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This paper investigates the complex interaction between wave hydrodynamics and aquatic vegetation, 
emphasizing its importance for the management of coastal ecosystems. Vegetation plays a crucial 
role in the dynamics of river and coastal flows, influencing their structure and turbulence, as well 
as the transport and distribution of nutrients, sediments, ecosystems, and habitats. For example, 
mangroves serve as a natural defense against tsunamis and extreme waves. Nature-based coastal 
defense technologies are increasingly being adopted, in alignment with the principles of ecohydraulics. 
Riparian vegetation represents one of the most effective nature-based solutions for coastal protection. 
In addition, lagoons and estuarine areas often feature structures such as mussel farms and boat guides, 
such as the Venetian Briccole. Therefore, accurate evaluation of wave transmission through cylindrical 
stem arrays is essential to assess their coastal protection capabilities and designing effective protective 
structures, such as mangrove restoration projects. This paper presents a theoretical study of wave 
attenuation for regular (Airy) and solitary waves propagating through rigid, emergent, and submerged 
cylindrical stems on horizontal and sloping bottoms. The theoretical model results are compared 
with numerical simulations obtained using the SPH (Smoothed Particle Hydrodynamics) Lagrangian 
numerical code, which does not rely on mesh-based methods. Furthermore, the bulk drag coefficients 
of rigid stem arrays are evaluated on the basis of stem density, diameter, and submersion ratio. This 
paper aims to engage a broad audience, including scientists and practitioners in ecohydrology, coastal 
hydrodynamics, and environmental management, providing actionable insights to improve the 
ecological resilience of coastal systems.
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The paper explores both theoretical and numerical analyses to examine how Airy and solitary waves interact 
with rigid emergent or submerged stem arrays resembling rigid vegetation or poles, which are present for 
diverse purposes such as mussel farming, ocean-based wind farms, or navigational systems. Vegetation is 
critically known to significantly influence the transport and diffusion processes of nutrients and sediments 
and impact ecosystems and habitats, helping to conserve and restore the coastal environment by controlling 
the displacement and transport of sediments1–3. It also helps to dissipate the wave energy4 and current wave 
flows5. According to6, marshes and mangroves decrease coastal erosion by alleviating waves and storm surges, 
and riparian vegetation contributes to bank stabilization. Mangroves serve as shields against coastal erosion 
and disasters, such as tsunamis. In addition, they mitigate climate change by storing large amounts of carbon 
within their biomass and substrates, making them among the most carbon-rich tropical forests globally. In the 
aftermath of devastating tsunami events, numerous studies7–12 have emphasized the protective role of mangrove 
forests along coastlines. In fact, mangroves can protect coastlines from wind and tidal wave actions8. However, 
specific research indicates that tsunamis and storm surges respond differently. As severe tsunami and surge water 
levels increase, the attenuation of mangrove forests may decrease. The duration of tsunami waves can also affect 
mangrove mitigation, as plants can be damaged or depleted as the wave traverses the coastal forest. A study 
after the 26 December 2004 tsunami along the southeast coast of India underscores the importance of coastal 
mangrove ecosystems and settlement locations to protect lives and assets from tsunamis. Human casualties and 
damage diminished with increasing coverage of coastal vegetation and the distance and elevation of human 
settlements from the sea. Human habitation is advised to remain more than 1 km inland from shorelines in 
elevated zones behind dense mangroves or other coastal vegetation. Specific plant species suitable for growing 
between human settlements and the sea for coastal protection have been recommended. Wetlands act as barriers 
against erosion and damage by reducing the impact of waves. Despite this vital role, understanding wetland wave 
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damping remains incomplete, and reliable engineering methods to determine vegetation-induced wave damping 
are currently unavailable.

The interaction between waves and structures is similar due to poles from mussel farms and offshore wind 
farms, among other scenarios13,14. Figure 1 illustrates a schematic representation of a mangrove forest, modeled 
as rigid obstacles that interact with waves. Of particular interest is the interaction between coastal vegetation, 
represented as an array of rigid cylinders, and both Airy waves and solitary waves. Moreover, an input parameter 
required by the theoretical model is the bulk drag coefficient of the stem array. These values were carefully 
selected for all the analyzed configurations to ensure that the wave damping results of the theoretical model 
were in excellent agreement with the numerical ones. This approach enabled the evaluation of the bulk drag 
coefficient, which was subsequently compared with certain theoretical laws available in the literature. The results 
either confirmed the validity of these laws or allowed their applicability to be extended to regions not previously 
analyzed in the literature.

