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This study aims to explore the effect of implant apex design, osteotomy preparation, intraosseous 
depth and bone quality on immediate implant placement insertion torque and establish a more 
sophisticated decision model with multi-factor analysis based on machine learning for improving 
the success rate of immediate implant placement. Six implant replicas of each of the three implant 
systems with different implant apex design were placed in polyurethane foam block with different 
densities(soft, medium and hard) via two osteotomy preparation protocols (normal preparation 
and undersized preparation) at different implant intraosseous depths (3 mm, 5 mm and 7 mm). 
The insertion torque for each implant was recorded and subsequently analyzed using one-way and 
four-way ANOVA. Prediction models of insertion torque were then constructed using multiple linear 
regression (MLR) and decision tree regression (DTR) analyses based on multi-factors. These machine 
learning models were evaluated and compared for their predictive accuracy and performance. The 
influencing factors of immedate implant placement insertion torque are ranked as follows: bone 
quality, intraosseous depth, osteotomy preparation protocol, and implant apex design. Both two 
machine learning preoperative prediction models (MLR and DTR) showed high accuracy in insertion 
torque prediction, with the latter’s R2 reaching as high as 0.951. This research is of significant reference 
value for optimizing clinical decision-making, improving the success rate of immediate implant 
placement, and enhancing the efficiency of doctor-patient communication. In addition, this study 
further refined the evaluation framework for implant performance, rendering it more comprehensive 
and standardized.
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Immediate implant placement at the time of tooth extraction is increasing in popularity for shortening the 
treatment period, reducing the number of surgeries interventions and trauma. Studies have validated the 
feasibility of this technique. Survival rates are similar between immediate and delayed placement, if enough 
primary stability of the implant was obtained in the residual bone of the tooth extraction socket1. However, bone 
defects and rugged bone morphology after tooth extraction make it more difficult for implants to achieve enough 
primary stability than delayed implant placement2. Decision-making regarding patient eligibility for immediate 
implant placement, choice of surgical technique, and selection of implant type largely relies on the doctor’s 
clinical experience. Preoperative misjudgment may result in suboptimal clinical outcomes. Consequently, 
developing a comprehensive and scientifically rigorous assessment method is crucial. Such a method would 
enable a more accurate analysis and prediction of immediate implant success rates for patients, aid clinicians in 
clinical decision-making, and enhance communication between doctors and patients.

Primary stability refers to the initial mechanical fixation of an implant within the bone immediately following 
placement. It is instrumental in achieving osseointegration by minimizing micromotion and averting fibrous 
encapsulation. This primary or mechanical stability transitions into secondary or biologic stability through the 
process of osseointegration, which involves bone remodeling around the implant3. Insertion torque was used to 
evaluates the primary stability of implants by recording the final torque value during implant insertion using 
torque wrench or surgical motor4. Optimal insertion torque is considered to facilitate bone cell differentiation. 
Low insertion torque may result in micro-movements, fibrous tissue formation, and premature implant failure. 
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While high insertion torque values could potentially induce excessive peri-implant bone remodeling, buccal soft 
tissue recession, and increased bone resorption5. Thus, the prediction of insertion torque serves as a valuable 
metric for assessing the success rate of implant treatment.

Previous studies have identified factors that influence the insertion torque of implant, including the macro-
design of implant, surgical technique of osteotomy preparation, bone quality of implant site, etc.5–7. It is important 
to note that the majority of these studies are conducted within the context of delayed implant placement. However, 
achieving the required bone volume for full-length implant placement is often impractical in clinical settings 
due to anatomical constraints and patient-specific factors. Therefore, it is essential to simulate the conditions 
of immediate implant placement and subsequently reassess the factors that affect the insertion torque. Current 
studies on insertion torque typically isolate single factors, which, while informative, do not fully represent the 
combined effect of multiple interrelated factors in clinical settings. Effective clinical decision-making requires 
a holistic consideration of these factors for planning surgeries, selecting techniques, and choosing implants. 
Single-factor assessments are often insufficient for accurate preoperative decisions, especially for inexperienced 
doctors, and may increase patient risks8. Hence, there’s an urgent need for an advanced decision-making model 
that considers a comprehensive analysis of multiple factors.

Creating a decision model based on multi-factor analysis is challenging due to the complex interactions and 
individual influences of these factors on outcomes. This process requires extensive sample data and sophisticated 
statistical methods. Machine learning-based artificial intelligence, particularly through in vitro research, can 
facilitate the development of such a model.

