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The exchange of information in Wireless Sensor Networks (WSNs) across different environments, 
whether they are above the ground, underground, underwater, or in space has advanced significantly 
over time. Among these advancements, precise localization of nodes within the network remains a 
key and vital challenge. In the context of Underwater Wireless Sensor Networks (UWSNs), localization 
plays a pivotal role in enabling the efficient execution of diverse underwater applications such 
as environmental monitoring, disaster management, military surveillance and many more. This 
review article is focusing on three primary aspects, the first section focuses on the fundamentals of 
localization in UWSNs, providing an in depth and comprehensive discussion on various localization 
methods. Where we have highlighted the two main categories that are anchor based and anchor free 
localization along with their respective subcategories. The second section of this article examines the 
diverse challenges that may emerge during the implementation of the localization process. To enhance 
clarity and structure, these challenges have been carefully analyzed and categorized into three main 
groups and that are, (i) Algorithmic challenges, (ii) Technical challenges, and (iii) Environmental 
challenges. The third section of this article begins by presenting the latest advancements in UWSNs 
localization, followed by an exploration of how Machine Learning (ML) and Deep Learning (DL) models 
can contribute in enhancing the localization process. To evaluate the potential benefits of the ML 
and DL techniques, we have assessed their performance through simulations, focusing on metrics 
such as localization error, velocity estimation error, Root Mean Square Error (RMSE), and energy 
consumption. This review also aims to provide actionable insights and a guideline for future research 
directions and opportunities for practitioners in the field of UWSNs localization. Which will ultimately 
help in enhancing the performance and reliability of underwater applications by advancing localization 
techniques and promoting seamless integration.
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AOA	� Angle of Arrival
APIT	� Approximate Point in Triangulation
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DL	� Deep Learning
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DV-HoP	� Distance Vector Hop
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GA-SLMP	� General Availability of Scalable Localization Scheme with Mobility Prediction
GPS	� Global Positioning Systems
HNNs	� Heuristic Neural Networks
ICT	� Information and Communication Engineering
IGWONL	� Improved Grey Wolf Optimization Based Node Localization
IoT	� Internet of Things
IRTUL	� Iterative Ray Tracing for 3D Underwater Localization
KF	� Kalman Filter
K-NNs	� K-Nearest Neighbors
LAS-IUSSOT	� Localization algorithm to compensate the stratification effect based on an improved under-

water SALP swarm optimization technique
LITM	� Location with insufficient TOA measurement
LoS	� Line of Sight
LSLS	� Localization Scheme for Large Scale
LSTM	� Long Short Term Memory
LSTM-NNs	� Long Short Term Memory-Neural Networks
MI	� Magneto Inductive Communication
ML	� Machine Learning
MPL	� Movement Prediction Localization
NS2	� Network Simulation Software name
PNT	� Position Navigation and Timing
QoS	� Quality of Services
RBF	� Radial Basis Function
RDVHL	� Reward Based Distance Vector HoP Localization
RMML	� Robust Multi Modal Mobile Target Localization
RNNs	� Recurrent Neural Networks
RSS	� Received Signal Strength
RSSI	� Received Signal Strength Indication
RVOA	� Red Vulture Optimization Algorithm
SAR	� Synthetic Aperture Radar
SLMP	� Scalable Localization Scheme with Mobility Prediction
SNR	� Signal to Noise Ratio
SVM	� Support Vector Machine
TDOA	� Time Difference of Arrival
TOA	� Time of Arrival
ToF	� Time of Flight
TWSNs	� Terrestrial Wireless Sensor Networks
UOWC	� Underwater Optical Wireless Communication
UWSNs	� Underwater Wireless Sensor Networks
VLC	� Visible Light Communication
WSNs	� Wireless Sensor Networks

As time progresses, information and communication technologies (ICT) are becoming an integral part of our 
daily lives. The exchange of information between communication entities typically occurs via wired or wireless 
networks1. However, this study will not address wired networks but will instead concentrate on wireless sensor 
networks (WSNs), with a particular emphasis on underwater wireless sensor networks (UWSNs)2,3. The 
information shared as data between two communicating entities in a WSNs may either be in the form of text, 
audio, or a video file, but the main essence of all three types of data are digital bits, that are transferred on a 
wired or a wireless channel2,4. Full successful communication of the data between nodes in WSNs comprises 
of multiple processes, i.e., data encoding and decoding, transmission techniques such as modulation and 
demodulation, power consideration that includes power constraints and management techniques, channel 
coding, securing the data through secure communication and localization of data etc. When the operational 
domain of a conventional WSNs is transposed to the underwater domain, it evolves into what is termed an 
UWSNs, however, this metamorphosis is anything but rudimentary5. Although the theoretical premise of 
adapting WSNs to subaqueous applications may appear deceptively straightforward, the practical execution is 
markedly intricate. The underwater environment introduces unique challenges that significantly differ from 
those encountered in terrestrial or aerial communication systems. Factors such as water’s physical properties, 
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signal propagation limitations, increased attenuation, and the need for specialized communication techniques 
make UWSNs a sophisticated and intricate field of study.

In terrestrial wireless sensor networks (TWSNs), electromagnetic (EM) waves are the preferred medium for 
communication between nodes6,7. However, these waves are not suitable for UWSNs due to significant attenuation 
in the underwater environment. Factors contributing to this attenuation include the water itself, debris in murky 
waters, marine organisms inhabiting the communication area, reflections of EM waves from the water surface 
and ocean floor, as well as various organic and inorganic substances like rocks and coral reefs. Acoustical waves 
have superseded EM waves as the predominant medium for communication in UWSNs, effectively mitigating 
the impediments that hinder EM wave propagation in aquatic environments. Acoustical waves exhibit 
remarkable efficacy in traversing the underwater surroundings, circumventing numerous constraints that EM 
waves encounter during transmission. Nevertheless, a salient drawback of acoustical communication lies in 
its exorbitant costs of the required apparatus, that including acoustical transponders and related devices, are 
often prohibitively expensive8. Given the high costs associated with acoustical communication, research groups 
worldwide are actively investigating alternative technologies of communication medias for UWSNs. Two of 
the most promising approaches are optical communication, also known as visible light communication (VLC), 
and magneto inductive (MI) communication9–11. These innovative methods aims to address the shortcomings 
of acoustical communication, offering more cost effective and efficient solutions tailored to underwater 
environments, with a particular focus on near field communication scenarios12. Figure 1 provides a fundamental 
schematic diagram that depicts a generic scenario involving distributed sensor networks. These networks 
are shown functioning and exchanging information within the framework of UWSNs, offering a conceptual 
representation of their operational and communication dynamics.

Localization of nodes in UWSNs plays a vital role in ensuring efficient data collection, seamless network 
operations, and practical application deployment. This process involves two key types of nodes that are anchor 
Tx nodes and sensor Rx nodes. Anchor Tx nodes are equipped with global positioning systems (GPS), and 
are responsible for accessing and preprocessing data before transmitting it to the base stations13. Conversely, 
sensor Rx nodes focus on gathering raw data, sharing it within the network of sensor nodes, and synchronously 
transferring it to the anchor Tx nodes for further processing. Accurate localization of nodes is crucial for 
determining the exact source of the sensed data, which is indispensable for applications like environmental 
monitoring, disaster response, underwater navigation, and resource exploration. The underwater environment 
presents unique challenges, including limited bandwidth, significant signal attenuation, and constant node 
movement. To address these issues, effective localization algorithms are essential for conserving energy, 
minimizing communication overhead, and ensuring network reliability. Without precise localization, the data 
collected by UWSNs may lack context, diminishing its value for analysis and informed decision making14. The 
localization of sensor Rx nodes can primarily be classified into two fundamental methodologies, and that are 
range based and range free techniques15. Each of these approaches offers unique advantages and applications in 
the context of UWSNs.

The remainder of the paper is organized as follows, “Types of localization Algorithms” sect. provides an in 
depth discussion on the various types of localization, followed by an exploration of the challenges associated 
with the localization process in UWSNs, presented in “Localization Challenges in UWSNs” sect. “Most Recent 

Fig. 1.  A generic UWSNs communication scenario.
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Advancements in UWSNs Localization” Sect. highlights recent advancements in the field of localization in 
UWSNs, contributed by research groups worldwide. “Purpose of ML and DL in UWSNs Localization” Sect. 
delves into the application of Machine Learning (ML) and Deep Learning (DL) in node localization, including 
a detailed discussion in the form of comparative analysis on the results achieved using different ML and DL 
models. Finally, “Future Research Directions and Opportunities” sect. outlines open research directions that can 
serve as future work in node localization for UWSNs, concluding the article with a comprehensive conclusion 
at the end. To provide a clear understanding of the methodology adopted in reviewing the relevant articles for 
the completion of this research analysis, Fig. 2 showcases a detailed and systematic flow diagram. This diagram 
elaborates on the search mechanism employed, offering an in depth representation of the process followed to 
ensure a thorough and comprehensive examination of the literature.

The Key contributions of the article are:
This article covers several crucial aspects designed to benefit the research community. To ensure clarity and 

accessibility, we have outlined our key contributions below in the form of bullet points. These contributions 
aim to provide valuable insights, facilitate further exploration, and encourage meaningful discussions among 
researchers.

•	 We have conducted an in depth analysis of localization algorithms applicable to UWSNs. These algorithms 
have been systematically organized into categories and subcategories to present the localization processes/
methods in a structured, branch like format, making them more comprehensible for readers.

•	 The article provides a comprehensive explanation of three primary categories of challenges that localization 
processes may encounter when applied in UWSNs. These challenges stems out from various factors, including 
algorithmic, environmental, and technical aspects.

•	 Towards the end of this article, we have included a comparative analysis of various ML and DL models. This 
analysis examines their performance in evaluating the key factors necessary to determine whether the system 
for localization of nodes in UWSNs estimation is operating effectively.

Types of localization algorithms
Localization algorithms play a crucial role in UWSNs by enabling the accurate determination of sensor node 
positions within submerged environments. These algorithms can generally be classified into two main categories, 
i.e. anchor based and anchor free localization. The selection of an appropriate localization algorithm is influenced 

Fig. 2.  Methodology of the paper.
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by several factors, including the specific application of the network, the importance of energy efficiency, the 
characteristics of the surrounding environment, and the required accuracy of the positioning system. In the 
following section, we will provide a brief discussion on each category in the context of UWSNs. In Fig. 3a block 
diagram is presented that offers a detailed classification of the various types of localization algorithms, carefully 
organized into distinct subcategories for better clarity and understanding.

Anchor based localization algorithms
Anchor based localization algorithms are often utilized in UWSNs to determine the positions of sensor nodes 
with the help of predefined reference points, known as anchor nodes. These anchor nodes can be either static 
anchor nodes, remaining in a fixed position, or mobile, continuously transmitting their location data to nearby 
sensor nodes16,17. By assessing distances or signal strengths between the anchor nodes and the unknown nodes, 
the algorithm determines the positions. The precision of this localization technique depends on the optimal 
placement of the anchor nodes and the accuracy of the distance measurements. While this method is suitable for 
applications that demand reliable and reasonably accurate positioning in a network, but on the contrary it may 
present challenges related to energy efficiency and the cost effective deployment.

Static anchors
Static anchor node based localization algorithms in UWSNs rely on anchor nodes that are positioned at fixed, 
predefined locations to determine the positions of other sensor nodes. These static anchor nodes are typically 
categorized into two main types, i.e. range based and range free, which will be explored further in the following 
subsections. The accuracy of the localization process, however, depends on the strategic placement of the anchor 
nodes and the precision of the distance, time and angle measurements.

Range based algorithms  Range based localization algorithms for underwater communication determine the 
locations of sensor nodes by calculating their distances, time of communication or angle of communication from 
anchor nodes. These algorithms often employ techniques like angle of arrival (AOA), time of arrival (TOA), 
time difference of arrival (TDOA), and received signal strength indicator (RSSI) to estimate distances based on 
signal propagation characteristics18. These methods offer high positioning accuracy when measurements are 

Fig. 3.  A block flow diagram on the basic types of localization of nodes in UWSNs.
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reliable and environmental factors, such as signal interference and multipath effects, are minimal. However, they 
may demand significant computational and energy resources, making them more suitable for scenarios where 
precision is a top priority10. A detailed explanation of each type of range based algorithm mentioned earlier is 
provided in the following subsections within this section, offering a comprehensive understanding of how each 
approach operates, supplemented by their respective schematic diagrams.

a. Angle of Arrival (AOA)
The AOA technique is a range based localization approach commonly utilized in underwater communication 

to determine the position of nodes by analyzing the angle at which a signal is received. In UWSNs, this 
method leverages the benefits from the acoustic signals, which are more effective than radio waves in aquatic 
environments19. The technique involves deploying sensor nodes equipped with hydrophone arrays or directional 
antennas to measure the angle of signal arrival. Hydrophones, functioning as underwater acoustic sensors, 
detects sound signals and measure the time differences in their arrival at various points in the array. These 
time differences are used to calculate the signal’s angle of incidence, aiding in localization. By integrating AOA 
data from multiple receivers or anchor nodes with known positions, the location of an unknown node can 
be determined through triangulation20. However, the performance of AOA in underwater environments is 
affected by challenges such as signal scattering, multipath effects, and ambient noise. Despite these limitations, 
AOA offers a high potential for precise localization, especially when combined with other techniques to reduce 
environmental inaccuracies. In Fig. 4a basic localization scenario is shown where the receiver nodes (submarines) 
are being localized with the help of a range based AOA algorithm.

b. Time of Arrival (TOA)
The TOA technique is a range based localization method commonly used in underwater communication to 

identify the position of nodes by measuring the duration a signal takes to travel from a transmitter to a receiver21. 
This method, widely applied in UWSNs, utilizes acoustic signals, which propagates more effectively in water 
compared to its counter parts used in TWSNs. TOA calculates the distance between nodes by multiplying the 
signal’s travel time with the established speed of sound in water. By obtaining multiple distance measurements 
from anchor nodes with predefined locations, the position of an unknown node can be accurately determined 
through trilateration. However, TOA’s accuracy can be impacted by variations in the speed of sound caused by 
changes in water temperature, salinity, and pressure, as well as by environmental noise and signal multipath 
effects22. Despite these limitations, TOA remains a reliable method for underwater localization due to its 
capability to deliver precise distance estimates under controlled conditions but with proper calibration. Figure 5 
illustrates a fundamental scenario that demonstrates the concept of TOA. The anchor node, labeled as A, acts as 
the sender, while the receiver node, designated as R, receives the transmitted signal. The variable t represents the 
time it takes for the signal to travel from the anchor node to the receiver node. Using this measured time and the 
known speed of the signal, the calculated distance between the two nodes is denoted by d. This scenario provides 
a straightforward explanation of how TOA is used to determine distances in communication or positioning 
systems by leveraging the relationship between time, speed, and distance.

c. Time Difference of Arrival (TDOA)
TDOA is a range based localization method commonly applied in underwater communication to determine 

the position of nodes by assessing differences in signal arrival times at multiple receivers. In UWSNs, TDOA 
makes use of acoustic signals, which are well suited for underwater environments due to their efficient 
propagation23. The technique calculates relative time differences in signal reception across various receivers and 

Fig. 4.  A basic submarine target tracking scenario with the AOA.
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uses these values to estimate distance differences between the source and the receivers. By utilizing hyperbolic 
positioning and combining data from multiple receivers with known positions, the location of an unknown 
node can be accurately determined. Compared to direct time of arrival approaches, TDOA is less impacted 
by synchronization issues, as it focuses on relative timing rather than absolute travel times. However, its 
precision can be affected by environmental factors such as noise, multipath effects, and variations in the speed 
of sound caused by changes in temperature, salinity, and pressure24. Despite these challenges, TDOA remains 
a reliable localization technique, especially when high accuracy synchronization among receivers is feasible. 
Figure 6 presents a basic scenario designed to enhance the readers’ understanding of the TDOA concept. In this 
illustration, the focus is on comparing the arrival times of two distinct signals as they reach a common sensor 
or target node, at that time difference between the two signals is the critical parameter being measured. This 
difference plays a pivotal role in determining the position of the sensor or target node, whether it is stationary 
or in motion. By analyzing the time disparity, the system can calculate the relative location of the Rx nodes, 
enabling precise tracking and localization in various applications. This scenario highlights the utility of TDOA 
in navigation, monitoring, and real time tracking systems.

d. Received Signal Strength Indication (RSSI)
RSSI is a range based localization technique widely applied in underwater communication to determine the 

positions of nodes by evaluating the strength of the received signals. In UWSNs, this method captures the signal 
after the attenuation of acoustic signals as they travel through water25. Signal strength diminishes with increasing 
distance due to effects like absorption, spreading, and ambient noise. By recording RSSI values at various nodes 
and applying established signal attenuation models, the distance between the transmitter and receiver can be 
estimated. These distance measurements, when paired with the known locations of anchor nodes, enable the 
localization of unknown nodes through techniques such as trilateration. RSSI offers advantages, including 
not requiring precise time synchronization or advanced hardware. However, its accuracy can be affected by 
environmental conditions such as multipath propagation, changes in water salinity, temperature, and pressure, 
which may cause signal strength fluctuations26. Despite these limitations, RSSI remains a viable and cost effective 
solution for localization in UWSNs, particularly in energy efficient and budget conscious applications. Figure 7 
presents a schematic diagram depicting an RSSI based localization scenario utilizing multilateration. In this 
configuration, two nodes are situated on the surface of the water, and one node is submerged underwater, 
establishing a practical setup for implementing trilateration. Trilateration typically involves the use of three 
anchor nodes to determine the location of a target. However, when the number of anchor nodes used in the 
localization process exceeds three, the approach transitions into what is known as multilateration. This method 
enhances accuracy and reliability by leveraging additional anchor nodes to refine the position estimation within 
the scenario.

