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Towards full integration of
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colon capsule endoscopy’s pathway
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Despite recent surge of interest in deploying colon capsule endoscopy (CCE) for early diagnosis of
colorectal diseases, there remains a large gap between the current state of CCE in clinical practice, and
the state of its counterpart optical colonoscopy (OC). This is due to several factors, such as low quality
bowel cleansing, logistical challenges around both delivery and collection of the capsule, and most
importantly, the tedious manual assessment of images after retrieval. Our study, built on the “Danish
CareForColon2015 trial (cfc2015)” is aimed at closing this gap, by focusing on the full integration

of Al in CCE’s pathway, where image processing steps linked to the detection, localization and
characterisation of important findings are carried out autonomously using various Al algorithms. We
developed a family of algorithms based on explainable deep neural networks (DNN) that detect polyps
within a sequence of images, feed only those images containing polyps into two parallel independent
networks to characterize, and estimate the size of important findings. Our recognition DNN to detect
colorectal polyps was trained and validated (70%) and tested (30%) on an unaugmented database of
1751 images containing colorectal polyps and 1672 images of normal mucosa reached an impressive
sensitivity of 99.9%, a specificity of 99.4%, and a negative predictive value (NPV) of 99.8%. The
characterisation DNN trained on an unaugmented database of 317 images featuring neoplastic polyps
and 162 images of non-neoplastic polyps reached a sensitivity of 84.3% and a specificity of 81.5%

in classifying polyps. The size estimation DNN trained on an unaugmented database of 280 images
reached an accuracy of 88% in correctly segmenting the polyps. By automatically incorporating
important information including size, location and pathology of the findings into CCE’s pathway,

we moved a step closer towards the full integration of explainable Al (XAl) in CCE's routine clinical
practice. This translates into a fewer number of unnecessary investigations and resection of diminutive,
insignificant colorectal polyps.

Colon capsule endoscopy (CCE) is a non-invasive procedure with advantages in diagnosing, monitoring, and
managing colorectal diseases compared to optical colonoscopy (OC), flexible sigmoidoscopy, and computed
tomographic colonography (CTC)!~>. Clinical trials show CCE outperforms CTC in detecting polyps larger
than 6 mm and is non-inferior for polyps larger than 10 mm*. In cases of incomplete OC, CCE has a higher
diagnostic yield than CTC for polyps of any size CCE>®. Patients also prefer CCE due to its lower complication
rate compared to OC, supporting its broader adoption. However, several challenges limit its widespread use,
including the dependency on bowel cleansing quality, logistical issues in capsule handling, labor-intensive
image review ( 12,000 images per investigation), low-resolution imaging, and low completion rates. To address
these, we developed an Al-enhanced wireless capsule featuring real-time image processing, dual-mode imaging
(white-light and narrow-band), and bi-directional communication with personal devices for reporting findings’.
This novel design significantly improves hardware and software capabilities, enhancing diagnostic accuracy and
enabling real-time AI analysis. Despite these advancements, gaps in clinical implementation persist, raising
feasibility concerns among professionals®.

The CCE pathway includes bowel preparation, capsule ingestion, manual image analysis, and post-procedure
care. This study focuses on fully integrating Al into the image analysis stage, enabling autonomous detection,
localization, and characterization of findings using advanced algorithms. Characterization involves analyzing
abnormalities’ morphology (e.g., size) and histopathological (HP) properties, such as neoplastic features.
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Building on previous work in polyp detection and localization®%°-'7, we incorporate size estimation and HP

analysis to further optimize CCE’s workflow, advancing toward full Al integration in routine clinical practice.

While Al-based detection and classification of colorectal polyps in optical colonoscopy is well-studied®,
few studies (besides our own) have explored similar questions in CCE investigations'®-2!. This is largely due to
the lack of publicly available datasets for CCE, unlike optical colonoscopy databases such as Kvasir (A Multi-
Class Image Dataset for Computer Aided Gastrointestinal Disease Detection). Additionally, CCE’s reliance on
invariant white-light imaging (WLI) results in lower-resolution images, posing significant challenges for AI
algorithms to achieve the robustness required for routine clinical practice.