Hence, the focus of this research is to investigate the effects and co-effect of various implant apex designs, 
bone densities, implant intraosseous depths, and osteotomy preparation protocols on the implant insertion 
torque required for prior to making decisions of immediate implant surgery, and to construct machine learning 
preoperative prediction model for immediate implant insertion torque.

Materials and methods
Implants and polyurethane foam blocks
Three different Nobel implant systems characterized with different apex designs were used in the present in vitro 
study, including Nobel Active, Nobel Parallel CC and Nobel Replace CC. The study evaluated the performance 
of three distinct dental implant apex designs: the Nobel Active implant has tapered apex with deep thread and 
long cutting edge. Nobel Parallel CC has tapered apex with shallow thread and long cutting edge. Nobel Replace 
CC has tapered apex with shallow thread and no cutting edge (Table 1).

The polyurethane block (Sawbones Europe AB, Malmö, Sweden) represents an alternative to animal or 
corpse bone and exhibits common mechanical properties according to standards defined by the manufacturer 
(ASTM F-1839-08), which reduces the variables, alterations, and deformations found using cadaver bone or in 
animal bone. In this study, polyurethane blocks with three densities (15, 20, 30 pounds per cubic feet (pcf)) were 
used to simulate soft, medium, hard bone respectively5,8,9.

Experimental procedure
Six implant replicas of each of the three implant systems (Nobel Active, Nobel Parallel CC and Nobel Replace 
CC) were placed in each of the three densities of polyurethane foam block (15, 20 and 30pcf) with two osteotomy 
preparation protocols (normal preparation and undersized preparation) at three implant intraosseous depths 
(3 mm, 5 mm and 7 mm) (Fig. 1).

The procedure of normal preparation was performed according to the manufacturer, while the procedure 
of undersized preparation reduced the use of the terminal drill on the basis of normal preparation procedure. 
Drill stop ring was used to control the preparation depth at 3 mm, 5 mm and 7 mm. All implants were inserted 
self-tapping with an implant drill unit set on a maximum torque of 70 N·cm (iChiropo™, Bien-Air Dental SA, 
Bienne, Switzerland). A time-torque curve was registered for each implant site, which was used to extract the 
maximal insertion torque (Max IT ) in N·cm for each site (Fig. 2). All surgical procedures were performed by the 
same experienced surgeon who had inserted more than 1500 dental implants. Ethics approval was not required 
for this in vitro study.

Statistical analysis
Mean Max IT ± standard deviations (SD) were calculated. Due to the Max ITs were not normally distributed, 
the raw data of Max ITs were transformed with Box-cox transformation for subsequent analysis. Box-cox (Max 
IT)=(Max IT × λ + 1)1/λ, λ = 0.3.Then the data were further processed by statistical using SPSS 29.0. The sample 
size were calculated using G*Power software (version 3.1.9.7) and leveraging a linear model calculation method. 
The parameters employed consisted of a power level of 0.95, an alpha level of 0.05, an effect size of d = 0.15, and 
4 predictors. These parameters pointed to a need for a minimum of 169 samples. A total of 324 samples (n = 6) 
were adopted in this study. The effect of implant apex design, intraosseous depth, bone quality and osteotomy 

Implant system Diameter/length Implant apex design

Nobel active 4.3/13 mm Tapered/ deep thread/ long cutting edge

Nobel parallel CC 4.3/13 mm Tapered/ shallow thread/ long cutting edge

Nobel replace CC 4.3/13 mm Tapered/ shallow thread/ no cutting edge

Table 1.  Characteristic of implant systems used in present study.
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preparation on the Max IT was analyzed using one-way ANOVA and four-way ANOVA with post hoc Bonferroni 
analysis. Then the significant factors were analyzed by multiple linear regression analysis to establish a prediction 
model for insertion torque. A decision tree regression model was constructed for predicting implant insertion 
torque based on machine learning methods using SPSSPRO. 70% of the raw data were utilized as the training set 

Fig. 2.  (A) image of polyurethane foam block; (B) three implant systems were placed in polyurethane foam 
block with two osteotomy preparation protocols at three implant intraosseous depths; (C) a time - IT curve 
and Max IT is displaced on the screen of implant drill unit set.