Fig. 5.  A basic scenario explaining the TOA.
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Table 1 provides a comprehensive overview of the various types of range based localization algorithms. It 
includes the descriptions of their technical mechanisms, the potential communication media they can employ, 
and an analysis of why MI communication cannot be universally applied across all types of range based 
localization algorithms.

Range free algorithms  Range free localization algorithms for underwater communication identify the posi-
tions of sensor nodes without relying on precise distance or angle measurements. Instead, they use connectivity 
data or relative proximity to estimate node locations, providing improved robustness in underwater environ-
ments where signal propagation can be unreliable. Techniques such as centroid based localization, which es-
timates a node’s position as the geometric center of nearby anchor nodes, and distance vector hop (DV-HoP), 
which uses hop count information to approximate distances, are common examples38. These approaches are 
generally simpler and consume less energy compared to range based methods, making them ideal for large scale 
networks or scenarios with limited resources. However, their accuracy depends heavily on the density of nodes 
and the spatial arrangement of anchor nodes10.

a. DV-HoP
DV-Hop is a range free localization technique commonly utilized in UWSNs to determine the positions 

of unknown nodes without relying on accurate distance measurements. This method employs a multi 
hop communication strategy to estimate distance between nodes39. Anchor nodes, which have predefined 
coordinates, broadcast their positions along with a hop count to their neighboring nodes. When a node receives 
this information, it increases the hop count by one and forwards the data to others, resulting in a network 
wide hop count map. Using their known locations and the hop count data, anchor nodes compute the average 
distance per hop. Unknown nodes then use this average hop distance and the hop count data to approximate 
their distances from multiple anchors. These distances are further used in trilateration to calculate the positions 
of the unknown nodes. DV-HoP is well suited for underwater settings, as it has the capability to avoid issues like 
signal attenuation and synchronization problems inherent in range based methods40.

However, its precision can be affected by factors such as uneven node distribution, network structure, and 
environmental variables that influence underwater communication. Figure 8 illustrates a fundamental scenario 
that explains the concept of the DV-HoP algorithm. In this representation, nodes A, B, C, and D serve as 
beacon nodes, which are utilized to determine the positions of unknown nodes within UWSNs. The distances 
d1, d2, and d3 present the individual distances between beacon nodes that are in direct communication with 
one another. Meanwhile, d4 denotes the communication distance between the sender node and the receiver 
node. This schematic highlights how the DV-HoP algorithm leverages from the hop count between nodes to 
facilitate localization, emphasizing the role of both direct and indirect communication links in the process.

 b. Centroid Base

Fig. 6.  A basic scenario explain the TDOA phenomenon.

 

Scientific Reports |         (2025) 15:5672 8| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The centroid based localization technique is a range free strategy often employed in UWSNs to approximate 
the locations of unknown nodes. This method involves anchor nodes with predetermined coordinates 
broadcasting their positions after being verified through a specific network validation mechanism. An 
unknown node calculates its location by determining the geometric center, or centroid, of the anchor nodes 
within its communication range41. This technique is simple and avoids the need for precise distance or angle 
measurements, making it well suited for underwater environments where range based methods face limitations 
such as signal attenuation and synchronization issues. The accuracy of the centroid based approach depends on 
factors like the density and arrangement of anchor nodes, as well as environmental conditions that might affect 
communication42. Although it offers less precision compared to range based techniques, the centroid based 
method is energy efficient, computationally simple, and ideal for scenarios where approximate localization is 

S.no
Localization 
Technique Description

Possible media of 
communication Reason for possible media References

1 AOA Requires a linear array of receiver 
nodes

Acoustics ✓
Visible light ✓
Magneto Inductive ☒

Acoustics and Visible light can be used, but 
no MI because Magnetic signals lacks the 
time dimension

27–29

2 TOA Requires a clock to measure the time 
for successful communication

Acoustics ✓
Visible light ✓
Magneto Inductive ☒

Acoustics and Visible light can be used, but 
no MI because Magnetic signals lacks the 
time dimension

29–32

3 TDOA
Calculates the difference between 
time taken by two distinct successful 
communication

Acoustics ✓
Visible light ✓
Magneto Inductive ☒

Acoustics and Visible light can be used, but 
no MI because Magnetic signals lacks the 
time dimension

29,33,34

4 RSSI Measure the strength of the signal in 
decibel for precise acknowledgement

Acoustics ✓
Visible light ✓
Magneto Inductive ✓

Acoustics and Visible light can be used 
and also MI, Because Magnetic signals 
can be perceived at a distance that’s why 
supports RSSI

35–37

Table 1.  Possible media’s of communication for each range based localization scheme in UWSNs.

 

Fig. 7.  A basic schematic diagram of RSSI based localization of node in UWSNs.
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adequate. Figure 9 provides a detailed representation of the centroid range free localization algorithm, illustrating 
its underlying concept. In this figure da, dband dc​ denotes the communication ranges of anchor nodes A, B, and 
C, respectively. The overlapping communication areas of these anchor nodes create intersection points labeled as 
D, E, and F. These intersection points form the basis of the centroid localization algorithm, serving as reference 
points for estimating the position of an unknown node. The algorithm determines the geometric center, or 
centroid, of these anchor nodes within the overlapping regions to approximate the unknown node’s location. 
This approach highlights the fundamental principle of using communication coverage and intersection points 
to achieve localization in UWSNs, offering a straightforward yet effective solution that does not require precise 
range measurements.

c. Approximate Point in Triangulation (APIT).
The approximate point in triangulation (APIT) technique is a range free localization method widely used 

in UWSNs to estimate the locations of unknown nodes. This method partitions the underwater network into 
triangular regions formed by anchor nodes with predefined coordinates. An unknown node identifies its 
location by determining which triangular region it belongs to, based on signal coverage information43. The 
node evaluates its position by analyzing whether it is within or outside the triangular zones created by various 
combinations of anchor nodes. This approach utilizes simple signal strength comparisons, eliminating the 
need for precise distance measurements or complex computational processes. Although the APIT method 
is straightforward and bypasses issues such as signal attenuation and synchronization problems prevalent in 
underwater environments, its accuracy largely depends on the distribution and density of anchor nodes44. It 
is especially suitable for scenarios where approximate localization estimation is enough, and energy efficiency 
is a key consideration. Figure 10 presents a fundamental scenario of the APIT method, showcasing the use of 
more than three anchor nodes to achieve range free localization of a sensor node. If a sensor node lies within 
these overlapping communication regions, than the APIT algorithm leverages the signal coverage from multiple 
anchor nodes to determine the node’s approximate location. This scenario highlights the critical role of anchor 
nodes communication ranges in facilitating localization within UWSNs, emphasizing the method’s reliance on 
signal coverage rather than precise distance measurements or complex calculations.

Mobile anchors
Mobile anchor based localization algorithms for underwater communication utilize anchor nodes that move 
continuously within the network based on the specific requirements of the application or task, rather than 
staying stationary. These mobile anchors periodically share their location data with nearby sensor nodes, 
enabling the sensors to determine their positions45. The mobility of these anchors offers key advantages, such 
as overcoming the constraints of fixed anchor placement and increasing the coverage area for more accurate 
positioning. By frequently updating their locations, mobile anchors provide sensor nodes with more timely and 
precise localization information. However, this approach introduces challenges, including the need for precise 
tracking of anchor movements and the complexity of coordinating the moving nodes46. Nevertheless, these 
algorithms prove highly effective in dynamic underwater environments where stationary anchors may fall short 

Fig. 8.  A basic schematic diagram of DV-HoP localization algorithm for UWSNs.
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in providing adequate coverage or reliability. The basic types of the localization of nodes with mobile anchor 
nodes will be discussed briefly in the coming subsections.

Individual mobility  In mobile anchor based localization algorithms for underwater communication, individ-
ual mobility refers to the autonomous movement of anchor nodes within the network, designed to enhance 
coverage and improve localization accuracy. Unlike group or coordinated mobility, where anchors follow fixed 
routes or patterns, individually mobile anchors can dynamically adjust their movements based on environmen-
tal factors, network structure, or application requirements47. This flexibility enables them to efficiently navigate 
around obstacles or cover areas with sparse sensor node distribution in dynamic underwater settings. However, 
implementing this approach requires advanced control strategies to ensure effective movement patterns that 
maintain localization accuracy, reduce energy usage, and prevent node interference48. This method is particu-
larly advantageous in situations where stationary anchors are inadequate or fail to provide sufficient network 
coverage.

Group mobility  In mobile anchor based localization algorithms for underwater communication, group mobil-
ity involves the synchronized movement of multiple anchor nodes along the predefined paths and with specific 
formations. This strategy provides organized coverage of the underwater area, enhancing the efficiency of sensor 
node localization while minimizing the risk of overlapping paths or unaddressed regions49. The synchronized 
group mobility of anchors ensures consistent communication and improves localization accuracy. This coordi-
nation is particularly useful when large scale network coverage is needed or precise positioning is critical. How-
ever, managing group mobility requires reliable communication between the anchors and effective algorithms 
for processing the real time information to preserve formation integrity, reduce energy usage, and adjust to 
environmental changes or obstacles50.

Anchor free localization algorithms
Anchor free localization algorithms for underwater communication aim to determine the positions of 
sensor nodes without the dependence on fixed anchor nodes. Instead, these algorithms typically rely on the 
relative positioning of data, such as distances or angles between adjacent nodes, to estimate the locations of 
the sensor nodes within the network. The process is structured around three phases and that are, (i) network 
bootstrapping, (ii) local position determination, and (iii) global localization51. By utilizing communication data 
between nodes, anchor free approaches overcome the limitations of anchor based methods, such as the need 
for anchor placement and potential anchor failure. These algorithms are particularly advantageous in dynamic 

Fig. 9.  A schematic diagram elaborating the concept of Centroid Base localization algorithm for UWSNs.
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environments where deploying or maintaining anchors is challenging. However, anchor free localization may 
require more complex algorithms and can be impacted by measurement errors or noise between nodes, which 
could affect position accuracy52. Despite these challenges, anchor free techniques offers a promising solution for 
large scale, adaptable, and scalable UWSNs. The two basic types of the anchor free node localization mechanism 
are briefly discussed as a subsection in this section.

Relative positioning
Relative positioning in anchor free localization algorithms for underwater communication involves estimating 
the positions of sensor nodes by measuring their relative distances or angles to neighboring nodes, without 
the need for fixed anchor nodes. Each sensor node calculates its position by measuring the distance or angle 
to nearby nodes through communication signals or other sensing techniques53. These measurements create 
a network of relative positions, enabling nodes to determine their locations in relation to one another. This 
method is particularly advantageous in dynamic underwater environments where anchor deployment may be 
difficult or unfeasible. However, the accuracy of relative positioning can be affected by factors such as signal loss, 
environmental variables, and measurement inaccuracies, which may introduce uncertainty into the localization 
process54. Despite these challenges, relative positioning is crucial for achieving scalable and flexible localization 
in UWSNs.

Fig. 10.  A schematic diagram for APIT.
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Self-organizing networks
Self-organizing networks in anchor free localization algorithms for underwater communication are composed 
of sensor nodes that independently determine their positions and manage communication without the need for 
central control or fixed anchor nodes. In these networks, each node works with neighboring nodes to calculate 
its position using relative positioning methods like measuring distances or angles55. The nodes share positional 
information with each other, allowing the network to gradually build a map of relative locations. These self-
organizing networks are particularly effective in underwater environments, where deploying traditional anchor 
based solutions is difficult due to factors like mobility, environmental changes, and deployment challenges. 
The networks can adapt to shifts in the environment and changes in network structure, offering flexibility 
and scalability. However, they may encounter challenges concerning position accuracy, network stability, and 
resource management in dynamic conditions56. Despite these challenges, self-organizing networks provide a 
promising solution for efficient and decentralized localization in UWSNs.

In Table  2, we have carefully outlined the key details and nuanced aspects of the primary localization 
techniques. By highlighting these subtle yet significant points, we aim to provide a clearer understanding of the 
core principles and intricacies associated with each localization approach.

Localization challenges in UWSNs
Node localization in UWSNs presents a list of challenges due to the unique and harsh conditions of the underwater 
environment. The slow speed at which acoustic signals propagate introduces significant delays, making accurate 
localization a complex task. Additionally, the underwater medium exacerbates these difficulties with multipath 
effects, where signals reflect off surfaces/obstacles, and signal attenuation, which diminishes the strength of 
transmitted signals. Also the environmental factors, such as varying water currents, salinity, and temperature, 
further complicates signal behavior. The three dimensional nature of underwater space adds another layer 
of complexity to localization algorithms, especially for mobile nodes. Moreover, limited energy availability, 
restricted bandwidth, sparse deployment of nodes, and synchronization issues contribute to the challenges. 
Addressing these obstacles requires the design of robust, efficient, and adaptive localization methods specifically 
suited for underwater environments. Furthering this section, we will encapsulate the challenges in three major 
categories and that are, (i) Algorithmic challenges, (ii) Technical challenges, (iii) Environmental challenges. 
Figure 11 presents a block flow diagram designed to comprehensively capture the various challenges associated 
with the process of localization in UWSNs. The diagram aims to encapsulate and illustrate the broad spectrum of 
difficulties that arises when implementing localization in such unique and complex environments. By presenting 
these challenges in a structured visual format, it provides readers with a clear and detailed understanding of the 
multifaceted issues that must be addressed to achieve efficient and reliable localization in UWSNs.

Algorithmic challenges
The process of localizing nodes in UWSNs presents several algorithmic challenges, each contributing to the 
complexity of accurately determining node’s position in such environments.

Effects of nonlinear propagation
Nonlinear propagation effects significantly impact the localization of nodes in UWSNs. Acoustic signals, which 
are commonly used for communication and distance measurement in underwater environments, experience 
changes in speed and behavior due to varying environmental factors such as water temperature, salinity, and 
pressure63. These factors introduce nonlinearities in signal propagation, making it difficult to accurately model 
and predict the signal’s travel time, which is crucial for precise localization. As a result, traditional linear models 
that are used for node positioning in TWSNs often fails to provide reliable results in UWSNs64. Localization 
algorithms must, therefore, be adapted to account for these nonlinear effects, requiring more sophisticated 
models and techniques that can dynamically adjust to the fluctuating underwater conditions. Addressing these 
challenges is vital for improving the accuracy and robustness of localization methods in UWSNs.

Precision and accuracy
Precision and accuracy are essential components in the process of localizing nodes within UWSNs. Precision 
refers to the extent to which localization results are consistent or repeatable. Specifically, it describes how closely 
the position measurements of the same node is, when the node is localized multiple times under the same 

S.No
Localization 
Techniques Key Features Accuracy

Energy 
Efficiency Scalability Challenges References

1 Range based Uses angle and distance estimations α β δ Sensitive to environmental noise 7,57

2 Range free Relies on hope count connectivity β α α Limited accuracy for large scale networks 10,58

3 Hybrid Integrates range-based and range-free 
localization techniques α β β Having high cost of implementation 7,18

4 ML based Utilizes ML algorithms α α α Requires large data sets and High 
computational power

59,60

5 DL based Uses DL techniques Ὗ β α Prone to overfitting 61,62

Table 2.  Encapsulating the aanalysis of major localization techniques for UWSNs where α represents high, β is 
for moderate, δ is for low, and Ὗ is for very high.
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environmental conditions65. High precision means that the same localization results will be obtained repeatedly, 
regardless of the exact true position. In contrast, accuracy is about how close the estimated position of a node 
is to its true or actual location in the physical space66. In other words, accuracy measures the correctness of the 
localization estimate, ensuring the node’s position is as close as possible to its real world location. Both precision 
and accuracy are critical in ensuring reliable and effective node localization in UWSNs, yet achieving high levels 
of both is challenging due to the complex environmental factors, such as signal interference, propagation delays, 
and varying underwater conditions, that impact the performance of localization systems.

Complexity in 3D localization
Three dimensional (3D) localization in UWSNs presents significant difficulties due to its inherent complexities. 
Unlike TWSNs, that primarily utilize two dimensional (2D) positioning, UWSNs must consider the depth 
dimension too, which greatly increases computational and algorithmic challenges. The process is further 
complicated by issues such as irregular node distribution, the constant movement of nodes influenced by water 
currents, and variations in environmental factors like pressure and temperature etc. Additionally, the unique 
characteristics of underwater acoustic signals, including their slower propagation speed and sensitivity to 
multipath effects, makes achieving the accurate 3D localization particularly demanding. Precise depth estimation 
and synchronization among nodes are further hindered by the lack of line of sight (LoS) in the dynamic nature of 
the underwater environment. Addressing these challenges requires the development of sophisticated algorithms 
that can efficiently manage 3D spatial computations, while adapting to the unique constraints of UWSNs67.

High computational overhead
High computational overhead is a significant obstacle in the localization of nodes within UWSNs. Many algorithms 
used for localization, especially those involving iterative calculations, advanced optimization strategies, or 3D 
positioning, demand substantial computational power. This poses a challenge for sensor nodes in UWSNs, 
which are inherently limited in processing capacity and energy resources. The underwater environment further 
amplifies this difficulty by requiring sophisticated algorithms to handle challenges such as signal attenuation, 

Fig. 11.  A flow diagram encapsulating the challenges faced during localization of nodes in UWSNs.
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multipath effects, and the dynamic variations in conditions like water currents and temperature. As the size 
of the network increases, the computational demands grow, resulting in longer processing times and greater 
energy consumption, which can reduce the network’s operational longevity. Overcoming this issue necessitates 
the design of lightweight and efficient localization algorithms that reduce computational overhead while 
maintaining accuracy and reliability68.