The structure of this paper is as follows. Initially, a theoretical model for the attenuation of Airy and solitary 
waves is presented, allowing for a preliminary evaluation of wave height reduction resulting from energy 
dissipation by an array of cylindrical obstacles, which may be either emergent or submerged, on either flat or 
sloped beds. The results of the theoretical and numerical models were calibrated against data available in the 
literature. Subsequently, a comparison was performed between the theoretical model predictions and numerical 
simulations conducted using the SPH (Smoothed Particle Hydrodynamics) meshless Lagrangian method. This 
comparison validated the applicability of the theoretical models to the scenarios under investigation. In addition, 
the study analyzed the bulk drag coefficient of rigid stem arrays, taking into account parameters such as distance, 
diameter of individual stems, and degree of submergence.

Formulation of the problem
The effect of obstructions is considered using the bulk drag coefficient CD  in drag terms. In the following, waves 
propagating in an ambient flow with a regular square array of emergent or submerged cylinders of uniform 
diameter d and distance s will be considered. Other key parameters of the cylinder array used in the present 
paper are the frontal area per unit volume of obstructions, a = nd, which is equal to d/s2 in the case of a 
periodic square array, where n is the number of elements per unit of planar area, and the solid volume fraction 
of the stem ϕ = nπd2/4. Figure 2 shows the definition of key geometric parameters for an array of cylinders of 
uniform diameter d and center-to-center distance s.

As shown by15, various resistance laws of drag can be derived for flow in porous media. In particular, in free 
surface or atmospheric obstructed flow16, the following quadratic form can be assumed

	
FD = 1

2ρ CDa |u| u.� (1)

Local variations of velocity profiles detected in obstacles-affected flows are not considered here. In other terms, 
as proposed by17 in the theoretical model, the average velocity values in space are considered rather than the 
individual point values, which can even be null on the walls of the stems affected by the flow (see also18). 
Therefore, the enveloped cross section velocity profile is taken into account to evaluate the effects of the presence 
of obstacles on the entire velocity profile, without considering the local variations upstream and downstream of 
the cylinders. The reflection effects of the wave with respect to each row of cylinders will not be considered, a 

Figure 1.  Drawing illustrating an example of a mangrove forest in the coastal zone. The waves experience 
damping due to the presence of coastal vegetation.
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situation that the literature shows is of certain importance mainly at the beginning of the stem array. Therefore, 
wave dissipation evaluations will be performed starting from the wave height value starting right from the first 
row of cylinders. As shown by19, previous studies have highlighted that the variability of the bulk drag coefficient 
depends also to the processes of sheltering, which takes place when the stem rows downstream are exposed to 
the wake of the upstream stem rows, resulting in a lower drag force. Sheltering under waves depends on the wave 
length, which in the case of the present paper is surely greater than the stem distance. Therefore, in this paper, 
the sheltering effect depends only on the ratio of the distance and diameter of the stem19.

That being said, the wave-averaged work takes the following form

	
ϵν =

∫ H+h

0
FDudz =

∫ H+h

0

1
2ρCDa |u| uudz = 1

2ρCDa

∫ H+h

0

∣∣u3∣∣ dz.� (2)

Methods
Problem formulation for the damping of Airy waves
As shown by20, the equation describing the free surface as a function of time t and horizontal distance x for an 
Airy wave is

	
η = H

2 cos
(2πx

L
− 2πt

T

)
= H

2 cos θ� (3)

where H is the wave height, T the wave period, and the wave length is

	
L = gT 2

2π
tanh

(2πh

L

)
� (4)

with h the mean depth of the water, and the celerity of the wave is

	
C = L

T
= gT

2π
tanh

(2πh

L

)
� (5)

The group celerity is

	
Cg = 1

2
L

T

[
1 + 4πh/L

sinh (4πh/L)

]
= 1

2C (1 + G)� (6)

Figure 2.  Definition of key geometric parameters for an array of cylinders of uniform diameter.
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where, as is well known, the dimensionless quantity G is approximately equal to unity in shallow water and tends 
to zero in deep water, and the energy per unit of surface area is

	
E = 1

8ρgH2� (7)

The energy dissipated due to the drag forces acting on the obstacle array is obtained as follows

