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This study aims to explore the effect of implant apex design, osteotomy preparation, intraosseous
depth and bone quality on immediate implant placement insertion torque and establish a more
sophisticated decision model with multi-factor analysis based on machine learning for improving

the success rate of immediate implant placement. Six implant replicas of each of the three implant
systems with different implant apex design were placed in polyurethane foam block with different
densities(soft, medium and hard) via two osteotomy preparation protocols (normal preparation

and undersized preparation) at different implant intraosseous depths (3 mm, 5 mm and 7 mm).

The insertion torque for each implant was recorded and subsequently analyzed using one-way and
four-way ANOVA. Prediction models of insertion torque were then constructed using multiple linear
regression (MLR) and decision tree regression (DTR) analyses based on multi-factors. These machine
learning models were evaluated and compared for their predictive accuracy and performance. The
influencing factors of immedate implant placement insertion torque are ranked as follows: bone
quality, intraosseous depth, osteotomy preparation protocol, and implant apex design. Both two
machine learning preoperative prediction models (MLR and DTR) showed high accuracy in insertion
torque prediction, with the latter’s R? reaching as high as 0.951. This research is of significant reference
value for optimizing clinical decision-making, improving the success rate of immediate implant
placement, and enhancing the efficiency of doctor-patient communication. In addition, this study
further refined the evaluation framework for implant performance, rendering it more comprehensive
and standardized.
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Immediate implant placement at the time of tooth extraction is increasing in popularity for shortening the
treatment period, reducing the number of surgeries interventions and trauma. Studies have validated the
feasibility of this technique. Survival rates are similar between immediate and delayed placement, if enough
primary stability of the implant was obtained in the residual bone of the tooth extraction socket'. However, bone
defects and rugged bone morphology after tooth extraction make it more difficult for implants to achieve enough
primary stability than delayed implant placement®. Decision-making regarding patient eligibility for immediate
implant placement, choice of surgical technique, and selection of implant type largely relies on the doctor’s
clinical experience. Preoperative misjudgment may result in suboptimal clinical outcomes. Consequently,
developing a comprehensive and scientifically rigorous assessment method is crucial. Such a method would
enable a more accurate analysis and prediction of immediate implant success rates for patients, aid clinicians in
clinical decision-making, and enhance communication between doctors and patients.

Primary stability refers to the initial mechanical fixation of an implant within the bone immediately following
placement. It is instrumental in achieving osseointegration by minimizing micromotion and averting fibrous
encapsulation. This primary or mechanical stability transitions into secondary or biologic stability through the
process of osseointegration, which involves bone remodeling around the implant?. Insertion torque was used to
evaluates the primary stability of implants by recording the final torque value during implant insertion using
torque wrench or surgical motor?. Optimal insertion torque is considered to facilitate bone cell differentiation.
Low insertion torque may result in micro-movements, fibrous tissue formation, and premature implant failure.
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While high insertion torque values could potentially induce excessive peri-implant bone remodeling, buccal soft
tissue recession, and increased bone resorption®. Thus, the prediction of insertion torque serves as a valuable
metric for assessing the success rate of implant treatment.

Previous studies have identified factors that influence the insertion torque of implant, including the macro-
design of implant, surgical technique of osteotomy preparation, bone quality of implant site, etc.>”. It is important
to note that the majority of these studies are conducted within the context of delayed implant placement. However,
achieving the required bone volume for full-length implant placement is often impractical in clinical settings
due to anatomical constraints and patient-specific factors. Therefore, it is essential to simulate the conditions
of immediate implant placement and subsequently reassess the factors that affect the insertion torque. Current
studies on insertion torque typically isolate single factors, which, while informative, do not fully represent the
combined effect of multiple interrelated factors in clinical settings. Effective clinical decision-making requires
a holistic consideration of these factors for planning surgeries, selecting techniques, and choosing implants.
Single-factor assessments are often insufficient for accurate preoperative decisions, especially for inexperienced
doctors, and may increase patient risks®. Hence, there’s an urgent need for an advanced decision-making model
that considers a comprehensive analysis of multiple factors.

Creating a decision model based on multi-factor analysis is challenging due to the complex interactions and
individual influences of these factors on outcomes. This process requires extensive sample data and sophisticated
statistical methods. Machine learning-based artificial intelligence, particularly through in vitro research, can
facilitate the development of such a model.