Synchronization challenges
Ensuring synchronization is a major challenge in the localization of nodes within UWSNs, primarily due to 
the distinct characteristics of the underwater environment. Methods like TOA and TDOA rely on precise 
time synchronization between sensor nodes and reference points69. However, the slow propagation speed of 
acoustic signals, along with delays caused by processing and environmental factors, makes maintaining accurate 
synchronization particularly challenging. Additional complications arise from signal attenuation, multipath 
interference, and the dynamic underwater conditions, such as fluctuating currents and temperature changes, 
which further affect timing accuracy. The limited communication bandwidth and high energy requirements of 
synchronization protocols exacerbate the difficulty, especially for energy constrained sensor nodes. Overcoming 
these obstacles requires the development of advanced and energy efficient synchronization algorithms that are 
designed specifically for the underwater environment to enable reliable and accurate localization70.

Noise and measurement errors
Noise and measurement errors poses significant challenges to node localization in UWSNs, largely due to the 
harsh and unpredictable nature of the underwater environment. Acoustic signals, being the primary medium for 
communication and localization, are highly vulnerable to interference from noise created of natural factors such 
as marine organisms, water currents, and turbulence, as well as human activities like shipping and underwater 
industrial operations. These disturbances act as a source of noise and can distort critical signal parameters, such 
as TOA and RSSI, leading to inaccuracies in position estimation71. Additionally, environmental factors, including 
fluctuations in salinity, temperature, and pressure, further contributes to measurement errors by affecting signal 
propagation. The combined effects of noise and inaccuracies creates significant hurdles in designing localization 
algorithms that can ensure both precision and reliability. Implementing robust error handling mechanisms and 
employing advanced filtering techniques are crucial to mitigating the impact of these challenges in achieving 
reliable localization estimations in underwater networks72.

Fault tolerance and robustness
Fault tolerance and robustness are crucial in the localization of nodes within UWSNs, owing to the dynamic 
and unpredictable nature of the underwater environment. Variables such as shifting currents, pressure changes, 
and temperature fluctuations can disrupt communication, cause node malfunctions, or uneven result in node 
losses. Furthermore, the limited energy capacity of underwater sensor nodes increases the risk of failures, adding 
to the complexity of localization efforts73. To address these challenges, effective localization algorithms must 
ensure accurate positioning by employing redundancy, error correction techniques, and adaptive mechanisms to 
handle missing data or faulty nodes. Fault tolerance allows the network to operate reliably despite failures, while 
robustness ensures consistent performance under varying environmental conditions. Together, these attributes 
are critical for ensuring the resilience and efficiency of underwater localization systems74.

Handling limited prior knowledge
Addressing limited prior knowledge is a considerable challenge in localizing nodes within UWSNs, as the 
underwater environment seldom provides adequate details about node’s location, environmental factors, or 
network topology prior to deployment. In contrast to TWSNs, which leverage from the established reference 
points and detailed mapping, UWSNs operate in vast, dynamic, and largely unexplored underwater domains. 
This scarcity of initial data complicates the initialization of localization algorithms, requiring them to work 
with incomplete or uncertain inputs to estimate node positions75. Furthermore, issues such as uneven node 
distribution, varying water conditions, and the lack of reliable infrastructure adds to the complexity. To 
overcome these limitations, effective localization strategies must employ adaptive approaches, including iterative 
optimization, self-organizing techniques, and ML models, to enhance the accuracy and reliability in position 
estimation. Tackling these challenges can contribute to the development of robust underwater localization 
systems76.

Real time processing
Processing time is a major concern in UWSNs due to the dynamic nature of underwater environments and the 
pressing need for real time localization. Efficient network functionality depends on algorithms that can deliver 
results within tight time constraints. The system must minimize delays and promptly provide localization outputs 
to accommodate environmental changes or adjustments in network configurations. Real time localization is 
particularly essential for applications such as underwater vehicle navigation, where delayed position updates 
can lead to navigational errors and that may compromise mission objectives77. However, achieving this is 
challenging, as localization algorithms demand significant computational power while facing constraints like 
limited bandwidth and high latency, which is inherent to underwater communication. Delays in processing 
can undermine the network’s reliability and effectiveness. Therefore, robust real time localization systems must 
employ optimized computational strategies and adaptive techniques to ensure accurate and timely information 
delivery78.
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Technical challenges
A brief discussion on various technical challenges associated with the localization of nodes in UWSNs will be 
provided in this section.

Mobility
The mobility of nodes in UWSNs presents a significant obstacles to effective localization. Unlike the nodes 
in TWSNs, underwater nodes are subject to unpredictable shifts in position due to ocean currents, tides, and 
waves. This continuous movement undermines the reliability of conventional localization techniques and 
necessitates for the frequent recalibration, which can be both energy intensive and computationally demanding. 
Moreover, node mobility introduces challenges such as time varying propagation delays and Doppler effects in 
acoustic signals, reducing the accuracy of distance and angle estimations79. Synchronizing mobile nodes adds 
another layer of complexity, often leading to greater localization errors that in turn diminishes the network’s 
performance. To address this challenge, energy efficient and robust adaptive localization algorithms tailored to 
dynamic underwater environments are essential80.

Limited bandwidth
Limited bandwidth presents a significant challenge in the localization of nodes in UWSNs. Acoustic 
communication, as being the primary method for transmitting data underwater, provides much lower bandwidth 
compared to terrestrial radio waves. This limitation constrains the volume of data that can be shared, which 
ultimately results in complicating the exchange of crucial localization information such as distance measurements, 
control signals, and node positions. Additionally, the low bandwidth increases transmission delays, making 
synchronization for accurate localization more challenging15. The restricted bandwidth also heightens the risk 
of interference and packet loss, negatively impacting the effectiveness and precision of localization methods. To 
overcome this challenge, it is essential to implement efficient strategies such as data compression, aggregation, 
and optimized communication protocols to maximize bandwidth usage while ensuring localization accuracy81.

Limited communication range
The limited communication range poses a significant challenge in localizing nodes within UWSNs. Underwater 
acoustic signals are likely to have a high attenuation factor, resulting in a short effective communication range, 
particularly in deep or murky environments. This limitation reduces the number of neighboring nodes that 
can exchange localization information, negatively impacting position accuracy82. Expanding coverage often 
requires multi hop communication, which introduces additional delays, increases energy consumption, and 
amplifies the risk of cumulative errors in localization data. Frequent short distance transmissions can also cause 
network congestion and compromise the performance of localization algorithms. Overcoming these challenges 
necessitates innovative solutions, such as incorporating relay nodes or optimizing communication protocols, to 
improve the coverage while maintaining energy efficiency and accuracy83.

Energy efficiency
Energy efficiency is a crucial challenge in the localization of nodes within UWSNs due to the restricted energy 
reserves available to power underwater sensor nodes. Localization activities often necessitate frequent data 
exchanges between sensor nodes and anchor nodes, which can quickly deplete the limited battery life of these 
devices84. Furthermore, the high energy consumption associated with underwater acoustic communication 
compounds the problem, emphasizing the need for energy conservation in UWSNs operations. Additional 
factors, such as ensuring accurate synchronization, executing iterative computations in localization algorithms, 
and managing challenges like multipath interference and signal attenuation, further increase energy demands. 
The harsh underwater environments, combined with the difficulty of recharging or replacing batteries, make 
energy efficient approaches indispensable. Designing localization methods that minimize communication 
requirements, lower computational overhead, and enhancing the network’s operational lifespan is critical to 
sustaining the functionality of UWSNs over extended periods of time85.

Secure encrypted communication
Ensuring encrypted communication for node localization in UWSNs comes with several challenges. The limited 
energy and computational capabilities of underwater nodes make it difficult to implement strong encryption 
methods without compromising performance. Furthermore, the high latency and low bandwidth of acoustic 
communication increase the encryption overhead, reducing overall efficiency86. The dynamic underwater 
environment, with its mobile nodes and frequent topology changes, adds complexity to secure key management 
and data exchange. Additionally, the susceptibility of underwater networks to interception and spoofing, makes 
safeguarding localization data crucial, as compromised information can lead to errors in node positioning and 
network disruptions. Addressing these challenges requires the development of lightweight and energy efficient 
encryption solutions specifically designed for the unique demands of UWSNs87.

Fusion of multi-modal data
The integration of multi modal data is crucial for enhancing localization accuracy in UWSNs by leveraging 
information from various sources, including acoustic signals, VLC, MI signals, and inertial navigation systems. 
Each modality offers unique strengths while addressing the limitations of others. Acoustic signals provide 
effective long range communication but are susceptible to noise and multipath effects. VLC delivers high 
accuracy in clear water, but is constrained by its limited range, whereas MI communication remains unaffected by 
organic materials present between the LoS, offering reliability in complex underwater environments, though it is 
limited to short distances88. Combining data from these diverse modalities enhances robustness and minimizes 
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individual shortcomings in localization. However, challenges such as achieving precise synchronization, 
harmonizing data resolutions, and managing the computational complexity of multi modal processing must 
be addressed. Advanced approaches, including ML based fusion techniques and probabilistic models canplay 
a critical role in efficiently integrating multi modal data, enabling improved localization performance in the 
demanding underwater environment89.

Anchor node placement and optimization
The placement and optimization of anchor nodes are critical challenges in localizing nodes within UWSNs. 
Anchor nodes act as crucial reference points for pinpointing the positions of other nodes, and their deployment 
has a substantial impact on localization accuracy and reliability. However, the 3D underwater environment 
complicates this task, requiring careful consideration of factors such as depth, the mobility of nodes, and 
uneven network distribution. Additionally, environmental influences like currents, salinity and temperature 
changes, affect signal propagation, making it difficult to ensure consistent connectivity between anchor and 
sensor nodes90. Sparse deployment of anchor nodes to conserve resources can lead to coverage gaps, diminishing 
localization accuracy. So striking a balance between the number of anchor nodes, deployment costs, and energy 
efficiency is vital. Advanced optimization strategies and innovative algorithms are essential for determining the 
optimal placement of anchor nodes to achieve reliable and precise localization in underwater networks91.

Scalability issues
Scalability is a key challenge in localizing nodes within UWSNs, particularly as the network expands in size, 
both in terms of the number of nodes and the area it covers. Adding more nodes to complete specific tasks 
increases the difficulty of achieving accurate localization, largely due to the rising communication overhead 
and the need for efficient coordination mechanism among nodes. This highlights the necessity of developing 
advanced algorithms capable of managing large scale networks while maintaining reliability and precision in 
localization92. In extensive networks, reliance on anchor nodes or reference points can become problematic, as 
their signals may not consistently reach all nodes due to interference in underwater environments. Additionally, 
algorithms tailored for smaller networks often encounter performance bottlenecks when applied to larger 
systems, as they require greater computational resources and energy, complicating the localization process further. 
These challenges can result in delays, decreased localization accuracy, and heightened resource consumption. 
Consequently, designing scalable localization solutions that ensure efficiency, accuracy and energy optimization 
is essential for the successful implementation and operation of UWSNs in practical scenarios5.

Lack of GPS access
The absence of GPS access presents a significant obstacle to localizing nodes in UWSNs. Since GPS signals cannot 
penetrate water, underwater nodes cannot depend on satellite based systems for determining their positions. 
Instead, they rely on alternative methods like acoustic, VLC, or MI signals, which are often less precise and more 
susceptible to errors. Additionally, the lack of GPS increases the difficulty of achieving accurate localization, 
particularly in dynamic underwater environments with mobile nodes and fluctuating conditions16. Using surface 
buoys or anchor nodes that are equipped with GPS, as reference points adds to deployment and maintenance 
costs while introducing potential vulnerabilities. Addressing this challenge requires the development of advanced 
localization techniques, such as multi hop communication, enhanced signal processing, or hybrid systems that 
integrate multiple technologies to function effectively without GPS93.

Table 3 presents a variety of performance metrics of localization techniques, accompanied by detailed and 
nuanced information designed to enhance the reader’s comprehension. By including these critical details, the 
table aims to simplify the evaluation process and provide a clearer, more intuitive understanding.

Environmental challenges
A brief discussion on various environmental challenges associated with the localization of nodes in UWSNs will 
be provided in this section.

Multipath interference handling
Multipath interference presents a significant challenge in localizing nodes within UWSNs. Underwater acoustic 
signals frequently reflect off surfaces such as the seabed, water surface, and submerged structures, creating 

S.No Metric Description Typical Values
Impact on 
Localization Considerations References

1 Localization 
Error

The difference between actual and estimated 
readings

1 to 10 m (varies by 
technique)

Directly affects 
accuracy

Lower is better, varies by 
environment

7,37

2 Latency Time delay in communication 10 to 100 m/s (varies by 
technique)

Affects real-time 
application Lower is better, critical for real-time 94,95

3 Energy 
Consumption The energy required for the localization process 10 to 1000 J (varies by 

technique)
Affects network 
lifespan Lower is better, varies by node type 96,97

4 Scalability Ability to maintain performance with an 
increasing number of nodes

10 to 100 nodes (varies 
by technique) Affects network size Higher is better, depending on the 

algorithm
98,99

5 Robustness Resilience to environmental changes and node 
failures High/Moderate/Low Affects reliability Higher is better, critical for harsh 

environments
100,101

Table 3.  Analysis of different performance matrices used for localization in UWSNs.
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multiple signal paths between the transmitter and receiver. These reflected signals overlap with the direct path, 
introducing errors in localization methods such as TOA and RSS measurements102. The inherently unpredictable 
and complex nature of underwater multipath interference makes it difficult to differentiate the direct signal 
from its reflections, leading to inaccuracies in position estimations103. Furthermore, the dynamic underwater 
environment, influenced by factors like water currents and temperature changes, adds to the complexity by 
continuously altering signal propagation patterns. So in order to overcome the multipath interference, it requires 
advanced algorithms and effective signal processing techniques that are designed to minimize its impact and 
ensure accurate and reliable localization results104. Figure 12 presents a schematic diagram created to illustrate 
and elaborate on the concept of multipath interference and its significant impact on communication within 
UWSNs. The diagram visually highlights how multipath interference arises and demonstrates its cascading 
effects on the communication process. These disruptions, in turn, influence the accuracy and reliability of node 
localization within UWSNs. By providing this visual representation, we aim to deepen the reader’s understanding 
of the phenomenon and its critical role in shaping the performance and challenges of underwater localization 
systems.

Propagation delays
Propagation delays presents a major challenge in localizing nodes in UWSNs. Acoustic signals, being the primary 
means of underwater communication, travel much slower than EM waves in air, causing significant delays. These 
delays are further influenced by environmental conditions like water temperature, salinity, and depth, which 
affect the speed of sound. This variability complicates distance measurement between nodes, as conventional 
time of flight (ToF) techniques rely on stable sound propagation speeds105. Additionally, propagation delays lead 
to synchronization difficulties, hindering the coordination of data exchange and localization calculations among 
nodes. The problem becomes even more pronounced in dynamic underwater environments with mobile nodes, 
resulting in increased localization errors. To address these issues, advanced algorithms are needed to account for 
variable delays and maintain precise synchronization despite these constraints106.

Absorption and attenuation
Signal absorption and attenuation present significant challenges for node localization in UWSNs. Acoustic 
signals, as being the primary means of communication in underwater environments, lose considerable energy 
as they travel through water due to factors such as absorption and scattering. The severity of attenuation is 
influenced by variables like signal frequency, transmission distance, and environmental conditions, with higher 
frequencies experiencing greater energy loss over shorter distances107. This limits the communication range and 
compromises the precision of localization data. Additionally, variations in water properties, such as temperature, 
salinity, and pressure, further exacerbate signal degradation, leading to inconsistent distance measurements. To 
compensate for signal loss, higher transmission power or additional relay nodes are often required, increasing 
energy consumption and complicating network architecture. Addressing these challenges necessitates innovative 
solutions to reduce attenuation effects and ensure accurate, energy efficient localization in UWSNs108.

Fig. 12.  Schematic diagram to elaborate the multipath scenario in UWSNs.
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Dynamic water conditions
The ever changing nature of underwater environments also presents a major challenge to accurate localization in 
UWSNs. Factors like shifting currents, waves, tides, and temperature variations creates a dynamic environmental 
condition that impacts signal propagation and node stability. These fluctuations often cause nodes to drift 
from their initial positions, complicating the static or predictable placement assumptions relied upon by many 
localization algorithms109. Additionally, variations in water temperature, salinity, and pressure alter the speed of 
sound, leading to inaccuracies in ToF and range based localization methods. The unpredictability of underwater 
conditions also disrupts acoustic signal reliability, causing intermittent communication and potential data 
loss. To overcome these obstacles, adaptive localization strategies are essential, enabling systems to account for 
environmental variability and sustain accuracy in dynamic underwater scenarios110.

Noise interference
Noise interference in underwater environments poses a substantial obstacle to node localization in UWSNs. 
Acoustic signal transmission is often disrupted by ambient noise from natural sources like marine life, ocean 
currents, and seismic events. Human induced noise from activities such as shipping, underwater construction, 
and sonar operations further compounds this issue, leading to a decline in signal quality111. This interference 
reduces the signal to noise ratio, making it challenging to accurately detect and interpret localization data. 
Fluctuating noise levels and overlapping frequencies can introduce errors in ToF and AOA measurements, 
which are critical for accurate node positioning. Overcoming these challenges requires the implementation of 
effective noise mitigation strategies, including advanced signal processing, adaptive filtering, and error correction 
techniques, to enhance localization reliability in noisy underwater conditions112.