 

Fig. 1.  Schematic representation of the in vitro study’s experimental design.
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for model construction, while the remaining 30% of the raw data served as the validation set to assess the model’s 
performance. Compare the predictive indicators of the two models, including MSE (Mean Squared Error), 
RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), 
and R² (Coefficient of Determination), to evaluate the predictive power of both models. Statistical significance 
was analyzed with p < 0.05 considered significant.

Results
Table 2 presents the means and means and standard deviations of Max IT for simulated immediate implant 
placement situation. The ANOVA analysis revealed that all these factors (implant apex design, intraosseous 
depth, bone quality and osteotomy preparation) significantly affected Max IT values (Table 3). The interaction 
between osteotomy preparation protocol and intraosseous depth (p = 0.629), among implant apex design, 
intraosseous depth and bone quality (p = 0.430), and among osteotomy preparation protocol, intraosseous depth 
and bone quality (p = 0.328) was not significant, while other interactions were significant (p < 0.05) (Table 3).

From the analysis of the results of the F-test, it can be concluded that the P-value of significance is 0.000*** 
and identified all the variables (Implant Apex Design, Osteotomy preparation protocol, Intraosseous depth and 
Bone quality) as predictors of Max IT (Table 4); For the collinearity of variables, all VIFs are less than 10, so the 
model does not have multi collinearity issues. The multiple linear regression models showed fair fitting with R2 
(R2 = 0.839) greater than 0.80, indicating the model is good fit. Based on the multiple linear regression equation, 
Box-cox (Max IT) = -1.631 + 2.629×Bone Quality (Hard) + 0.6519×Bone Quality (Medium) + 0.7089×Implant 

Source Type III sum of squares df Mean square F P

Intercept 5748.672 1 5748.672 16874.778 < 0.001

Implant apex design 27.561 2 13.780 40.451 < 0.001

Osteotomy preparation protocol 147.407 1 147.407 432.700 < 0.001

Intraosseous depth 486.008 2 243.004 713.320 < 0.001

Bone Quality 404.825 2 202.413 594.166 < 0.001

Implant apex design * osteotomy preparation protocol 13.564 2 6.782 19.908 < 0.001

Implant apex design * intraosseous depth 24.943 4 6.236 18.305 < 0.001

Implant apex design * bone quality 26.680 4 6.670 19.579 < 0.001

Osteotomy preparation protocol * intraosseous depth 0.317 2 0.158 0.465 0.629

Osteotomy preparation protocol * bone quality 5.374 2 2.687 7.888 < 0.001

Intraosseous depth * bone quality 12.767 4 3.192 9.369 < 0.001

Implant apex design * osteotomy preparation protocol * intraosseous depth 9.910 4 2.478 7.273 < 0.001

Implant apex design * osteotomy preparation protocol * bone quality 3.325 4 0.831 2.440 0.047

Implant apex design * intraosseous depth * bone quality 2.747 8 0.343 1.008 0.430

Osteotomy preparation protocol * intraosseous depth * bone quality 1.584 4 0.396 1.163 0.328

Implant apex design * osteotomy preparation protocol * intraosseous depth * bone quality 6.660 8 0.832 2.444 0.014

Table 3.  Analysis of variance for Max.

 

Intraosseous depth Bone quality

Implant apex design and osteotomy preparation protocol

Nobel active Nobel parallel CC Nobel replace CC

Undersized Normal Undersized Normal Undersized Normal

3 mm

Soft 7.52 (0.95)bcBC23 3.16 (0.65)*C3 4.45 (0.88)aC23 2.48 (0.80)*C23 7.98 (1.62)aC23 4.23 (2.59)*3

Medium 12.28 (2.74)bcAC23 5.40 (2.22)*C23 6.53 (2.84)aC23 2.35 (0.59)*C23 6.75 (2.33)aC23 6.42 (4.53)3

Hard 25.25 (0.63)bAB23 14.45 (1.52)bc*AB23 17.55 (1.15)aAB23 8.03 (2.33)a*AB23 18.55 (8.30)aAB23 6.07 (5.31)*3

5 mm

Soft 10.75 (0.99)BC13 7.03 (2.50)*BC3 11.58 (2.65)BC13 6.42 (2.18)*C13 12.70 (3.99)C13 6.10 (4.67)*3

Medium 21.33 (2.86)bAC13 14.63 (2.45)c*AC13 16.40 (1.57)aAC13 12.53 (2.45)c*C13 16.10 (2.37)C13 3.90 (2.18)ab*3