This study builds on the “Danish CareForColon2015 trial (cfc2015),” launched in 2021 as part of the Danish
Colorectal Cancer Screening program. As the largest randomized controlled trial on CCE??, its primary aim was to
compare detected colorectal cancers and intermediate- or high-risk adenomas between intervention and control
groups. Secondary aims included evaluating patient acceptability, complication and completion rates, interval
CRC rates, patient-reported outcomes (PRO), long-term cancer incidence, social inequality, CCE applicability,
and cost-effectiveness. Of 370, 306 individuals invited to screen, 2015 FIT-positive patients underwent CCE
investigations, forming the basis for developing and validating the AI algorithms in this study. Further details
can be found at https://clinicaltrials.gov/ct2/show/NCT04049357 or one of our recent publications®®.

Contribution

The sketch of the workflow associated with CCE’s pathway automation is presented in Figs. 1 and 2. The steps
presented in blue have been published in previous works>®111314 while those in orange are under development.
This paper presents those steps highlighted in green, which focus on the recognition of important abnormalities,
estimating their size and define their histopathology.

This paper is organized as follows: We first introduce a deep neural network capable of detecting abnormalities
with high sensitivity and specificity. Detected abnormalities are then processed by two parallel algorithms for
size estimation and characterization, with details of their explainability (XAI) criteria provided in the article.
Finally, we evaluate the outcomes of these algorithms, highlight their strengths and limitations, and conclude on
the feasibility of optimizing CCE image analysis with Al

Methods and results

Code availability

Codes for recognition, characterization and size estimation algorithms developed in this study are available to
interested readers upon request to the corresponding author. Consortium agreements signed with the funding
agencies i.e., the European Union and UK Research and Innovation Office (co-funded) prohibits us from sharing
the codes in public repositories.
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Fig. 1. Al-based optimization of CCE’s pathway for image analysis. Blue boxes represent the algorithms that
are completed (previously published). Green boxes represent the algorithms discussed in this work, and orange
boxes represent the future work.
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Fig. 2. Sequence of neural networks (NN) for recognition (NasNetLarge), characterization (VGG16) and
polyp size estimation (AID-U-Net) algorithms.

Ethics

The study was approved by the Regional Health Research Ethics committee (journal number S-20190100), was
registered with the Regional Data Protection Agency (journal number 19/29858), as well as with ClinicalTrials
(identifier NCT04049357). All participants received verbal and written study information prior to participation
and signed informed consent was obtained from each individual. The study was conducted in accordance with
the declaration of Helsinki.

Recognition

Our prior research on colorectal polyp detection and localization using an enhanced ZF-Net achieved 98.0%
accuracy, 98.1% sensitivity, and 96.3% specificity on a dataset of approx. 800 images (400 with polyps, 400
normal mucosa)!2. While this remains one of the top-performing networks in the literature, deploying it in
the cfc2015 trial risked missing up to four cancers among 2015 FIT-positive patients due to the prevalence of
CRC. Additionally, its findings serve as input for size estimation and characterization algorithms, necessitating
a new DNN with higher negative predictive value (NPV), sensitivity, and specificity. After evaluating leading
architectures like ResNet50 and InceptionV3, we selected NasNetLarge as the backbone for abnormality
recognition.