Hence, the focus of this research is to investigate the effects and co-effect of various implant apex designs,
bone densities, implant intraosseous depths, and osteotomy preparation protocols on the implant insertion
torque required for prior to making decisions of immediate implant surgery, and to construct machine learning
preoperative prediction model for immediate implant insertion torque.

Materials and methods

Implants and polyurethane foam blocks

Three different Nobel implant systems characterized with different apex designs were used in the present in vitro
study, including Nobel Active, Nobel Parallel CC and Nobel Replace CC. The study evaluated the performance
of three distinct dental implant apex designs: the Nobel Active implant has tapered apex with deep thread and
long cutting edge. Nobel Parallel CC has tapered apex with shallow thread and long cutting edge. Nobel Replace
CC has tapered apex with shallow thread and no cutting edge (Table 1).

The polyurethane block (Sawbones Europe AB, Malmo, Sweden) represents an alternative to animal or
corpse bone and exhibits common mechanical properties according to standards defined by the manufacturer
(ASTM F-1839-08), which reduces the variables, alterations, and deformations found using cadaver bone or in
animal bone. In this study, polyurethane blocks with three densities (15, 20, 30 pounds per cubic feet (pcf)) were
used to simulate soft, medium, hard bone respectively>®’.

Experimental procedure

Six implant replicas of each of the three implant systems (Nobel Active, Nobel Parallel CC and Nobel Replace
CC) were placed in each of the three densities of polyurethane foam block (15, 20 and 30pcf) with two osteotomy
preparation protocols (normal preparation and undersized preparation) at three implant intraosseous depths
(3 mm, 5 mm and 7 mm) (Fig. 1).

The procedure of normal preparation was performed according to the manufacturer, while the procedure
of undersized preparation reduced the use of the terminal drill on the basis of normal preparation procedure.
Drill stop ring was used to control the preparation depth at 3 mm, 5 mm and 7 mm. All implants were inserted
self-tapping with an implant drill unit set on a maximum torque of 70 N-cm (iChiropo™, Bien-Air Dental SA,
Bienne, Switzerland). A time-torque curve was registered for each implant site, which was used to extract the
maximal insertion torque (Max IT ) in N-cm for each site (Fig. 2). All surgical procedures were performed by the
same experienced surgeon who had inserted more than 1500 dental implants. Ethics approval was not required
for this in vitro study.

Statistical analysis

Mean Max IT + standard deviations (SD) were calculated. Due to the Max ITs were not normally distributed,
the raw data of Max ITs were transformed with Box-cox transformation for subsequent analysis. Box-cox (Max
IT)=(Max ITxA+1)"*, A =0.3.Then the data were further processed by statistical using SPSS 29.0. The sample
size were calculated using G*Power software (version 3.1.9.7) and leveraging a linear model calculation method.
The parameters employed consisted of a power level of 0.95, an alpha level of 0.05, an effect size of d=0.15, and
4 predictors. These parameters pointed to a need for a minimum of 169 samples. A total of 324 samples (n=6)
were adopted in this study. The effect of implant apex design, intraosseous depth, bone quality and osteotomy

Implant system | Diameter/length | Implant apex desig;

Nobel active 4.3/13 mm Tapered/ deep thread/ long cutting edge
Nobel parallel CC | 4.3/13 mm Tapered/ shallow thread/ long cutting edge
Nobel replace CC | 4.3/13 mm Tapered/ shallow thread/ no cutting edge

Table 1. Characteristic of implant systems used in present study.
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implant apex design

4.3X13 Nobel Active 4.3 X13 Nobel Parallel CC 4.3 X13 Nobel Replace CC
osteotomy preparation normal preparation undersized preparation
intraosseous depth 3mm Smm 7mm
bone quality

15 pef 20 pcf 30 pef

Fig. 1. Schematic representation of the in vitro study’s experimental design.
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Fig. 2. (A) image of polyurethane foam block; (B) three implant systems were placed in polyurethane foam
block with two osteotomy preparation protocols at three implant intraosseous depths; (C) a time - IT curve
and Max IT is displaced on the screen of implant drill unit set.

preparation on the Max IT was analyzed using one-way ANOVA and four-way ANOVA with post hoc Bonferroni
analysis. Then the significant factors were analyzed by multiple linear regression analysis to establish a prediction
model for insertion torque. A decision tree regression model was constructed for predicting implant insertion
torque based on machine learning methods using SPSSPRO. 70% of the raw data were utilized as the training set

