance to reduce disparities in screening and recognize novel 
high-risk populations. It is however critical to recognize that the current screening tests for pancreatic cancer 
have significant weakness, which will undoubtedly affect the benefit of finding a high-risk population. Yields 

Risk percentiles Sensitivity (%) Specificity (%) PPV (%) NPV (%)

1% 6.78 [6.13, 7.43] 99.01 [99.01, 99.01] 0.65 [0.58, 0.72] 99.93 [99.92, 99.93]

5% 18.36 [16.82, 19.89] 95.01 [95.01, 95.01] 0.34 [0.31, 0.37] 99.92 [99.92, 99.92]

10% 29.14 [27.70, 30.58] 90.02 [90.02, 90.02] 0.28 [0.26, 0.29] 99.93 [99.92, 99.93]

20% 42.71 [40.66, 44.76] 80.02 [80.02, 80.03] 0.19 [0.19, 0.20] 99.93 [99.92, 99.94]

Table 5.  Details on sensitivity, specificity, positive predictive values (NPV), and negative predictive values 
(NPV) at different risk percentiles based on model 1.
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of screening in current high-risk cohorts have been relatively modest and this may be due to selection based 
on only a few variables. Our future efforts will focus on measuring the impact of the implementation of this 
machine learning based model and this will hopefully occur parallel to continued improvements in the use of 
screening modalities.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to specific institu-
tional requirements governing privacy protection. The EHR data used for the pretraining, fine-tuning, validation 
and test sets were collected from the NYU Langone Health System EHR maintained by the NYULH Datacore 
team. This data consists of the production medical records of NYU Langone and cannot be made publicly avail-
able. Researchers may obtain a limited de-identified dataset (or a test subset) from NYU Langone Health System 
by reasonable request after acquiring institutional agreement, subject to local and national ethical approvals. To 
request a limited de-identified dataset please reach out to corresponding author Dr. Tamas Gonda via email at 
Tamas.Gonda@nyulangone.org.
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