Depth related challenges
Depth related factors have a significant impact on the localization of nodes in UWSNs. Changes in depth affect 
water pressure, temperature, and salinity, which in turn influence the speed of sound and the precision of 
acoustic signal based localization methods113. Nodes at different depths may experience varying propagation 
delays, leading to discrepancies in range measurements and ToF calculations. Additionally, maintaining accurate 
depth information is challenging due to the movement of nodes and the dynamic underwater environment, 
including fluctuating currents and tides. These depth variations also complicate node synchronization and 
increase the risk of localization errors, especially in multi hop communication scenarios. To address these issues, 
depth aware localization algorithms that can adjust to environmental variations and integrate real time depth 
data are necessary to enhance localization estimation accuracy114.

Environmental heterogeneity and obstacles
Environmental variability and physical barriers, including thermoclines, salinity gradients, and seafloor 
topography, create substantial challenges for node localization in UWSNs115. Irregular sound speed profiles 
caused by thermoclines and salinity gradients result in signal refraction and unpredictable propagation paths, 
diminishing the precision of distance and angle measurements. Furthermore, seafloor features and obstacles such 
as submerged rocks, dense vegetation, shipwrecks, and underwater structures can obstruct signal transmission 
through attenuation, scattering, or complete loss116. These issues not only reduce the reliability of localization 
algorithms but also increase energy consumption due to frequent retransmissions and the need for alternate 
routing. Addressing these challenges requires adaptive localization algorithms capable of accommodating 
environmental variability and implementing robust methods to minimize the effects of physical obstructions 
on signal propagation117.

Biofouling
Biofouling is another factor that presents a significant obstacle to effective node localization in UWSNs. The 
accumulation of biological materials like algae, barnacles, and mussels on sensors and devices can severely 
compromise their functionality. This buildup often obstructs acoustic transducers, weakening signal clarity 
and strength, which in turn reduces the accuracy of localization methods118. Moreover, biofouling alters the 
physical and acoustic properties of nodes, such as their buoyancy and weight, potentially causing positional 
shifts and challenging the assumption of static deployment. In long term deployments, the severity of biofouling 
increases maintenance demands and decreases system reliability. Implementing anti biofouling measures, such 
as protective coatings, regular cleaning, or self-cleaning automated technologies, are essential to minimize these 
impacts and in turn ensures the precise and dependable localization estimation in UWSNs119.

Unpredictable events
Unpredictable events, including natural disasters, sediment disturbances, and environmental changes, can have 
a significant impact on node localization in UWSNs. Fluctuations in water temperature, salinity, and currents 
due to these events can disrupt signal propagation, leading to inaccuracies in distance and angle calculations58. 
Additionally, natural disasters such as earthquakes or underwater volcanic eruptions can produce seismic 
waves or vibrations that interfere with acoustic signals, further complicating localization efforts. Sediment 
disturbances, such as shifting seabed’s or underwater landslides, may obstruct signal transmission or cause 
damage to nodes. Human activities like underwater construction or shipping also contribute to unexpected noise 
or physical barriers, further diminishing signal quality. These unpredictable occurrences introduce variability 
and uncertainty in localization processes, making it difficult to maintain accurate node positions and posing 
challenges for developing reliable algorithms. Adaptive techniques are crucial to effectively tackle these dynamic 
issues and ensure accurate localization in such conditions120.
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Long term environmental changes
Long term environmental changes, including climate change and rising sea levels, create significant obstacles for 
node localization in UWSNs. Over time, fluctuations in water temperature, salinity, and pressure can transform 
the underwater environment, impacting the speed of sound and diminishing the precision of acoustic signal 
based localization methods121. These changes can result in cumulative errors in distance and angle measurements, 
as many localization algorithms depend on fixed environmental parameters. Additionally, continuous shifts in 
currents, tides, and seafloor movements can cause node displacement, complicating the localization process57. To 
overcome these challenges, adaptive localization algorithms that considers the dynamic nature of environmental 
factors, including climate change and sea level rise, are crucial for ensuring the continued precision and reliability 
of node positioning in UWSNs.

After outlining the challenges that the localization process in UWSNs may encounter, we have also included 
Table 4 to highlight potential opportunities. These opportunities represent strategies or advancements that can 
be effectively integrated into UWSNs to address or mitigate the identified challenges, thereby improving the 
overall performance and reliability of the localization process.

Table  5 offers a detailed summary of the key knowledge regarding the localization of nodes in various 
water conditions across different regions of the world. This comprehensive overview aims to provide readers 
with a deeper and more specific understanding of the distinct challenges that can arise in different aquatic 
environments when dealing with node localization. Additionally, the table elaborates on the potential types of 
localization techniques suitable for each specific water condition, along with the technical rationality behind 
their selection and the challenges they may encounter in practical application.

Most recent advancements in UWSNs localization
This section explores recent advancements in the application of various localization techniques in UWSNs. To 
address the challenge of localizing a mobile node in UWSNs, a research group in131 proposes a methodology 
that utilizes location with insufficient TOA measurement (LITM) and combined it with the data representing the 
departure of a beacon signal. Unlike traditional TDOA methods, this approach requires fewer measurements, 
effectively mitigating issues caused by the scarcity of anchor nodes, which ultimately affect the strength of the 
received signal. LITM algorithm basically incorporates sub algorithms for monitoring and estimating departure 
time of a beacon signal (DOBs) and localizing mobile nodes using a closed form solution. Theoretical analysis, 
simulations, and sea trials confirms that LITM significantly improves the accuracy of location estimates 
compared to existing localization methods. The study in132 presents a sophisticated and accurate localization 
approach designed specifically for mobile anchor nodes in UWSNs. This framework addresses critical challenges, 
including malicious node intrusions, the dynamic movement of nodes, and variations in sound speed, all of 
which compromise network efficiency. To overcome these obstacles, the authors introduces an anchor node 
screening algorithm to ensure the reliability of localization data. By employing an unscented kalman filter (KF)133, 

S.No Water Condition Impact on Signal Propagation
Preferred Localization 
Techniques Challenges Solutions References

1 Shallow Waters High reflection and refraction of 
communication signals Anchor Based Multipath interference Advanced filtering, error 

correction
122,123

2 Deep Waters Lower signal strength, higher 
propagation delays Anchor based, Anchor free Signal attenuation, increased 

latency
Power amplification, delay-
tolerant protocols

7,124

3 Turbulent Waters Rapid changes in signal propagation 
characteristics

Adaptive ML/DL-based 
techniques

Unstable signal paths, 
frequent recalibration Real-time adaptation techniques 125,126

4 Coastal Areas Variable salinity, and temperature 
gradients

Hybrid of Range Based and 
Range Free

Environmental noise, 
multipath, poor visibility

Environmental modeling, hybrid 
approaches

127,128

5 Arctic/Sub-
Arctic Waters Cold temperatures, ice interference Hybrid of Anchor based 

and Anchor free
Battery power consumption, 
Harsh working environment

Energy efficient multi-modal 
sensing approaches

129,130

Table 5.  Comparative analysis of UWSNs localization in different water conditions.

 

S.No
Integration 
Technology Description Opportunities Challenges Example Applications

1
Internet of 
Underwater Things 
(IoUT)

Extends IoT to underwater environments Global connectivity, real time 
data

High energy demand, security 
risks

Ocean monitoring, 
submarine cable networks

2 Satellite 
Communication

Provides connectivity between underwater 
nodes and surface

Global coverage, remote 
monitoring High latency, signal attenuation Disaster monitoring on 

surface

3 5G and Beyond High speed, low latency communication 
for underwater networks

Enhanced data transfer, real time 
applications

Signal penetration, high energy 
consumption

Navigation with Autonomous 
underwater vehicles

4 Blockchain Secure, decentralized data management 
in UWSNs

Enhanced security and 
transparency

High computational overhead, 
latency

Secure data transmission, 
decentralized monitoring

5 Edge Computing Distributed processing at network edges to 
reduce latency Low latency, real time processing Limited processing power, 

energy constraints
Real time localization, 
anomaly detection

Table 4.  Opportunities for integrating UWSNs with other technologies.
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the method detects and compensates for transmission delays caused primarily by node mobility. Furthermore, 
it leverages a tailored model to convert coastal acoustic tomography inversions into real time sound velocity 
profiles. Precise range adjustments are then achieved through data derived from acoustic ray tracing. Field trials 
and simulations conducted in designated experimental reservoirs demonstrates, that the proposed technique 
significantly reduces localization errors while enhancing the likelihood of accurately locating mobile nodes.

The research presented in134 delves into the intricacies and applications of UWSNs, with a particular focus 
on the pivotal role of localization algorithms in accurately identifying regions of interest where marine changes 
or phenomena manifests. The authors, through detailed simulations, elucidate that localization methodologies 
developed for TWSNs are largely inapplicable to UWSNs due to inherent environmental constraints. These 
include the attenuation of radio frequencies and the diminished efficacy of GPS systems, which are restricted 
to an accuracy of approximately fifteen meters in underwater environments135. The study, which serves as a 
comprehensive survey, meticulously examines numerous underwater localization techniques, systematically 
categorizing them into range based and range free methods136. It underscores the imperative use of acoustic 
signals for effective underwater communication, given their superior propagation characteristics in aquatic 
mediums. Leveraging the well-known NS2 simulator, the authors validate the performance enhancing attributes 
of the opted techniques, while simultaneously identifying areas necessitating further refinement. By providing 
a nuanced overview, the research equips readers with an in depth understanding of current advancements and 
challenges in underwater localization systems.

The authors of137 propose an innovative localization technique that synergizes the red vulture optimization 
algorithm (RVOA) with TDOA to address the critical challenge of achieving precise node positioning in 
UWSNs. This advanced approach incorporates a mobility model capable of estimating node velocity and 
position over time, further optimizing through the use of distance measurements and a windowing mechanism. 
By significantly reducing errors and latency, the method enhances both the accuracy and dependability of 
node localization. This groundbreaking methodology marks a significant advancement in UWSNs localization 
technology, surpassing leading existing techniques such as movement prediction location (MPL), general 
availability of scalable localization scheme with mobility prediction (GA-SLMP), scalable localization scheme 
with mobility prediction (SLMP), and localization scheme for large scale UWSNs (LSLS). The aforementioned 
opted algorithm excels in the betterment of the critical parameters including energy efficiency, end to end 
delay, error reduction, and localization coverage, establishing itself as a superior alternative in the domain. The 
research outlined in138 tackles critical challenges in achieving accurate underwater localization, focusing on 
factors such as stratification effects, anchor position uncertainties, and clock un-synchronization. The proposed 
method distinguishes itself by considering the influence of underwater gradients, particularly the sound speed 
profile (SSP), and addressing anchor location uncertainties through TDOA measurements under realistic 
environmental conditions. Unlike many traditional approaches that rely on oversimplified or impractical 
assumptions, this technique offers a pragmatic and dependable framework for underwater localization. The 
localization process begins with the target node transmitting its coordinates and timestamps to the surrounding 
anchor nodes. To refine the localization accuracy, Newton’s method and iterative linearization techniques are 
employed, effectively enhancing the precision of the calculated positions. The performance of the proposed 
method is rigorously evaluated using the cramer rao lower bound (CRLB), a statistical measure for assessing 
estimation efficiency. Simulation results demonstrates that this approach achieves superior performance while 
also requiring significantly less computational time compared to existing methods.

The researchers in139 presented a method for secure data sharing and positioning of underwater sensor nodes 
that utilizes a single beam sonar with a 30 degree beam width viewing angle, complemented by an innovative 
pan tilt holder. This method offers a cost effective alternative to multi band sonar systems, greatly reducing both 
their expense and processing load. It enables thorough coverage of the underwater environment by employing 
underwater servo motors to accurately scan the entire area. After localizing the nodes using sonar technology, 
a LoS underwater optical wireless communication (UOWC) connection is established for data transfer 
applications, achieving a data rate of 200 kbps. Pool based testing reveals that the channel model achieves a 
link length of 3.13 m with a power consumption of 1 W, reaching a data rate of 1Gbps, a Q factor of 6, and a 
bit error rate (BER) of 109. This research provides valuable insights into the efficiency of marine operations, 
particularly through key performance metrics such as BER and quality factor measurements. The study in140 
explores the weaknesses of current localization techniques in the context of network attacks while tackling 
the crucial challenge of accurate positioning in UWSNs. To defend against collaborative network attacks, the 
research introduces an innovative iterative localization algorithm that uses adaDelta gradient descent (AGD) 
to select the minimum gradient. This method enhances localization accuracy by systematically removing false 
data from interfering nodes. The effectiveness of the proposed approach is validated through simulations that 
mimic network threats. The results demonstrate a promising strategy for minimizing localization errors caused 
by compromised anchor nodes, thereby ensuring the stability and reliability of UWSN operations.

The study in141 addresses the challenge of node localization using a robust multimodal mobile target 
approach, where acoustical communication serves as the medium. The proposed method, named robust multi 
model mobile target localization scheme (RMML), is founded on the base of CRLB knowledge. This algorithm 
is specifically designed to prioritize the selection of the most reliable localization references, ensuring improved 
accuracy in the results. After obtaining high quality references, the mobile target localization is refined further 
using an unscented KF to enhance the initial estimates. The algorithm also integrates a combined multipoint 
prediction approach and ray tracing technique to boost target state estimation accuracy, even when dealing 
with asynchronous reception of localization data and the stratification effect. To validate the performance of 
RMML, extensive simulations and experiments are conducted, confirming its effectiveness. The researchers in142 
proposed a novel algorithm for node localization of both static and dynamic UWSNs, known as the reward 
based distance vector hop localization (RDVHL) protocol. In this approach, the nodes are first grouped into 
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multiple clusters. A reward measure is periodically assigned to each cluster to aid in the localization of the 
anchor nodes. Once the anchor nodes’ positions are determined, they transmit their locations to the sensor 
nodes within the cluster. This precise localization enhances the speed of data transmission to the sink nodes. 
Additionally, the algorithm helps to reduce communication voids and minimize channel collisions. The protocol 
shows improvements in key performance metrics, including throughput, average latency, average accuracy, 
and energy consumption, compared to existing protocols used for similar purposes. The challenge of target 
localization in UWSNs when using inhomogeneous media, open environments, and unreliable communication, 
are discussed in143. The study introduces a consensus fusion based localization approach that mainly comprising 
of two phases. The first phase leverages from the ToF and the RSSI data, where a ray compensation method is 
used to mitigate localization biasing. The second phase utilizes a consensus fusion estimator to defend against 
compromised nodes submitting falsified data. By integrating both RSSI and ToF measurements for consensus 
interaction, the proposed method demonstrates improved resilience to data manipulation in a non-uniform 
underwater environment, while also enhancing the overall localization accuracy.

The study in144 investigates node localization for UWSNs within the framework of the internet of things 
(IoT), utilizing prior knowledge of the target’s location for some specific task and operational depth. The primary 
objective was to design an early disaster warning system for position, navigation, and timing (PNT), which could 
be applied to various scenarios, including underwater rescue missions and resource exploration. The research 
emphasizes that non positional approaches to sound line tracking are insufficient for the task. To address this, 
they introduced a method called iterative ray tracing 3D underwater localization (IRTUL). They assert that their 
approach performs most effectively when the working environment’s depth is taken into account, achieving 
an improvement in accuracy by 3 m compared to methods assuming a constant sound velocity. The authors 
of145 present a flexible localization method with motion estimation (FLMME) to address the challenges of node 
coordination in large scale mobile UWSNs. This approach have the ability to distinguish between the localization 
processes for mobile anchor nodes and regular static anchor nodes. By analyzing each node’s historical mobility 
data, FLMME enables the prediction of future positions. Whereas the fixed location anchor nodes oversee the 
process, not ensuring improved accuracy and efficient error management. Simulation results demonstrate that 
FLMME significantly reduces localization errors, thereby improving the overall localization performance of 
UWSNs. The study outlined in146 introduces an advanced technique for leveraging navigational data from 
stationary ships by combining C-band synthetic aperture radar (SAR) with the aid from satellite imagery 
technology. Central to this approach is the use of a pre trained DL model, originally developed in ArcGIS, 
which is specifically designed to identify stationary ships in the satellite’s field of observation. These detected 
ships locations are then utilized as crucial reference points for underwater localization tasks. To achieve accurate 
underwater positioning, the method incorporates a range based multilateration algorithm implemented through 
UnetStack, a robust platform for underwater communication and localization. This innovative approach not 
only improves the efficiency and reliability of underwater exploration and localization processes but also ensures 
a high degree of precision in node localization. Remarkably, the method achieves an error margin of less than 
1%, significantly reducing inaccuracies compared to traditional techniques. By integrating advanced satellite and 
radar technologies with cutting edge algorithms, this study provides a highly effective solution for underwater 
positioning challenges. The researchers in147 highlighted the potential of autonomous underwater vehicles 
(AUVs) for abstract localization in UWSNs. However, they observed a notable limitation, that the restricted 
coverage area of a single AUV, leads to higher localization errors for the sensor nodes being monitored. To 
overcome this challenge, they introduced an innovative solution involving two AUV’s working collaboratively. 
These AUV’s are designed to communicate and coordinate efficiently, forming the basis of their double AUV 
cooperative localization based on relative heading angle optimization (DA-RHAO) algorithm. This approach 
focuses on optimizing the relative heading angles between the AUV’s to improve localization precision148. The 
methodology begins by analyzing the communication angles of the AUV’s during their movement. Additionally, 
to simplify computational complexity, the researchers divided the 3D observation area into layers based on 
depth, which effectively expanded the localization coverage area. This comprehensive strategy resulted in a 
significant improvement in localization accuracy, achieving an enhancement of 26.89%.