Scientific Reports | (2025) 15:5143 | https://doi.org/10.1038/s41598-025-89814-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Implant apex design and osteotomy preparation protocol
Nobel active Nobel parallel CC Nobel replace CC
Intraosseous depth | Bone quality | Undersized Normal Undersized Normal Undersized Normal
Soft 7.52 (0.95)P<BC23 | 316 (0.65)"C3 4.45 (0.88)3¢23 2.48 (0.80)°¢% 7.98 (1.62)°2 | 4.23 (2.59)"
3 mm Medium 12.28 (2.74)P°AC% | 5.40 (2.22)"¢ 6.53 (2.84)%C% 2.35(0.59)"¢* 6.75(2.33)% | 6.42 (4.53)
Hard 25.25 (0.63)PAB23 | 14,45 (1.52)°°AB23 | 17,55 (1.15)*AB2 | 8,03 (2.33)°"AB2 | 18.55 (8.30)*482 | 6.07 (5.31)"
Soft 10.75 (0.99)BC€13 | 7.03 (2.50)BC3 11.58 (2.65)BC13 | 6.42 (2.18)"C13 12.70 (3.99)C1% | 6.10 (4.67)7
5mm Medium 21.33 (2.86)PAC13 | 14.63 (2.45)°°AC1 | 16.40 (1.57)*C13 | 12.53 (2.45)°C1 | 16.10 (2.37)¢1 | 3.90 (2.18)®"3
Hard 46.85 (3.46)>AB13 | 31,85 (3.50)ABI3 | 3517 (1.25)*AB13 | 31,03 (6.62)°AB1® | 31.05 (5.36)*AB13 | 8.82 (5.35)23
Soft 17.92 (1.98)BC12 | 14.17 (4.83)BC12 18.58 (1.55)BC12 | 1500 (2.72)"C12 | 23.90 (3.11)?PC12 | 14.85 (5.46) C12
7 mm Medium 26.77 (1.46)AC12 | 20.40 (2.63)"AC12 | 28,67 (1.97)AC12 | 18.07 (3.65)'C'2 | 31.90 (2.82)*°C12 | 14.00 (4.89)*C12
Hard 67.00 (3.39)AB12 | 47.32 (4.04)AB12 | 67.35 (4.72)AB12 | 44.15 (6.71)"AB12 | 64.87 (8.48)AB12 | 3(.35 (6.04)*"AB12
Table 2. Descriptive statistics of Mean and SD of max IT among different groups (N=6). Asterisk (*) presents
a significant difference between undersized and normal osteotomy preparation protocol in each Implant apex
design. Different small case letters in horizontal rows show a significant difference among different Implant
apex design in each osteotomy preparation protocol. Different capital letters in vertical lines show a significant
difference among different Bone quality in each Intraosseous depth. Different numbers in vertical lines show a
significant difference among different Intraosseous depth in each bone quality. (p <0.05).
Source Type III sum of squares | df | Mean square | F P
Intercept 5748.672 1 | 5748.672 16874.778 | <0.001
Implant apex design 27.561 2 13.780 40.451 | <0.001
Osteotomy preparation protocol 147.407 1 147.407 432.700 | <0.001
Intraosseous depth 486.008 2 243.004 713.320 | <0.001
Bone Quality 404.825 2 202.413 594.166 | <0.001
Implant apex design * osteotomy preparation protocol 13.564 2 6.782 19.908 | <0.001
Implant apex design * intraosseous depth 24.943 4 6.236 18.305 | <0.001
Implant apex design * bone quality 26.680 4 6.670 19.579 | <0.001
Osteotomy preparation protocol * intraosseous depth 0.317 2 0.158 0.465 | 0.629
Osteotomy preparation protocol * bone quality 5.374 2 2.687 7.888 | <0.001
Intraosseous depth * bone quality 12.767 4 3.192 9.369 | <0.001
Implant apex design * osteotomy preparation protocol * intraosseous depth 9.910 4 2.478 7.273 | <0.001
Implant apex design * osteotomy preparation protocol * bone quality 3.325 4 0.831 2.440 | 0.047
Implant apex design * intraosseous depth * bone quality 2.747 8 0.343 1.008 | 0.430
Osteotomy preparation protocol * intraosseous depth * bone quality 1.584 4 0.396 1.163 | 0.328
Implant apex design * osteotomy preparation protocol * intraosseous depth * bone quality 6.660 8 0.832 2444 | 0.014

Table 3. Analysis of variance for Max.

for model construction, while the remaining 30% of the raw data served as the validation set to assess the model’s
performance. Compare the predictive indicators of the two models, including MSE (Mean Squared Error),
RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error),
and R? (Coefficient of Determination), to evaluate the predictive power of both models. Statistical significance
was analyzed with p <0.05 considered significant.

