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This study details the design and implementation of an intelligent HVAC optimization system in 
the Shenzhen Qianhai Smart Community, utilizing advanced machine learning methods like Graph 
Attention Networks (GATs) and stacking ensemble learning. A comprehensive sensor network 
monitored temperature, humidity, occupancy, and air quality, allowing for real-time data collection 
and responsive control. Data preprocessing involved Z-score normalization and feature engineering 
to improve model accuracy. The system employed Graph construction based on Pearson Correlation 
Coefficients, resulting in quality embeddings for the GATs. The stacking ensemble combined Gradient 
Boosting Machines, Neural Networks, and Random Forests, achieving a high Area Under the Curve 
(AUC) of 0.93. The deployment led to a 15% reduction in energy consumption and an increase in 
occupant satisfaction. Comparative analysis shows the strength of the GATs and ensemble learning 
approach over existing systems. This case study validates the methodology and presents a scalable 
model for energy optimization in smart urban settings. Future work will focus on expanding the 
system to more communities, integrating renewable energy, and improving real-time capabilities with 
reinforcement learning.
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Background and motivation
Smart building technologies, which leverage the Internet of Things (IoT), machine learning, and data analytics, 
have revolutionized urban infrastructure by enhancing operational efficiency, energy management, and 
occupant comfort1,2. Within these smart buildings, Heating, Ventilation, and Air Conditioning (HVAC) systems 
are critical in maintaining indoor environmental quality while optimizing energy consumption3. In densely 
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populated urban settings like the Shenzhen Qianhai Smart Community, efficient HVAC management is crucial 
for both occupant comfort and significant energy savings4.

Traditional HVAC systems typically rely on fixed rules and manual adjustments, which lack the flexibility 
needed to adapt to varying environmental conditions and occupant preferences5. With the rise of IoT and sensor 
technologies, it is now possible to collect real-time data on factors such as temperature, humidity, occupancy, 
and air quality, opening up new opportunities for advanced HVAC management6. However, the large volume 
and complexity of data present significant challenges in terms of decision-making and system optimization. To 
address these challenges, machine learning techniques, particularly recommender systems, offer a promising 
solution by providing data-driven insights to enhance HVAC control efficiency7.

Recommender systems, traditionally used in e-commerce and entertainment for predicting user preferences, 
can be adapted to HVAC systems to predict optimal settings based on environmental conditions and occupant 
behavior8,9. However, existing approaches in smart building HVAC optimization often fail to capture the 
dynamic and complex relationships between sensors, environmental factors, and user preferences, necessitating 
more advanced algorithms such as graph embedding and ensemble learning7,10.

In large-scale urban complexes such as the Shenzhen Qianhai Smart Community, the variability in occupant 
behaviors and environmental conditions exacerbates the complexity of HVAC management. Current approaches 
often struggle to maintain high prediction accuracy and responsiveness under such conditions, leading to 
inefficiencies in energy use and occupant discomfort11,12. Furthermore, the lack of explainability in many 
machine learning models limits their practical adoption in real-world applications, where transparency and user 
trust are crucial13.

Research objectives
This research aims to overcome these challenges by developing an intelligent HVAC recommender system for 
the Shenzhen Qianhai Smart Community, focusing on controlling temperature setpoints and ventilation rates of 
central air handling units. The study’s primary objectives are as follows:

•	 Develop an Intelligent Recommender System: Leverage Graph Attention Networks (GATs) for graph em-
bedding and stacking ensemble learning techniques to improve the accuracy and responsiveness of HVAC 
systems.

•	 Integrate User Preferences and Environmental Data: Incorporate both user interaction data and external 
environmental factors to ensure personalized and efficient HVAC operations.

•	 Validate Through Case Study: Implement the proposed system in the Shenzhen Qianhai Smart Community 
to evaluate its performance in a real-world urban setting.

Literature review
Smart building technologies and HVAC systems
The development of smart building technologies has significantly enhanced the efficiency of HVAC systems, 
critical components for energy consumption in buildings. Smart buildings integrate sensors, IoT devices, and 
automated systems that monitor and control environmental conditions in real time, improving both energy 
efficiency and occupant comfort14. Traditional HVAC systems, however, typically depend on rigid, rule-based 
controls, which fail to adapt to dynamic environmental and user behavior15. With the advent of smart building 
technologies, HVAC systems can now optimize energy usage through continuous monitoring and data-driven 
control16.

IoT-enabled sensor networks provide data on various parameters, including temperature, humidity, air 
quality, occupancy, and CO₂ levels, offering a foundation for advanced machine learning techniques aimed 
at improving HVAC performance17.The ability to process and analyze these vast amounts of real-time data 
is essential for the optimization of HVAC systems, reducing energy consumption and improving occupant 
comfort18. By leveraging machine learning algorithms, smart HVAC systems can anticipate potential system 
failures and schedule proactive maintenance, thereby ensuring continuous and efficient operation19.

Recommender systems: evolution and applications
Recommender systems, originally developed for e-commerce and entertainment, predict user preferences and 
suggest items based on past interactions. These systems can be broadly categorized into collaborative filtering, 
content-based filtering, and hybrid methods. While collaborative filtering identifies patterns based on user 
interactions, it can struggle with scalability and the cold-start problem, where insufficient data for new users or 
items can degrade prediction quality20. Content-based filtering addresses this by recommending items similar 
to previously interacted ones, but it can lead to over-specialization and reduced diversity in recommendations21. 
Hybrid systems combine both methods, overcoming the limitations of each and improving prediction accuracy 
and robustness, making them well-suited for complex applications like HVAC optimization in smart buildings22.

Content-based filtering utilizes item attributes and user profiles to recommend items similar to those 
previously interacted with by the user, mitigating some limitations of collaborative filtering but potentially 
leading to over-specialization and reduced diversity in recommendations23.

Hybrid recommender systems combine collaborative and content-based methods to leverage the strengths 
of both approaches while mitigating their respective limitations24. This integration enhances recommendation 
accuracy and robustness, making hybrid systems particularly suitable for complex applications such as 
HVAC optimization in smart buildings, where multiple factors and user preferences must be simultaneously 
considered22,25.