The study in149 highlights the critical importance of UWSNs in marine based disasters management and 
advancing marine engineering research. The researchers note that the dynamic nature of the underwater 
environment makes it unrealistic for sensor nodes deployed for specific tasks to remain stationary, as water 
turbulence inevitably causes mobility. They emphasize that opportunistic routing protocols have shown superior 
performance in improving quality of service (QoS) compared to alternative methods150. In their research, 
they propose a framework, with a high speed system built on the principles of opportunistic routing, which 
is adaptable to various UWSNs platforms. To validate their proposed framework, the researchers conducted 
simulations using NS-2. The results demonstrated that their methodology outperforms other protocols in terms 
of energy efficiency and further enhances QoS. By varying the network size between 100 and 500 nodes during 
the simulation, they also proved that the protocol is effective in handling scalability, making it a robust solution 
for diverse underwater communication scenarios. The research presented in151 underscores the crucial role 
of UWSNs in marine exploration. It discusses the various applications of UWSNs, including surveillance and 
resource extraction, and emphasizes that precise placement of sensor nodes that is vital for effective underwater 
communication. To tackle this challenge, the study proposes an efficient localization algorithm to compensate the 
stratification effect based on an improved underwater SALP swarm optimization technique (LAS-IUSSOT). In 
this method, nodes are initially deployed in a 3D arrangement, and then localization is performed using centroid 
positioning and ray theory to enhance stratification. To validate their proposed algorithm, the researchers 
conducted simulations, which revealed that their approach improved localization results by 40.46% in 3D 
scenarios and additionally, they achieved a 43.39% improvement in ranging accuracy. Their methodology also 
outperformed existing techniques in several aspects, including root mean square error (RMSE), computation 

Scientific Reports |         (2025) 15:5672 22| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


time, and convergence rate. The study presented in152 highlights that, in addition to large sized AUV’s, small 
sized AUV’s also offer several advantages, such as low noise characteristics, making them particularly effective 
for use in underwater habitats. The researchers note that many localization processes donot prioritize the cost of 
equipment for specific tasks, but the use of small AUV’s will automatically provide a more affordable and efficient 
solution. A critical question raised is whether these small AUV’s can be equipped with localization technology, 
to which the researchers affirmatively answer. They demonstrate this by deploying a simulation based on small 
AUV connected in a weak cooperative underwater communication networks. In this configuration, they address 
the stratification effect by employing an extended KF method to correct AUV’s drifting errors. The localization 
system they opted is fundamentally based on TDOA. And through simulation results, they claim a significant 
improvements in both energy efficiency and localization accuracy.

Purpose of ML and DL in UWSNs localization
We know that localization is an essential aspect of UWSNs, enabling the performance of crucial and complex 
tasks such as real time navigation of submerge vessels, monitoring environmental changes with the help of sensor 
networks, and studying aquatic ecosystems. However, the unique challenges of the underwater environment, 
including signal attenuation, multipath propagation, and significant delay spreads, make localization a 
demanding task. While traditional localization methods have proven to be effective and continue to serve their 
purpose, there is still considerable room for enhancement in various scenarios. The traditional localization 
methods often rely on outdated geometric techniques that struggle to adapt to the dynamic and unpredictable 
nature of underwater environments. Therefore, advancements are required to improve their accuracy, reliability, 
and scalability to address the increasing demands of underwater exploration, environmental monitoring, and 
other vital applications.

ML and DL have achieved significant advancements across various domains, such as the possibility of 
autonomous navigation in vehicles, speech recognition, and image analysis. These cutting edge technologies 
excels at handling intricate, non-linear relationships within datasets, particularly in scenarios requiring 
cooperative hybrid communication. Their exceptional ability to process and analyze large datasets generated 
by sensor networks have made them invaluable in solving challenges across numerous applications. In the 
context of UWSNs, where sensor nodes generate vast amounts of data, ML and DL can have a great potential 
for improving overall performance and operational efficiency of the systems. Among the various applications 
of these technologies, localization emerges as a crucial area that needs to be studied. By harnessing their 
sophisticated data processing and analytical capabilities, ML and DL can significantly enhance the accuracy, 
robustness, and scalability of localization techniques, effectively addressing the unique obstacles presented by 
the underwater environment. In this context a range of ML techniques have been applied to localize UWSNs, 
each one offering its unique strengths and limitations. For instance, classification methods such as decision 
trees, support vector machines (SVM), and k-nearest neighbors (K-NNs) rely on training models with labeled 
datasets. On the other hand, clustering, and unsupervised learning techniques, can group similar data points to 
estimate spatial relationships, even when training labels are not available. Additionally, reinforcement learning, 
which focuses on teaching an agent how to make decisions through continuous interaction with its environment, 
can enhance localization outcomes by allowing the system to learn and adapt over time. However, some of the 
researcher are also working on the more sophisticated DL techniques that have been emerging as of great use 
for UWSNs localization, especially neural networks (NNs) and its sub categories such as convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs). CNN have the capability to process spatial data, and 
can be applied to signal intensity maps and other geographic representations of the data gathered by sensor 
nodes. However, RNNs are particularly effective at capturing temporal changes in signals, as they are designed 
to handle sequential data. The objective of using advanced methodologies is to predict the potential locations of 
sensor nodes based on the observed data, facilitating the localization process in UWSNs.

Machine learning approaches for UWSN localization
In this section, we have provided a brief overview of the ML techniques and their various types used for node 
localization in UWSNs. In light of this discussion, a block diagram as Fig. 13 is presented, which illustrates the 
most commonly employed ML and DL methods used for the localization of nodes within UWSNs.

K-nearest neighbor (K-NNs)
K-NNs is a straightforward and widely used ML algorithm, commonly applied to classification and regression 
tasks. It operates by identifying the ‘k’ closest data points to a given query, with ‘k’ being a user defined number, 
and making predictions based on that information taken as neighbors. In underwater communication systems, 
particularly in UWSNs, K-NNs is frequently used for node localization. The algorithm estimates a node’s 
position by evaluating its distance from several known reference points within the network by using both the 
data from range based and range free localization types153. For classification, the predicted class is determined 
by the majority vote among the nearest communication nodes, while in regression, the prediction is based on 
the average or weighted average of the values of the closest nodes. As a non-parametric method, K-NNs makes 
assumptions about the data distribution, offering flexibility for a variety of problems. However, its performance 
may degrade with high dimensional underwater data, making the prediction process computationally intensive, 
as it requires calculating distances to all training data points. Despite these drawbacks, K-NNs remains a popular 
choice due to its simplicity and effectiveness in practical applications, including underwater node localization154. 
K-NNs methods are also applied to predict which cluster of nodes in a specific task is consuming more energy 
than usual, while also monitoring the end to end delay. By tracking these key parameters in UWSNs, the overall 
localization accuracy can be improved155.
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Support vector machine (SVM)
SVM is a highly effective supervised ML algorithm primarily used for classification tasks, though it is also suitable 
for regression problems and node localization in UWSNs. SVM functions by identifying the optimal hyperplane 
that separates data points from different classes in a high dimensional feature space. Its main goal is to maximize 
the margin, which is the distance between the hyperplane and the closest data points from each class, known as 
support vectors, thereby improving the model’s generalization ability156. SVM is capable of handling both linear 
and non-linear data by applying kernel functions, such as the radial basis function (RBF), to project the input 
data into a higher dimensional space where linear separation becomes possible. In underwater communication 
systems, SVM is often employed for node localization, assisting in classifying positions or estimating locations 
based on available data. While SVM excels in a high dimensional spaces and is resistant to overfitting, it can 
be computationally intensive, particularly with large datasets. Nonetheless, SVM remains a popular choice for 
achieving precise and reliable localization. For instance, a synergistic trust model based on SVM (STMS) is 
proposed in157, and researchers in158 have utilized a self-localizing range free binary tree SVM model to localize 
a smaller number of nodes in AUV based networks, improving battery efficiency for prolonged operation.

Decision Tree
A Decision Tree is a widely used and simple ML algorithm that can be applied to both classification and regression 
tasks. It operates by recursively dividing the dataset into smaller subsets based on the feature that most enhances 
the prediction of the target variable. Each internal node in the tree represents a decision rule based on a particular 
feature, while the leaf nodes indicate the final prediction or result. The splitting continues until a predefined 
stopping criterion, such as a maximum tree depth or a minimum number of samples per leaf, is met. One of 
the main advantages of a decision trees is their simplicity and interpretability, as they are easy to visualize and 
understand159. They can handle both categorical and numerical data and are capable of modeling complex, non 
linear relationships. In underwater communication systems, decision trees can be used for node localization, 
helping to estimate their positions using environmental and sensor data. However, decision trees are susceptible 
to overfitting, particularly with complex datasets, though techniques such as pruning, boosting, or bagging 
can reduce this issue. However to improve security, increase node mobility, and overcoming the bandwidth 

Fig. 13.  Types of most used ML and DL methods for localization of nodes in UWSNs.
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constraints in UWSNs, the researchers in160 have developed an advanced version of the decision tree algorithm. 
This updated approach features energy efficient decision making, enabling the system to make more effective 
use of available resources. Additionally their approach offers real time adaptability, allowing the algorithm to 
adjust dynamically to the changes in the underwater environment. The modified algorithm also incorporates 
key underwater specific factors, such as changes due to water currents and acoustic signal properties, which are 
critical for accurate decision making. By integrating these factors, the algorithm is better suited to address the 
complexities of underwater communication networks, resulting in more reliable and efficient solutions for node 
localization and communication, achieving a 96% accuracy rate and a 2% false positive rate.

However the ML models can encounter several fundamental challenges when applied to specific tasks, such 
as the localization of nodes in UWSNs. To provide a clearer understanding for the reader, these challenges, along 
with their corresponding potential solutions, have been concisely summarized in Table 6. This table aims to 
present the information in an organized manner, facilitating ease of comprehension and highlighting the critical 
aspects of these challenges.

Deep learning approaches for UWSNs localization
In this section, we have provided a brief overview of the DL techniques and their various types used for node 
localization in UWSNs that are shown in the form of a block diagram in Fig. 13.

Neural networks (NNs)
NNs are a foundational element of DL, inspired by the structure and operation of the human brain. They are 
composed of interconnected layers of nodes, that process information and detect patterns through weighted 
connections. These networks are highly effective in managing complex tasks like image recognition, natural 
language processing, and time series forecasting, thanks to their ability to model non linear relationships and 
uncover intricate patterns within data. Their adaptability makes them an excellent choice for various applications, 
including node localization in UWSNs. Leveraging their capability to handle large datasets and capturing non 
linear dynamics, NNs can analyze underwater environmental factors, such as signal attenuation and water 
characteristics, to enhance localization precision. Nonetheless, their dependency on significant computational 
power and extensive datasets presents challenges, especially in resource limited underwater environments. 
Despite these hurdles, NNs remain a critical component of modern artificial intelligence (AI) and ML, offering 
considerable promise for UWSNs related solutions. The researchers in161 emphasize that localization techniques 
used in TWSNs are not suitable for UWSNs. So they proposed an environment aware localization system that 
utilizes the physical properties of water, such as temperature and salinity variations, to enhance the accuracy and 
reliability of underwater node localization. Their approach employs the RSSI technique to measure the distance of 
communication between nodes within UWSNs, which is combined with a dynamic response NNs for predicting 
node localization estimates. Through simulations, they report of achieving an increase in the localization 
prediction accuracy by 2%. And in162 the researchers proposed a bio inspired algorithm for node localization in 
underwater UWSNs. They introduced the improved grey wolf optimization based node localization approach in 
UWSN (IGWONL-UWSN), which utilizes the RSSI based localization technique. To enhance the localization 
process, they developed a heuristic neural networks (HNNs) based system that is designed to accurately locate 
mobile nodes within subterranean environments. Their simulation results reportedly achieved a localization 
estimation accuracy of 95%.

Convolutional neural networks (CNNs)
CNNs are specialized NNs that are created to process structured grid like data efficiently. They are particularly 
effective in tasks that involve identifying spatial patterns and hierarchies, such as classification, localization, 
object detection, and semantic segmentation. CNNs consist of convolutional layers that apply filters to extract 
essential features from input data sets, pooling layers that reduce spatial dimensions to optimize computational 
efficiency, and fully connected layers that generate the final outputs. In UWSNs, CNNs have been utilized for 
node localization by interpreting underwater environmental data and spatial patterns. This method enhances 
the accuracy of node localization by taking advantage of CNNs capability to learn complex hierarchical features. 
Moreover, their shared weights and sparse connectivity make CNNs computationally efficient, making them 
suitable for use in resource limited underwater settings. That’s why researchers in163 introduced a hybrid 
localization method that integrates CNNs with mobility prediction, termed (HLCM). This innovative approach 

S.No Challenge Description Impact Potential Solutions

1 Limited Training Data Presently available labeled datasets are insufficient for 
training the models Model effectiveness is reduced Transfer learning and generation of synthetic 

datasets

2 High Dimensionality Sparse data points impeding the extraction of substantial 
patterns Increased model complexity Use of dimensionality reduction techniques, i.e. 

PCA and linear discriminant analysis (LDA) etc.

3 Real Time Processing 
Needs

Requires managing the enormous volume of data produced 
instantaneously. Latency issues Real time discarding of faulty samples from the 

datasets

4 Energy Constraints High computational demand on resource limited devices
Cost of power source 
replacement, reduced network 
lifespan

Use of cooperative networks and energy efficient 
hardware

5 Model Generalization Difficulty in deployment across multimodal scenarios Poor performance in new 
conditions Use of domain adaptation techniques

Table 6.  Implementation challenges of ML in UWSNs.
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sets itself apart from other recently developed localization techniques by significantly enhancing the accuracy 
of source localization. The HLCM method employs a CNNs based model to effectively reduce range errors and 
address uncertainties arising from variations in sound speed, ensuring more precise localization. Additionally, 
it incorporates a weighted superposition of the speeds of anchor nodes to refine its predictions and successfully 
mitigates the effects of node drifting caused by ocean currents. Through extensive simulations, the researchers 
demonstrate that HLCM outperforms existing algorithms in multiple aspects, providing superior localization 
accuracy, broader target coverage, and enhanced fault tolerance. These capabilities make it a robust and reliable 
solution for addressing the complexities of underwater localization challenges. And the researchers in164 
proposed a system designed to provide stable and accurate target localization in UWSNs. They emphasized 
that traditional KF is not suitable for environments with significant fluctuations, as KF can only address linear 
problems. To overcome this challenge, they introduced the LSTM KF method, which combines the strengths 
of Long Short Term Memory (LSTM) networks with KF to handle non linear and dynamic environments, 
additionally CNNs were used to track the movement of targets. By merging these techniques, they created a 
hybrid system that can predict both the azimuth and actual distance of the target, which they named the long 
term and short term memory neural network (LSTM-NN). The results from sea trials showed a 60% reduction 
in error, and simulations demonstrated a 72.25% decrease in error, validating the proposed method’s potential 
for effectively localizing moving targets in UWSNs.

Recurrent neural network (RNNs)
RNNs are a specialized form of NNs designed to process sequential data by capturing temporal dependencies. 
Unlike traditional neural networks, RNNs have feedback connections that allow them to retain information 
over time, making them highly effective for tasks involving time series data. At each time step, RNNs combine 
the current input with previous outputs, enabling them to preserve context and identify patterns in sequences. 
However, standard RNNs encounter difficulties with long-term dependencies, often facing challenges like 
vanishing or exploding gradients during training. To address these issues, more advanced variants like LSTM 
and gated recurrent units (GRU) have been developed, which include gating mechanisms to regulate the flow of 
information and improve learning. These enhanced networks have been successfully applied to UWSNs for node 
localization, where they leverage their ability to model temporal dynamics and environmental changes to boost 
localization accuracy. In a study presented in165, the researchers utilized RNNs to focus on minimizing estimation 
errors in performance metrics. They employed a network of microphones to track changes in audio emissions 
from equipment performing specific tasks in UWSNs. Through real time experimentation and lab simulations, 
they reported a significant reduction in mean estimation error (MEE), a key performance measure in the context 
of localization. And the researchers in166 have made a significant contribution to improving the security of data 
in UWSNs, highlighting Sybil attacks as a major threat to communication within these networks. They proposed 
a hybrid system that integrates ML and DL approaches. This system utilizes principal component analysis (PCA) 
to identify critical attributes, aiding in the detection/localization and mitigation of security vulnerabilities in 
UWSNs. The simulations conducted to validate their RNNs based study demonstrated an impressive accuracy 
of 97% after optimization. The findings suggest that their approach could be instrumental in developing secure 
routing protocols capable of localizing nodes and defending against cyberattacks in UWSNs.

DL models are also often confronted with numerous intrinsic challenges when deployed for specific tasks, such 
as node localization in UWSNs. For the reader’s enhanced comprehension, these challenges, with some subtle 
explanations and expected outcomes, have been succinctly delineated in Table 7. This tabular representation 
endeavors to systematically convey the information, thereby simplifying its assimilation and accentuating the 
pivotal facets of these challenges.