	
∂E

∂x
= 1

Cg

(
−ϵν − E

∂Cg

∂x

)
� (8)

The horizontal wave orbital velocity component is

	
u = H

2
gT

L

cosh
( 2π(z+h)

L

)

cosh
(

2πh
L

) sin θ = A cosh (K (z + h)) sin
(2πt

T

)
� (9)

where

	
K = 2π

L
� (10)

is the wave number and

	
A = H

2
gT

L

1
cosh (Kh) � (11)

The force per unit volume F in the stem array is

	
F = FD + FM = 1

2ρCDau |u| + FM � (12)

where FD  is the drag force per unit volume and FM  the inertial contribution, which is proportional to the partial 
time derivative of u19, that is,

	
FM ∝ ∂u (t)

∂t
� (13)

Therefore, the work performed by FM  per wave period is equal to zero. It should be noted that, in the case 
analyzed above, the velocity u does not depend on the time variable t. Therefore, the work performed by FD  
over a wave cycle is

	
ϵν =

∫ −αh

−h

FDudz =
∫ −αh

−h

1
T

∫ T

0

1
2ρCDa

∣∣u3∣∣ dtdz� (14)

where α is a coefficient whose value is between the limits of 1, when the stem has zero height, and 0 when the 
stem develops for the whole height h. Since the Airy waves are of small amplitude, in the latter case it is observed 
that the integral, which should extend up to z = η, stops up to z = 0. In addition to the constant term 1

2 ρCDa
, Eq. (14) becomes

	

∫ −αh

−h

1
T

∫ T

0

∣∣u3∣∣ dtdz =
∫ −αh

−h

1
T

∫ T

0

∣∣∣∣
(

A cosh (K (h + z)) sin
(2πt

T

))3
∣∣∣∣ dtdz =

=
2 |A|3

√
cosh2 (K (−α + 1) h) (cosh (2K (−α + 1) h) + 5) tanh (K (−α + 1) h)

9πK

� (15)

Problem formulation for the damping of solitary waves
As is well known, a solitary wave is a self-reinforcing localized wave that maintains its shape while propagating at 
a constant velocity. Solitary waves are caused by cancelation of non-linear and dispersive effects in the medium. 
The soliton phenomenon was first described by21. In nature, it is difficult to form a truly solitary wave because, 
at the trailing edge of the wave, there are usually small dispersive waves. However, long waves, such as tsunamis 
and waves resulting from large displacements of water due to landslides or earthquakes, behave approximately 
as solitary waves.

The elevation of the free surface of a solitary wave22 is given by:

	
η = H sech 2

[√
3
4

H

h3 (X − Ct)

]
,� (16)
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where X is the horizontal axis, with its origin at the wave crest, t is time, h is the depth of the water and H is the 
amplitude related to the velocity, C, as follows (see also23)

	 C =
√

(g (h + H)).� (17)

The total energy for a solitary wave is about evenly divided between kinetic and potential energy. The total 
energy per unit width of the crest between −X/h and X/h is equal to

	
E = 4

3ρgh2H
(

2 + η

H

) (
H

3h

)1/2 (
1 − η

H

)1/2
� (18)

and the total energy per unit crest width, between −∞ and +∞, is

	
E = 8

3
√

3
ρgH3/2h3/2.� (19)

As shown by24, in the case of H/h = 0.5, 98% of the energy is contained between X/h = ±2.1 and, generally, 
a value of energy greater than 90% is contained between X/h = ±2.5. Therefore, defining a width, L90, which 
contains more than 90% of the energy per unit of crest width, as

	 L90 = 2 · 2.5 · h,� (20)

then, the energy per unit area is

	
E = 1

L90

4
3ρgh2H

(
2 + η

H

) (
H

3h

)1/2 (
1 − η

H

)1/2
.� (21)

The study relates to the propagation of solitary waves in nearshore areas where mangroves or other rigid 
vegetation are present. Consequently, the water depth is relatively shallow, resulting in the group celerity 
coinciding with the wave celerity. Given this assumption, the energy dissipated due to the drag forces acting on 
the obstacle array is obtained as follows

	
∂E C

∂x
= −ϵν ,� (22)

where ϵν  is the wave-averaged work. Equation (22) can be written as follows

	
∂E

∂x
= 1

C

(
−ϵν − E

∂C

∂x

)
.� (23)