Results
Table 2 presents the means and means and standard deviations of Max IT for simulated immediate implant
placement situation. The ANOVA analysis revealed that all these factors (implant apex design, intraosseous
depth, bone quality and osteotomy preparation) significantly affected Max IT values (Table 3). The interaction
between osteotomy preparation protocol and intraosseous depth (p=0.629), among implant apex design,
intraosseous depth and bone quality (p=0.430), and among osteotomy preparation protocol, intraosseous depth
and bone quality (p=0.328) was not significant, while other interactions were significant (p <0.05) (Table 3).
From the analysis of the results of the F-test, it can be concluded that the P-value of significance is 0.000***
and identified all the variables (Implant Apex Design, Osteotomy preparation protocol, Intraosseous depth and
Bone quality) as predictors of Max IT (Table 4); For the collinearity of variables, all VIFs are less than 10, so the
model does not have multi collinearity issues. The multiple linear regression models showed fair fitting with R?
(R?=0.839) greater than 0.80, indicating the model is good fit. Based on the multiple linear regression equation,
Box-cox (Max IT) = -1.631 +2.629xBone Quality (Hard) +0.6519xBone Quality (Medium) +0.7089xImplant
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Max IT (N-cm)

B B t P VIF
Constant -1.631 | - -9.426 | 0.000*
Bone quality=hard 2.629 | 0.627 | 24.324 | 0.000* | 1.333
Bone quality = medium 0.651 | 0.155 | 6.024 | 0.000* | 1.333
Implant apex design =nobel active 0.708 | 0.169 | 6.548 | 0.000* | 1.333
Implant apex design =nobel parallel CC 0.269 | 0.064 | 2.485 | 0.013* | 1.333
Osteotomy preparation protocol =undersized | 1.349 | 0.341 | 15.288 | 0.000* | 1
Intraosseous depth 0.75 |0.62 |27.758 | 0.000% | 1
Dependent variable: Box-cox (Max IT)

Table 4. Multiple linear regression analysis. Note: R?=0.842, adjusted R?=0.839, F=281.645 (p =0.000%**).
%
p<0.05.

MSE |RMSE | MAE | MAPE | R?

Training set 10.937 | 3.307 |2.364 | 18.197 |0.959
Validation set | 13.309 | 3.648 | 2.915 | 24.732 | 0.951
MLR model 35361 | 5.946 | 4.447 | 33.639 | 0.839

DTR model

Table 5. DTR analysis and comparison with MLR analysis.

predicted value of MLR
predicted value of DTR
— tue value

16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 9%

Fig. 3. Comparison of the true values of the validation set, the predicted values of the MLR model and the
predicted values of the DTR model.

Apex Design (Nobel Active)+0.2699xImplant Apex Design (Nobel Parallel CC)+1.3499xOsteotomy
preparation protocol (Undersized) +0.75xIntraosseous Depth.

The analysis was conducted using the SPSSPRO software, where the data was divided into a training
set and a validation set in a 7:3 ratio, and the predictive evaluation metrics of the decision tree model were
calculated. Training set: MSE=10.937, RMSE=3.307, MAE=2.364, MAPE=18.197, R%2=0.959. Validation
set: MSE=13.309, RMSE=3.648, MAE=2.915, MAPE=24.732, R?=0.951. Following the same method, we
calculated other evaluation metrics for the multiple linear regression model: MSE=35.361, RMSE =5.946,
MAE =4.447, MAPE =33.639, R?=0.839 (Table 5). The true values of the validation set, predictions from the
MLR (Multiple Linear Regression) model, and predictions from the Decision Tree Regression model were
included in a line chart with the highest implant torque as the vertical axis to compare their fit, as shown in
Fig. 3. The predictions from the Decision Tree Regression model fit the true values more closely, indicating
that the predictive power of the Decision Tree Regression model is superior to that of the MLR model. Table 6