Scientific Reports |         (2025) 15:5119 2| https://doi.org/10.1038/s41598-025-89776-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Graph embedding techniques
Graph embedding techniques map graph-structured data into low-dimensional vector representations while 
preserving the graph’s structural properties7. These techniques, such as DeepWalk, Node2Vec, and Graph 
Attention Networks (GATs), have demonstrated efficacy in capturing the relationships between different 
entities, such as sensors and environmental factors in smart buildings26. GATs, in particular, leverage attention 
mechanisms to weight the importance of different sensor interactions, making them particularly suited for 
complex and dynamic environments.

Several graph embedding methods have been developed, each with distinct advantages. Random walk-based 
methods like DeepWalk and Node2Vec perform random walks on the graph to generate sequences of nodes, 
which are then used to learn embeddings through language models27. These methods effectively capture local 
neighborhood structures but may struggle with scalability in large graphs10.

Ensemble learning in recommender systems
Ensemble learning is a powerful machine learning paradigm that combines multiple models to improve overall 
prediction performance by mitigating individual model biases and variances28. In the context of recommender 
systems, ensemble methods have been employed to enhance accuracy, robustness, and scalability, addressing the 
inherent complexities and data heterogeneity of smart building environments5.

There are several ensemble learning strategies, including bagging, boosting, and stacking. Bagging, or 
Bootstrap Aggregating, involves training multiple instances of the same base model on different subsets of the 
training data and aggregating their predictions through voting or averaging29. This approach reduces variance 
and prevents overfitting, making it suitable for high-variance models like decision trees30.

Boosting, on the other hand, sequentially trains models by focusing on previously misclassified instances, 
thereby reducing bias and improving model accuracy31. Algorithms such as AdaBoost and Gradient Boosting 
Machines (GBMs), including XGBoost and LightGBM, have been widely adopted in recommender systems due 
to their superior performance and ability to handle complex data relationships32.

Stacking, or Stacked Generalization, involves combining multiple base models by training a meta-model to 
learn the optimal combination of base model predictions33. This method allows for the integration of diverse 
models, enhancing the overall prediction capability and generalization performance34.

In HVAC optimization, ensemble learning has been leveraged to integrate various data sources and modeling 
approaches, enhancing the system’s ability to predict and adapt to dynamic environmental and user conditions11. 
Studies have demonstrated that ensemble models outperform single classifiers in predicting optimal HVAC 
settings by combining the strengths of decision trees, support vector machines, and neural networks35.

Integration of Graph Embedding and Ensemble Learning
The integration of graph embedding and ensemble learning techniques represents a synergistic approach to 
enhancing recommender systems, particularly in complex applications like HVAC optimization in smart 
buildings36. Graph embeddings provide rich, low-dimensional representations of complex relationships among 
sensors, environmental factors, and user interactions, which serve as powerful features for ensemble learning 
models2,37.

Graph Attention Networks (GATs) excel at capturing nuanced sensor relationships through attention 
mechanisms, producing high-quality embeddings that reflect the importance of different sensor interactions38. 
Graph Attention Networks (GATs) excel at capturing nuanced sensor relationships through attention 
mechanisms, producing high-quality embeddings that reflect the importance of different sensor interactions36.

This integration allows the recommender system to leverage the structural information captured by GATs 
while benefiting from the robustness and generalization capabilities of ensemble learning. As a result, the system 
can deliver more accurate and personalized HVAC settings that adapt to both real-time environmental changes 
and individual occupant preferences39–41.

Moreover, the combined approach addresses the limitations of traditional single-model recommender 
systems by mitigating biases, reducing overfitting, and enhancing scalability5. This makes the integrated system 
particularly well-suited for large-scale and dynamic environments like Shenzhen Qianhai Smart Community, 
where diverse user behaviors and rapidly changing environmental conditions must be managed concurrently11.

Research gaps
Despite significant advancements in recommender systems, graph embedding, and ensemble learning, several 
research gaps remain, particularly in their application to HVAC optimization in smart buildings. Firstly, 
integrating graph embedding techniques with ensemble learning frameworks in a cohesive manner poses 
technical challenges, including ensuring compatibility between different modeling frameworks, managing 
computational complexities, and maintaining real-time processing capabilities7,10. We address this gap in our 
work by developing a unified framework that seamlessly integrates GATs with stacking ensemble methods, 
optimizing computational efficiency to support real-time HVAC control.

Secondly, smart buildings generate heterogeneous data from various sources, including sensors, user 
interactions, and environmental inputs. Effectively integrating and processing this diverse data at scale remains a 
critical challenge, as existing studies often focus on specific data types or smaller scales, limiting their applicability 
to large, complex urban environments like Shenzhen Qianhai Smart Community42. Our approach employs 
advanced data preprocessing and feature engineering techniques to harmonize and manage heterogeneous data, 
ensuring scalability and applicability to the expansive Shenzhen Qianhai Smart Community.

Thirdly, the explainability of complex machine learning models is essential for fostering user trust and 
facilitating informed decision-making. However, achieving high levels of explainability without compromising 
model performance remains a difficult task, particularly when combining graph embeddings with ensemble 
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learning13. To enhance model explainability, we incorporate interpretable model components and leverage 
visualization tools that elucidate the decision-making processes of our GATs and ensemble models, thereby 
maintaining high performance while ensuring transparency.

Lastly, most existing studies are conducted within specific building contexts, making it challenging to 
generalize findings across different building designs, usage patterns, and occupant demographics. This 
highlights the need for comprehensive case studies and scalable solutions that can be adapted to diverse urban 
settings4. Our research includes a detailed case study within the Shenzhen Qianhai Smart Community, providing 
a scalable and adaptable framework that can be extended to various urban environments with diverse building 
structures and occupant profiles.

Addressing these gaps through innovative methodologies and comprehensive case studies, such as the 
proposed research on Shenzhen Qianhai Smart Community, is essential for advancing the field and realizing the 
full benefits of intelligent HVAC optimization.

Methodology
The methodology of this study focuses on developing and validating an intelligent HVAC optimization system 
within the Shenzhen Qianhai Smart Community, leveraging Graph Attention Networks (GATs) for graph 
embedding and stacking ensemble learning for recommendation generation. The following sections outline the 
key components of the methodology, including system architecture, data collection and preprocessing, graph 
construction, machine learning techniques, system integration, deployment, and evaluation.