Hard 46.85 (3.46)bcAB13 31.85 (3.50)c*AB13 35.17 (1.25)acAB13 31.03 (6.62)cAB13 31.05 (5.36)aAB13 8.82 (5.35)ab*3

7 mm

Soft 17.92 (1.98)cBC12 14.17 (4.83)BC12 18.58 (1.55)cBC12 15.00 (2.72)*C12 23.90 (3.11)abC12 14.85 (5.46)*C12

Medium 26.77 (1.46)cAC12 20.40 (2.63)c*AC12 28.67 (1.97)cAC12 18.07 (3.65)*C12 31.90 (2.82)abC12 14.00 (4.89)a*C12

Hard 67.00 (3.39)AB12 47.32 (4.04)c*AB12 67.35 (4.72)AB12 44.15 (6.71)c*AB12 64.87 (8.48)AB12 30.35 (6.04)ab*AB12

Table 2.  Descriptive statistics of Mean and SD of max IT among different groups (N = 6). Asterisk (*) presents 
a significant difference between undersized and normal osteotomy preparation protocol in each Implant apex 
design. Different small case letters in horizontal rows show a significant difference among different Implant 
apex design in each osteotomy preparation protocol. Different capital letters in vertical lines show a significant 
difference among different Bone quality in each Intraosseous depth. Different numbers in vertical lines show a 
significant difference among different Intraosseous depth in each bone quality. (p < 0.05).
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Apex Design (Nobel Active) + 0.2699×Implant Apex Design (Nobel Parallel CC) + 1.3499×Osteotomy 
preparation protocol (Undersized) + 0.75×Intraosseous Depth.

The analysis was conducted using the SPSSPRO software, where the data was divided into a training 
set and a validation set in a 7:3 ratio, and the predictive evaluation metrics of the decision tree model were 
calculated. Training set: MSE = 10.937, RMSE = 3.307, MAE = 2.364, MAPE = 18.197, R2 = 0.959. Validation 
set: MSE = 13.309, RMSE = 3.648, MAE = 2.915, MAPE = 24.732, R2 = 0.951. Following the same method, we 
calculated other evaluation metrics for the multiple linear regression model: MSE = 35.361, RMSE = 5.946, 
MAE = 4.447, MAPE = 33.639, R2 = 0.839 (Table 5). The true values of the validation set, predictions from the 
MLR (Multiple Linear Regression) model, and predictions from the Decision Tree Regression model were 
included in a line chart with the highest implant torque as the vertical axis to compare their fit, as shown in 
Fig.  3. The predictions from the Decision Tree Regression model fit the true values more closely, indicating 
that the predictive power of the Decision Tree Regression model is superior to that of the MLR model. Table 6 

Fig. 3.  Comparison of the true values of the validation set, the predicted values of the MLR model and the 
predicted values of the DTR model.

 

MSE RMSE MAE MAPE R2

DTR model
Training set 10.937 3.307 2.364 18.197 0.959

Validation set 13.309 3.648 2.915 24.732 0.951

MLR model 35.361 5.946 4.447 33.639 0.839

Table 5.  DTR analysis and comparison with MLR analysis.

 

B β t p VIF

Constant -1.631 - -9.426 0.000* -

Bone quality = hard 2.629 0.627 24.324 0.000* 1.333

Bone quality = medium 0.651 0.155 6.024 0.000* 1.333

Implant apex design = nobel active 0.708 0.169 6.548 0.000* 1.333

Implant apex design = nobel parallel CC 0.269 0.064 2.485 0.013* 1.333

Osteotomy preparation protocol = undersized 1.349 0.341 15.288 0.000* 1

Intraosseous depth 0.75 0.62 27.758 0.000* 1

Dependent variable: Box-cox (Max IT)

Table 4.  Multiple linear regression analysis. Note: R2 = 0.842, adjusted R2 = 0.839, F = 281.645 (p = 0.000***). 
*p < 0.05.
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presents “insertion torque performance” of Nobel implant system under different conditions based on decision 
tree model established in this study.

Discussion
Practicality and advancement of the decision model base on multi-factor analysis
Preoperative prediction of insertion torque is essential for clinical decision-making. Currently, preoperative 
assessment of insertion torque in immediate implant placement remains a relatively understudied area. Some 
studies have established predictive models based on single factors, such as implant macrogeometries10, bone 
density11, drilling protocols12, etc. However, the reference value for complex clinical situations is limited by the 
approach of considering only single factors. In this study, four factors including implant apex design, osteotomy 
preparation, intraosseous depth, and bone quality were simultaneously considered, and a predictive model 
was established using multiple linear regression analysis, which yielded a high R-value of 0.839. The model 
established in this study exhibits greater scientific rigor and advanced characteristics, providing enhanced 
guidance for clinical practice.