To adapt networKk’s architecture and to use transfer learning for the purpose of this study, we modified the
last 20 learnable layers, and froze the parameters of the remaining layers, accordingly. The learning rate was
initially set to 1e—3, but adaptively reduced after every 2 epochs during the training process, until the validation
criteria were met. The epoch size for training process was limited to a maximum of 6, with a mini batch size
of 10, and the validation frequency of 798. The dataset containing images of both colorectal polyps (1751)
and the normal mucosa (1672) (Fig. 3) was augmented by horizontal and vertical random reflection, random
scaling and random translation, along with random rotation, all picked from a continuous uniform distribution,
without affecting the contents or the size of the images. This augmentation resulted in a database containing
5838 images of colorectal polyps and 5573 images of normal mucous layer. The dataset was split to 70% for both
training and validation process, while the remaining 30% was allocated to the test process. NasNetLarge with the
aforementioned configuration resulted in a sensitivity of 99.9%, a specificity of 99.4%, and an NPV of 99.8% on
the test set, implying that less than one cancer among the cfc2015 trial subjects will be missed.

To evaluate as whether the network has learnt sufficient features, and knowledge has been transferred, we
exposed the recognition network to an additional set of images not previously used for either training or testing.
Manual examination by trained CCE readers initially classified three cases as either inflammation or normal
tissue, a diagnosis confirmed by specialists. However, during a routine quality check in the cfc2015 trial, medical
experts identified these cases as cancers. To evaluate our DNN’s performance, the misdiagnosed images were
included in the test set, where the network correctly flagged them as significant findings, demonstrating its
generalization capability. Following this incident, the cfc2015 trial experts reexamined all patient images to
ensure no critical findings were missed.
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Fig. 3. Samples of retrieved CCE images for training and validation purposes for abnormality detection.

Explainable Al (XAl)

To enhance interpretability and trust in our recognition algorithm, three classes of XAI methods for image
processing, namely, CartoonX??, Pixel Rate Distortion Explanation (RDE)? and Class Activation Mapping
(CAM) and it’s variations such as GradCam?* were integrated.

Starting off with CAM-based techniques, the explanations from GradCAM, GradCAM++, AblationCAM,
and RandomCAM reveal that the proposed recognition model extract most representative features important
for the classification task, i.e., the existence of a polyp vs. no-polyp. The parameters, remove and debias nullify
the effect of leaking data by a weighted average of its neighbors. Percentile values of [20, 40, and 95] provide the
top 20%, 40%, and 95% of the most important regions identified by various CAM techniques to correlate with
the target class. A single score measures the average impact on model confidence by contrasting the removal of
least and most important regions of an image. Our overall analysis showed that among the four CAM-based
techniques, GradCAM++ explanations map the exact features from the last convolutional layer, which mainly
focus on polyps within the image. This is highlighted by the score obtained for each explanation (Fig. 4), hence
justifying the decision of the network.

To further confirm the validity of the explanations, we also used CartoonX and pixel rate distortion
explanations. Unlike CAM-based models, which rely on output feature maps, CartoonX and pixel RDE explore
input features, making them model-independent explainable techniques. To have a faithful comparison between
different methods, we used the same image of a polyp for comparing the outputs of CartoonX and pixel RDE
with CAM-based techniques. As evident from Fig. 4, both CartoonX and pixel RDE explanations detect the
main region of the polyp, being the most critical area of the image. CartoonX provides effective input features
due to its ability to extract relevant and piecewise smooth image segments, rather than focusing on sparsely
distributed pixel regions. Comparison between CartoonX and pixel RDE explanations reveals that CartoonX
explanations show lower distortions for image classification compared to Pixel RDEs, confirming the findings
of the original study?. This is since CartoonX provides piecewise smooth explanations, effectively uncovering
meaningful patterns that are less apparent with pixel RDE and CAM-based techniques.

Size estimation

The size estimation algorithm builds on our previous work developing AID-U-Net, a novel semantic
segmentation network!>!42. ATD-U-Net incorporates direct contracting and expansive paths, along with
unique sub-contracting and sub-expansive paths, achieving superior performance (F1 score: 88.1%) compared
to U-Net (81.1%) and U-Net++ (87.6%), without requiring pre-trained backbones. The optimal architecture
for segmenting CCE images was AID-U-Net(2,2), with a depth of two for both the direct path and sub-path. For
detailed architecture and performance insights, we refer readers to our earlier work!?.