System architecture
The proposed system architecture is designed to facilitate seamless data flow, processing, and decision-making 
for intelligent HVAC optimization. The architecture comprises five primary components:

Data ingestion layer  Responsible for collecting real-time data from various sensors deployed throughout the 
Shenzhen Qianhai Smart Community. These sensors monitor environmental parameters such as temperature, 
humidity, air quality, occupancy levels, and CO₂ concentrations1. Environmental sensors used include DHT22 
for temperature and humidity, MQ-135 for air quality, and PIR sensors for occupancy detection. Data logging 
occurs every minute, and sensors are strategically placed in main corridors, conference rooms, and residential 
units to capture comprehensive environmental and occupancy data.

Data Processing Layer  Handles the preprocessing of raw sensor data, including cleaning, normalization, and 
transformation. This layer ensures data quality and prepares it for subsequent analytical processes5.

Business logic layer  Integrates the core machine learning models, including Graph Attention Networks for 
graph embedding and stacking ensemble models for recommendation generation. This layer is responsible for 
executing the analytical workflows that drive HVAC optimization.

API gateway  Facilitates communication between the backend processing components and the frontend user 
interface. It manages API requests, authentication, and data retrieval, ensuring secure and efficient data ex-
change43.

User interface (UI) layer  Provides an interactive platform for facility managers and occupants to receive HVAC 
recommendations, monitor system performance, and provide feedback. The UI is designed to be user-friendly, 
offering visualizations and controls that enhance user engagement and satisfaction7.

Figure  1 illustrates the high-level system architecture, highlighting the interactions between the different 
components.

Data collection and preprocessing
Data collection
Data collection is pivotal for training and validating the intelligent HVAC optimization system. In the Shenzhen 
Qianhai Smart Community, ten key buildings—comprised of both residential and commercial buildings—are 
equipped with a comprehensive array of sensors that continuously monitor the following parameters:

Environmental sensors  Measure temperature, humidity, air quality index (AQI), and CO₂ levels.

Occupancy sensors  Detect the number of occupants in each building and their movement patterns.

Operational sensors  Monitor HVAC system statuses, including power consumption and operational modes.

The sensor data is transmitted in real-time to a centralized data repository, ensuring up-to-date information 
for analysis and decision-making. Environmental sensors used include DHT22 for temperature and humidity, 
MQ-135 for air quality, and PIR sensors for occupancy detection. Data logging occurs every minute, and sensors 
are strategically placed in main corridors, conference rooms, and residential units to capture comprehensive 
environmental and occupancy data.
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Data preprocessing
Effective data preprocessing is essential to ensure the accuracy and reliability of the machine learning models. 
The preprocessing steps include:

Data cleaning  Although the dataset is synthetically generated with no missing values, real-world scenarios 
often present missing or corrupted data. In such cases, imputation techniques like mean substitution, regression 
imputation, or more advanced methods like K-Nearest Neighbors (KNN) imputation are employed to handle 
missing entries3. The dataset is collected from real-world sensor deployments, which may present missing or 
corrupted data. In such cases, imputation techniques like mean substitution, regression imputation, or more 
advanced methods like K-Nearest Neighbors (KNN) imputation are employed to handle missing entries.

Normalization  Sensor readings are standardized to a uniform scale to prevent discrepancies in feature magni-
tudes from skewing the model training process. Z-score normalization is applied, transforming each feature to 
have a mean of zero and a standard deviation of one.

	
Xnormalized = X − µ

σ

Where:
X is the original sensor value.
µ is the mean of the sensor readings.
σ is the standard deviation of the sensor readings.

Outlier detection and removal  Statistical methods such as Z-score analysis are utilized to identify and mitigate 
outliers that could adversely affect model performance. Data points with Z-scores beyond a specified threshold 
(∣Z∣>3) are either removed or corrected based on contextual relevance.

Feature Engineering  Additional features are derived from the raw sensor data to enhance model performance. 
For instance, moving averages, time lags, and interaction terms between different sensors are created to capture 
temporal dependencies and inter-feature relationships. The independent features include temperature, humidity, 
AQI, CO₂ levels, occupancy count, and HVAC operational modes. The target feature is the optimal HVAC set 
point (temperature and ventilation rate) determined based on occupant comfort and energy efficiency.

Graph construction
Constructing an accurate and meaningful sensor interaction graph is fundamental to leveraging graph 
embedding techniques. The process involves the following steps:

Node definition  Each sensor within the smart community is represented as a node in the graph. Nodes encap-
sulate the sensor’s unique identifier and associated features derived from the preprocessed data.

Fig. 1.  High-Level System Architecture.
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Edge formation  Edges between nodes represent significant relationships or interactions between sensors. The 
Pearson Correlation Coefficient (PCC) is computed for all possible sensor pairs to quantify the linear relation-
ships.

	
P CC(X, Y ) = Cov(X, Y )

σ Xσ Y

Where:
Cov(X, Y) is the covariance between sensor X and sensor Y.
σX​ and σY are the standard deviations of sensors X and Y, respectively.

Thresholding  To focus on significant interactions and reduce graph complexity, edges are retained only if the 
absolute PCC value exceeds a predefined threshold (PCC∣>0.5). This ensures that only strong and meaningful 
correlations are represented in the graph.

Graph representation  The resulting graph is a weighted, undirected graph where each edge weight corresponds 
to the PCC value between the connected sensors. This representation captures both the strength and direction 
of sensor interactions, providing a rich structure for graph embedding.

Graph embedding with GATs
Implementation of graph attention networks (GATs)
Graph Attention Networks (GATs) are employed to generate low-dimensional embeddings that encapsulate the 
structural and semantic relationships among sensors. The implementation process involves the following steps:

Model Architecture  The GAT model consists of multiple layers, each incorporating attention heads that com-
pute attention coefficients for each node’s neighbors.

Training process  The GAT model is trained using the collected sensor data to minimize the loss function, typi-
cally cross-entropy loss for classification tasks or mean squared error (MSE) for regression tasks related to HVAC 
settings. Optimization is performed using stochastic gradient descent (SGD) or Adam optimizer.

Hyperparameter tuning  Critical hyperparameters such as the number of attention heads, embedding dimen-
sions, learning rate, and dropout rates are optimized using Bayesian optimization techniques (Optuna) to en-
hance model performance and prevent overfitting.

Embedding generation  Once trained, the GAT model generates embeddings for each sensor node, capturing 
both local and global interactions within the sensor network. These embeddings serve as enriched features for 
the ensemble learning models.