In this study, we initiated the evaluation from an intraosseous depth of 3 mm, as our preliminary experiments 
revealed that depths of 1–2  mm were insufficient to achieve an insertion torque of over 10  N·cm. To better 
study the effect of intraosseous depth on insertion torque, intraosseous depths of 5 mm and 7 mm were set 
to simulate actual application scenarios. Our results indicated that when the intraosseous depth is 3  mm, 
employing a combination of deep-threaded implants featuring long cutting edges, along with undersized 
preparation, becomes essential to ensure optimal insertion torque. Nevertheless, it is important to recognize 
that with medium- to low-density bone, the method struggles to achieve an optimal insertion torque of over 
25 N·cm. In the literature, an implant torque of at least 25 N·cm is widely accepted as the threshold criterion for 
immediate loading13.

Our findings indicated that the use of undersized preparation significantly enhances the insertion torque of 
implants, regardless of bone quality, implant design, or depth of insertion. Literature suggests that an insertion 
torque exceeding 50  N·cm is considered excessive and may heighten the risk of thermal bone damage and 
resorption12,13. Notably, at an intraosseous depth of 7 mm in hard bone conditions, the insertion torque achieved 
with undersized preparation surpassed 50 N·cm, irrespective of implant apex design, thus it is necessary to adopt 
the conventional osteotomy preparation protoco rather than the undersized preparation technique.

For immediate implant placement, only the intraosseous portion of the implant can affect the insertion 
torque. Therefore, the impplant apex design should be also considered as a significant factor for immediate 
implant placement. Studies have demonstrated that implant apex with deep and dense threads are more 
beneficial for increasing bone-implant contact and obtaining high insertion torque. In addition, implant apex 
with cutting edge have good self-tapping ability, allowing them to be more easily inserted in undersized implant 
beds11,14–17. The results of this study are generally consistent with the aforementioned research. However, it is 
worth noting that the implants with Tapered/Deep thread/Long cutting edge apex designs demonstrate their 
advantages primarily in hard bone and when using undersized preparation technique.

The current consensus is that there is a positive correlation between bone quality and insertion torque6. 
The results of this study also support this consensus that bone quality is the most significant influencing factor, 
compared to osteotomy preparation protocols, intraosseous depth and implant apex design. In addition, this 
study found that with an intraosseous depth of 3 mm, achieving an insertion torque of 25 N·m is only possible 
in cases of hard bone when using an implant with deep threads and cutting edges at the apex, and employing 
the undersized preparation technique. While in soft bone condition, even with an intraosseous depth of 7 mm, 
employing the undersized preparation technique along with an implant featuring deep threads and cutting edges 
at the apex, it was not possible to achieve a torque greater than 25 N·m, which is the minimum implant torque 
requirement for immediate loading9.

Based on our research findings, these four factors are crucial in influencing implant torque, while the clinical 
outcomes reflect the combined effects of these factors. Isolating the analysis of each factor independently would 
lead to misjudgments of the results. However, the establishment of a comprehensive analysis model incorporating 
multiple factors undoubtedly presents significant challenges. In addition to traditional statistical methods, 