We applied AID-U-Net(2,2) to an augmented dataset of 5,838 colorectal polyp images, achieving correct
segmentation in 81% (4685 images). By comparison, U-Net and U-Net++ achieved 61% and 72%, respectively.
Incorrect segmentation included three scenarios: (1) missing a region of interest (ROI, e.g., a polyp), (2)
segmenting the wrong region, or (3) splitting a single ROI into multiple segments. Assuming each image
contained one ROI and summing the estimated sizes of all segmented regions improved segmentation accuracy
to 88%. Examples of segmented polyps, along with their bounding boxes and fitted ellipses, are shown in Fig. 5.

Precise size estimation requires polyp depth relative to the camera lens, which is unavailable in CCE.
Therefore, our algorithm estimates size by calculating the ratio of the largest diameter of the fitted ellipse around
the segmented polyp to the total image size, excluding peripheral information (e.g., date and time). Using this
approach, we achieved a perfect match with size estimates from the RAPID Reader?” used by trained CCE
readers.
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Fig. 4. Examples of explainability including heat map (top two) , GradCam (middle), CartoonX and Pixel RDE
(bottom) for network’s explanation on decision making process. C-Polyp and No-C-Polyp stand for colorectal
polyp and no colorectal polyp, respectively.

Using histopathology reports as the gold standard, the size estimation algorithm mapped polyp sizes from
segmented CCE images to pathology outcomes. Currently, 280 polyps are matched between the two datasets
(CCE vs. pathology). We observed that CCE generally overestimates polyp sizes compared to pathology reports.
The best regression model, using fine Gaussian support vector machines (SVM), achieved a root mean squared
error (RMSE) of approximately 6mm. Despite this error, a richer database of matched polyps, currently being
expanded through the cfc2015 trial, will improve accuracy.

Characterization

Colorectal polyps are classified as neoplastic or non-neoplastic, with this classification-alongside size, histology,
andlocation (distal vs. proximal colon)-guiding patient management and treatment success. Our characterization
algorithm is a binary classifier, taking CCE images flagged as important findings and categorizing them as
neoplastic or non-neoplastic.

The dataset includes 479 images of polyps observed during CCE, resected, and matched post-polypectomy.
Of these, 317 were neoplastic and 162 non-neoplastic. To address the small sample size and class imbalance (2:1
ratio), we augmented the dataset fourfold using random horizontal/vertical reflections, scaling, translation, and
rotation without altering image content or size. Although only polyp segments should inform pathology, we
used entire image frames as many featured small polyps occupying minimal space.
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Fig. 5. Examples of the outcome from the segmentation and size estimation algorithm. Purple regions of the
images represent pixels associated with detected abnormalities, and the white region is the cropped out version
of the same region. Red rectangles represent bounding boxes encompassing the important findings, e.g.,

polyps.
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Fig. 6. Layer-wise relevance propagation (LRP) on VGG16 network for the characterization algorithm to
classify polyps to neoplastic versus non-neoplastic.

Using the same training settings as the recognition DNN, we implemented a VGG16 network as the backbone
for the characterization algorithm. The dataset was split into 70% for training/validation and 30% for testing,
yielding a binary classifier with 84.3% sensitivity, 81.5% specificity, and 82% accuracy.

To enhance the explainability of the VGG16 characterization network, we assigned relevance to the learned
patterns using pattern attribution techniques such as Layer-wise relevance propagation (LRP). LRP interprets
neural network predictions by attributing relevance scores to individual input features, such as pixels in an
image?®%. Starting from the output of the network, relevance is traced backward, layer by layer, down to the
input while ensuring that the total relevance remains constant across layers. This process highlights which input
features are most influential in the prediction. We implemented the following LRP variants as shown in Fig. 6:

« Epsilon Rule: incorporating a small positive constant € to prevent division by small values when distributing
relevance proportionally to the weighted activations of neurons, reducing noise in the relevance attribution.
We sete = 0.1.
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o Alpha-Beta Rule: splitting relevance between positive (a) and negative (3) contributions, where « + 5 =1
, allowing flexible focus on supportive or opposing evidence. We set & = 1 and 8 = 0 so that only positive
contributions are highlighted.

o Gamma Epsilon Rule: enhancing relevance for positive contributions by applying a factor v > 0, to empha-
size important features. Further, we set € = 0.1 to avoid division by small values.

o Patter net: rather than attributing relevance to individual features based on activations or weights, Patternnet
focuses on specific patterns in the input data that are most aligned with the networKk’s learned features.

« Pattern attribution: relevance is attributed not just to the individual input features but to the patterns that are
learned by the network, highlighting their contribution to the final decision.

In Fig. 6, the regions marked in red have a significant influence on the network’s decision, while the regions
marked in blue have a lesser impact. From this figure, we can see that PatternAttribution offers a clearer
visualization of the features influencing the polyp characterization network’s predictions. Unlike other methods
that focus on pixel-level or activation-level relevance, PatternAttribution captures the relationship between input
patterns and the model’s decision-making process, providing a more intuitive and comprehensive understanding
of how the network made its decisions.

To enhance performance by incorporating polyp texture, we also applied neural style transfer (NST), a
technique effective in image stylization®**!. By leveraging Gram matrices from different convolutional layers,
we captured a stationary, multi-scale representation of texture through filter response correlations, independent
of global image arrangement. Since neoplastic and non-neoplastic polyps exhibit distinct textures, this texture-
based information supplemented the VGG16 classification, utilizing Gram matrix outputs as inner products of
vectorized feature maps across layers.

Discussion and conclusions

The Danish National Institute of Health’s Technology Assessment Board recently decided against recommending
AT for colonoscopy in diagnosing neoplastic disease. Their decision was based on two main reasons: insufficient
evidence, with only a meta-analysis of two trials from the same authors sponsored by the manufacturer, and
outdated clinical guidelines that require the removal of all polyps, including many insignificant ones. Current
guidelines mandate the removal of all colorectal polyps, which means AT’s ability to detect even insignificant
polyps would increase the treatment burden on patients and the healthcare sector. Despite growing interest in
Al solutions in radiology, the Danish Treatment Council’s decision highlights the healthcare sector’s unreadiness
to adopt Al for gastrointestinal disorder detection. This is due to the lack of robust, generalizable models in
gastroenterology, unlike in radiology where extensive public databases exist, and the complexity of Al-based
radiology reports that provide detailed diagnostic information.

Clinical trials like CFC2015 and initiatives in NHS Scotland (ScotCap)*? and NHS England*? to implement
colon capsule endoscopy in primary care will increase data availability. Additionally, research like this offers AI-
based solutions comparable to those in radiology, bridging the gap in AI deployment between gastroenterology
and radiology. The goal is to develop algorithms that generate comprehensive patient reports, similar to those in
other clinical fields where Al is more established.

To achieve this goal, each algorithm (Fig. 1) must perform reliably. CCE videos are a sequence of images
that are sampled at a variable frequency. The main difference between still-image analysis and video analysis is
that the temporal information carried by the video, i.e., order in the sequence of images is partially discarded
during still-image analysis. While some tasks such as tracking the path of the endoscopic capsule (localization
of important findings) based on feature point tracking require temporal information of the video, other tasks
such as polyp recognition, characterization or size estimation do not necessarily benefit from the inclusion of the
temporal information. We reported these findings in one of our previous studies'? where the performance of the
AT algorithms on both still image and video analysis were similar.