References25 and24 observed that the horizontal orbital velocity for a solitary wave is

	
u = C · N ·

cosh
(

MX
h

)
cos

(
Mz

h

)
+ 1(

cosh
(

MX
h

)
+ cos

(
Mz

h

))2 ,� (24)

where z is the distance from the bottom, and M and N are functions of H/h, defined by the following equations

	




H

h
= N

M
tan1/2

[
M

(
1 + H

h

)]

N = 2
3 sin2

[
M

(
1 + 2

3
H

h

)] � (25)

The Taylor series expansion of Eq. (24) at z = 0 is given by

	

u = C · N ·
cosh

(
MX

h

)
cos

(
Mz

h

)
+ 1(

cosh
(

MX
h

)
+ cos

(
Mz

h

))2 = C · N
A cos (Bz) + 1

(A + cos (Bz))2

= C · N ·
1 + A

∑∞
k=0

(−1)k(Bz)2k

(2k)!(
A +

∑∞
k=0

(−1)k(Bz)2k

(2k)!

)2

� (26)

with

	

{
A = cosh

(
MX

h

)
B = M

h

� (27)

The Taylor series expansion of Eq. (24) at z = z0 arrested at the second order is given by
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u = C · N ·
cosh

(
MX

h

)
cos

(
Mz

h

)
+ 1(

cosh
(

MX
h

)
+ cos

(
Mz

h

))2 = C · N
A cos (Bz) + 1

(A + cos (Bz))2

= C · N ·

[
A cos(Bz0) + 1

(A + cos(Bz0))2 −
B(z − z0) sin(Bz0)

(
A2 − A cos(Bz0) − 2

)
(A + cos(Bz0))3

− B2(z − z0)2

2(A + cos(Bz0))4

(
A3 cos(Bz0) + 4A2 sin2(Bz0) − A cos3(Bz0)

− 2A cos(Bz0) − 2A sin2(Bz0) cos(Bz0) − 6 sin2(Bz0) − 2 cos2(Bz0)
)

+ O
(
(z − z0)3)

]

= C · N ·
[
A + B (z − z0) + C (z − z0)2 + O

(
(z − z0)3) ]

.

� (28)

Generalizing, in the case of a Taylor series expansion at z = z0 truncated at order m − 1, the remaining terms 
are of the following order of magnitude

	 O ((z − z0)m)� (29)

and, therefore, the convergence condition is as follows

	 |(z − z0)| < 1� (30)

In conclusion, integral 2 is

	

∫ ∣∣u3∣∣ dz = (C · N)3
∫ ∣∣A + B(z − z0) + C(z − z0)2∣∣3

dz

= (C · N)3 · 1
140z

[
140z2

(
A2C + A

(
B2 − 6BCz0 + 6C2z2

0
)

+ z0
(
−B3 + 6B2Cz0 − 10BC2z2

0 + 5C3z3
0
) )

+ 84Cz4 (
C

(
A + 5Cz2

0
)

+ B2 − 5BCz0
)

+ 35z3(B − 2Cz0)
(
2C

(
3A + 5Cz2

0
)

+ B2 − 10BCz0
)

+ 210z(B − 2Cz0)(A + z0(Cz0 − B))2 + 140(A + z0(Cz0 − B))3

− 70C2z5(2Cz0 − B) + 20C3z6
0

]
sgn

(
A + (z − z0) (B + C (z − z0))

)
+ constant.

� (31)

where

	




A = Acos(Bz0)+1
(A+cos(Bz0))2

B = B sin(Bz0)(A2−Acos(Bz0)−2)
(A+cos(Bz0))3

C = B2

2(A+cos(Bz0))4

(
A3 cos(Bz0) + 4A2 sin2(Bz0) − A cos3(Bz0)

−2A cos(Bz0) − 2A sin2(Bz0) cos(Bz0) − 6 sin2(Bz0) − 2 cos2(Bz0)
)

� (32)

Equations (28) and (31) enable us to calculate the wave-averaged work.