Intra-osseous depth Bone quality

Implant apex design and osteotomy preparation protocol

Nobel active Nobel parallel CC Nobel replace CC

Undersized Normal Undersized Normal Undersized Normal

3 mm

Soft 7.34 2.9 4.40 2.00 7.58 3.45

Medium 12.28 5.63 5.88 2.00 5.85 5.65

Hard 25.22 14.23 17.15 8.08 20.08 6.85

5 mm

Soft 10.71 6.49 10.71 6.49 12.25 5.65

Medium 20.64 13.7 15.79 11.52 15.79 4.18

Hard 46.5 31.33 34.83 29.63 30.2 9.05

7 mm

Soft 17.4 13.25 17.90 13.73 22.78 14.93

Medium 26.98 20.08 28.17 18.13 31.07 14.92

Hard 66.28 46.73 66.28 44.38 62.4 29.45

Table 6.  Evaluation of “insertion torque performance” of Nobel implant system based on decision tree model.
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artificial intelligence and machine learning algorithms, such as decision tree regression, can also be utilized in 
predictive model construction. Decision tree regression models are notable for their capacity to manage small 
sample sizes effectively. Moreover, they offer excellent visualization and transparent decision-making processes, 
distinguishing them from other ‘black-box’ models18. In this study, we developed a decision tree regression 
model for predictive purposes, achieving an R-value of 0.951, which exceeds that of the multiple linear regression 
model. This suggests that the decision tree regression model offers superior predictive accuracy for the insertion 
torque in immediate implant placement. With the rapid advancement of artificial intelligence, the medical field 
has emerged as a prominent domain for AI applications. Leveraging extensive medical data, AI technology holds 
the promise to aid clinicians in making more precise decisions regarding disease diagnosis, treatment planning, 
and patient risk assessment, thereby enhancing the quality and efficiency of healthcare services.

A more sophisticated decision model for clinical application guidance
If postoperative implant insertion torque is inadequate, it is necessary to forgo immediate loading and consider 
submerged healing instead. However, for immediate implant placement, insufficient soft tissue volume can 
complicate achieving complete wound closure required for submerged healing. Hence, preoperative prediction 
of insertion torque is essential for clinical decision-making.In actual clinical scenarios, the factors mentioned 
in this study often cannot be simultaneously optimized. However, we can optimize some adjustable factors 
according to the actual situation to accurately control the insertion torque and maximize the success rate of the 
implant. Assuming we only have Nobel Replace CC implants available with tapered/ shallow thread/ no cutting 
edge apex design, and the patient suffers from osteoporosis, but the mandibular molar to be extracted has a 
bone height greater than 7 mm from the inferior alveolar nerve canal, we can adopt an undersized osteotomy 
technique and ensure that the intraosseous depth of implant is at least 7 mm. By doing so, we can achieve an 
insertion torque close to 25 N·cm (Table 2). Furthemore, if the insertion torque still cannot be increased to a safe 
range within the scope of various factors that can be optimized, then we should not recommend the patient to 
adopt the immediate implant placement. This is of significant reference value for optimizing clinical decision-
making, improving the success rate of implants, and enhancing the efficiency of doctor-patient communication.

A more comprehensive and standardized evaluation system can be established
Currently, many implant manufacturers claim that their products can achieve good primary stability (or insertion 
torque), but this is not rigorous. Based on the insertion torque prediction model established in this study, except 
for the intrinsic factors of the implant, it is also necessary to consider the actual clinical application scenarios, 
such as intraosseous depth of the implant, bone quality of the implant site, and the osteotomy preparation 
protocol. Based on the results of this study, we propose the concept of “implant insertion torque performance”. 
Manufacturers can calculate the insertion torque of the implant under different clinical scenarios using the 
prediction model of this study, and list specific values and reasonable osteotomy preparation protocol in the 
implant instruction manual for reference by clinical doctors. As shown in Table 6, taking the Nobel implant 
system as an example, we have sorted out its “insertion torque performance” table according to the prediction 
model established in this study, which can greatly improve the safety and success rate of implant surgery and 
increase the decision-making efficiency of doctors. At the same time, in this way, the primary stability (or 
insertion torque performance) provided by different brands of implants will be more comparable.

The present study has certain limitations. Firstly, it is an in vitro investigation utilizing a standardized model, 
which may not entirely replicate the complex bone conditions encountered in clinical settings14. Secondly, the 
diameter of the implants was not included in the study, despite being reported in numerous studies as one of the 
factors influencing the insertion torque of implants15. Thirdly, surgeon’s inexperience may be another elements 
for low insertion torque17.

 Conclusion
The following conclusions are drawn from the results of this in vitro experimental study: In the context of 
immediate implant placement, the factors influencing implant insertion torque are ranked in the following 
order: bone quality, intraosseous depth, osteotomy preparation protocol, and implant apex design. Both 
traditional on multiple linear regression and novel machine learning models have demonstrated the capability 
to construct highly accurate predictive models for preoperative decision-making regarding the feasibility of 
immediate implant surgery. The methodologies employed in this study standardize the assessment of ‘insertion 
torque performance’ across different dental implant systems, thereby facilitating more precise decision-making.

Data availability
Data are available from the corresponding author (Runheng Liu: liurh28@mail.sysu.edu.cn) upon reasonable 
request.
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