The recognition network has shown exceptional sensitivity, specificity, and NPV, making it ready for external
validation with over 3000 new CCE videos from the ScotCap trial. For each patient, the network will identify
candidate images with polyps and other significant findings. Inclusion of XAI techniques such as heat map,
CartoonX, Pixel RDE and GradCam explanations enhances both interpretability and trust in algorithm’s
decisions. This is particularly important for misclassified cases, and those such as the one shown in Fig. 4
(second row). Despite correctly classifying the image as one containing polyp, the DNN based its decision partly
on regions that feature normal mucosa.

The size estimation algorithm’s first component uses the segmentation results from AID-U-Net(2,2). This
network outperformed UNet and UNet++ and matched UNetResNet's 84% accuracy, despite having fewer
parameters. The second component is a Gaussian SVM-based regression estimator that maps CCE findings to
histopathology sizes. Our results showed a systematic overestimation by CCE, with a 6 mm size estimation error
(RMSE) compared to histopathology.

Several studies have shown that CCE often overestimates polyp sizes compared to freshly retrieved
(OC) and formalin-fixed (histopathology) polyps, especially for polyps smaller than 6 or 10 mm!®!”. This
discrepancy between CCE and OC is due to differences in morphological assessment, with polyps appearing
more “pedunculated” in CCE and more “flat” in OC, likely due to colon inflation during OC?*. The 6 mm size
estimation error (RMSE) between CCE and histopathology is partly due to a small dataset, which will improve
with more data. Switching from a regression-based to a classification-based size estimator, dividing sizes into
four classes (< 6 mm, 7mm < --- < 10mm, 10mm < --- < 20mm, and > 20 mm) as shown in Fig. 7, can
reduce patient classification uncertainty. However, there still remains a gap between the performance of our size
estimation algorithm and Al-assisted colonoscopy>.
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Fig. 7. Confusion matrix of estimated polyp size categorized in four classes (size < 6 mm,
7mm < size < 10mm, 10 mm < size < 20 mm, and size > 20 mm) for CCE versus HP.

Knowing the exact location of a polyp is very important for the follow-up colonoscopy. In one of our previous
studies'!, we developed a novel localization technique using feature point tracking that addressed the issue.
However, this algorithm required a considerable amount of time (in order of hours) to run and to reconstruct the
path that the capsule has taken through the GI tract. Knowing the precise location of a polyp instantly using CCE
videos remains an open challenge, and therefore, we provided an alternative solution. By detecting anatomical
landmarks such as flexures, we are capable of reporting the approximate location of polyps, i.e., ascending,
transverse or descending colon and guide the colonsocopist to the resection site.

The two strategies for the characterization algorithm-training a VGG16 network and using neural style
transfer for texture analysis-have been effective. Inclusion of layer-wise relevance propagation-based XAI to
better capture the important regions of the image, by attributing relevance scores to individual input features,
has been effective. Despite clear advantage of PatternAttribution over other LRP-based algorithms, it can be
observed in Fig. 6 that in one case (top middle), the network highlighted regions that feature normal mucosa.
We anticipate that increasing the number of images and including larger polyps will improve the algorithm’s
performance. Analyzing texture information of segmented polyps and surrounding tissue will help quantify
vascularity, aiding in distinguishing between neoplastic and non-neoplastic classes.

While we are externally validating our algorithms with ScotCap data, improving their performance remains a
priority. Annotating data and achieving interobserver and intraobserver agreement in CCE and OC evaluations
require hybrid active learning approaches. Strategies like Self Supervised Learning (SSL), Balance Exploration
and Exploitation (BEE) and conformal prediction (CP) can reduce the number of samples needed by querying
the teacher network for labels. Future work includes completing all algorithms, external validation with ScotCap
data, and enhancing algorithm performance. We also plan to adopt radiology workflow solutions, such as PACS
and DICOM, and transfer CCE-generated non-DICOM images to cloud-based PACS for real-time analysis,
report generation, and sharing with external medical professionals.

Data availability
The data used in this article is part of the cfc2015 trial’s outcome, which belongs to the “Odense University Hos-
pital (OUH)”. The request to access the data, or part of it should be made to Prof. Gunnar Baatrup.
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