SPH numerical solution
SPH (Smoothed Particle Hydrodynamics) is a meshless, Lagrangian method where the fluid domain is 
represented by nodal points that are scattered in space with no grid structure and move with the fluid. For the 
sake of brevity, the full general description of the method is not reported, and it is possible to refer to specialized 
books26,27. It has proven to be applicable to a wide variety of flows, including wave breaking28–30, hydraulic 
jumps31,32, interaction between jets and waves33–35, and multiphase flows36. In the present paper, a WCSPH 
model coupled with a subparticle scale (SPS) approach to modeling turbulence37 has been used. The specific 
features of the SPH method here used are detailed in33. The motion is represented by the Navier-Stokes equations 
for a weakly compressible fluid. In a Lagrangian frame, the equations of continuity and momentum take the 
following form
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{ dρi
dt

= ρi

∑
j

mj

ρj
(vi − vj) · ∇iWij + Di

dvi
dt

= −
∑

j
mj

(
Pi+Pj

ρiρj

)
∇Wij + Γ + g

� (33)

where ρ is the density, v is the velocity vector, P is the pressure, Di represents a numerical diffusive term, Γ 
denotes the dissipation terms and g is the gravity acceleration vector. The summations in (33) are extended to 
all particles j located within the circular domain, centered on i and of radius 2hSL (with hSL as the smoothing 
length), where the kernel function Wij  is defined. Here, the adopted kernel function Wij  is the cubic-spline 
kernel function38. In order to reduce the density fluctuation, the following numerical diffusive term Di

39 is 
introduced

	
Di = δhci

∑
j

ψij · ∇WijVj ,� (34)

where δ is the Delta-SPH coefficient, which controls the magnitude of the diffusion term, ci is the numerical 
speed of sound, Vj  is the associated volume of the j-th particle and ψij  is the artificial dissipation term. Here, the 
artificial dissipation term proposed by40 was chosen. The momentum dissipation term Γ is obtained by coupling 
the viscous dissipation in the laminar regime, as approximated by41, with a subparticle scale model (SPS)42. The 
parameter δ was set equal to 0.1 while the time step dt was imposed with values dt ≤ 0.0003. A more detailed 
description of the LES-SPS model using Favre averaging43 in a weakly compressible approach can be found in28. 
The SPH results discussed here were obtained using the hardware-accelerated dual-SPHysics code44. Since its 
first release in 2011, DualSPHysics has been shown to be robust and accurate for simulating free surface flows, 
but requires high computational cost. Therefore, recently, the high-performance computing of SPH has focused 
mainly on Graphical Processing Units (GPUs)45, which are superior in terms of price and energy consumption 
compared to traditional CPUs. In DualSPHysics, the C++ programming language is used to code the SPH 
formulation for CPU execution, while GPU executions are based on the NVIDIA CUDA architecture46. The 
three-dimensional flow was simulated by discretizing the computational domain through a particle distribution 
with initial particle distance Dx = Dy = Dz  (Fig. 3). Starting from the wave paddle, the numerical tank has 
a flat bottom that extends 10 m,while the remaining bottom has a slope of 1/20. A vegetation canopy of length 
lv = 3 m is housed 4 m from the channel inlet l0.

Calibration and results of the theoretical wave damping models and the numerical 
model
In the following, each theoretical model will first be validated using data from the literature. Furthermore, the 
results of the theoretical model for wave damping will be presented for both Airy waves and solitary waves. The 
aim is to demonstrate how wave damping is strongly influenced by the presence of vegetation, which therefore 
represents a nature-based solution for coastal protection against extreme storm surges and freak waves. The 
calibration of the numerical model was performed using data from laboratory experiments previously conducted 
by one of the authors. Subsequently, a comparison was carried out between the results of the theoretical wave 
damping models proposed in this paper and those obtained from numerical simulations. This comparison aims 
to verify the convergence of the two approaches and to evaluate the bulk drag coefficient of the stem array. 
The diagrams of the results of the theoretical model are designed to highlight the differences in wave damping 
behavior between Airy waves and solitary waves prior to their breaking, beyond which the theoretical equations 
for either type of wave can no longer be applied.

Damping of airy waves
Refer to the paragraph “Problem formulation for the damping of Airy waves” for the description of the theoretical 
model used.

In the following, in a strategic way, waves with higher steepness compared to strictly Airy waves will also 
be analyzed, although not significantly different from Airy waves. The logic is to capture the damping effects 
more effectively on wave heights induced by rigid vegetation. It is important to note that in the presence of a 
sloped bottom, the wave steepness will naturally increase, even if the initial wave is a perfect Airy wave without 
the second harmonic. Therefore, the objective is to reconcile these two aspects: the analyzed wave can be 
treated as an Airy wave where the second harmonic is negligible, allowing the use of Airy theory as a first-order 
approximation, while ensuring sufficiently high wave amplitudes to accentuate the damping effects.