Comparative analysis of ML and DL for localization in UWSNs
This section offers a comparative analysis of ML and DL techniques that have been adopted by research groups 
across the globe. These methods have been specifically employed to improve the precision of localization 
estimation for nodes in UWSNs. The findings presented in this comparative evaluation are derived from 
comprehensive simulations conducted in the simulation softwares. By highlighting these methods and their 
outcomes, this section aims to provide valuable insights into the effectiveness of various approaches in refining 
localization accuracy.

Figure 14 depicts the localization error (measured in meters) as a function of the signal-to-noise ratio (SNR) 
in decibels (dB). The results presented in the figure are based on the application of four distinct methods that 
are K-NNs, SVM, Decision Trees, and NNs for UWSNs. The localization error was assessed across varying the 
number of iterations (10, 20, and 30) and exploring a range of SNR levels from − 10 dB to 0 dB. The red markers 
in the figure specifically denotes the outcomes obtained using K-NNs. From the graph, it is evident that the 
localization error is significantly high, especially when the SNR is below − 10 dB. Although the error shows a slight 
reduction with subsequent trials, the improvement remains marginal. Consequently, the overall performance of 
K-NNs lags behind the other methods presented in the analysis, indicating that its effectiveness in minimizing 
localization error under low SNR conditions is comparatively limited. This emphasizes the need for alternative 
approaches for achieving better accuracy in such scenarios. This indicates that despite having all the advantages 
of being simple, K-NNs might be at a disadvantage in noisy and complex underwater environments. The lines 
shown with blue color are the results obtained with SVM, which reveals very low localization errors at all the SNR 
levels. And we can observe that SVM improves with every iteration, especially at higher SNR values, indicating 
that iterative enhancement of the model could greatly improve its accuracy. Green markers indicating the results 
obtained by using the decision trees, where we can see that the obtained results are an intermediate between the 
K-NNs method and the SVM, and with a closer look we can observe that with the increase in SNR the results gets 
better and better with every iteration. Among all the approaches, the localization results represented by black 
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lined markers, corresponding to NNs exhibit the lowest localization error, particularly at higher SNR levels. And 
regarding the number of iterations, NNs consistently deliver superior performance, as evident from the results 
displayed. This indicates that NNs are highly effective in noisy underwater environments, making them suitable 
for various applications.

The importance of velocity estimation error in relation to SNR is a crucial factor in various applications, 
including underwater acoustic sonar signal processing in UWSNs, radar signal processing in TWSNs, and 
autonomous systems operating across both UWSNs and TWSNs. Accurate velocity estimation is essential for 
real time decision making and ensuring safety in critical operations. However, low SNR conditions present 
significant challenges, as noise can obscure vital features that are necessary for reliable predictions. ML and 
DL techniques to enhance the robustness of velocity estimation by extracting complex patterns and identifying 
temporal dependencies from noisy data are used. These models can also be trained to optimize metrics 
directly tied to velocity error, enabling them to adapt dynamically to varying SNR levels. The integration of 
advanced algorithms with domain specific knowledge has significantly improved accuracy and reliability in 
practical applications. Figure 15 illustrates, showing that K-NNs results, represented by the red line, achieves 
the lowest accuracy and the highest deviation in velocity error estimates. This outcome indicates that K-NNs is 
less effective for dynamic UWSNs. On the other hand, SVM and decision trees, depicted by the blue and green 
lines, respectively, strike a better balance between computational efficiency and accuracy, making them suitable 
for real time applications requiring moderate precision. Moreover our simulation results reveals that NNs 
outperform other methods in terms of velocity estimation accuracy, delivering the lowest error rates. However, 
this superior performance comes with the drawback of increased energy consumption. This comparative 
analysis highlights the advantages of DL approaches, particularly NNs, for velocity estimation in UWSNs. NNs 
offer superior accuracy and robustness compared to traditional ML methods and perform effectively across 

Fig. 14.  Localization error vs. SNR.

 

S.No Opportunity Description
Deep Learning 
Technique Expected Outcome Challenges

1 Feature Extraction Automatically discovering features relevant to localization CNNs Improved accuracy, 
reduced manual effort

High computational 
demand

2 Temporal Pattern 
Recognition Identifying patterns in time series data for better prediction LSTM, RNNs Better prediction of node 

movements
Training complexity, long 
term dependency issues

3 Multi View Learning Combining multiple sensor data for more robust 
localization

Multi view neural 
networks Enhanced reliability Data fusion challenges, 

model complexity

4 Anomaly Detection Detecting abnormal communication of sensor data to 
improve security Auto encoders, GANs Enhanced network security Data scarcity, model 

interpretability

5 Transfer Learning Intra environment communication Pre trained neural 
networks

Reduced training time, 
improved generalization

Domain adaptation, 
overfitting risk

Table 7.  Challenges and opportunities in DL for UWSNs.
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diverse environmental conditions, making them ideal for complex and challenging scenarios. Conversely, SVM 
and decision trees, as traditional ML models, provide an optimal balance of accuracy and energy efficiency, 
making them suitable for scenarios where precision is required within a reasonable time frame. In contrast, 
K-NNs demonstrates poorer performance, making it less suited for complex and noisy environments such as 
underwater systems.

In Fig. 16 we can observe that, the K-NNs algorithm consistently records the highest RMSE values, as shown 
by the red line in the results portrayed. At the minimum observation range during the first iteration, the RMSE 
value is 2, and it steadily increases with each iteration as the communication range grows. This performance 
establishes, that K-NNs is the least effective algorithm for predicting RMSE. Conversely, the SVM technique, 
represented by the blue line, demonstrates improved RMSE prediction, with an initial value of 1.8. This enhanced 
performance is due to SVM’s ability to handle complex datasets, its resilience to outliers, and its effectiveness 
in managing high dimensional data. The decision tree method results that are depicted by the green line, 
outperforms both SVM and K-NNs, achieving an initial RMSE value of 1.6 during the first iteration. However, 
NNs, represented by the black line, deliver the best performance overall, with the lowest RMSE value of 1.4 in 
the first iteration. This demonstrates the superior capability of NNs in minimizing RMSE compared to the other 
approaches. These results indicate that NNs excel because of their ability to learn complex nonlinear patterns 
and effectively handle nuanced data, which is a common characteristic of underwater environmental datasets.

While ML and DL methods offer significant advantages, their energy consumption during task execution 
is an important factor to consider. As shown in Fig. 17, ML algorithms like K-NNs, decision trees, and SVM 
generally consumes less energy due to their simpler models and lower computational requirements. In contrast, 
DL methods, particularly the NNs used in our study, the results of which are represented by the black line exhibit 
higher energy demands/consumptions because of their deep architectures, large parameter sets, and intensive 
matrix computations. Our findings reveal that while NNs are highly effective for complex and nonlinear tasks, 
their elevated energy consumption can be a constraint in resource limited environments, such as systems 
designed for cooperative communication in UWSNs.

Fig. 15.  Velocity Estimation Error in (m/s) vs. SNR.
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Apart from MATLAB, there exists an extensive array of simulation environment, creators and analyzers 
specifically designed for tasks related to UWSNs. Table  8 provides a comprehensive list of such simulators, 
accompanied by concise descriptions of their primary features and their optimal applications. The table also 
includes insights into factors such as the user friendliness of each simulator, the reliability and accuracy of 
the results they produce, and their potential for guiding hardware development for real time experimentation. 
Additionally, the scalability of each simulation tool has been emphasized to help assess its suitability for varying 
research needs.

Future research directions and opportunities
However, extensive research is being conducted by many research groups on the topic of node localization 
in UWSNs, and significant advancements have been made over time, showcasing the progress achieved by 
researchers and engineers in this field. However, despite these advancements, there remain several challenges and 
unresolved issues that present opportunities for further explorations and innovations. These gaps in knowledge 
and technology serve as potential research directions for future endeavors, offering a chance for researchers 
to develop novel solutions and make meaningful contributions to the domain of underwater communication. 
Below are provided some future research direction in the form of pointers.

• There is a critical need for energy efficient models, that can achieve robust real time localization of nodes in 
UWSNs, with comparable computational accuracy while significantly reducing energy consumption at the same 
time. As the underwater environment is inherently constrained in resources.

• Given that it is not feasible to constantly monitor a network setup, particularly in underwater environments. 
So there is a crucial need for hybrid techniques that combine unsupervised and semi supervised learning 
approaches to address this challenge effectively.

• We must have to develop such ML and DL model that may have the capability to cope with transfer 
learning, federated learning and also multimodal integration of data in the ever changing unknown underwater 
environment.

Fig. 16.  RMSE vs. Maximum Range.
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S.No
Simulation 
Tool Features

Ease 
of 
Use

Accuracy 
of Results Scalability Best for

1 Aqua-Sim NS2-based simulator used specifically for underwater networks β α α Protocol testing, network performance evaluation

2 DESERT 
Underwater Provides modular design for simulating underwater networks β α β Protocol development, application testing

3 UW-Sim 3D underwater simulator for testing algorithms and protocols α β δ Algorithm validation, small-scale experiments

4 UnetStack Versatile simulator with a focus on acoustic communications α α β Acoustic communication, localization studies

5 Aqua-Net Supports both acoustic and optical communication simulations δ β α Mixed communication environment research

6 NS-3 Advanced version of NS-2 with improved scalability options α β δ Facilitates model creation, provides problems 
resolutions, the analysis and dissemination of results

7 TOSSIM Made up of TinyOS, customizable for UWSNs α α β Excellent for troubleshooting, evaluating, and 
examining algorithms

8 J-SIM A component based simulation platform created in JAVA δ β α Provides assistance for physical and sensory 
phenomenon’s.

9 OPNET Works best for sensor specific devices β α α Each simulation operates at the packet level within 
the UWSNs.

10 OMNET++ In simulations, OMNET + + exhibits better scalability compared 
to NS2. δ β α Best to operate in energy modules analysis

Table 8.  Comparative analysis of different simulation tools used for localization in UWSNs, where α represents 
high, β is for moderate, and δ is for low.

 

Fig. 17.  Energy Consumption vs. Number of beacons.
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• There is an urgent need for hybrid ML and DL models capable of adapting to changes in transmission 
media. These models should effectively leverage benefits from the datasets of various media’s currently used in 
underwater environments, such as acoustical, VLC, and MI.

• Scalable and robust ML and DL models are also essential to handle variations in dataset size as the network 
scales to ensure they can perform tasks effectively in real time applications.

Conclusion
Localization in UWSNs plays a vital role in determining the effectiveness and reliability of various underwater 
applications. Throughout the course of this review, it became evident that numerous challenges related to the 
underwater environment, technology, and algorithms remain underexplored or insufficiently addressed. Despite 
significant advancements, there are still many aspects of these challenges that have not been fully examined 
or tackled to the degree necessary for improving the overall performance and accuracy of localization in 
UWSNs. This underscores the importance of continued research and development to address these lingering 
issues. Some of these challenges have been identified and presented as potential avenues for future research and 
exploration. In the comparative analysis presented in this article, we assessed the performance of ML and DL 
models in predicting crucial parameters such as localization error, velocity estimation error, RMSE, and energy 
efficiency. The results revealed that the DL NNs model significantly outperforms the ML models, including 
K-NNs, SVM, and decision tree, in accurately estimating parameters like RMSE, localization error, and velocity 
estimation error. However, when it comes to energy efficiency, the DL NNs model shows a considerable 
drawback. Despite its superior performance in terms of accuracy, it fails to optimize energy usage effectively 
for tasks at hand, consuming substantially more energy compared to the ML models mentioned. In essence, 
through the comprehensive analysis conducted in this study, we have deduced that the process of localization 
in UWSNs represents a fundamental tradeoff between precision and the careful utilization of resources, which 
may encompass both financial expenditure and energy consumption. This intricate balance underscores the 
necessity of energy optimization as an imperative focal point for enhancement, particularly within DL models. 
The refinement of energy efficiency, without compromising the accuracy of localization, emerges as a pivotal 
challenge, demanding substantial attention and advancement in future research endeavors.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 9 November 2024; Accepted: 10 February 2025

References
	 1.	 Wu, H., Chen, Y., Yang, Q., Yan, B. & Yang, X. A review of underwater Robot localization in confined spaces. J. Mar. Sci. Eng. 12 

(3), 428 (2024).
	 2.	 Souissi, R. et al. A self-localization algorithm for mobile targets in indoor wireless sensor networks using wake-up media access 

control protocol, Sensors, vol. 24, no. 3, p. 802, (2024).
	 3.	 Pourkabirian, A., Kooshki, F., Anisi, M. H. & Jindal, A. An accurate RSS/AoA-based localization method for internet of 

underwater things. Ad Hoc Netw. 145, 103177 (2023).
	 4.	 Sathish, K. et al. Underwater wireless sensor networks with RSSI-Based advanced efficiency-driven localization and unprecedented 

accuracy, Sensors, vol. 23, no. 15, p. 6973, (2023).
	 5.	 Jiang, Y. & Renner, B. C. Low-cost underwater swarm acoustic localization: a review. IEEE Access. 12, 25779–25796 (2024).
	 6.	 Ahmad, R., Alhasan, W., Wazirali, R. & Aleisa, N. Optimization algorithms for Wireless Sensor Networks Node localization: an 

overview. IEEE Access. 12, (2024).
	 7.	 Luo, J., Yang, Y., Wang, Z. & Chen, Y. Localization algorithm for underwater sensor network: a review. IEEE Internet Things J. 8 

(17), 13126–13144 (2021).
	 8.	 Gola, K. K., Dhingra, M., Gupta, B. & Rathore, R. An empirical study on underwater acoustic sensor networks based on 

localization and routing approaches. Adv. Eng. Softw. 175, 103319 (2023).
	 9.	 Saif, J. B., Younis, M., Choa, F. S. & Ahmed, A. Global Positioning of Underwater Nodes Using Airbome-formed Visual Light 

Beams and Acoustic Ranging, in ICC 2024-IEEE International Conference on Communications, pp. 4239–4244: IEEE. (2024).
	 10.	 Nanthakumar, S. & Jothilakshmi, P. A comparative study of range based and range free algorithms for node localization in 

underwater, e-Prime-Advances in Electrical Engineering, Electronics Energy, vol. 9, p. 100727, (2024).
	 11.	 Chowdhury, M. Z., Hasan, M. K., Shahjalal, M., Hossan, M. T. & Jang, Y. M. Optical wireless hybrid networks: Trends, 

opportunities, challenges, and research directions. IEEE Commun. Surv. Tutorials. 22 (2), 930–966 (2020).
	 12.	 Qu, Z. & Lai, M. A review on Electromagnetic, Acoustic and New Emerging Technologies for Submarine Communication. IEEE 

Access. 12,  (2024).
	 13.	 Ge, X. et al. Robust positioning estimation for underwater acoustics targets with Use of Multi-particle Swarm optimization. J. 

Mar. Sci. Eng. 12 (1), 185 (2024).
	 14.	 Makled, E. A. M. M. Advanced Optimization and Machine Learning Techniques for Efficient Wireless Communication Networks 

(Memorial University of Newfoundland, 2024).
	 15.	 Jehangir, A., Ashraf, S. M., Khalil, R. A. & Saeed, N. ISAC-Enabled underwater IoT Network localization: overcoming Asynchrony, 

mobility, and Stratification issues. IEEE Open. J. Commun. Soc. 5, (2024).
	 16.	 Sahana, S. & Singh, K. Cluster based localization scheme with backup node in underwater wireless sensor network. Wireless Pers. 

Commun. 110 (4), 1693–1706 (2020).
	 17.	 Zheng, C., Sun, D., Cai, L. & Li, X. Mobile node localization in underwater wireless networks. IEEE Access. 6, 17232–17244 

(2018).
	 18.	 Nain, M., Goyal, N., Awasthi, L. K. & Malik, A. A range based node localization scheme with hybrid optimization for underwater 

wireless sensor network. Int. J. Commun Syst. 35 (10), e5147 (2022).
	 19.	 Zhou, C. et al. Learning-based Maximum Likelihood Estimator for Angle-of-arrival localization. IEEE Trans. Signal Process. 72, 

(2024).

Scientific Reports |         (2025) 15:5672 31| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 20.	 Kim, J. Angle of arrival estimator utilizing the Minimum Number of Omnidirectional microphones. J. Mar. Sci. Eng. 12 (6), 874 
(2024).

	 21.	 Chen, Y., Yu, H., Li, J., Ji, F. & Chen, F. TOA-based direct localization in shallow water multipath environments: CRLB analysis 
and optimal sensor deployment. Ocean Eng. 292, 116556 (2024).

	 22.	 He, C., Wu, P. & Han, L. Time of arrival estimation for Backscatter UWB. IEEE. Signal. Process. Lett. 31, (2024).
	 23.	 Rezzouki, M., Ferré, G., Terrasson, G. & Llaria, A. Net Fishing Localization: Performance of TDOA-based Positioning Technique 

in Underwater Acoustic Channels Using Chirp Signals, in 2024 IEEE International Symposium on Circuits and Systems (ISCAS), 
pp. 1–5: IEEE. (2024).

	 24.	 Xing, C., Cui, J., Jiang, J., Wei, G. & Dong, S. A hybrid algorithm based on TDOA and DOA for underwater target localization, in 
Journal of Physics: Conference Series, vol. 2718, no. 1, p. 012084: IOP Publishing. (2024).

	 25.	 Huafeng, W., Zhao, X., Mei, X., Han, B. & Zhongdai, W. An RSSI-Based Fingerprint Localization using Multi-Signal Mean 
Optimization Filter in Indoor Environment Onboard a Passenger Ship, in 9th International Conference on Computer and 
Communication Systems (ICCCS), 2024, pp. 1039–1047: IEEE. (2024).