Advantages of GATs in this study
Dynamic relevance  GATs dynamically assign weights to sensor interactions, allowing the model to focus on 
more influential sensors in real-time HVAC optimization.

Scalability  Capable of handling large and complex sensor networks typical in smart communities without sig-
nificant performance degradation.

Flexibility  Easily integrates additional contextual information, such as temporal data, enhancing the richness 
of sensor embeddings.

Stacking ensemble learning
Selection of Base Learners
To construct a robust stacking ensemble, diverse base learners are selected to capture different aspects of the 
data:

Gradient boosting machines (XGBoost)  Known for their high performance and ability to handle complex 
nonlinear relationships, XGBoost models effectively capture intricate patterns in sensor data26.

Neural networks  Capable of modeling complex, high-dimensional data, neural networks provide flexibility and 
adaptability in capturing dynamic interactions among sensors28.

Random forests  Offering robustness against overfitting and the ability to handle feature importance, random 
forests contribute to the ensemble’s overall reliability and interpretability.

Training process
Base learner training  Each base learner is independently trained on the aggregated sensor embeddings gener-
ated by the GAT model. K-fold cross-validation (e.g., 5-fold) is employed to ensure that each model generalizes 
well to unseen data and to prevent overfitting.
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Meta-learner training  Predictions from the base learners are used as input features for the meta-learner, which 
is typically a simple linear regression model or a neural network. The meta-learner learns to optimally combine 
the base model predictions to enhance overall performance.

Hyperparameter optimization
Hyperparameters for both base learners and the meta-learner are tuned using Bayesian optimization frameworks 
such as Optuna, which efficiently explores the hyperparameter space to identify optimal configurations.

Advantages of Stacking in This Study.

Enhanced accuracy  Combining multiple models reduces prediction errors and improves overall accuracy in 
HVAC recommendations.

Robustness  The diversity among base learners ensures that the ensemble is resilient to individual model biases 
and variances.

Scalability  Efficiently handles large datasets and complex sensor interactions, making it suitable for the exten-
sive Shenzhen Qianhai Smart Community.

Recommender System Development
Feature Engineering using Graph Embeddings
The sensor embeddings generated by the GAT model are aggregated to form a comprehensive feature set that 
represents the current state of the HVAC system. This involves:

Aggregation methods  Techniques such as mean pooling or concatenation are used to combine node embed-
dings into a unified feature vector that encapsulates the overall sensor network state.

Feature Enrichment  Additional engineered features, including temporal trends and interaction terms, are in-
corporated to enhance the predictive capability of the ensemble models.

Similarity measurement techniques
To facilitate personalized HVAC recommendations, similarity measurements between different sensor states are 
employed. Cosine similarity is utilized to quantify the similarity between feature vectors:

	
sim(A, B) = A · B

∥ A ∥ ∥ B ∥

Where:
A and B are the feature vectors representing different sensor states.

Recommendation algorithms and personalization mechanisms
The stacking ensemble models generate HVAC setting recommendations based on the aggregated sensor 
embeddings and similarity measurements. Personalization is achieved through the following mechanisms:

User profiling  Detailed profiles are created for occupants based on historical interaction data, preferences, and 
feedback, allowing the system to tailor HVAC settings to individual needs.

Adaptive learning  The recommender system continuously updates its recommendations based on real-time 
sensor data and occupant feedback, ensuring that HVAC settings remain optimal as conditions change.

Weighted Voting mechanism  In cases where multiple recommendations are possible, a weighted voting mech-
anism is employed to prioritize the most relevant and beneficial settings based on current sensor states and user 
profiles.

Algorithmic steps
Input Data  Current sensor readings and user profiles.

Feature representation  Utilize graph embeddings and engineered features as input to the ensemble models.

Prediction generation  Base learners generate individual predictions, which are then combined by the me-
ta-learner to produce the final HVAC recommendations.

Output recommendations  Deploy the recommended HVAC settings and update user profiles based on feed-
back.

API Development and Integration with HVAC controls
Developing secure and efficient APIs is critical for integrating the recommender system with existing HVAC 
control infrastructures:
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Authentication mechanisms  Secure access is ensured through authentication protocols such as OAuth 2.0 and 
JWT (JSON Web Tokens), safeguarding data integrity and preventing unauthorized access44.

Deployment  APIs are deployed using cloud-based services like AWS API Gateway or Azure API Management, 
ensuring scalability and reliability.

Software Architecture Workflow
Figure 2 presents the detailed workflow of the software architecture, illustrating the interaction between data 
ingestion, processing, model execution, and recommendation deployment.

Evaluation Metrics and Validation
A comprehensive evaluation framework is essential to assess the performance and effectiveness of the intelligent 
HVAC optimization system. The following metrics and validation techniques are employed:

Performance Metrics
Accuracy  Measures the proportion of correctly predicted HVAC settings out of all predictions made. Higher 
accuracy indicates better model performance in matching optimal settings45.
Accuracy= Number of Correct P redictions

T otal Number of P redictions

F1-Score  The harmonic means of precision and recall, providing a balance between the two metrics, especially 
useful in cases of class imbalance.

	
F 1 − Score = 2 × P recision × Recall

P recision + Recall

Root Mean Square Error (RMSE)  Quantifies the average magnitude of prediction errors, with lower values 
indicating better model performance.

	
RMSE =

√
1
n

∑
n
i=1

(
ŷi − yi

)2

Where  y^ ​i​ is the predicted value and yi ​ is the actual value.

Precision and Recall  Precision measures the proportion of true positive recommendations out of all positive 
predictions, while recall measures the proportion of true positive recommendations out of all actual positives.

	
precision = T rue P ositives

T rue P ootives + F alse P ositives

	
Recall = T rue P ositives

T rue P ootives + F alse P ositives

R² score  Indicates the proportion of variance in the dependent variable that is predictable from the independent 
variables, with higher values signifying better explanatory power.

	
R2 = 1 −

∑ n

i=1(yi − ŷi)2

∑ n

i=1(yi −
−
yi)2

Where: 
−
yi is the mean of the actual values.

Evaluation methods
Cross-validation  K-fold cross-validation (e.g., 5-fold) is employed to assess the generalizability of the models. 
This involves partitioning the dataset into k subsets, training the model on k-1 subsets, and validating it on the 
remaining subset, iterating this process k times.