The theoretical model was validated using the Airy wave configuration described by47. Specifically, the 
configuration features emergent, rigid vegetation with a wave height of 0.08 m, a water depth of 0.4 m, a period 

Figure 3.  Geometrical setup and initial conditions.
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of 1.8 s, a stem diameter of 0.02 m, a stem spacing of 0.67 m, and a zero-slope channel. For more details on the 
experimental setup, please refer to Wang. Figure 4 shows the comparison between the experimental data of the 
configuration of the cited literature47 and the proposed theoretical model. The x-axis of the figure represents the 
horizontal direction in the wave propagation path, starting from the beginning of the vegetated zone. The x-axis 
of the figure represents the horizontal direction along the wave propagation path, starting from the beginning 
of the vegetated zone. The values of the x axis have been dimensionlessed using both the depth of the water 
in the wave channel (hs) and the depth of the water wavelength (L0). Therefore, two x-axes are presented. In 
the theoretical model, a bulk drag coefficient CD = 4.5 was used, which aligns with the values suggested by47. 
Taking into account typical experimental uncertainties, the comparison validates the theoretical model.

Figure 5 illustrate a theoretical example of Airy wave heights as they propagate over obstacles of diameter 
d of 0.1 m, on either a flat (see Fig. 5a) or sloped (see Fig. 5b) bottom. For the previously noted simulations, it 
was assumed that the wave period is T is 10 s and that at the start of the obstacle section, denoted by x = 0, 
the wave height Hs is 2 m, with an initial depth hs of 10 m, which remains unchanged and equals h for a flat 
bottom. Other parameters, including the submersion ratio of the obstacles, were varied as detailed in the legend 
of the referenced figures. In paragraph 3, the mathematical developments leading to the final formulation of the 
theoretical model for wave damping are presented, both for Airy waves and solitary waves.

Damping of solitary waves
Refer to “Problem formulation for the damping of solitary waves” for the description of the theoretical model 
used.

Figure 5.  Theoretical heights of Airy waves propagating with obstacles.

 

Figure 4.  Comparison between experimental and theoretical results for the damping of Airy waves.
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The theoretical model was validated using the solitary wave configuration described by48. Specifically, the 
configuration features emergent, rigid vegetation with a wave height of 0.04 m, a water depth of 0.15 m, a stem 
diameter of 0.01 m, a stem spacing of 0.0425 m and a zero-slope channel. For more details on the experimental 
setup, please refer to Wang. Figure 6 shows the comparison between the experimental data of the Wang 
configuration and the proposed theoretical model. The values of the x axis have been dimensionlessed using 
both the depth of the water in the wave channel (hs) and the depth of the water wavelength (L90).

The theoretical model was validated using the solitary wave configuration described by48. Specifically, the 
configuration features emergent, rigid vegetation with a wave height of 0.037 m, a water depth of 0.15 m, a stem 
diameter of 0.01 m, a stem spacing of 0.0425 m, and a zero slope channel. For more details on the experimental 
setup, please refer to48. Figure 6 shows the comparison between the experimental data obtained from48and 
the proposed theoretical model. The x-axis in the figure represents the horizontal direction along the wave 
propagation path, starting from the beginning of the vegetated zone. To facilitate analysis, the values of the 
x axis have been dimensionlessed using two parameters: the depth of the water in the wave channel (hs) and 
the wavelength (L90). In the theoretical model, a bulk drag coefficient CD = 1.0 was used, which aligns with 
the values suggested by47. Taking into account typical experimental uncertainties, the comparison validates the 
theoretical model.

Figure 7 illustrate an example of the theoretical wave heights of solitary waves traveling over obstacles on a 
flat (Fig. 7a) or a sloped (Fig. 7b) seabed. For the simulations discussed, a wave height Hs=2 m was used at the 

Figure 7.  Theoretical wave heights of solitary waves propagating with obstacles.

 

Figure 6.  Comparison between experimental and theoretical results for the damping of a solitary wave.
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beginning of the obstacle section, at x = 0, with an initial depth of water hs = 10 m, which remains unchanged 
and equals h for a flat bottom. The figures also include a second horizontal axis showing the variation of x 
dimensionlessed with the wave length L90 (or L90s, which is the same as L90 at the beginning of the vegetated 
area.) Various other parameters were adjusted, including the submersion ratio of the obstacles, as detailed in the 
figures’ legends.