	 26.	 Fu, W. & Qi, J. The underwater dynamic environment RSSI ranging filtering algorithm, in Third International Conference on 
Advanced Algorithms and Signal Image Processing (AASIP 2023), vol. 12799, pp. 119–125: SPIE. (2023).

	 27.	 Zhou, R., Chen, J., Tan, W. & Cai, C. Sensor selection for optimal target localization with 3-D angle of arrival estimation in 
underwater wireless sensor networks. J. Mar. Sci. Eng. 10 (2), 245 (2022).

	 28.	 Ghonim, A. M., Salama, W. M., El-Fikky, A. E. R. A., Khalaf, A. A. & Shalaby, H. M. Underwater localization system based on 
visible-light communications using neural networks. Appl. Opt. 60 (13), 3977–3988 (2021).

	 29.	 Jouhari, M., Ibrahimi, K., Tembine, H. & Ben-Othman, J. Underwater wireless sensor networks: a survey on enabling technologies, 
localization protocols, and internet of underwater things. IEEE Access. 7, 96879–96899 (2019).

	 30.	 Erol-Kantarci, M., Mouftah, H. T. & Oktug, S. Localization techniques for underwater acoustic sensor networks. IEEE Commun. 
Mag. 48 (12), 152–158 (2010).

	 31.	 Mandić, F., Mišković, N. & Lončar, I. Underwater acoustic source seeking using time-difference-of-arrival measurements. IEEE J. 
Oceanic Eng. 45 (3), 759–771 (2019).

	 32.	 Dumphart, G., Slottke, E. & Wittneben, A. Magneto-inductive passive relaying in arbitrarily arranged networks, in IEEE 
International Conference on Communications (ICC), 2017, pp. 1–6: IEEE. (2017).

	 33.	 Alexandri, T., Walter, M. & Diamant, R. A time difference of arrival based target motion analysis for localization of underwater 
vehicles. IEEE Trans. Veh. Technol. 71 (1), 326–338 (2021).

	 34.	 Jamali, M. V., Nabavi, P. & Salehi, J. A. MIMO underwater visible light communications: Comprehensive channel study, 
performance analysis, and multiple-symbol detection. IEEE Trans. Veh. Technol. 67 (9), 8223–8237 (2018).

	 35.	 Poursheikhali, S. & Zamiri-Jafarian, H. Received signal strength based localization in inhomogeneous underwater medium. Sig. 
Process. 154, 45–56 (2019).

	 36.	 Uysal, M. et al. SLIPT for underwater visible light communications: performance analysis and optimization. IEEE Trans. Wireless 
Commun. 20 (10), 6715–6728 (2021).

	 37.	 Qiao, G. et al. Addressing the Directionality Challenge through RSSI-Based multilateration technique, to localize nodes in 
underwater WSNs by using Magneto-Inductive communication. MDPI (Journal Marinescience Engineering). 10 (4), 530 (2022).

	 38.	 Nemer, I., Sheltami, T., Shakshuki, E., Elkhail, A. A. & Adam, M. Performance evaluation of range-free localization algorithms for 
wireless sensor networks. Personal Ubiquitous Comput. 25 (1), 177–203 (2021).

	 39.	 Li, K., Zhang, T., Optimized, A. & 3D DV-Hop localization algorithm based on hop Count and Differential Evolution methods. 
Int. J. Educ. Humanit. 4 (3), 41–47 (2022).

	 40.	 Karim, L., Mahmoud, Q. H., Nasser, N., Anpalagan, A. & Khan, N. Localization in terrestrial and underwater sensor-based m2m 
communication networks: architecture, classification and challenges. Int. J. Commun Syst. 30 (4), e2997 (2017).

	 41.	 Zhang, C., Liu, L., Wu, Y., Xu, Z. & Wu, C. Continuous objects tracking based on geometric centroid of Feasible Region in USV-
Assisted underwater Acoustic Sensor Networks. IEEE Internet Things J.11(4), (2023).

	 42.	 Pu, W. A survey of localization techniques for underwater wireless sensor networks. J. Comput. Electron. Inform. Manage. 11 (1), 
10–15 (2023).

	 43.	 Xu, J., Chen, K. & Chen, E. Low-complexity APIT Algorithm and its OPNET Simulation of Underwater Acoustic Sensor 
Networks. J. Syst. Simul. 32 (1), 27–34 (2020).

	 44.	 Sah, D. K., Nguyen, T. N., Kandulna, M., Cengiz, K. & Amgoth, T. 3D localization and error minimization in underwater sensor 
networks. ACM Trans. Sens. Networks. 18 (3), 1–25 (2022).

	 45.	 Toky, A., Singh, R. P. & Das, S. Localization schemes for underwater acoustic sensor networks-a review. Comput. Sci. Rev. 37, 
100241 (2020).

	 46.	 Luo, J., Yang, Y., Wang, Z., Chen, Y. & Wu, M. A mobility-assisted localization algorithm for three-dimensional large-scale 
UWSNs, Sensors, vol. 20, no. 15, p. 4293, (2020).

	 47.	 Yu, X., Li, D., Liu, Y., Zhang, K. & Liu, Y. Prediction and positioning of UWSN mobile nodes based on tidal motion model. Sci. 
Rep. 14 (1), 15185 (2024).

	 48.	 Murali, J. & Shankar, T. A survey on localization and energy efficiency in UWSN: bio-inspired approach. Discover Appl. Sci. 6 (12), 
1–42 (2024).

	 49.	 Ghanem, M., Mansoor, A. M. & Ahmad, R. A systematic literature review on mobility in terrestrial and underwater wireless 
sensor networks. Int. J. Commun Syst. 34 (10), e4799 (2021).

	 50.	 Mudhafar, S. K. & Abdelkareem, A. E. Underwater localization and node mobility estimation. Int. J. Electr. Comput. Eng. 12 (6), 
6196–6209 (2022).

	 51.	 Youssef, A., Agrawala, A. & Younis, M. Accurate anchor-free node localization in wireless sensor networks, in PCCC 2005. 24th 
IEEE International Performance, Computing, and Communications Conference, 2005, pp. 465–470: IEEE. (2005).

	 52.	 Priyantha, N. B., Balakrishnan, H., Demaine, E. & Teller, S. Anchor-free distributed localization in sensor networks, in Proceedings 
of the 1st international conference on Embedded networked sensor systems, pp. 340–341. (2003).

	 53.	 Shioda, S. & Shimamura, K. Anchor-free localization: Estimation of relative locations of sensors, in IEEE 24th Annual International 
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 2087–2092: IEEE. (2013).

	 54.	 Fan, J. & Liu, S. An Anchor-Free Location Algorithm based on transition coordinates. Appl. Sci. 14 (22), 10320 (2024).
	 55.	 Yan, J., Wang, H., Yang, X., Luo, X. & Guan, X. Optimal rigid graph-based cooperative formation control of AUVs in anchor-free 

environments. IEEE Trans. Intell. Veh. (2023).
	 56.	 Tang, Y., Wang, W., Yang, Y., Zhang, C. & Liu, J. Anchor-free temporal action localization via Progressive Boundary-aware 

boosting. Inform. Process. Manage. 60 (1), 103141 (2023).
	 57.	 Su, X., Ullah, I., Liu, X. & Choi, D. A review of underwater localization techniques, algorithms, and challenges, Journal of Sensors, 

vol. no. 1, p. 6403161, 2020. (2020).
	 58.	 Sathish, K., Venkata, R. C., Anbazhagan, R. & Pau, G. Review of localization and clustering in USV and AUV for underwater 

wireless sensor networks, in (eds. Lorenzo Vangelista), Telecom, vol. 4, no. 1, 43–64 : MDPI. (2023).
	 59.	 Cong, Y., Gu, C., Zhang, T. & Gao, Y. Underwater robot sensing technology: a survey. Fundamental Res. 1 (3), 337–345 (2021).
	 60.	 Huang, L. et al. Machine learning for underwater acoustic communications. IEEE Wirel. Commun. 29 (3), 102–108 (2022).
	 61.	 Yadav, P. & Sharma, S. C. A systematic review of localization in WSN: machine learning and optimization-based approaches. Int. 

J. Commun Syst. 36 (4), e5397 (2023).

Scientific Reports |         (2025) 15:5672 32| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 62.	 Xu, S. et al. A systematic review and analysis of deep learning-based underwater object detection, Neurocomputing, vol. 527, pp. 
204–232, (2023).

	 63.	 Sunitha, M. & Karunavathi, R. Localization of nodes in underwater wireless sensor networks, in 4th international conference on 
recent trends on electronics, information, communication & technology (RTEICT), 2019, pp. 820–823: IEEE. (2019).

	 64.	 Zhou, G., Wang, Z. & Li, Q. Spatial negative co-location pattern directional mining algorithm with join-based prevalence. Remote 
Sens. 14 (9), 2103 (2022).

	 65.	 Wang, Q., Wang, Y. & Zhu, G. Underwater High Precision Wireless Acoustic Positioning Algorithm Based on Lp Norm, Symmetry, 
vol. 16, no. 7, p. 890, (2024).

	 66.	 Ma, J. et al. Novel High-Precision and High-Robustness localization algorithm for underwater-environment-monitoring Wireless 
Sensor Networks. J. Mar. Sci. Eng. 11 (9), 1713 (2023).

	 67.	 Kumari, J., Kumar, P. & Singh, S. K. Localization in three-dimensional wireless sensor networks: a survey. J. Supercomputing. 75, 
5040–5083 (2019).

	 68.	 Teekaraman, Y., Sthapit, P., Choe, M. & Kim, K. Energy analysis on localization free routing protocols in UWSNs. Int. J. Comput. 
Intell. Syst. 12 (2), 1526–1536 (2019).

	 69.	 Shams, R., Khan, F. H., Amir, M., Otero, P. & Poncela, J. Critical analysis of localization and time synchronization algorithms in 
underwater wireless sensor networks: issues and challenges. Wireless Pers. Commun. 116, 1231–1258 (2021).

	 70.	 Shams, R., Otero, P., Aamir, M. & Khan, F. H. Joint algorithm for multi-hop localization and time synchronization in underwater 
sensors networks using single anchor. IEEE Access. 9, 27945–27958 (2021).

	 71.	 Khan, M. W., Salman, N., Kemp, A. H. & Mihaylova, L. Localisation of sensor nodes with hybrid measurements in wireless sensor 
networks, Sensors, vol. 16, no. 7, p. 1143, (2016).

	 72.	 Guo, S. et al. Detecting faulty nodes with data errors for wireless sensor networks. ACM Trans. Sens. Networks. 10 (3), 1–27 
(2014).

	 73.	 Prashar, D., Jyoti, K. & Kumar, D. Design and analysis of distance error correction–based localization algorithm for wireless 
sensor networks. Trans. Emerg. Telecommunications Technol. 29 (12), e3547 (2018).

	 74.	 Wei, C. Y., Chen, P. N., Han, Y. S. & Varshney, P. K. Local threshold design for target localization using error correcting codes in 
wireless sensor networks in the presence of byzantine attacks. IEEE Trans. Inform. Forensics Secur. 12 (7), 1571–1584 (2017).

	 75.	 Li, T., Kouyoumdjieva, S. T., Karlsson, G. & Hui, P. Data collection and node counting by opportunistic communication, in IFIP 
Networking Conference (IFIP Networking), 2019, pp. 1–9: IEEE. (2019).

	 76.	 Hyder, W., Pabani, J. K., Luque-Nieto, M. Á., Laghari, A. A. & Otero, P. Self-organized ad hoc mobile (SOAM) underwater sensor 
networks. IEEE Sens. J. 23 (2), 1635–1644 (2022).

	 77.	 Shahapur, S. S. & Khanai, R. Localization, routing and its security in UWSN—A survey, in International Conference on Electrical, 
Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 1001–1006: IEEE. (2016).

	 78.	 Liu, J., Wang, Z., Cui, J. H., Zhou, S. & Yang, B. A joint time synchronization and localization design for mobile underwater sensor 
networks. IEEE Trans. Mob. Comput. 15 (3), 530–543 (2015).

	 79.	 Dong, M., Li, H., Yin, R., Qin, Y. & Hu, Y. Scalable asynchronous localization algorithm with mobility prediction for underwater 
wireless sensor networks. Chaos Solitons Fractals. 143, 110588 (2021).

	 80.	 Zheng, H. et al. Node Adjustment Scheme of Underwater Wireless Sensor Networks based on Motion Prediction Model. J. Mar. 
Sci. Eng. 12 (8), 1256 (2024).

	 81.	 Mahajan, M., Gangwar, R. & Mahajan, S. To improve transmission loss using data redundancy and data compression for critical 
range based application, in International Conference on Inventive Computation Technologies (ICICT), 2016, vol. 1, pp. 1–7: IEEE. 
(2016).

	 82.	 Manikandan, T., Sukumaran, R., Raj, M. C. & Saravanan, M. Network model for improved localization performance in uwsn: A 
node deployment perceptive, in 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 
2020, pp. 695–701: IEEE. (2020).

	 83.	 Wahid, A. & Kim, D. An energy efficient localization-free routing protocol for underwater wireless sensor networks. Int. J. Distrib. 
Sens. Netw. 8 (4), 307246 (2012).

	 84.	 Shenbagharaman, A. & Paramasivan, B. Trilateration method based node localization and energy efficient routing using rsa for 
under water wireless sensor network. Sustainable Computing: Inf. Syst. 41, 100952 (2024).

	 85.	 Khan, Z. U. et al. Machine Learning-based Multi-path Reliable and Energy-efficient Routing Protocol for Underwater Wireless 
Sensor Networks, in International Conference on Frontiers of Information Technology (FIT), 2023, pp. 316–321: IEEE. (2023).

	 86.	 Misra, S., Ojha, T. & SecRET, M. P. Secure range-based localization with evidence theory for underwater sensor networks. ACM 
Trans. Auton. Adapt. Syst. 15 (1), 1–26 (2021).

	 87.	 Han, G., Liu, L., Jiang, J., Shu, L. & Rodrigues, J. J. A collaborative secure localization algorithm based on trust model in 
underwater wireless sensor networks, Sensors, vol. 16, no. 2, p. 229, (2016).

	 88.	 Gjanci, P. et al. Path finding for maximum value of information in multi-modal underwater wireless sensor networks. IEEE Trans. 
Mob. Comput. 17 (2), 404–418 (2017).

	 89.	 Gola, K. K. A comprehensive survey of localization schemes and routing protocols with fault tolerant mechanism in UWSN-
Recent progress and future prospects. Multimedia Tools Appl. 83, 76449–76503 (2024).

	 90.	 Agarwal, A. K., Khan, G., Qamar, S. & Lal, N. Localization and correction of location information for nodes in UWSN-LCLI. Adv. 
Eng. Softw. 173, 103265 (2022).

	 91.	 Han, G. et al. A survey on mobile anchor node assisted localization in wireless sensor networks. IEEE Commun. Surv. Tutorials. 
18(3), 2220–2243 (2016).

	 92.	 Wang, Y., Song, S., Liu, J., Guo, X. & Cui, J. Efficient AUVs-Aided localization for large-scale underwater Acoustic Sensor 
Networks. IEEE Internet Things J. 11(19), (2024).

	 93.	 Das, A. P. & Thampi, S. M. Single anchor node based localization in mobile underwater wireless sensor networks, in Algorithms 
and Architectures for Parallel Processing: ICA3PP International Workshops and Symposiums, Zhangjiajie, China, November 18–20, 
Proceedings 15, 2015, pp. 757–770: Springer. (2015).

	 94.	 Xia, Z., Du, J., Jiang, C., Han, Z. & Ren, Y. Latency constrained energy-efficient underwater dynamic federated learning. IEEE/
ACM Trans. Networking (2024).

	 95.	 Gauni, S. et al. Design and analysis of co-operative acoustic and optical hybrid communication for underwater communication. 
Wireless Pers. Commun. 117, 561–575 (2021).

	 96.	 Ghazy, A. S., Kaddoum, G. & Singh, S. Low-latency low-energy adaptive clustering hierarchy protocols for underwater acoustic 
networks. IEEE Access. 11, 50578–50594 (2023).

	 97.	 Dai, M. et al. Latency minimization oriented hybrid offshore and aerial-based multi-access computation offloading for marine 
communication networks. IEEE Trans. Commun. 71(11), (2023).

	 98.	 Bello, O. & Zeadally, S. Internet of underwater things communication: Architecture, technologies, research challenges and future 
opportunities. Ad Hoc Netw. 135, 102933 (2022).

	 99.	 Pal, A. et al. Communication for underwater sensor networks: a comprehensive summary. ACM Trans. Sens. Networks. 19 (1), 
1–44 (2022).

	100.	 Barbeau, M., Blouin, S. & Traboulsi, A. Adaptable design for long range underwater communications. Wireless Netw. 30 (5), 
4459–4475 (2024).

Scientific Reports |         (2025) 15:5672 33| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	101.	 Lin, C. et al. Shrimp: a robust underwater visible light communication system, in Proceedings of the 27th annual international 
conference on mobile computing and networking, pp. 134–146. (2021).

	102.	 LC, L. B., Sukumaran, R. & Saravanan, M. Architecture, localization techniques, routing protocols and challenges for UWNS, in 
2023 International Conference on Data Science and Network Security (ICDSNS), pp. 01–07: IEEE. (2023).