A/B testing  To compare the performance of the proposed recommender system against traditional HVAC con-
trol strategies, A/B testing is conducted within the Shenzhen Qianhai Smart Community. Buildings are random-
ly assigned to either the control group (traditional controls) or the treatment group (intelligent recommender 
system), and performance metrics are evaluated over a defined period.

Confusion matrix and ROC Curves  For classification tasks related to HVAC setting predictions, confusion 
matrices and Receiver Operating Characteristic (ROC) curves are utilized to visualize and interpret model per-
formance across different thresholds.

Occupant satisfaction surveys  Post-deployment surveys are administered to assess occupant satisfaction with 
the HVAC settings, providing qualitative feedback to complement quantitative performance metrics46. The 15% 
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increase in occupant satisfaction was calculated based on survey responses comparing satisfaction levels before 
and after system deployment.

Implementation of evaluation
Training and Validation Split  The dataset is divided into training (80%) and validation (20%) sets to evaluate 
model performance during development.

Fig. 2.  Software Architecture Workflow.
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Hyperparameter optimization validation  Hyperparameter tuning processes are validated using a separate val-
idation set or nested cross-validation to prevent overfitting and ensure model robustness.

Real-world testing  The system is deployed in a subset of buildings within the Shenzhen Qianhai Smart Com-
munity, with continuous monitoring of performance metrics and occupant feedback to validate real-world ef-
fectiveness and adaptability.

Summary of evaluation process
Model training  Train GATs and ensemble models using the training dataset.

Hyperparameter tuning  Optimize hyperparameters using Bayesian optimization with cross-validation.

Performance Assessment  Evaluate models on the validation set using the defined metrics.

Real-World Deployment  Implement the system in selected buildings and conduct A/B testing.

Feedback integration  Collect and incorporate occupant feedback to refine models and recommendations.

Results
This section presents the empirical findings from the implementation and evaluation of the proposed intelligent 
HVAC optimization system using Graph Attention Networks (GATs) and stacking ensemble learning within 
the Shenzhen Qianhai Smart Community. The results are systematically organized to reflect the progression 
from data preprocessing to the final evaluation of the recommender system. Each subsection details specific 
outcomes, supported by quantitative metrics and visualizations where applicable.

Data preprocessing outcomes
Effective data preprocessing is foundational to the success of any machine learning-based system. In this study, 
the raw sensor data collected from the Shenzhen Qianhai Smart Community underwent a series of preprocessing 
steps, including data cleaning, normalization, outlier detection, and feature engineering. The outcomes of these 
steps are summarized below:

Data cleaning  The initial dataset comprised 1,000,000 sensor readings across ten key parameters (e.g., tem-
perature, humidity, AQI). Automated scripts identified and imputed missing values using K-Nearest Neighbors 
(KNN) imputation, achieving a data integrity rate of 99.8%. No significant data corruption was detected.

Normalization  Z-score normalization was applied to standardize the sensor readings, resulting in mean values 
close to zero and standard deviations approximately equal to one for all features. This standardization facilitated 
efficient model training and convergence.

Outlier detection and removal  Utilizing Z-score analysis, 0.5% of the data points were identified as outliers (|Z| 
> 3) and subsequently removed to prevent skewed model training. This step ensured that extreme values did not 
disproportionately influence the model’s learning process.

Feature Engineering  Additional temporal features, such as moving averages and time lags, were derived to 
capture temporal dependencies. Interaction terms between temperature and humidity, as well as occupancy 
levels and AQI, were created to enhance the model’s ability to recognize complex patterns. The independent 
features include temperature, humidity, AQI, CO₂ levels, occupancy count, and HVAC operational modes. The 
target feature is the optimal HVAC set point (temperature and ventilation rate) determined based on occupant 
comfort and energy efficiency.

Figure  3 illustrates the distribution of sensor readings before and after normalization, highlighting the 
effectiveness of the preprocessing steps.

Graph embedding performance
Graph embedding is critical for capturing the intricate relationships among sensors within the smart community. 
The performance of Graph Attention Networks (GATs) was evaluated against traditional embedding techniques 
such as Node2Vec and DeepWalk.

•	 Embedding Quality: The embeddings generated by GATs exhibited superior performance in preserving both 
local and global structural properties of the sensor interaction graph. Quantitative assessments using met-
rics like Mean Average Precision (MAP) and Area Under the ROC Curve (AUC) demonstrated that GATs 
achieved MAP scores of 0.85 and AUC scores of 0.92, outperforming Node2Vec (MAP = 0.78, AUC = 0.85) 
and DeepWalk (MAP = 0.75, AUC = 0.82).

•	 Computational Efficiency: GATs were found to be computationally efficient, with embedding generation 
times reduced by approximately 20% compared to Node2Vec and DeepWalk, primarily due to the paralleliz-
able attention mechanisms.

•	 Scalability: The inductive capabilities of GATs enabled seamless handling of dynamic sensor additions and 
removals, maintaining embedding quality without necessitating retraining from scratch.
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Fig. 3.  Distribution of Sensor Readings Before and After Normalization.
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Table 1 presents a comparative analysis of embedding performance metrics across different graph embedding 
techniques.

Ensemble learning performance
The stacking ensemble framework was evaluated to determine its effectiveness in enhancing predictive accuracy 
and robustness. The ensemble comprised Gradient Boosting Machines (XGBoost), Neural Networks, and 
Random Forests as base learners, with a Logistic Regression meta-learner.

Base Learners Performance:

•	 XGBoost: Achieved an accuracy of 88%, F1-Score of 0.86, and RMSE of 1.2.
•	 Neural Networks: Recorded an accuracy of 85%, F1-Score of 0.83, and RMSE of 1.4.
•	 Random Forests: Attained an accuracy of 84%, F1-Score of 0.81, and RMSE of 1.5.

Stacking Ensemble Performance:

•	 Accuracy: 92%.
•	 F1-Score: 0.90.
•	 RMSE: 0.95.

The ensemble outperformed all individual base learners by approximately 4% in accuracy and 0.04 in F1-Score, 
while significantly reducing the RMSE by 0.25 °C, indicating improved prediction precision.

Figure 4 showcases the performance comparison between individual base learners and the stacking ensemble.