Scientific Reports |

(2025) 15:5143 | https://doi.org/10.1038/s41598-025-89814-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Implant apex design and osteotomy preparation protocol
Nobel active Nobel parallel CC Nobel replace CC
Intra-osseous depth | Bone quality | Undersized | Normal | Undersized | Normal | Undersized | Normal
Soft 7.34 29 4.40 2.00 7.58 3.45
3 mm Medium 12.28 5.63 5.88 2.00 5.85 5.65
Hard 2522 14.23 17.15 8.08 20.08 6.85
Soft 10.71 6.49 10.71 6.49 12.25 5.65
5mm Medium 20.64 13.7 15.79 11.52 15.79 4.18
Hard 46.5 31.33 34.83 29.63 30.2 9.05
Soft 17.4 13.25 17.90 13.73 22.78 14.93
7 mm Medium 26.98 20.08 28.17 18.13 31.07 14.92
Hard 66.28 46.73 66.28 44.38 62.4 29.45

Table 6. Evaluation of “insertion torque performance” of Nobel implant system based on decision tree model.

presents “insertion torque performance” of Nobel implant system under different conditions based on decision
tree model established in this study.

Discussion

Practicality and advancement of the decision model base on multi-factor analysis

Preoperative prediction of insertion torque is essential for clinical decision-making. Currently, preoperative
assessment of insertion torque in immediate implant placement remains a relatively understudied area. Some
studies have established predictive models based on single factors, such as implant macrogeometries!?, bone
density”, drilling protocolslz, etc. However, the reference value for complex clinical situations is limited by the
approach of considering only single factors. In this study, four factors including implant apex design, osteotomy
preparation, intraosseous depth, and bone quality were simultaneously considered, and a predictive model
was established using multiple linear regression analysis, which yielded a high R-value of 0.839. The model
established in this study exhibits greater scientific rigor and advanced characteristics, providing enhanced
guidance for clinical practice.

In this study, we initiated the evaluation from an intraosseous depth of 3 mm, as our preliminary experiments
revealed that depths of 1-2 mm were insufficient to achieve an insertion torque of over 10 N-cm. To better
study the effect of intraosseous depth on insertion torque, intraosseous depths of 5 mm and 7 mm were set
to simulate actual application scenarios. Our results indicated that when the intraosseous depth is 3 mm,
employing a combination of deep-threaded implants featuring long cutting edges, along with undersized
preparation, becomes essential to ensure optimal insertion torque. Nevertheless, it is important to recognize
that with medium- to low-density bone, the method struggles to achieve an optimal insertion torque of over
25 N-cm. In the literature, an implant torque of at least 25 N-cm is widely accepted as the threshold criterion for
immediate loading'?.

Our findings indicated that the use of undersized preparation significantly enhances the insertion torque of
implants, regardless of bone quality, implant design, or depth of insertion. Literature suggests that an insertion
torque exceeding 50 N-cm is considered excessive and may heighten the risk of thermal bone damage and
resorption'?!3. Notably, at an intraosseous depth of 7 mm in hard bone conditions, the insertion torque achieved
with undersized preparation surpassed 50 N-cm, irrespective of implant apex design, thus it is necessary to adopt
the conventional osteotomy preparation protoco rather than the undersized preparation technique.

For immediate implant placement, only the intraosseous portion of the implant can affect the insertion
torque. Therefore, the impplant apex design should be also considered as a significant factor for immediate
implant placement. Studies have demonstrated that implant apex with deep and dense threads are more
beneficial for increasing bone-implant contact and obtaining high insertion torque. In addition, implant apex
with cutting edge have good self-tapping ability, allowing them to be more easily inserted in undersized implant
beds!"1*-17. The results of this study are generally consistent with the aforementioned research. However, it is
worth noting that the implants with Tapered/Deep thread/Long cutting edge apex designs demonstrate their
advantages primarily in hard bone and when using undersized preparation technique.

The current consensus is that there is a positive correlation between bone quality and insertion torque®.
The results of this study also support this consensus that bone quality is the most significant influencing factor,
compared to osteotomy preparation protocols, intraosseous depth and implant apex design. In addition, this
study found that with an intraosseous depth of 3 mm, achieving an insertion torque of 25 N-m is only possible
in cases of hard bone when using an implant with deep threads and cutting edges at the apex, and employing
the undersized preparation technique. While in soft bone condition, even with an intraosseous depth of 7 mm,
employing the undersized preparation technique along with an implant featuring deep threads and cutting edges
at the apex, it was not possible to achieve a torque greater than 25 N-m, which is the minimum implant torque
requirement for immediate loading®.