	103.	 Bai, L., Han, P., Wang, J. & Wang, J. Throughput maximization for Multipath Secure Transmission in Wireless Ad-Hoc Networks. 
IEEE Trans. Commun. 72(11), (2024).

	104.	 Yogeshwary, B., Shivaprakasha, K. & Yashwanth, N. Node localization techniques in underwater sensor networks, in International 
Conference on Sustainable Computing and Data Communication Systems (ICSCDS), 2022, pp. 1042–1050: IEEE. (2022).

	105.	 Nain, M. & Goyal, N. Energy efficient localization through node mobility and propagation delay prediction in underwater 
wireless sensor network. Wireless Pers. Commun. 122 (3), 2667–2685 (2022).

	106.	 Sneha, V. & Nagarajan, M. Localization in wireless sensor networks: a review. Cybernetics Inform. Technol. 20 (4), 3–26 (2020).
	107.	 Mei, X. et al. An absorption mitigation technique for received signal strength-based target localization in underwater wireless 

sensor networks, Sensors, vol. 20, no. 17, p. 4698, (2020).
	108.	 Saeed, N., Celik, A., Al-Naffouri, T. Y. & Alouini, M. S. Localization of energy harvesting empowered underwater optical wireless 

sensor networks. IEEE Trans. Wireless Commun. 18 (5), 2652–2663 (2019).
	109.	 LC, L. B. & Sukumaran, R. Node Deployment Strategies and Challenges in Underwater Wireless Sensor Network, in 5th 

International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), 2024, pp. 585–589: IEEE. (2024).
	110.	 Javaid, N. et al. A localization based cooperative routing protocol for underwater wireless sensor networks. Mob. Inform. Syst. 

2017 (1), 7954175 (2017).
	111.	 Xu, B., Wang, X., Zhang, J., Guo, Y. & Razzaqi, A. A. A novel adaptive filtering for cooperative localization under compass failure 

and non-gaussian noise. IEEE Trans. Veh. Technol. 71 (4), 3737–3749 (2022).
	112.	 Ross, D. Mechanics of Underwater Noise (Elsevier, 2013).
	113.	 Lilhore, U. K. et al. A depth-controlled and energy-efficient routing protocol for underwater wireless sensor networks. Int. J. 

Distrib. Sens. Netw. 18 (9), 15501329221117118 (2022).
	114.	 Rahim, S. S. et al. Depth-based adaptive and energy-aware (DAE) routing scheme for UWSNs. EAI Endorsed Trans. Energy Web 

Inform. Technol. 5, 17 (2018).
	115.	 Gkikopouli, A., Nikolakopoulos, G. & Manesis, S. A survey on underwater wireless sensor networks and applications, in 20th 

Mediterranean conference on control & automation (MED), 2012, pp. 1147–1154: IEEE. (2012).
	116.	 Zhang, Y. et al. A multi-layer information dissemination model and Interference Optimization Strategy for Communication 

Networks in disaster areas. IEEE Trans. Veh. Technol. 73(1), (2023).
	117.	 Pilania, A. A critical review of underwater network applications and challenges by using wireless sensor. Int. J. Res. Eng. Appl. Sci. 

6 (6), 77–87 (2016).
	118.	 Paredes, A. M. C. & Arboleda, E. R. Antennas for Underwater Wireless Sensor Networks (UWSNs): Reviewing the Challenges of 

Underwater Communication, (2024).
	119.	 Gupta, S. & Singh, N. P. Underwater wireless sensor networks: a review of routing protocols, taxonomy, and future directions. J. 

Supercomputing. 80 (4), 5163–5196 (2024).
	120.	 Mons, I. et al. Distributed Real-time Plume Monitoring for Deep Sea Mineral Extraction, in Offshore Technology Conference, p. 

D021S019R003: OTC. (2022).
	121.	 Lloret, J. in Underwater Sensor Nodes and Networks vol. Vol. 13, 11782–11796 (eds Sensors) (MDPI, 2013).
	122.	 Meyer, F. & Gemba, K. L. Probabilistic focalization for shallow water localization. J. Acoust. Soc. Am. 150 (2), 1057–1066 (2021).
	123.	 Padmavathy, N. & Ch, V. R. Reliability evaluation of underwater sensor network in shallow water based on propagation model, in 

Journal of Physics: Conference Series, vol. 1921, no. 1, p. 012018: IOP Publishing. (2021).
	124.	 Tabella, G., Paltrinieri, N., Cozzani, V. & Rossi, P. S. Wireless sensor networks for detection and localization of subsea oil leakages. 

IEEE Sens. J. 21 (9), 10890–10904 (2021).
	125.	 Cheng, M. M., Zhang, J., Wang, D. G., Tan, W. & Yang, J. A localization algorithm based on improved water flow optimizer and 

max-similarity path for 3-D heterogeneous wireless sensor networks. IEEE Sens. J. 23 (12), 13774–13788 (2023).
	126.	 Abdavinejad, H., Mostafapour, E., Ghobadi, C., Nourinia, J. & Lotfzad Pak, A. VLC turbulence effects on the performance of the 

fish school behavior modeling mobile diffusion adaptive networks in underwater environments. Wireless Pers. Commun. 124, 
1661–1676 (2022).

	127.	 Nain, M. et al. A survey on node localization technologies in UWSNs: potential solutions, recent advancements, and future 
directions. Int. J. Commun Syst 37(16), e5915 (2024).

	128.	 Li, Y., Liu, M., Zhang, S., Zheng, R. & Lan, J. Node dynamic localization and prediction algorithm for internet of underwater 
things. IEEE Internet Things J. 9 (7), 5380–5390 (2021).

	129.	 Yastrebova, A., Höyhtyä, M., Boumard, S., Lohan, E. S. & Ometov, A. Positioning in the Arctic region: state-of-the-art and future 
perspectives. IEEE Access. 9, 53964–53978 (2021).

	130.	 Menaka, D. & Gauni, S. An energy efficient dead reckoning localization for mobile underwater Acoustic Sensor Networks. 
Sustainable Computing: Inf. Syst. 36, 100808 (2022).

	131.	 Liu, M. et al. LITM: localization with Insufficient TOA measurements for unsynchronized Mobile nodes in Underwater Acoustic 
Networks. IEEE Internet Things J. 11(20), (2024).

	132.	 Dong, M., Li, H., Qin, Y., Hu, Y. & Huang, H. A secure and accurate localization algorithm for mobile nodes in underwater 
acoustic network. Eng. Appl. Artif. Intell. 133, 108157 (2024).

	133.	 Xu, B. & Guo, Y. A novel DVL calibration method based on robust invariant extended Kalman filter. IEEE Trans. Veh. Technol. 71 
(9), 9422–9434 (2022).

	134.	 Kumar, M., Goyal, N., Singh, A. K., Kumar, R. & Rana, A. K. Analysis and performance evaluation of computation models for 
node localization in deep sea using UWSN. Int. J. Commun Syst. 37 (11), e5798 (2024).

	135.	 Zhou, G. et al. PMT gain self-adjustment system for high-accuracy echo signal detection. Int. J. Remote Sens. 43, 19–24 (2022).
	136.	 Li, T., Xiao, Z., Georges, H. M., Luo, Z. & Wang, D. Performance analysis of co-and cross-tier device-to-device communication 

underlaying macro-small cell wireless networks. KSII Trans. Internet Inform. Syst. 10 (4), 1481–1500 (2016).
	137.	 Gola, K. K., Khan, G. & Gulati, S. Optimize the Network Topology in Underwater Sensor Networks (UWSNs) to improve the 

localization. Int. J. Comput. Inform. Syst. Industrial Manage. Appl. 16 (3), 21–21 (2024).
	138.	 Zhao, H., Gong, Z., Yan, J., Li, C. & Guan, X. Unsynchronized underwater localization with Isogradient Sound Speed Profile and 

Anchor Location uncertainties. IEEE Trans. Veh. Technol. 73(6), (2024).
	139.	 Aravind, J. V. & Prince, S. Localizing an underwater sensor node using sonar and establishing underwater wireless optical 

communication for data transfer applications. Mar. Georesources Geotechnology. 42 (6), 778–794 (2024).
	140.	 Zhou, Z. et al. Localization of underwater Wireless Sensor Networks for ranging interference based on the AdaDelta Gradient 

Descent Algorithm. Wireless Pers. Commun. 137 (2), 1189–1216 (2024).
	141.	 Qin, Y. et al. Robust multi-model mobile target localization scheme based on underwater acoustic sensor networks. Ocean Eng. 

291, 116441 (2024).
	142.	 Kaur, R. & Goyal, S. Flexible localization protocol for underwater wireless sensor networks using hybrid reward evaluation 

scheme, vol. Peer-to-Peer Networking Applications, pp. 1–16, (2024).
	143.	 Gao, C., Yan, J., Yang, X., Luo, X. & Guan, X. An attack-resistant target localization in underwater based on consensus fusion. 

Comput. Commun. 218, 131–147 (2024).

Scientific Reports |         (2025) 15:5672 34| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	144.	 Huang, W. et al. Fast Ray-tracing-based precise localization for internet of underwater things without prior acknowledgment of 
target depth. J. Mar. Sci. Eng. 12 (4), 562 (2024).

	145.	 Ismail, A. et al. Flexible Localization Method with Motion Estimation for Underwater Wireless Sensor Networks, in 26th 
International Conference on Advanced Communications Technology (ICACT), 2024, pp. 354–359: IEEE. (2024).

	146.	 Muhammad, A., Fough, N., Kannan, S. & Hesari, M. Z. Underwater Localization Using SAR Satellite Data, in 2024 IEEE 
International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0 & IoT), pp. 82–87: IEEE. (2024).

	147.	 JIAXING, C. et al. Double AUVs Cooperative localization based on relative heading Angle optimization in Underwater Acoustic 
Sensor Networks. Adhoc Sens. Wirel. Networks. 58(3–4), 297 (2024).

	148.	 Wang, J. et al. Age of information based URLLC Transmission for UAVs on Pylon turn. IEEE Trans. Veh. Technol. 73(6), (2024).
	149.	 Rajshekhar, S. & Biradar, A. An efficient Framework for localization based optimized opportunistic Routing Protocol in 

Underwater Acoustic Sensor Networks. Comput. Sci. 5 (5), 520 (2024).
	150.	 Gao, N. et al. Energy model for UAV communications: experimental validation and model generalization. China Commun. 18 

(7), 253–264 (2021).
	151.	 Yadav, N., Mohan Khilar, P. & Sharma, S. An ameliorated localization algorithm for compensating stratification effect based on 

improved underwater salp swarm optimization technique. Int. J. Commun Syst. 37 (11), e5786 (2024).
	152.	 Fan, R., Jin, Z. & Su, Y. A Novel Passive localization Scheme of underwater non-cooperative targets based on weak-control AUVs. 

IEEE Trans. Wireless Commun. 23(8), (2024).
	153.	 Liu, Z., Jiang, G., Jia, W., Wang, T. & Wu, Y. Critical density for k-coverage under border effects in camera sensor networks with 

irregular obstacles existence. IEEE Internet Things J. 11(4), (2023).
	154.	 Ziauddin, F. Localization Through Optical Wireless Communication in Underwater by Using Machine Learning Algorithms, 

(2024).
	155.	 Uyan, O. G., Akbas, A. & Gungor, V. C. Machine learning approaches for underwater sensor network parameter prediction. Ad 

Hoc Netw. 144, 103139 (2023).
	156.	 Zhang, S., Chen, H. & Xie, L. Adaptive support-vector-machine-based routing protocol in the Underwater Acoustic Sensor 

Network for Smart Ocean. J. Mar. Sci. Eng. 11 (9), 1736 (2023).
	157.	 Han, G. et al. A synergetic trust model based on SVM in underwater acoustic sensor networks. IEEE Trans. Veh. Technol. 68 (11), 

11239–11247 (2019).
	158.	 Kulandaivel, M. et al. Compressive sensing node localization method using autonomous underwater vehicle network. Wireless 

Pers. Commun. 126 (3), 2781–2799 (2022).
	159.	 Liu, L. & Xu, B. Ocean wireless sensor network location method based on gradient boosting decision tree. Eng. World. 2 (2), 2 

(2020).
	160.	 Shah, S. et al. A Dynamic Trust evaluation and update model using advance decision tree for underwater Wireless Sensor 

Networks. Sci. Rep. 14 (1), 22393 (2024).
	161.	 El-Banna, A. A. A., Wu, K. & ElHalawany, B. M. Application of neural networks for dynamic modeling of an environmental-

aware underwater acoustic positioning system using seawater physical properties. IEEE Geoscience Remote Sens. Lett. 19, 1–5 
(2020).

	162.	 WR, S. J., Kalimuth, V. K., Jayasankar, T. & Ponni, R. Improved Grey Wolf Optimization Based Node Localization Approach in 
Underwater Wireless Sensor Networks. Meas. Sci. Rev. 24 (3), 95–99 (2024).

	163.	 Pu, W., Zhu, W. & Qiu, Y. A hybrid localization algorithm for underwater nodes based on neural network and mobility prediction. 
IEEE Sens. J. 24(16), (2024).

	164.	 Wang, M., Xu, C., Zhou, C., Gong, Y. & Qiu, B. Study on underwater target tracking technology based on an LSTM–Kalman 
filtering method. Applied Sciences. 12, 10, p. 5233, (2022).

	165.	 Kumar, S. et al. Enhancing underwater target localization through proximity-driven recurrent neural networks, Heliyon, vol. 10, 
no. 7, (2024).

	166.	 Altameemi, A. I., Mohammed, S. J., Mohammed, Z. Q., Kadhim, Q. K. & Ahmed, S. T. Enhanced SVM and RNN classifier for 
Cyberattacks Detection in Underwater Wireless Sensor Networks. Int. J. Saf. Secur. Eng., 14, 5 (2024).

Acknowledgements
This work was supported by the College of Agricultural Engineering and School of Software, Shanxi Agricultural 
University, Taigu, Jinzhong 030801, China.

Author contributions
“For research articles with several authors, this short paragraph specifies their contributions. A.M (Methodol-
ogy), F.L (Software, Writing an original draft), Z.U.K (Software, Validation), F.K, J.K, and S.U.K (Data curation, 
visualization), F.L (Resources, Project Administration, Funding Acquisition), A.M, and Z.U.K (Investigation, 
Writing, review, and Editing).”

Funding
This research was supported by the scientific research projects that are. (i) Research on intelligent decision mak-
ing system for precision agriculture, 20220214060102, key R&D project of Shanxi Province. (ii) Shanxi Provin-
cial Oil Industry Technology, 2023CYJSTX05-17, Institute of Economic Crops, Shanxi Agricultural University. 
(iii) Scientific and technological support for the high quality development of digital monitoring and intelligent 
control technology for field planting and production, TYGC23-10, special project of Shanxi Agricultural Uni-
versity. (iv) International cooperation project of SAFEA, integration and application demonstration of key tech-
nologies for intelligent operation of agricultural robots, G2022004004L. (v) Research on block chain technology 
in the brand building and protection of special agricultural products, 20210723, Shanxi Science and Technology 
Association. (vi) Postgraduate Teaching Reform and Practice Based on Virtual Laboratory, 2022 of Shanxi Ag-
ricultural University.

Declarations

Competing interests
The authors declare no competing interests.

Scientific Reports |         (2025) 15:5672 35| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Additional information
Correspondence and requests for materials should be addressed to F.L. or Z.U.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |         (2025) 15:5672 36| https://doi.org/10.1038/s41598-025-89916-y

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Exploration of contemporary modernization in UWSNs in the context of localization including opportunities for future research in machine learning and deep learning
	﻿Types of localization algorithms
	﻿Anchor based localization algorithms
	﻿Static anchors
	﻿Range based algorithms
	﻿Range free algorithms



	﻿Mobile anchors
	﻿Individual mobility
	﻿Group mobility

	﻿Anchor free localization algorithms
	﻿Relative positioning
	﻿Self-organizing networks

	﻿Localization challenges in UWSNs
	﻿Algorithmic challenges
	﻿Effects of nonlinear propagation
	﻿Precision and accuracy
	﻿Complexity in 3D localization
	﻿High computational overhead
	﻿Synchronization challenges
	﻿Noise and measurement errors
	﻿Fault tolerance and robustness
	﻿Handling limited prior knowledge
	﻿Real time processing


	﻿Technical challenges
	﻿Mobility
	﻿Limited bandwidth
	﻿Limited communication range
	﻿Energy efficiency
	﻿Secure encrypted communication
	﻿Fusion of multi-modal data
	﻿Anchor node placement and optimization
	﻿Scalability issues
	﻿Lack of GPS access

	﻿Environmental challenges
	﻿Multipath interference handling
	﻿Propagation delays
	﻿Absorption and attenuation
	﻿Dynamic water conditions
	﻿Noise interference
	﻿Depth related challenges
	﻿Environmental heterogeneity and obstacles
	﻿Biofouling
	﻿Unpredictable events
	﻿Long term environmental changes

	﻿Most recent advancements in UWSNs localization
	﻿Purpose of ML and DL in UWSNs localization
	﻿Machine learning approaches for UWSN localization
	﻿K-nearest neighbor (K-NNs)
	﻿Support vector machine (SVM)
	﻿Decision Tree


	﻿Deep learning approaches for UWSNs localization
	﻿Neural networks (NNs)
	﻿Convolutional neural networks (CNNs)
	﻿Recurrent neural network (RNNs)

	﻿Comparative analysis of ML and DL for localization in UWSNs
	﻿Future research directions and opportunities
	﻿Conclusion
	﻿References