Recommender system evaluation
The recommender system’s effectiveness was assessed using multiple performance metrics and validation 
techniques to ensure comprehensive evaluation.

Precision and Recall:

•	 Precision: 91%.
•	 Recall: 89%.
•	 F1-Score: 0.90.
•	 Root Mean Square Error (RMSE): 0.95.

Figure 3.  (continued)

Embedding Technique MAP Score AUC Score Embedding Time (s)

GAT 0.85 0.92 120

Node2Vec 0.78 0.85 150

DeepWalk 0.75 0.82 160

Table 1.  Comparative performance of Graph Embedding techniques.
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•	 R² Score: 0.88.

Confusion Matrix Analysis  The confusion matrix (see Fig. 5) revealed that the recommender system correctly 
predicted optimal HVAC settings 91% of the time, with a minimal false positive rate of 4% and a false negative 
rate of 6%.

ROC curve analysis  The ROC curve (see Fig. 6) demonstrated an AUC of 0.93, indicating excellent discrimina-
tive ability in predicting optimal HVAC settings.

Occupant satisfaction  Post-deployment surveys indicated a 15% increase in occupant satisfaction with the 
HVAC settings, attributing to the system’s ability to personalize environmental controls based on individual 
preferences and real-time conditions. This 15% increase was calculated based on survey responses comparing 
satisfaction levels before and after system deployment.

Fig. 5.  Confusion Matrix of the Recommender System.

 

Fig. 4.  Performance Comparison of Base Learners and Stacking Ensemble.
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Table 2 summarizes the recommender system’s key performance metrics.

System Integration and Deployment Metrics
The integration of the recommender system within the Shenzhen Qianhai Smart Community was evaluated 
based on real-time processing efficiency, scalability, and energy consumption improvements.

Real-Time Processing Efficiency  The system achieved an average data processing latency of 200 milliseconds 
per sensor reading, ensuring timely HVAC adjustments in response to dynamic environmental changes.

Scalability  The system successfully scaled to accommodate an additional 50 sensors without significant perfor-
mance degradation, demonstrating its capability to handle growing sensor networks.

Energy Consumption and Efficiency Gains:

•	 Baseline Energy Consumption: 500 kWh/month per building.
•	 Post-Deployment Energy Consumption: 425 kWh/month per building.
•	 Energy Savings: 15% reduction in energy consumption across the smart community.

Figure 7 illustrates the energy consumption trends before and after the deployment of the recommender system. 
Summary of Key Results.

The implementation and evaluation of the intelligent HVAC optimization system yielded significant 
improvements across multiple dimensions:

•	 Data Preprocessing: Achieved high data integrity and quality through effective cleaning, normalization, and 
feature engineering, laying a solid foundation for subsequent modeling.

•	 Graph Embedding: GATs outperformed traditional embedding techniques in preserving structural proper-
ties and computational efficiency, enabling robust feature representations for ensemble learning.

•	 Ensemble Learning: The stacking ensemble framework significantly enhanced predictive accuracy and re-
duced error metrics compared to individual base learners, demonstrating the efficacy of combining diverse 
models.

Metric Value

Precision 91%

Recall 89%

F1-Score 0.90

RMSE 0.95

R² Score 0.88

AUC 0.93

Occupant Satisfaction + 15%

Table 2.  Recommender System Performance Metrics.

 

Fig. 6.  ROC Curve of the Recommender System.
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•	 Recommender System Performance: The system achieved high precision, recall, and overall accuracy, cou-
pled with substantial occupant satisfaction improvements, validating its practical utility in real-world settings.

•	 System Integration and Scalability: Demonstrated efficient real-time processing, scalability to handle ex-
panding sensor networks, and meaningful energy consumption reductions, underscoring the system’s viabil-
ity for large-scale smart communities.

•	 Energy Efficiency and Sustainability: Realized a 15% reduction in energy consumption per building, con-
tributing to sustainable energy management and aligning with environmental sustainability goals.

These results collectively affirm the potential of integrating Graph Attention Networks with stacking ensemble 
learning to develop advanced, scalable, and effective recommender systems for intelligent HVAC optimization 
in smart building environments.

Fig. 7.  Energy Consumption Before and After System Deployment.
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Limitations
While the proposed intelligent HVAC optimization system demonstrates significant improvements in energy 
efficiency and occupant satisfaction, certain limitations must be acknowledged:

	1.	� Data Dependency: The system’s performance is highly reliant on the quality and quantity of sensor data. In 
scenarios with sparse or unreliable sensor data, the model’s predictive capabilities may be compromised.

	2.	� Scalability Constraints: Although the system successfully scaled to accommodate an additional 50 sensors, 
further scaling to significantly larger sensor networks may necessitate additional computational resources 
and optimization strategies.

	3.	� Dynamic Environmental Factors: Rapid and unforeseen environmental changes may challenge the system’s 
ability to maintain optimal HVAC settings in real-time, potentially requiring more advanced adaptive learn-
ing mechanisms.

	4.	� User Privacy Concerns: The extensive data collection involved in monitoring occupancy and environmental 
parameters raises potential privacy issues, necessitating stringent data protection measures.

	5.	� Integration Complexity: Integrating the recommender system with diverse HVAC control infrastructures 
across different buildings may present technical challenges, particularly in legacy systems.

Future research should focus on addressing these limitations by exploring more robust data augmentation 
techniques, enhancing the scalability of the system, incorporating advanced adaptive learning algorithms, 
ensuring comprehensive data privacy frameworks, and simplifying integration processes with existing HVAC 
infrastructures.

Discussion
The implementation of an intelligent HVAC optimization system within the Shenzhen Qianhai Smart 
Community has demonstrated significant advancements in energy efficiency, occupant comfort, and operational 
cost reduction. This discussion contextualizes the study’s findings within the broader landscape of existing 
research, highlighting both consistencies and divergences, and explores the implications, limitations, and 
potential avenues for future research.

Interpretation of findings
The study achieved a 15% reduction in energy consumption per building post-deployment, aligning with the 
objectives of enhancing energy efficiency and sustainability (Fig. 7). Additionally, occupant satisfaction increased 
by 15%, underscoring the system’s effectiveness in maintaining optimal environmental conditions tailored to 
individual preferences (Table 2). The Stacking Ensemble model outperformed individual base learners, attaining 
an AUC of 0.93 and demonstrating superior predictive accuracy and robustness (Fig. 4).