Based on our research findings, these four factors are crucial in influencing implant torque, while the clinical
outcomes reflect the combined effects of these factors. Isolating the analysis of each factor independently would
lead to misjudgments of the results. However, the establishment of a comprehensive analysis model incorporating
multiple factors undoubtedly presents significant challenges. In addition to traditional statistical methods,
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artificial intelligence and machine learning algorithms, such as decision tree regression, can also be utilized in
predictive model construction. Decision tree regression models are notable for their capacity to manage small
sample sizes effectively. Moreover, they offer excellent visualization and transparent decision-making processes,
distinguishing them from other ‘black-box’ models'®. In this study, we developed a decision tree regression
model for predictive purposes, achieving an R-value of 0.951, which exceeds that of the multiple linear regression
model. This suggests that the decision tree regression model offers superior predictive accuracy for the insertion
torque in immediate implant placement. With the rapid advancement of artificial intelligence, the medical field
has emerged as a prominent domain for Al applications. Leveraging extensive medical data, AI technology holds
the promise to aid clinicians in making more precise decisions regarding disease diagnosis, treatment planning,
and patient risk assessment, thereby enhancing the quality and efficiency of healthcare services.

A more sophisticated decision model for clinical application guidance

If postoperative implant insertion torque is inadequate, it is necessary to forgo immediate loading and consider
submerged healing instead. However, for immediate implant placement, insufficient soft tissue volume can
complicate achieving complete wound closure required for submerged healing. Hence, preoperative prediction
of insertion torque is essential for clinical decision-making.In actual clinical scenarios, the factors mentioned
in this study often cannot be simultaneously optimized. However, we can optimize some adjustable factors
according to the actual situation to accurately control the insertion torque and maximize the success rate of the
implant. Assuming we only have Nobel Replace CC implants available with tapered/ shallow thread/ no cutting
edge apex design, and the patient suffers from osteoporosis, but the mandibular molar to be extracted has a
bone height greater than 7 mm from the inferior alveolar nerve canal, we can adopt an undersized osteotomy
technique and ensure that the intraosseous depth of implant is at least 7 mm. By doing so, we can achieve an
insertion torque close to 25 N-cm (Table 2). Furthemore, if the insertion torque still cannot be increased to a safe
range within the scope of various factors that can be optimized, then we should not recommend the patient to
adopt the immediate implant placement. This is of significant reference value for optimizing clinical decision-
making, improving the success rate of implants, and enhancing the efficiency of doctor-patient communication.

A more comprehensive and standardized evaluation system can be established

Currently, many implant manufacturers claim that their products can achieve good primary stability (or insertion
torque), but this is not rigorous. Based on the insertion torque prediction model established in this study, except
for the intrinsic factors of the implant, it is also necessary to consider the actual clinical application scenarios,
such as intraosseous depth of the implant, bone quality of the implant site, and the osteotomy preparation
protocol. Based on the results of this study, we propose the concept of “implant insertion torque performance”.
Manufacturers can calculate the insertion torque of the implant under different clinical scenarios using the
prediction model of this study, and list specific values and reasonable osteotomy preparation protocol in the
implant instruction manual for reference by clinical doctors. As shown in Table 6, taking the Nobel implant
system as an example, we have sorted out its “insertion torque performance” table according to the prediction
model established in this study, which can greatly improve the safety and success rate of implant surgery and
increase the decision-making efficiency of doctors. At the same time, in this way, the primary stability (or
insertion torque performance) provided by different brands of implants will be more comparable.

The present study has certain limitations. Firstly, it is an in vitro investigation utilizing a standardized model,
which may not entirely replicate the complex bone conditions encountered in clinical settings'®. Secondly, the
diameter of the implants was not included in the study, despite being reported in numerous studies as one of the
factors influencing the insertion torque of implants'®. Thirdly, surgeon’s inexperience may be another elements
for low insertion torque'’.

Conclusion

The following conclusions are drawn from the results of this in vitro experimental study: In the context of
immediate implant placement, the factors influencing implant insertion torque are ranked in the following
order: bone quality, intraosseous depth, osteotomy preparation protocol, and implant apex design. Both
traditional on multiple linear regression and novel machine learning models have demonstrated the capability
to construct highly accurate predictive models for preoperative decision-making regarding the feasibility of
immediate implant surgery. The methodologies employed in this study standardize the assessment of ‘insertion
torque performance’ across different dental implant systems, thereby facilitating more precise decision-making.

Data availability
Data are available from the corresponding author (Runheng Liu: liurh28@mail.sysu.edu.cn) upon reasonable
request.
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