SPH numerical solution
Calibration of the numerical model
The first numerical simulations have been run for the Airy wave with the characteristics shown in Table 1.

Table 1 refers to an Airy wave that was experimentally studied by49 in the absence of vegetation. The calibration 
of the SPH numerical code was conducted based on this wave, using its elevation profiles in a section located 
20.24 m from the numerical wave paddle. As mentioned previously, the experimental values of wave elevation 
are available in49, to which the reader is referred for further information and details about the experimental 
setup. In particular, maintaining a constant ratio between the smoothing length and the initial particle distance 
(hSL/Dx= 2), an investigation was carried out on the impact of the initial particle distance on the quality of the 
numerical results. The three-dimensional flow was simulated by discretizing the computational domain using a 
relative particle distance of Dx = 0.01 m and 0.005 m. It is evident that the simulation at the lowest resolution 
(Dx = 0.01 m) fails to accurately predict the wave crest. However, as demonstrated by30, the accuracy of the SPH 
method is influenced not only by the initial particle distance Dx but also by the ratio between the smoothing 
length and the initial particle distance hSL/Dx. Thus, the effect of hSL/Dx has been examined. Runs with Dx 
= 0.01 m and 0.005 m, respectively, were carried out, increasing hSL/Dx from 2 to 2.5. The results show that 
the best results are achieved using the ratio hSL/Dx = 2.5, especially evident in the case of a relative particle 
distance of Dx= 0.01 m, where the solution closely resembles that obtained with Dx = 0.005 m. However, 
considering the diameter of the stem (equal to 0.02 m) and the width of the flume (0.08 m), all simulations were 
carried out using the highest resolution of Dx = 0.005 m with a particle count of Np = 15,634,080 representing 
a high level of refinement, that is, 4 particles per stem and about 6 particles between the stem and the boundary. 
For the sake of brevity, only the effect of the ratio between the smoothing length and the initial particle distance 
hSL/Dx on the numerical simulation will be shown (Fig. 8).

A second set of simulations refers to solitary waves, the characteristics of which are reported in Table 2.
The validity of the adopted numerical scheme was tested against the solution for a solitary wave elevation, 

as described by Eq. (16) (see22,24). In all simulations, the ratio between the smoothing length and the initial 
particle spacing (hSL/Dx = 2.5) was kept constant. The three-dimensional flow was simulated by discretizing 
the computational domain with relative particle spacings of H/Dx = 20, 40, 80, and 100, respectively. For the 
sake of brevity, only the results of test T2A are presented here (see Fig. 9).

Comparison between theoretical and numerical results of wave damping
Figure 10a,b present a comparison between the numerical results and the theoretical predictions for two 
configurations of Airy waves, whose characteristics are detailed in Table 1. Specifically, the figures illustrate 

Figure 8.  Comparison between numerical and experimental free surface elevations of the Airy wave of tests 
A1 and A2: effect of the ratio between the smoothing length and the initial particle distance hSL/Dx on the 
numerical simulation.

 

Test d [m] n [cyl/m2] s [m] hs  [m] Hs  [m] T [s] L [m] h [m]

A1 0.02 100.00 0.10 0.45 0.11 2 4.62 0.7

A2 0.02 156.25 0.08 0.45 0.11 2 4.62 0.7

Table 1.  Values of some parameters of the numerical test of the Airy wave.
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a comparison of wave height data, normalized with the wave height at the beginning of the cylinder array, as 
a function of the longitudinal distance, dimensionlessed with the water depth, and as a function of the same 
longitudinal distance dimensionlessed with the wavelength in deep water.

Figures 11, 12 and 13 also show the corresponding comparison for solitary waves, as described above, with 
their characteristics provided in Table 2. In this case, the values of x are dimensionlessed using both L90 and 
the depth of the water.

Figure 10.  Comparison between theoretical and numerical wave heights of test with Airy waves.

 

Figure 9.  Comparison between numerical and theoretical free surface elevation of the solitary wave T2A: 
effect of particle resolution on the numerical simulation.