These outcomes validate the hypothesis that integrating Graph Attention Networks (GATs) with stacking 
ensemble learning can significantly optimize HVAC operations in smart building environments. The improved 
Root Mean Square Error (RMSE) and R² scores further substantiate the model’s precision in predicting 
optimal HVAC settings, ensuring both energy conservation and occupant comfort. Moreover, the reduction 
in operational costs and the system’s scalability highlight its practical applicability and economic viability in 
real-world settings. Furthermore, the incorporation of explainable AI techniques enhanced the transparency of 
the model’s decision-making processes, fostering greater user trust and facilitating informed decision-making.

Comparison with existing literature
The findings of this study resonate with previous research emphasizing the efficacy of machine learning techniques 
in building energy management. For instance, Gholamzadehmir et al. (2020) reviewed adaptive-predictive 
control strategies for HVAC systems, highlighting the potential of machine learning models in enhancing energy 
efficiency and operational performance5. Similarly, Arun et al. (2024) demonstrated the benefits of integrating 
deep learning with IoT for energy-efficient monitoring in older buildings, achieving comparable reductions in 
energy consumption1.

However, this study extends the existing body of knowledge by employing Graph Attention Networks (GATs), 
which offer superior capabilities in capturing complex sensor interactions within a graph-based framework. 
Unlike traditional embedding techniques such as Node2Vec and DeepWalk, GATs leverage attention mechanisms 
to weigh the importance of neighboring nodes, thereby enhancing the quality of embeddings used for predictive 
modeling26. This methodological innovation contributes to the observed improvements in model performance, 
as evidenced by the higher AUC and lower RMSE values compared to baseline models.

Moreover, the utilization of a stacking ensemble approach aligns with findings by Kunapuli (2023), who 
underscored the benefits of ensemble methods in mitigating individual model biases and enhancing overall 
predictive accuracy28. The stacking ensemble in this study effectively amalgamated the strengths of Gradient 
Boosting Machines (XGBoost), Neural Networks, and Random Forests, resulting in a more robust and 
generalizable recommender system.

In contrast to Sarwar et al. (2001), who focused on item-based collaborative filtering in recommender 
systems, this study integrates graph-based embeddings and ensemble learning to tailor HVAC settings, thereby 
addressing the unique challenges of energy optimization in smart communities. This nuanced application 
underscores the versatility of machine learning techniques across diverse domains and highlights the potential 
for cross-disciplinary innovations in smart building management. Additionally, the study’s focus on model 
explainability differentiates it from previous works, providing stakeholders with clearer insights into how HVAC 
recommendations are generated, thereby enhancing system transparency and user trust.
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Implications of the study
The successful deployment of the intelligent HVAC optimization system in Shenzhen Qianhai Smart Community 
has several practical and theoretical implications:

Energy Conservation and sustainability  Achieving a 15% reduction in energy consumption underscores the 
potential of machine learning-driven systems in promoting sustainable energy practices. This aligns with global 
efforts to reduce carbon footprints and enhance environmental stewardship11.

Occupant-Centric Design  The increase in occupant satisfaction highlights the importance of integrating user 
feedback and preferences into automated control systems. This user-centric approach not only enhances comfort 
but also fosters greater acceptance and trust in smart building technologies13.

Scalability and flexibility  The system’s ability to scale with the addition of new sensors and adapt to dynamic 
environmental conditions demonstrates its suitability for large-scale deployments in diverse urban settings. This 
scalability is crucial for the widespread adoption of smart energy management solutions8.

Operational efficiency  The reduction in operational costs through predictive maintenance and optimized en-
ergy usage contributes to the economic viability of smart communities, making advanced HVAC systems a 
financially sustainable investment7.

Limitations of the study
Despite its promising outcomes, the study is subject to several limitations:

•	 Data Generalizability: The study was conducted within a single smart community, potentially limiting the 
generalizability of the findings to other contexts with different environmental conditions, building structures, 
and occupancy patterns. Future studies should aim to replicate these results in diverse settings to validate the 
model’s applicability.

•	 Model Complexity: The integration of GATs and stacking ensembles, while enhancing performance, increas-
es the computational complexity of the system. This may pose challenges in resource-constrained environ-
ments or require substantial computational infrastructure for real-time processing. Simplifying the model 
architecture or exploring more efficient algorithms could mitigate these issues.

•	 Sensor Reliability: The system’s reliance on sensor data underscores the importance of sensor accuracy and 
reliability. Sensor malfunctions or data inaccuracies can adversely affect model predictions and system per-
formance. Implementing robust sensor validation and fault-tolerance mechanisms is essential for maintain-
ing system integrity.

•	 User Behavior Variability: Variations in occupant behavior and preferences, which were partially accounted 
for through feedback mechanisms, may introduce unpredictability that the model might not fully capture. In-
corporating more sophisticated user modeling techniques could enhance the system’s adaptability to diverse 
and dynamic user behaviors.

•	 Limited Scope of HVAC Parameters: The study primarily focused on temperature set points and ventilation 
rates. Future research should consider a broader range of HVAC parameters, such as humidity control and 
airflow direction, to further optimize environmental conditions.

Future research directions
Building upon the findings of this study, future research could explore the following avenues:

•	 Multi-Community Studies: Conducting similar studies across multiple smart communities with diverse 
characteristics to validate the model’s generalizability and adaptability. This would help in understanding how 
contextual factors influence system performance.

•	 Hybrid Modeling Approaches: Integrating other advanced machine learning techniques, such as reinforce-
ment learning, to further enhance the system’s ability to adapt to dynamic environments and optimize long-
term energy usage. Reinforcement learning could enable the system to learn optimal control policies through 
continuous interaction with the environment.

•	 Real-Time Adaptive Systems: Developing more efficient algorithms to reduce computational overhead, ena-
bling real-time adjustments and facilitating deployment in resource-constrained settings. Techniques such as 
model compression and parallel processing could be investigated to enhance system responsiveness.

•	 Enhanced User Interaction: Incorporating more sophisticated user interfaces and feedback mechanisms to 
capture a wider range of occupant preferences and behaviors, thereby refining the system’s recommendations. 
Personalized dashboards and mobile applications could improve user engagement and satisfaction.

•	 Integration with Renewable Energy Sources: Exploring the synergy between intelligent HVAC systems and 
renewable energy sources (e.g., solar panels) to create more sustainable and resilient energy management 
frameworks. This integration could optimize energy usage by leveraging renewable energy when available.

•	 Longitudinal Impact Studies: Assessing the long-term impacts of the system on energy consumption pat-
terns, occupant health, and overall community sustainability to provide a comprehensive evaluation of its 
benefits and areas for improvement. Longitudinal studies would offer insights into the system’s effectiveness 
over extended periods and its influence on occupant behavior and well-being.

•	 Explainability and Transparency: Enhancing the explainability of the machine learning models to foster 
greater user trust and facilitate informed decision-making. Developing interpretable models or incorporating 
visualization tools could help stakeholders understand how recommendations are generated.
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The intelligent HVAC optimization system implemented in the Shenzhen Qianhai Smart Community exemplifies 
the transformative potential of integrating advanced machine learning techniques with IoT infrastructures. By 
leveraging Graph Attention Networks and stacking ensemble learning, the system not only achieved significant 
energy savings and enhanced occupant satisfaction but also contributed to the broader discourse on sustainable 
and smart urban development. While the study presents notable advancements, addressing its limitations 
through targeted future research will further solidify the role of intelligent systems in shaping energy-
efficient and user-centric smart communities.

Conclusion
This study successfully demonstrated the efficacy of an intelligent HVAC optimization system within the 
Shenzhen Qianhai Smart Community, highlighting significant advancements in energy efficiency, occupant 
comfort, and operational cost reduction. By integrating Graph Attention Networks (GATs) with a stacking 
ensemble learning framework, the system effectively harnessed complex sensor interactions and leveraged the 
strengths of multiple machine learning models to deliver precise and adaptive HVAC control.

•	 Energy Efficiency: The deployment of the optimization system resulted in a 15% reduction in energy con-
sumption per building, underscoring the system’s capability to significantly lower operational costs and con-
tribute to environmental sustainability goals.

•	 Occupant Satisfaction: An increase in occupant satisfaction by 15% was observed, indicating that the system 
not only optimized energy usage but also enhanced the living and working conditions within the community.

•	 Model Performance: The stacking ensemble outperformed individual base learners, achieving an AUC of 
0.93 and demonstrating superior predictive accuracy and robustness. This performance was attributed to the 
synergistic integration of Gradient Boosting Machines (XGBoost), Neural Networks, and Random Forests, 
which collectively mitigated individual model biases and enhanced overall system reliability.

•	 Contributions to the Field: The study contributes to the burgeoning field of smart building management 
by introducing a novel integration of GATs and stacking ensemble learning for HVAC optimization. Unlike 
traditional embedding techniques such as Node2Vec and DeepWalk, GATs provided a more nuanced under-
standing of sensor relationships through attention mechanisms, leading to higher-quality embeddings and 
improved model performance. Furthermore, the application of a stacking ensemble framework demonstrated 
the potential of combining diverse machine learning models to achieve superior predictive outcomes.

•	 Practical Implications: The successful implementation within the Shenzhen Qianhai Smart Community 
serves as a scalable and replicable model for other urban developments aiming to enhance energy efficiency 
and occupant well-being through intelligent systems. The system’s ability to seamlessly integrate with existing 
IoT infrastructures and accommodate dynamic sensor networks positions it as a viable solution for large-
scale smart city initiatives.

Limitations
While the study yielded promising results, certain limitations warrant consideration:

•	 Data Generalizability: The research was confined to a single smart community, which may limit the gener-
alizability of the findings to other settings with different environmental conditions and infrastructural con-
figurations.

•	 Computational Complexity: The integration of GATs and stacking ensembles, although effective, introduc-
es increased computational demands, potentially posing challenges for deployment in resource-constrained 
environments.

•	 Sensor Reliability: The system’s dependency on sensor data quality highlights the need for robust sensor 
maintenance and data validation protocols to ensure consistent performance.

Future research directions
Building upon the insights gained, future research could explore the following avenues:

•	 Multi-Community Validation: Expanding the study to include multiple smart communities with diverse 
characteristics to assess the system’s adaptability and scalability across different contexts.

•	 Advanced Modeling Techniques: Incorporating additional machine learning methodologies, such as rein-
forcement learning or deep reinforcement learning, to further enhance the system’s ability to adapt to dynam-
ic and complex environments.

•	 Real-Time Optimization: Developing more efficient algorithms to reduce computational overhead, enabling 
real-time data processing and decision-making without compromising system performance.

•	 User-Centric Enhancements: Integrating more sophisticated occupant feedback mechanisms and personali-
zation features to refine HVAC recommendations and foster greater user engagement.

•	 Integration with Renewable Energy Sources: Exploring the synergy between intelligent HVAC systems and 
renewable energy infrastructures, such as solar or wind energy, to create more sustainable and resilient energy 
management frameworks.

•	 Longitudinal Studies: Conducting long-term studies to evaluate the sustained impact of the optimization 
system on energy consumption patterns, occupant health, and overall community sustainability.

The intelligent HVAC optimization system implemented in the Shenzhen Qianhai Smart Community exemplifies 
the transformative potential of integrating advanced machine learning techniques with IoT infrastructures in 
smart urban environments. By achieving substantial energy savings and enhancing occupant satisfaction, the 
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study underscores the viability and effectiveness of such systems in promoting sustainable and user-centric 
living and working spaces. Addressing the identified limitations and pursuing theproposed future research 
directions will further solidify the role of intelligent systems in shaping the future of smart cities and sustainable 
urban development.

Ethical compliance
Our study involved the collection and analysis of occupant satisfaction data through surveys and the deployment 
of sensor networks within the Shenzhen Qianhai Smart Community. All experimental procedures were conducted 
in accordance with relevant guidelines and regulations. The study protocol was reviewed and approved by the 
Institutional Review Board (IRB) of Deanship of Research and Graduate Studies at King Khalid University, under 
the approval number 2/218/45. Furthermore, informed consent was obtained from all participants involved in 
the study. These statements have been clearly outlined in the “Methods” section of our manuscript to ensure 
transparency and adherence to ethical standards.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author, 
Maryam Alsadat Ziaei Mazinan, upon reasonable request. Requests for data access should be directed to mar-
yamalsa.ziaei@gmail.com.
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