 

Test T1A T2A T1B T2B T1C T2C

s [m] 0.12 0.12 0.10 0.10 0.08 0.08

n [cyl/m2] 69.44 69.44 100 100 156.25 156.25

hs  [m] 0.40 0.30 0.40 0.30 0.40 0.30

Table 2.  Values of some parameters of the numerical tests of solitary waves.
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The comparison between the data obtained from the numerical code and those from the theoretical models, 
both properly calibrated with experimental data, demonstrated that both methods yield consistent results and 
can be effectively employed for the study of wave damping, both for Airy waves and solitary waves.

Bulk drag coefficients
The research work19 established that the bulk drag coefficient is affected by the Keulegan and Carpenter 
number50, which represents the ratio between drag and inertia forces. This number is calculated as the ratio 
of the horizontal orbital excursion of water particle motion in the presence of waves to the diameter of the 
stem. The relationship between CD  and the Keulegan-Carpenter number in the context of gravity waves 

Figure 13.  Comparison between theoretical and numerical wave heights of solitary waves of tests TC.

 

Figure 12.  Comparison between theoretical and numerical wave heights of solitary waves of tests TB.

 

Figure 11.  Comparison between theoretical and numerical wave heights of solitary waves of tests TA.
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was also noted by47. Comparing the data of the bulk drag coefficient from our research with those of47 offers 
intriguing information. In their research,47 performed experiments with a 10-meter-long model simulating a 
mature Rhizophora forest, with the aim of exploring hydrodynamic properties and gravity wave attenuation. 
They introduced an innovative parameter, a modified Keulegan and Carpenter number KCrv = upT/rv , 
where up = u(1 − ϕ) represents the spatially averaged flow velocity in the gaps between the stems, u is the flow 
velocity, rv = π

4
1−ϕ

ϕ
d is a hydraulic radius associated with obstacles, and T is the wave period. This parameter 

indicates the spatially averaged flow velocity between the stems. Ultimately, the authors developed a correlation 
between the bulk drag coefficient and KCrv , resulting in an empirical expression for CD . They noticed that this 
formula offers a highly accurate correlation of drag coefficient properties related to obstacles. It is important to 
note that the waves investigated in the present study include both Airy waves and solitary waves. In particular, 
the latter diverge from those examined by47. Consequently, comparisons of the drag coefficient values in the 
present study were conducted to explore the possibility of expanding the analysis of47. For the configurations 
that involve solitary waves in this study, the calculation of KCrv  was performed as described below. Based on 
Munk’s theory of solitary waves24, the wave period T was derived from both the wavelength and the celerity of 
waves in shallow water. The numerical configurations provided the velocity values u on the crest of the soliton, 
allowing the determination of up = u(1 − ϕ) using a numerical SPH code. In particular, the velocity scale u in 
these numerical configurations is approximately O(1.5 ms−1), while for Airy wave configurations it is around 
O(0.005 ms−1). Figure 14 illustrates that the values CD  proposed in this study align very well, even with the 
theoretical framework proposed by47, whose fitted curve has the following equation

	
CD =

(
0.77

KCrv

)0.41

+ 0.42� (35)

Therefore, this study extends the understanding of the trend of the bulk drag coefficient observed by47, as it 
applies to solitary waves. Moreover, the magnitude of CD  is consistent with the results reported in15 for solitary 
waves. This is because solitary waves are categorized as long waves, which are distinguished by flows that, though 
induced by waves, are most similar to steady currents.

Conclusions
This paper presents two theoretical models for wave damping of regular and solitary waves by cylindrical structures, 
representing rigid vegetation, submerged or emerging. This topic is of significant importance in the context 
of nature-based solutions for coastal protection against extreme storm surges and rogue waves. The analyzed 
configurations focus on scenarios where the spacing between stems is small relative to the wavelength, causing 
the wake downstream of each stem to interact with subsequent stems before fully developing. Consequently, 
these configurations exhibit a pronounced sheltering effect, characterized by a low s/d ratio19. The performance 
of the theoretical models was validated through numerical simulations conducted with the DualSPHysics code, 
examining various wave dynamics and cylindrical array configurations. The results confirmed the models’ ability 
to accurately predict wave damping. Furthermore, an evaluation of bulk drag coefficients (CD) for regular 

Figure 14.  Relationship between the KCrv  number and the CD  data of three vegetation models of47, with 
their theoretical curve, their proposal of 95% prediction band and the data of the present study.
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and solitary waves supported the validity of the equation proposed by47 and extended its applicability to wave 
conditions markedly different from Airy waves, such as solitary waves.

Data availability
Data are available upon request to the corresponding author.
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